The PPT$^2$ Conjecture Holds for All Choi-Type Maps - Archive ouverte HAL
Article Dans Une Revue Annales Henri Poincare Année : 2022

The PPT$^2$ Conjecture Holds for All Choi-Type Maps

Satvik Singh
  • Fonction : Auteur

Résumé

We prove that the PPT$^2$ conjecture holds for linear maps between matrix algebras which are covariant under the action of the diagonal unitary group. Many salient examples, like the Choi-type maps, depolarizing maps, dephasing maps, amplitude damping maps, and mixtures thereof, lie in this class. Our proof relies on a generalization of the matrix-theoretic notion of factor width for pairwise completely positive matrices, and a complete characterization in the case of factor width two.

Mots clés

Dates et versions

hal-03657918 , version 1 (03-05-2022)

Identifiants

Citer

Satvik Singh, Ion Nechita. The PPT$^2$ Conjecture Holds for All Choi-Type Maps. Annales Henri Poincare, 2022, 23 (9), pp.3311-3329. ⟨10.1007/s00023-022-01166-0⟩. ⟨hal-03657918⟩
58 Consultations
0 Téléchargements

Altmetric

Partager

More