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Optimal charging scheduling of electric vehicles:
the co-charging case

P. Malisani∗, J. Zhu, P. Pognant-Gros

Abstract—A co-charging parking system is a charging system
in which the chargers are automated, i.e., they can automatically
connect to or disconnect from vehicles presented in the parking.
This system makes it possible to have less chargers than the
number of parking places. This paper studies an optimal schedul-
ing problem aiming at charging all vehicles to required battery
level while minimizing the total charging cost. We formulate this
scheduling problem as a non-linear optimal control problem with
mixed integer constraints and mixed discrete and continuous
time. The problem is solved using a Branch and Bound Strategy
coupled with Pontryagin Maximum Principle (PMP) and Interior
Point Methods (IPMs) for optimal control. The presented method
is tested on numerous configurations and shows promising results
both in term of precision and in term of convergence rate.

Index Terms—Co-charging stations, electric vehicle, battery
charging, optimal scheduling, Branch and Bound methods, mixed
integer optimal control

I. INTRODUCTION

The increasing use of electric vehicles (EVs) is a major
component of improving air quality in cities. To support this
development actual car parks must be renewed with charging
equipment. In many cases, this renewal consists in equipping a
certain number of parking places with chargers. This solution
can be expensive due to the large number of chargers to be
deployed and lacks of flexibility in separating parking spaces
for electric and thermal vehicles. In this context, so-called
co-charging solutions can help to alleviate these drawbacks.
In a co-charging system, chargers can move throughout the
parking and plug-in and recharge chosen electric vehicles. This
autonomous moving chargers allows to recharge a number of
vehicles greater than the number of chargers (typically one
charger for 3 to 5 parking places) by means of planning the
sequence of plug-in/charging/unplug cycles of each charger.
In the case we are interested in, the autonomous chargers
can switch from a vehicle to another only at a regular time
steps. In order to operate a co-charging system one has to
schedule the charging of the EVs in order to ensure that
they leave the parking lot with required state of charge while
minimizing a user defined objective function, typically the
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charging cost. At present, this charging technology is still in
the early planning stage and has not yet been tested. However,
some manufacturers are starting to take an interest in it which
motivates this contribution [1].

Optimal charging of EVs has been extensively studied for
years. On the one hand, some of this literature focus on single
EV optimal charging using different methods ranging from
genetic algorithm to deep-learning-based methods [2]–[4]. On
the other hand, another part of the literature focus on EV fleet
charging scheduling [5], [6]. The problem we are interested in
lies in between both cases and concerns the optimal charging
of a few EVs, i.e. more than one vehicle but not enough
to consider the statistical properties of the EVs (not enough
to make a fleet). Indeed, the charging scheduling of a small
group of EVs has also been addressed in recent works. In [7],
the authors studied a stochastic problem of optimal charging
of plug-in electric vehicles at a parking-lot. In [8], [9] the
optimal charging problem of electric vehicles that are able to
exchange energy between them and with the electrical grid
(V2G) has been addressed. However, these studies did not
consider the case where the number of vehicles to be charged
is larger than the number of chargers whereas it is a key
feature regarding the co-charging case. In [10] the problem
of the scheduling of several chargers distributed over a an
electrical grid is addressed and the scheduling is handled using
a heuristic prioritizing the vehicles with smaller departure
times. This charging method does not allow to take advantage
of a time varying price of electricity or does not allow the
charging strategy to reduce energy losses when possible. In
[11], the authors address the optimal assignment of tours to be
processed of a mixed fleet of combustion and electric vehicles
together with the optimal charging scheduling for the latter.
The battery model used in the study is a discrete integrator
model, which does not take into account the non-linearities
in the battery dynamics. But, optimal control strategy of
linear systems consists in bang-bang control [12], that is
to say always charging EVs at maximal power. This bang-
bang strategy does not allow to take advantage of the higher
efficiency of a low power charging and hence yields an over
consumption of energy.

The dependence of the charging efficiency on the state-of-
charge and on the charging power makes the total amount of
energy required to charge a vehicle depends on the charging
trajectory, i.e. the optimization variables. Indeed, the faster the
vehicle is recharged, the greater the energy losses. Therefore,
the problem we are interested in is not a combinatorial problem
such as the bin-packing problem but must be considered as
a mixed integer nonlinear optimal control problem. Several
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contributions in the literature focus on mixed integer optimal
control problems referred as hybrid optimal control [13], [14]
or mixed integer optimal control problems [15], [16]. In [13],
[14], the authors considered a pure continuous time problem,
in which switching times of the integer control variable are
free and must be computed. In [15], [16], approximations
methods such as sum-up rounding strategies are presented
and successfully applied. These methods consist of a time-
discretization of the mixed integer optimal control problem
together with a continuous relaxation of the integer constraints
followed by rounding them into integer solutions. These
methods converge to the optimal solution as the switching
time steps converge to 0. Unfortunately, in the co-charging
case, these switching times are fixed and are much larger than
the time scale of the battery dynamics. In this situation, there is
no guarantee that a rounding strategy converges to an optimal
solution or even a feasible one. Consequently, the co-charging
problem is a Non-Linear Optimal Control Problem with Mixed
Integer constraints and Mixed discrete and continuous Time
(NLOCPMIMT). The integer part of the problem stems from
the fact that only some of the vehicles can be charged at the
same time (since there are more parking slots than chargers).
The continuous time optimal control part stems from the fact
that the charging of electrical batteries can be modeled as a
non-linear dynamical system. Finally, the discrete time part
stems from the fact that the chargers can move from a vehicle
to another at certain time steps. To the knowledge of the
authors, this problem has not been addressed in the literature.

In this paper, we tackle the NLOCPMIMT in its full
complexity. More precisely, we consider a non-linear battery
model calibrated on experimental data, arbitrary numbers of
vehicles and chargers. Our main contribution is an algorithm
that converges to the global optimum of the NLOCPMIMT.
Our approach is as follows, we rely on a Branch and Bound
approach, since the large switching time steps ensure a rea-
sonable depth of the associated search-tree. This Branch and
Bound method is combined with a continuous time interior
point method for optimal control allowing one to compute the
optimal solution of the Branch and Bound lower bounding
procedure with high precision and small execution time. In
addition, the presented methodology is still quite computation-
ally expensive and additional work might be necessary for an
online implementation. Nevertheless, the global convergence
of the presented algorithm makes this methodology a mean-
ingful benchmark against which other scheduling strategy can
be compared. Such a benchmark is particularly useful to assess
the performances of heuristics based methods.

This paper is organized as follows, in Section II the nomen-
clature is presented. In Section III, the optimal scheduling
of vehicle charging problem is presented. In detail, in Sec-
tion III-A the non-linear battery dynamics is presented, in
Section III-B the NLOCPMIMT is presented. In Section IV,
the Branch and Bound algorithm used to handle the integer
variables is described. In Section V, the lower bounding part
of the Branch and Bound algorithm is detailed. In Section
VI the convergence of the Branch and Bound algorithm is
investigated. A numerical study of an optimal vehicle charging
scheduling is given in Section VII. Finally, conclusions and

perspectives are discussed in Section IX.

II. NOMENCLATURE

• nx: number of vehicles to be charged
• nc: maximum number of chargers
• Pc = {p1, . . . , pncs

}: set of maximal charging powers
• ncs: number of groups of same maximum power chargers
• Gj : Group of chargers of same maximum power, j =

1, . . . , ncs

• P+
Gj

: Maximum power of group charger j = 1, . . . , ncs

• m ∈ {0, 1}nx×ncs : Vehicle-charger connection matrix.
Vehicle i is connected to group chargerj if and only if
the element mi,j of m is 1.

• Ps ∈ R: maximal power available for the whole charging
station

• t0,k: earliest plugging time of the vehicle k
• tf,k: latest unplugging time of the vehicle k
• tf : optimization horizon
• ∆T : minimum duration of a vehicle connection to a

charger
• kf = ⌊tf/∆T ⌋: maximum number of switching times
• x0,k: initial battery energy of vehicle k
• xf,k: desired battery energy of vehicle k
• pc,k ∈ C2(R,R): charging power of vehicle k
• λk ∈ L∞([0, tf ], [0, 1]): charging rate of vehicle k
• xk ∈ C0([0, tf ],R): battery state of energy of vehicle k
• p+c,k ∈ C2(R,R): maximal charging power of vehicle k
• fc,k : R×R 7→ R: dynamics of vehicle battery k
• θx ∈ R+: weight of state of charge penalization
• eopt(nx) =

∫ ∑nx

k=1 λkp
+
c,k(x

λk)dt: total energy con-
sumption with optimal charging rates λ.

• copt(nx) =
∫

price
∑nx

k=1 λkp
+
c,k(x

λk)dt: total charging
cost with optimal charging rates λ.

• eref (nx) =
∫ ∑nx

k=1 pc,kdt: Sequence of total energy
consumption with reference charging powers pc.

• cref (nx) =
∫

price
∑nx

k=1 pc,kdt: total charging cost with
reference charging powers pc.

• ⊤,⊥: True and False boolean variables respectively
• ¬: logical not
• RMES : Relative Mean Energy Savings
• ERSD : Energy Relative Standard Deviation
• RMCS : Relative Mean Cost Savings
• CRSD : Cost Relative Standard Deviation

In the rest of the paper, bold lowercase variables such as m
indicate matrices of Rnx×ncs . Bold capital variables such as
Mk indicates a sequence of such matrices also noted

Mk = ⟨m0, . . . ,mk⟩, mi ∈ Rnx×ncs , i = 0, . . . , k (1)

And we note the concatenation between a sequence Mk and
a matrix p ∈ Rnx×ncs as follows

Mk : p = ⟨m0, . . . ,mk,p⟩ (2)

The concatenation of two sequences Mk = ⟨m0, . . . ,mk⟩
and Sl = ⟨s0, . . . , sl⟩ writes as follows

Mk : Sl = ⟨m0, . . . ,mk, s0, . . . , sl⟩ (3)
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III. PROBLEM PRESENTATION

The problem we are interested in consists in charging nx

electric vehicles using nb autonomous charging stations that
can automatically move from one parked vehicle to another
with a regular time-step ∆T . The question of planing the order
of vehicles charging arise naturally in this context. This paper
provides an optimal control based algorithm to compute such
a planing. This algorithms aims at minimizing a time-of-use
cost of charging seen from the charging station owner/operator
viewpoint. The battery model used for the optimal control
algorithm is presented in Section III-A. Given the battery
model, Section III-B describes the optimal control problem
corresponding to the vehicles charging planing. That is to say,
the cost to minimize, the equations of the dynamical systems
and the optimization constraints of the problem.

A. Battery Model

In order to represent the battery dynamics, an equivalent
circuit model comprising a voltage source uocv, an electric
resistance rc is used [17] and a maximal charging power p+c .
These variables are dependant on the battery state of energy
(SOE) x. In addition, these functions are approximated by
polynomial functions of the SOE using experimental data.
Using these functions and noting pc,k the charging power
of vehicule k and xpc,k its corresponding SOE, one has the
following dynamics

ẋk =
uocv(xk)

2rc(xk)
×(

−uocv(xk) +
√
u2

ocv(xk) + 4rc(xk)pc,k

)
=fc(xk, pc,k) (4)

Taking into account the SOE dependant charging power limi-
tation one has

pc,k ≤ p+c,k(xk) (5)

B. Optimal charging problem

In the problem we are interested in, chargers can be of
different maximum charging power. Therefore, these chargers
are gathered in ncs groups Gj , j = 1, . . . , ncs, of same
charging maximal charging power P+

Gj
. Therefore, the total

amount of chargers is equal to the sum of elements of each
groups Gj : ∑

j

card(Gj) = nc (6)

The problem we are interested in consists in charging nx vehi-
cles using nc chargers able to switch position to charge another
vehicle every ∆T . Therefore, for all t ∈ [s∆T, (s + 1)∆T ),
the connections between vehicles and chargers are represented
by a matrix ms ∈ {0, 1}nx×ncs . Each element ms

i,j of this
matrix is equal to 1 if and only if vehicle i is connected to
group charger j. Since each vehicle can be connected to at
most one charger, one has

ncs∑
j=1

ms
i,j ≤ 1 ; ∀i = 1, . . . , nx, ∀s ∈ 0, . . . , kf (7)

In addition, the number of vehicles connected to the chargers
of group j must be less or equal to the number of chargers
within this group, which writes

nx∑
i=1

ms
i,j ≤ card(Gj) ; ∀j = 1, . . . , ncs, ∀s ∈ 0, . . . , kf

(8)
Moreover, the total number of connected vehicles cannot
exceed the minimum between the amount of vehicles or the
amount of chargers:

nx∑
i=1

ncs∑
j=1

ms
i,j ≤ min{nx, nc} ; ∀s = 0, . . . , kf (9)

Finally, the quantity to minimize is a trade-off between the
co-charging operator cost and the charging speed. We assume
a time-of-use charging rate to compute the charging cost and
the charging speed is represented using a quadratic cost on
difference between the current and the target state of charge.
This trade-off cost writes

min
pc,i,M

kf

kf∑
s=0

∫ (s+1)∆T

s∆T

price(t)
nx∑
i=1

ncs∑
j=1

ms
i,jpc,i(t) . . .

+ θx(xi(t)− xi(tf,i))
2dt (10)

with kf = ⌈T/∆T ⌉. The weight θx is a tuning parameter. For
zero or small values of θx emphasis is given to the charging
cost while high values of θx favor a faster charging. For
the sake of simplicity, the following change of variable is
performed

pc,i(t) = λi(t)p
+
c,i(xi(t)) (11)

where λi(t) ∈ [0, 1]. This change of variable allows the control
variables to be all valued in the same set [0, 1]. Moreover, when
connected to a station from group Gj , the charging power of
vehicle i is bounded as follows:

λi(t)p
+
c,i(xi(t)) ≤ min{p+c,i(xi(t)), P

+
Gj
} (12)

Finally, the NLOCPMIMT writes

min
λi,M

kf

kf∑
s=0

∫ (s+1)∆T

s∆T

price(t)
nx∑
i=1

ncs∑
j=1

ms
i,j × . . .

λi(t)p
+
c,i(xi(t)) . . .

+ θx(xi(t)− xi(tf,i))
2dt (13)
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under the following constraints

ẋi(t) = fc,i(xi(t), λi(t)p
+
c,i(xi(t))) (14)

xi(t) ∈ [0, E+
i ] (15)

λi(t) ∈ [0, 1] (16)
Mkf = ⟨m0, . . . ,mkf ⟩ (17)
ms ∈ {0, 1}nx×ncs (18)

ncs∑
j=1

ms
i,j ≤ 1 (19)

nx∑
i=1

ms
i,j ≤ card(Gj) (20)

nx∑
i=1

ncs∑
j=1

ms
i,j ≤ min{nx, nc} (21)

P+
Gj

≥ λi(t)p
+
c,i(xi(t))m

s
i,j (22)

Ps ≥
nx∑
i=1

λi(t)

ncs∑
j=1

ms
i,jp

+
c,i(xi(t)) (23)

where Ps is the maximum power capacity of the charging
station.

IV. A BRANCH AND BOUND APPROACH TO INTEGER
OPTIMAL CONTROL PROBLEMS

A. Branch and Bound method overview

The problem presented in Section III-B is not a pure mixed
integer optimal control problem such as in [16]. Indeed, Mkf

is a discrete time variable which can switch from a discrete
value to another only at regular time steps ∆T which can
be large compared to the battery dynamics. Now, the method
presented in [16] converges to the optimal solution only if
the time between consecutive switching times converges to
zero. This convergence condition is not met for the presented
application.

The mixed integer optimal control problem consists in
finding both the optimal sequence of discrete valued control
variable Mkf and the continuous optimal controls λi. To do
so, we use a Branch and Bound approach [18]. Generally
speaking, these techniques rely on a systematic exploration of
a search-tree representing all possible values of the discrete
variables. Throughout this exploration, at each node, the
Branch and Bound algorithm completes two sequential tasks:

• Bounding : Computing the optimal solution of a relaxed
problem for a node of depth k is an optimization problem
where the discrete variables have been set over k stages,
i.e. from the root to the current node of the search-tree.
This relaxed optimization problem provides the algorithm
a lower-bound of the actual optimal cost.

• Branching : Once the bounding part of the node has
been computed, the branching part can be performed. The
branching of a node consists in two mutually exclusive
actions :

– Exploring : If the branch rooted at the current node
of depth k is worth exploring, the node’s children
are computed.

– Pruning : If the branch rooted at the current node is
not worth exploring, i.e. if the optimal solution of the
relaxed problem of the current node is higher than
the cost of an admissible trajectory for the considered
problem, the branch is then pruned and will not be
explored.

The efficiency of a Branch and Bound approach requires to
have a relaxed problem which approximates the integer value
problem and an exploring method, which explores primarily
the nodes located on the optimal path of the tree. Now, let us
see how to apply this general method to Problem (13)-(23).

B. Lower bounding

The lower bounding part of the algorithm consists in solving
a relaxed problem, i.e. a continuous problem deriving from
the original problem where the integer constraints have been
relaxed. In order to introduce the relaxed problem let us define
the following useful functions

g1(λi(t), xi(t), j,M
k) = . . .{

λi(t)p
+
c,i(xi)−maxj P

+
Gj

if t < k∆T

λi(t)p
+
c,i(xi)m

s
i,j − P+

Gj
, if t ≥ k∆T

(24)

g2(λ(t), x(t),M
k) = . . .{ ∑

i λi(t)p
+
c,i(xi)− Ps, if t < k∆T∑

i λi(t)p
+
c,i(xi)

∑
j m

s
i,j − Ps, if t ≥ k∆T

(25)

Function g1 (resp. g2) corresponds to the relaxation of con-
straint (22) (resp. (23)) over the time interval [0, k∆T )

min
λi

J(λ,Mk) = . . .

nx∑
i=1

[ k∑
s=0

∫ (s+1)∆T

s∆T

price(t)λi(t)p
+
c,i(xi(t))dt . . .

+

kf∑
s=k+1

∫ (s+1)∆T

s∆T

price(t)
ncs∑
j=1

ms
i,jλi(t)p

+
c,i(xi(t))dt . . .

+

∫ tf

0

θx(xi(t)− xi(tf,i))
2dt

]
(26)

under constraints (14)-(16) and where constraints (22)-(23) are
relaxed as follows:

g1(λi(t), xi(t), j,M
k) ≤ 0 ∀t, i, j (27)

g2(λ(t), x(t),M
k) ≤ 0 ∀t, i (28)

Mk = ⟨m0, . . . ,mk⟩ (29)
ms ∈ {0, 1}nx×ncs (30)
ncs∑
j=1

ms
i,j ≤ 1 (31)

nx∑
i=1

ms
i,j ≤ card(Gj) (32)

nx∑
i=1

ncs∑
j=1

ms
i,j ≤ min{nx, nc} (33)

At this point, several remarks can be made regarding this
optimal control problem
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• Any node of depth k from the search-tree is uniquely
associated to a particular sequence Mk.

• Notice from equations (24)-(25) that the problem at depth
k respects the integer constraints from stage kf − k to
stage kf and is a continuous problem from stage 0 to
stage kf − k. At depth kf the solution of the relaxed
problem satisfies the integer constraints at all stages.
Therefore, in this algorithm the setting of the integer
matrices mk is a time-backward procedure. Although
other methods of setting the integer variables are possible
(forward time, by random,...), this method proved to be
very efficient in practice.

Each node generation consists in solving a problem of the
form (26)-(33). Therefore, the computational tractability of the
Branch and Bound method strongly relies on the ability to
efficiently solve this problem and the solving algorithm must
be designed with great attention. The chosen algorithm used
to solve this problem is presented in details in Section V.

C. Upper bounding

A leaf node of the tree, i.e. a node of depth kf is a node for
which all discrete variables have been set. Therefore this node
satisfies the discrete constraints (17)-(23), i.e. any optimal
solution of a leaf node is admissible for problem (13)-(23).
Thus, the optimal cost corresponding to the relaxed problem
of a leaf node is an upper bound on the optimal cost of the
original problem and at least one the leaf nodes is the optimal
solution for Problem (13)-(23).

D. Generating children of depth k + 1 from node of depth k

At this point, the relaxed problem of depth k has been
described. One still has to define the branching part of the
algorithm, i.e. how to generate the children of a node of
depth k. Since Branch and Bound is an exhaustive exploration
method, generating the children of depth k+1, of a parent node
n(Mk) actually consists in generating all possible matrices
mk+1 ∈ {0, 1}nx×ncs satisfying (19)-(21) and solving the
problem for each matrix. At first glance generating these
matrices is not straightforward. But, there is a one to one
correspondence between this set and the set of all possible
vehicle to charger connection configurations and one can
directly derive the connection matrix ms corresponding to any
of these configurations.

E. Exploring the tree

The branching part consisting in lower-bounding the optimal
cost and generating the children of a node has been covered.
To fully describe the Branch and Bound algorithm, one has to
specify the exploration part of this algorithm, that is to say in
what order the nodes are going to be explored.

1) Depth-First-Search like strategy: In order to have an
efficient pruning of the tree, it is very important to get a
good upper bound on the optimal cost as fast as possible.
Indeed, as long as no upper bound has been computed no
pruning can be performed. In the same time, the convergence
speed of the Branch and Bound method strongly relies on

the ability to prune branches in early stages of the algorithm
execution. But, as described in Section IV-C, upper bounds on
the optimal cost are computed only in the leaf nodes of the
tree. Therefore, it is very important to reach a leaf node as
fast as possible. To do so, a Depth-First-Search like technique
of exploration is used. Depth-First-Search techniques consist
in putting generated children of a node in a stack and then
exploring the node on top of the stack. Proceeding that way
ensures that the current explored node is always one step
deeper than the previous one, and that a leaf node is reached
in kf steps. But, in order to get a good upper bound on the
optimal cost, the generated nodes are stacked in decreasing
order of their relaxed optimal cost. Doing this way ensures that
the Depth-First-Search method follows a path of best children
per generation. Indeed, a node is explored, then its best child
is explored, then its best child’s best child and so on. This
heuristic allows the algorithm to find a good upper bound
in kf steps. Moreover, using a backward strategy for setting
the integer variable (see equation (24)-(25)) often allows this
strategy to find the optimal solution when reaching a leaf node.

2) Best first search strategy: Once the Depth-First-Search
strategy has reached a leaf node, an upper bound is available.
To complete the optimization it is now time to prune as many
branch as possible to ensure the optimal solution is reached
as fast as possible. To do so, the exploration method is now
a Best-First-Search method, the node with the lower relaxed
optimal cost is explored first. The data structure behind this
Best-First-Search is a min-priority-queue [19] sorting nodes in
increasing order of their relaxed optimal cost.

F. Branch and Bound algorithm

The complete Branch and Bound algorithm is presented in
Algorithm 1.

Remark 1. At the end of the Depth-First-Search part of the
Branch and Bound algorithm a good solution (often optimal
in practice) is reached and can be used as an approximate
solution of the problem. This property is particularly useful if
the execution time must be controlled.

V. SOLVING THE LOWER BOUNDING PROBLEM : AN
INTERIOR POINT METHOD APPROACH

As stated in Section IV-B, the solving algorithm of the
lower-bound problem must be chosen carefully. First, the algo-
rithm must be fast enough to ensure that the node generation
will not slow down the tree exploration. Interestingly, at each
node generation, one can notice that the solution of the lower-
bounding procedure of the parent node is a good initialization
for any of its child nodes. Indeed, the only difference between
the optimization problems of node k and its children of depth
k + 1 are functions g1 and g2 from equations (24)-(25) on
the time interval [(k − 1)∆T, k∆T ). In order to compute the
lower bound of each node, Pontryagin Maximum Principle
based methods are suitable [12] because of their convergence
speed when provided with a good initialization. However, in
the framework of optimal control, handling pure state and
control constraints such as in equations (15) and (16) is
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Algorithm 1: Branch and Bound algorithm
1: stack ← Stack()
2: ub← +∞
3: lb← −∞
4: E−1 ← ∅
5: root ← node(E−1)
6: best node ← null
7: stack.push(root)
8: while ub = +∞ do
9: parent ← stack.pop()

10: sorted children ← parent.gen child decreased order()
11: for child in sorted children do
12: if child.relaxed cost < +∞ then
13: stack.push(child)
14: end if
15: if child.depth = kf then
16: ub← child.relaxed cost
17: end if
18: end for
19: end while
20: minpq ← minPQ()
21: while stack.size > 0 do
22: node = stack.pop()
23: if node.relaxed cost < ub then
24: minpq.insert(node)
25: end if
26: end while
27: while minpq.size > 0 do
28: node = minpq.delmin()
29: children ← parent.generate children()
30: for child in children do
31: if child.relaxed cost < ub then
32: if child.depth = tf then
33: ub← child.relaxed cost
34: best node ← child
35: else
36: minpq.insert(child)
37: end if
38: end if
39: end for
40: end while
41: return best node

not straightforward [20] and classic off the shelves TPBVP
solvers fail to compute the solution of such problems1. To
overcome this difficulty, one can use Interior Point Methods
(IPMs) adapted for state and input constraints optimal control
problems.

A. Presentation of the interior penalized optimal control prob-
lem

In order to solve the lower bounding problem (26)-(33) of
the Branch and Bound algorithm, an interior point approach

1The adjoint variables of the two-point boundary value problems can be
discontinuous when the state constraint reaches 0.

[21] is used. This method consists in relaxing constraints
(15)-(16) and (27)-(28) through an augmentation of the cost
(26) using interior penalization functions. This relaxation
depends on a parameter sequence (εn) converging to 0. As this
sequence converges to 0 the solution of the relaxed optimal
solution converges to the solution of the original problem. The
penalized problem writes as follows

min
λ∈Λ

M(λ,Mk, ε) = . . .∫ tf

t0

price
∑
i

p+c,i(xi)λi + θx(xi(t)− xi(tf,i))
2dt

+ εpint(x, λ,M
k) (34)

under constraints (14) and where

pint(x, λ,M
k) =

∫ tf

0

[∑
i

(
γx(−xi) + γx(xi − E+

i )
)

+ γx ◦ g2(λ, x,Mk) +
∑
i

γλ(λi)

+
∑
i

∑
j

γx ◦ g1(λi, xi, j,M
k)

]
dt (35)

Λ =L∞([0, T ]; [0, 1]nx) (36)

γx(x) =

{
(−x)−1.1 if x < 0

0 otherwise
(37)

γλ(x) =− log(−x)− log(1− x) (38)

This particular choice of penalty is given in [21] and ensures
that the optimal solution of the penalized problem strictly
satisfies the constraints.

Theorem 1 (From [21]). If penalty functions γx and γλ are
chosen according to equations (37)-(38) then any optimal
solution λ∗ of problem (34) with ε > 0 is such that

x∗
i (t) ∈ (0, E+

i ) (39)
λ∗
i (t) ∈ (0, 1) (40)

g1(λ
∗
i (t), x

∗
i (t), j,M

k) < 0 (41)
g2(λ

∗(t), x∗(t),Mk) < 0 (42)

B. Solving algorithm

1) Saturation functions for a fully unconstrained problem:
In order to get a fully unconstrained problem, we use satura-
tion functions on the control:

λ = ϕ(ν) =
1

2
(1 + tanh(ν)) (43)

Using this change of variables the penalized optimal control
problem (34) becomes

min
ν

M(ϕ(ν),Mk, ε) = . . .∫ tf

0

price
∑
i

p+c,i(xi)ϕ(νi) + θx(xi(t)− xi(tf,i))
2dt . . .

+ ε pint(x, ϕ(ν),M
k) (44)

under the following dynamic constraint adapted from (14):

ẋi = fc,i (xi, ϕ(νi)) (45)



7

Thanks to Theorem 1, this change of variables is well posed
since the optimal control λ∗ for problem (34) + (14) is in
L∞([0, tf ]; (0, 1)), i.e. is strictly interior.

2) Pontryagin Maximum Principle approach for solving the
unconstrained optimal control problem: Solving the lower
bounding problem consists in solving a sequence of uncon-
strained optimal control problems (UOCPs) (44)-(45). To solve
this sequence of UOCPs, a Pontryagin Maximum Principle
(PMP) based approach is used. To do so, let us first define the
Hamiltonian [12] of problem (44)-(45)

H(t, x, ϕ(ν), p,Mk, ε) = . . .

price
∑
i

p+c,i(xi)ϕ(νi) + θx(xi(t)− xi(tf,i))
2

+ ε pint(x, ϕ(ν),M
k) +

∑
i

pTi fc,i(xi, ϕ(νi)) (46)

The PMP states that any optimal solution from problem (44)-
(45) is solution of the following TPBVP

ẋi = fc,i(xi, ϕ(νi)) (47)

ṗi = −
∂H(t, x, ϕ(ν), p,Mk, ε)

∂xi
(48)

0 =
∂H(t, x, ϕ(ν), p,Mk, ε)

∂νi
(49)

xi(0) = x0,i (50)
xi(tf ) = xtf ,i (51)

To solve this TPBVP numerous algorithms such as shooting
or collocation algorithms exist and an exhaustive presentation
is given in [22]. For the problem under consideration, a
collocation based solving algorithm such as [23] is a relevant
choice. Indeed, these methods allow one to achieve a good
compromise between computational speed and numerical sen-
sitivity.

3) Presentation of the lower bounding algorithm: In the
following we present the resolution algorithm for the lower
bounding part of the Branch and Bound Algorithm 1

Algorithm 2: Lower bounding algorithm
1: ε = ε0 > 0, α > 1, tol > 0
2: Initialization of (ν, x) such that xi ∈ (0, E+

i );
ϕ(νi)p

+
c,i(xi) ≤ maxj Pb,j and

∑
i ϕ(νi)p

+
c,i(xi) ≤ Ps

3: Cint ← ⊥
4: while ¬Cint do
5: (ν, x, p) is solution of (47)-(51)
6: if εpint(x, ϕ(ν),M

k)/J ◦ ϕ(ν) < tol then
7: Cint ← ⊤
8: else
9: ε = ε/α

10: end if
11: end while
12: return

∫ tf
0

price
∑

i p
+
ci(xi)ϕ(νi)dt

The exit condition from Algorithm 2 allows to stop the
algorithm when the perturbation on the optimal cost provided

by the penalty function εpint(x, ϕ(ν),M
k) is negligible with

respect to the original cost. The working justification of this
exit condition will be detailed in Section VI-A.

VI. CONVERGENCE ANALYSIS

Before proving convergence of the presented method, let us
introduce the following Definition

Definition 1 (Lower bound solution). The lower bound solu-
tion of a node n of depth k is a 2-uple (Mk

n, λ
n), where Mk

n

is the sequence of integer matrices corresponding to node n
defined in equations (29)-(33) and where λn is an optimal
solution of problem (26)-(33) with Mk = Mk

n.

Now, the proof of convergence is presented in three parts.
First, the convergence of the interior point method from
Section V is investigated. Then, proof of path-increasing cost
is given. Finally the proof of convergence of the method
directly stems from the aforementioned proofs.

A. Convergence of the interior point method

In order to prove the convergence of the interior point
method, one first needs to prove that the solution of the Two
Point Boundary Value Problem (TPBVP) (47)-(51) is indeed
the optimal solution of the considered problem. This is the
object of the following proposition

Proposition 1. There exists a unique optimal solution λ∗ to
Problem (34)-(38) and λ∗ is solution of TPBVP (47)-(51)

Proof: See Appendix A
The proof of convergence of the interior point method is a

direct use of [21].

Theorem 2 (From [21]). If the penalty functions are cho-
sen according to equations (37)-(38), any optimal solution
ν∗ε (M

k) of problem (44)-(45) is such that, ∀k ≤ kf

lim
ε→0

M(ϕ(ν∗ε (M
k)),Mk, ε) = min

λ
J(λ,Mk) (52)

lim
ε→0

J(ϕ(ν∗ε (M
k)),Mk) = min

λ
J(λ,Mk) (53)

lim
ε→0

εpint(x, ϕ(ν
∗
ε (M

k)),Mk) = 0 (54)

under constraints (14)-(16)+(27)-(33).

This result yields limε→0
εpint(x,ϕ(ν

∗
ε (M

k)),Mk)

J(ϕ(ν∗
ε (M

k)),Mk)
= 0, thus

the exit condition from Algorithm 2

B. Path increasing lower bound procedure

Proposition 2. Let n1 and n2 be two nodes on the same
simple path from the root to a leaf of the tree. Without
loss of generality, assume that n1 (resp. n2) has depth k
(resp. s, s > k) and let (Mk

n1
, λn1) (resp. (M s

n2
, λn2))

be its lower bounding solution from Definition 1 . One has
J(λn1 ,Mk

n1
) ≤ J(λn2 ,M s

n2
). In other words, the lower

bounding cost is increasing along any simple path of the
search-tree.
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Proof: Since n1 and n2 are on the same path connecting
the root and a leaf of the search tree, one has M s

n2
= Mk

n1
:

⟨mk+1, . . . ,ms⟩. Hence, using equation (24) one has

g1(λ
n1
i , xn1

i , j,Mk
n1
) ≥ . . . (55)

g1(λ
n2
i , xn2

i , j,Mk
n2
) ∀t ∈ [0, tf ], . . . (56)

i = 1, . . . , nx ; j = 1, . . . , nb (57)

where xn1 = (xn1
i , . . . , xn1

nx
)T is solution of equations (14),

with control variable λn1 = (λn1
i , . . . , λn1

nx
)T and using

equation (25) one also has

g2(λ
n1 , xn1 ,Mk

n1
) ≥ . . . (58)

g2(λ
n2 , xn2 ,Mk

n2
) ∀t ∈ [0, tf ] (59)

Therefore, the search space of problem (26)-(33) associated
to Mk

n1
contains the search space associated to M s

n2
. This

yields J(λn1 ,Mk
n1
) ≤ J(λn2 ,M s

n2
).

C. Convergence of the Branch and Bound method

We are now ready to state our main convergence result

Theorem 3. Let node o be the solution of the Branch and
Bound algorithm, let (λo,Mkf

o ) its lower bounding solution
and let ν∗ϵ (M

kf
o ) be the optimal solution of the lower bound-

ing problem (47)-(51) for node o. The Branch and Bound
algorithm converges to the global solution of problem (13)-
(23) in the following sense

lim
ε↓0

J(ϕ(ν∗ϵ (M
kf
o )),Mkf

o ) = J(λo,Mkf
o )

= min
Mkf

min
λ

J(λ,Mkf )(60)

under constraints (14)-(23)

Proof: From Theorem 2 and Definition 1 one has

lim
ε↓0

J(ϕ(ν∗ϵ (M
kf
o )),Mkf

o ) = min
λ

J(λ,Mkf
o ) = J(λo,Mkf

o )

(61)
Now, let us prove that node o is the leaf node with lowest
lower bounding cost among all leaf nodes. The proof is by
contradiction. Assume that there exists a leaf node l with
lower bounding solution (M

kf

l , λl) such that J(λl,M
kf

l ) <
J(λo,Mkf

o ). This configuration is possible only if during the
Branch and Bound algorithm execution a branch containing
l rooted at a node m of depth s < kf with lower bounding
solution (M s

m, λm) is pruned. Let cub be the current upper
bound when this pruning happened, according to Proposition
2 one has cub ≤ J(λm,M s

m) ≤ J(λl,M
kf

l ) otherwise
no pruning would have occurred. When the execution is
completed, the final upper bound is the lower bounding cost
of the leaf node o. From the updating method of the Branch
and Bound algorithm upper bound one has J(λo,Mkf

o ) ≤
cub ≤ J(λm,M s

m) ≤ J(λl,M
kf

l ) for any leaf node l, which
contradicts the initial assumption and yields

J(λo,Mkf
o ) = min

n∈L
J(λn,Mkf

n ) (62)

where L is the set of all leaf nodes. By construction of the
Branch and Bound search-tree, the set {Mkf

n }n∈L is exactly
the set of all discrete sequences of length kf which yields

J(λo,Mkf
o ) = min

n∈L
J(λn,Mkf

n ) = min
Mkf

min
λ

J(λ,Mkf )

(63)
and concludes the proof.

VII. NUMERICAL PERFORMANCE ANALYSIS

A. Example presentation

In this section the following nx-dependent problem is
considered

nc = 2 ; Pc = {50, 22} ; Ps = 60 (64)
∆T = 30 minutes (65)
θx = 0 (66)

t0,k = 0, ; tf,k ∈ U(14, 18) (67)

E+
k ∈ U(30, 90) (68)

x0,k ∈ U

(
E+

k

10
,
E+

k

5

)
, ; xf,k ∈ U

(
7

10
E+

k ,
9

10
E+

k

)
(69)

price =

{
0, 095 if t ∈ [6, 9) ∪ [12, 14)
0.07 otherwise (70)

where U(x, y) is the uniform distribution on [x, y]. From this
setting with nx vehicles and 2 different chargers, the size of
the Branch and Bound search-tree is exactly the number of
permutations of 2-elements among nx to the power of the

time steps number, that is to say
(

nx!
(nx−2)!

)36

.

B. Reference charging strategy

In order to benchmark the proposed method, we consider the
following reference strategy. The idea is to charge two vehicles
which need the larger amount of energy at the switching
moment. More precisely, at switching time ts, we note i1(ts)
(resp. i2(ts)) the vehicle such that xf,i1(ts) − xi1(ts)(ts) is
maximum (resp. second to maximum) and let pc,k be the
charging power of vehicle k. The charging strategy is as
follows

pc,i1(ts)(t) =min{50, pc,i1(ts)(xi1(ts)(t))} (71)
pc,i2(ts)(t) =min{22, pc,i2(ts)(xi2(ts)(t)); 60− pc,i1(ts)(t)}

(72)
pc,k(t) =0 ∀k ∈ {1, . . . , nx} \ {i1(ts), i2(ts)} (73)

where t ∈ [ts, ts+1). Note that once the state of energy of
vehicle k has reached xf,k, the charging power of this vehicle
is always 0.

C. Performance analysis indicators

For each value of nx we solve 50 instances of problem
(64)-(70) both with reference and presented method. Let
eiopt(nx) (resp. eiref (nx)) be the optimal solution of instance
i = 1, . . . , 50, of problem (64)-(70). In the same way,
we note ciopt(nx) (resp. ciref (nx)) the optimal (resp. refer-
ence) charging cost corresponding to the solving of instance
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nx

Energy Cost Execution time
RMES ERSD RMCS CRSD mean std

(%) (%) (%) (%) (s) (s)
9 1.59 1.03 6.01 1.14 570 96
8 1.92 0.95 3.79 1.23 261 43
7 2.73 1.28 2.92 1.22 169 29
6 3.21 1.22 3.12 1.22 60 4
5 5.14 1.60 5.05 1.59 47 3
4 7.11 1.61 7.00 1.60 35 3
3 7.37 1.98 7.26 1.96 30 6

TABLE I
PERFORMANCE INDICATORS AS A FUNCTION OF THE NUMBER OF

VEHICLES TO BE CHARGED nx

i = 1, . . . , 50, of problem (64)-(70). In addition, we note
δie(nx) =

eiref (nx)−eiopt(nx)

eiref (nx)
(resp. δic(nx) =

ciref (nx)−ciopt(nx)

ciref (nx)
)

the relative energy (resp. cost) savings. In order to quantify the
performances of the proposed method, the following indicators
are used

• Relative Mean Energy Savings, RMES(nx):

RMES(nx) = 100Ei

{
δie(nx)

}
(74)

• Energy Relative Standard Deviation, ERSD(nx):

ERSD(nx) = 100

√
Ei {δie(nx)2} − Ei {δie(nx)}

2 (75)

• Relative Mean Cost Savings, RMCS(nx):

CRMS(nx) = 100Ei

{
δic(nx)

}
(76)

• Cost Relative Standard Deviation, CRSD(nx):

CRSD(nx) = 100

√
Ei {δic(nx)2} − Ei {δic(nx)}

2 (77)

where Ei is the mathematical expectation with respect to the
instance number i.

D. Compared performance analysis

1) Energy consumption comparison: On Table I, one can
see that the relative energy savings decreases with the number
of vehicle to be charged. This phenomenon is a consequence
of the fact that fewer vehicles to charge over a given time
period allows to use lower power charging limiting the energy
losses in the process. In contrast, the reference method aims
at charging EVs as fast as possible to the expense of energy
losses.

2) Cost savings comparison: On Table I, the behavior of
the RMCS as a function of nx is more complex, it decreases
from nx = 3 to nx = 7 and increases from nx = 7 to nx =
9. First, for nx = 3, . . . , 7, the cost savings is a decreasing
function of nx. On Table II, one can see that the percentage
of energy consumed during peak hours is zero2 for reference
and optimal strategies when nx < 7. Since the whole energy is
consumed outside peak hours, the percentage of cost decrease
is equal to the percentage of energy decrease. From Table I,
the CRMS is now an increasing function of nx, for nx ≥ 7.
This increase phenomenon is due to the fact that the main

2In the optimal case, the peak-hours energy is not exactly zero. This stems
from using IPMs to solve the optimal control which leaves a residual non
zero consumption during these periods.

nx 9 8 7 6 5 4 3
Optimal (%) 0.32 0.29 0.29 0.26 0.30 0.31 0.33

Reference (%) 13.54 5.76 0.80 0.00 0.00 0.00 0.00
TABLE II

PERCENTAGE OF ENERGY CONSUMED DURING PEAK HOURS FOR OPTIMAL
AND REFERENCE STRATEGY.

source of cost savings does not come from limiting energy
losses anymore but from shifting energy consumption from
the peak periods. On Table II, one can see that the percentage
of energy consumed during peak hours increases when nx ≥ 7
in the reference case but is still 0 with the optimal strategy.
Therefore, the more energy is consumed during peak hours
for the reference strategy the greater the cost savings using
the proposed method.

3) Execution time analysis: All instances of Problem (64)-
(70) are solved on a Linux Ubuntu operating system endowed
with 35 Intel®Xeon®Gold 5120 CPU @ 2.2 GHz. The solver
is based on homemade PYTHON solvers both for the Branch
and Bound algorithm and the Differential Algebraic Equations.
On Table I one can see that the growth in execution time
suddenly increases for nx ≥ 7. This phenomenon stems from
the fact that for nx ≥ 7 there are more children by generation
than CPUs available. Hence the children generation part of
the Branch and Bound algorithm cannot be fully parallelized.
That said, one can see that the mean execution time is always
less than 1% of the time horizon. Finally, with this hardware
setting the computation time is compatible with an online
implementation. Nevertheless, the presented method requires
lots of computing power. Specifically, this methods relies on
the availability of using many CPUs at the same time which
can be a limit for online implementation.

VIII. MPC IMPLEMENTATION SIMULATION

A. MPC implementation algorithm

In this Section, we are interested in comparing the perfor-
mances of the reference method presented in Section VII-B
and the presented algorithm in an online implementation
simulation. For this simulation, we implement the algorithm
in a straightforward Model Predictive Control manner [24]
consisting in the following step:

• At each vehicle arrival solve the optimal charging prob-
lem corresponding to the charging of the cars parked in
the co-charging station.

• Execute the computed planning until new vehicle arrival.

This implementation does not require any prediction on the
arrival time of a vehicle. Each vehicle is taken into account in
the optimization problem as soon as it arrives at the charging
station. Therefore, if the charging speed is too low handling
a large flow of vehicle arrival might be impossible. In order
to gain some robustness with respect to the flow of vehicles
the weight on the quadratic cost on the state of charge θx can
be tuned to achieve a good trade-off between minimization of
the time-of-use charging cost and the charging speed.
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Energy consumption (kWh) Charging cost (C)
Optimal case 197.7 14.72

Reference case 210.6 17.82
Variation -6.13% -17.46%

TABLE III
COMPARISON OF REFERENCE AND OPTIMAL STRATEGY IN MPC

SIMULATION IN TERMS OF ENERGY CONSUMPTION DURING BASE AND
PEAK HOURS.

Peak-hours Energy(kWh) Base-hours Energy(kWh)
Optimal case 15.09 182.61

Reference case 61.25 149.35
Variation -75.37% +22.27%

TABLE IV
COMPARISON OF REFERENCE AND OPTIMAL STRATEGY IN MPC

SIMULATION IN TERMS OF ENERGY CONSUMPTION DURING PEAK AND
BASE HOURS.

B. Simulation Parameters
The MPC simulation is carried out with the following

parameters

nc = 2 ; Pc = {20, 10} ; Ps = 25 (78)

∆T = 30 minutes, ; θx = 10−3 (79)

E+
k ∈ U(5, 15) (80)

x0,k ∈ U

(
E+

k

10
,
E+

k

5

)
, ; xf,k ∈ U

(
7E+

k

10
,
9E+

k

10

)
(81)

price =

 0, 095 if t ∈ [6, 9)
0, 150 if t ∈ [18, 21)
0.07 otherwise

(82)

In addition the probability of a car arrival of a car between
two plug-times (30 min) of the charger is 40%. The simulation
is carried out on 48 hours.

C. Simulation Results
This comparative simulation required the solving of 41

problems corresponding to 41 vehicle arrival. At max, there
were 6 cars charging at the same time. Table IV shows
that the optimal strategy is both energy and time-of-use cost
efficient. The overall energy savings stems from a slower but
more efficient charging of the vehicles. The lower charging
rate is particularly visible by comparing Figures 1 and 2
where it is clear that the required final state-of-energy is
reached sooner with reference than optimal strategy. Moreover,
Table III shows that the optimal strategy achieves to reduce
by 75% the energy consumption during peak periods. This
energy consumption is simply transferred to off-peak periods.
This transfer is the most important factor of charging-cost
reduction. In addition, one can see on Figures 3 and 4 that the
optimal charging strategy takes advantage of the possibility
of regularly changing the vehicles connected to the charging
stations. This increase rate of plug-in plug-out of vehicles
allows to reduce the charging speed while satisfying the
required state of energy target.

IX. CONCLUSION

This paper presents a methodology to compute an optimal
charging scheduling of electric vehicles at a co-charging

Fig. 1. Optimal energy time series for MPC simulation

Fig. 2. Reference energy time series for MPC simulation

Fig. 3. Optimal charging time series for MPC simulation

Fig. 4. Reference charging time series for MPC simulation
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station. The presented methodology relies on a Branch and
Bound strategy allowing to compute the global optimum. This
methodology strongly relies on Maximum Principle based
optimal control solver allowing to compute quickly a tight
lower bound at each node of the Branch and Bound tree. It
also relies on the slower time scale of the charging stations
compared to the time scale of vehicles batteries to produce
an efficient Branch and Bound algorithm. However, in order
to be working at full potential this algorithm requires to run
on a cluster so that the children generation can be fully
parallelized. This need of computing power might hold back
online implementations of this method. Nevertheless, thanks
to the global convergence of the method, it can be used
offline to assess the performances of heuristic-based methods
in terms of distance to the optimal solution. In future work,
the authors will to take into account uncertainties on the
departure time and arrival time of the electric vehicles. A
progressive hedging approach [25] might be considered to use
the presented algorithm in a stochastic framework.

APPENDIX

A. Proof of Proposition 1

First, let us recall the Inverse Function Theorem which will
be used throughout the proof.

Theorem 4 (Inverse Function Theorem [26]). Let f : Rn 7→
Rn be continuously differentiable on some open set containing
a, and suppose det(∇f(a)) ̸= 0. Then there is some open set
V containing a and an open set W containing f(a) such that
f : V 7→W has a continuous inverse f−1 : W 7→ V which is
differentiable for all y ∈W and one has

∇
[
f−1

]
(y) = [∇f ]−1

(f−1(y))

In addition, the Ky Fan Dominance Theorem recalled here
after will also be used

Theorem 5 (K. Fan Dominance Theorem [27]). Let Mn be
the space of n × n real matrices. For all A ∈ Mn, we note
(si(A))i=1,...,n the sequence of singular values in decreasing
order. For 1 ≤ k ≤ n, the Ky Fan k-norm on Mn is defined
as

∥ A ∥(k)=
k∑

i=1

si(A)

These norms are unitarily invariant, i.e., ∥ UAV ∥(k)=∥
A ∥(k) and for given matrices A,B ∈Mn

∥ A ∥(k)≤∥ B ∥(k)⇔∥ A ∥≤∥ B ∥

∀k = 1, . . . , n and for all unitarily invariant norms ∥ . ∥, such
as the Euclidian ∥ . ∥2 norm.

The proof of Proposition 1 follows the following outline
• First, we prove that any optimal trajectory from Problem

(34)-(38) does not contain any singular arc in Section A1.
• Then, we prove that any optimal solution of Problem

(34)-(38) is characterized by the stationarity conditions
(47)-(51) in Section A2.

• Finally, we prove that there exists a unique solution from
Problem (47)-(51) in Section A3.

1) Absence of singular arcs: Since the control variable
λ appears explicitely in ∂

∂λH(t, x(t), λ, p(t),Mk, ε) for all
values of t, x(t), p(t),Mk, ε, there are not singular arcs along
the optimal trajectory, i.e. it is always possible to compute a
minimizer of H(t, x(t), λ, p(t),Mk, ε) with respect to λ ∈
[0, 1]nx .

2) Stationarity conditions of Pontryagin’s Maximum Prin-
ciple: From Theorem 1, any optimal solution of Problem
(34)-(38) is strictly interior to the constraints. Therefore, any
optimal solution λ∗ of this problem satisfies the following
stationarity condition:

∂H(t, x(t), λ∗(t), p(t),Mk, ε)

∂λ
= 0

3) Uniqueness of solutions of the stationarity conditions:
In the following, for any mapping φ : X × Y 7→ Z, we note
φ[x](.), the mapping φ(x, .) : Y 7→ Z where x is fixed and
considered as a parameter. Using that notation we introduce
the following functions

F [t, x(t), p(t)](λ) = price(t) +
∂fc(x(t), λp

+
c (x(t))

∂λ
p(t)

D[x(t),Mk](λ) =
∂

∂λ

∑
i

γλ(λi)

E[x(t),Mk](λ) =
∂g2
∂λ

(λ, x(t),Mk)γ′
x ◦ g2(λ, x(t),M

k)

+
∑
i,j

∂g1
∂λ

(λi, xi(t), j,M
k)γ′

x ◦ g1(λi, xi(t), j,M
k)

Γ[x(t),Mk](λ) = D[x(t),Mk](λ) + E[x(t),Mk](λ)

and one has:

∂H(x(t), λ, p(t),Mk, ε, t)

∂λ
= . . .

F [t, x(t), p(t)](λ) + εΓ[x(t),Mk](λ)

Γ[x(t),Mk](λ) is the gradient of the sum of convex functions
over a convex set. Hence, the corresponding Hessian is strictly
definite positive and invertible. Moreover, one has

lim
λ→0+

Γi[x(t),M
k](λ) = −∞, i = 1, . . . , nx

lim
λ→1−

Γi[x(t),M
k](λ) = +∞, i = 1, . . . , nx

Therefore, Γ[x(t),Mk] is a continuous mapping from (0, 1)nx

to Rnx . Since x, p are bounded and since F [t, x(t), p(t)]

is continuous F [t,x(t),p(t)]
ε is also bounded for all ε > 0.

Therefore, one can use the Inverse Function Theorem which
gives

λ =
[
Γ[x(t),Mk]

]−1
(
−F [t, x(t), p(t)](λ)

ε

)
= r[t, x(t), p(t),Mk, ε](λ) (83)

In order to prove existence and uniqueness of solutions of (83),
one needs to prove that the mapping r[t, x(t), p(t),Mk, ε](.)
is a contraction.

∥ r[t, x(t), p(t),Mk, ε](λ1)− r[t, x(t), p(t),Mk, ε](λ2) ∥ . . .
≤ sup

λ
∥ ∇r[t, x(t),Mk, p(t), ε](λ) ∥∥ λ1 − λ2 ∥
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Plus, one has

sup
λ
∥ ∇r[t, x(t), p(t),Mk, ε](λ) ∥= . . .

sup
λ
∥ ∇

[
Γ[x(t), p(t),Mk]−1

](
−F [t, x(t), p(t)](λ)

ε

)
∥

From the inverse function theorem one has

sup
λ
∥ ∇

[
Γ[x(t), p(t),Mk]−1

](
−F [t, x(t), p(t)](λ)

ε

)
∥= . . .

sup
λ
∥
[
∇Γ[x(t), p(t),Mk]

]−1
(
. . .[

Γ[x(t), p(t),Mk]
]−1

(
−F [t, x(t), p(t)](λ)

ε

))
∥

= sup
λ
∥
[
∇2D[x(t),Mk] +∇2E[x(t),Mk]

]−1
(
. . .[

Γ[x(t), p(t),Mk]
]−1

(
−F [t, x(t), p(t)](λ)

ε

))
∥

Since ∇2D[x(t),Mk](λ) and ∇2E[x(t),Mk](λ) are
positive symmetric definite matrices, their singular
values are the eigenvalues and sn(∇2D[x(t),Mk](λ) +
∇2E[x(t),Mk](λ)) ≥ sn(∇2D[x(t),Mk](λ)), where
(sn(.))n is the sequence of eigenvalues in decreasing order.
For any Ky-Fan norm [28] ∥ . ∥(k)=

∑k
i=1 si(.), one has

∥
[
∇2D[x(t),Mk] +∇2E[x(t),Mk]

]−1

(λ) ∥(k)= . . .

nx∑
i=nx−k+1

1

si

(
∇2D[x(t),Mk](λ) +∇2E[x(t),Mk](λ)

)
≤

nx∑
i=nx−k+1

1

si

(
∇2D[x(t),Mk](λ)

)
=∥

[
∇2D[x(t),Mk]

]−1

(λ) ∥(k)

≤ sup
λ∈(0,1)

1

γ′′
λ(λ)

=
1

γ′′
λ(0.5)

=
1

8

From Theorem 4 one has

∥ r[t, x(t), p(t),Mk, ε](λ1)− r[t, x(t), p(t),Mk, ε](λ2) ∥2≤
1

8
∥ λ1 − λ2 ∥2

Mapping r[t, x(t), p(t),Mk, ε](.) is 1
8 -Lipschitz, hence it is a

contraction. Using Banach fixed point Theorem one has that
for all t, x(t), p(t), ε,Mk, there exists a unique solution λ∗

to TPBVP (47)-(51).
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