
HAL Id: hal-03657779
https://hal.science/hal-03657779v3

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evocube: a Genetic Labeling Framework for
Polycube-Maps

Corentin Dumery, François Protais, Sébastien Mestrallet, Christophe
Bourcier, Franck Ledoux

To cite this version:
Corentin Dumery, François Protais, Sébastien Mestrallet, Christophe Bourcier, Franck Ledoux.
Evocube: a Genetic Labeling Framework for Polycube-Maps. Computer Graphics Forum, In press,
�10.1111/cgf.14649�. �hal-03657779v3�

https://hal.science/hal-03657779v3
https://hal.archives-ouvertes.fr

Volume xx (200y), Number z, pp. 1–12

Evocube: a Genetic Labeling Framework for Polycube-Maps

C. Dumery1,4 , F. Protais2 , S. Mestrallet1 , C. Bourcier1 , F. Ledoux3

1CEA, Université Paris-Saclay
2Université de Lorraine, CNRS, Inria, LORIA
3CEA DAM, LIHPC, Université Paris-Saclay

4EPFL, School of Computer and Communication Sciences

Figure 1: Collection of labelings and polycube-maps of general shapes generated using the Evocube framework.

Abstract

Polycube-maps are used as base-complexes in various fields of computational geometry, including the generation of regular
all-hexahedral meshes free of internal singularities. However, the strict alignment constraints behind polycube-based methods
make their computation challenging for CAD models used in numerical simulation via Finite Element Method (FEM). We
propose a novel approach based on an evolutionary algorithm to robustly compute polycube-maps in this context.
We address the labeling problem, which aims to precompute polycube alignment by assigning one of the base axes to each
boundary face on the input. Previous research has described ways to initialize and improve a labeling via greedy local fixes.
However, such algorithms lack robustness and often converge to inaccurate solutions for complex geometries. Our proposed
framework alleviates this issue by embedding labeling operations in an evolutionary heuristic, defining fitness, crossover, and
mutations in the context of labeling optimization. We evaluate our method on a thousand smooth and CAD meshes, showing
Evocube converges to accurate labelings on a wide range of shapes. The limitations of our method are also discussed thoroughly.

CCS Concepts
• Mathematics of computing → Mesh generation; Evolutionary algorithms;

1. Introduction

Scientific computational analysis based on finite element method
(FEM) or finite volume method (FVM) is increasingly used
to model engineering problems. Recent developments incorpo-
rate coupled physical phenomena and require complex geomet-
ric shapes. However, FEM and FVM are limited by volumet-
ric mesh generation. In practice, for many cases of interest, all-
hexahedral meshes, or hex meshes, are preferred over tetrahedral

meshes [SJ08]. Their use drastically reduces computational cost
and memory footprint while preserving numerical accuracy. Al-
though tetrahedral meshing is now robustly performed on general
3D shapes, direct generation of good-quality hex meshes remains
an open problem. To ensure high-accuracy and convergence speed,
finite element analysis requires block-structured hex meshes with
low cell distortion, as illustrated in Figure 2. As of today, such prop-
erties cannot be guaranteed for general shapes.

submitted to COMPUTER GRAPHICS Forum (2/2023).

https://orcid.org/0000-0001-5314-7979
https://orcid.org/0000-0002-2089-3745
https://orcid.org/0000-0002-4519-2814
https://orcid.org/0000-0001-6171-024X
https://orcid.org/0000-0003-3469-3186

2 C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps

Figure 2: Block-structured hexahedral mesh of a sphere, structure
on the left and resulting mesh on the right.

All-hexahedral meshing has been studied for several decades.
Several approaches have emerged, relying on different tech-
niques: advancing front [SCB92, BM93, OS00, TBM95, LW07],
overlay-grid or octree-based [Sch96,Mar09,ZHB10,GSP19], frame
field [HTWB11, LLX∗12, RSL16, KLF16, PBS20], medial axis
[SERB99,LMPS16,Qua14], or polycube-maps [THCM04,GSZ11,
LVS∗13]. As of today, none of these methods has been successful
in automatically generating satisfying hex meshes for realistic 3D
shapes. In practice, time-consuming domain partitioning is often
performed interactively [PBSB07,Tak19,CHL19,LZS∗21] instead.
For the generation of block-structured meshes, we believe frame
field and polycube-map methods are the most promising directions
in state-of-the-art research. Frame fields are generated by optimiz-
ing a smoothness energy and yield the desired block-structure for
simple geometries, but fail on more complex shapes. Polycube-
maps, on the other hand, succeed on a broader spectrum of 3D
shapes but do not provide a usable block structure since interior
singularities are missing. Polycube-map generation is performed
by deforming a 3D shape to obtain an orthogonal polyhedron (or
polycube [THCM04]), and generating a volumetric map p between
them. A hex mesh is then extracted from the polycube-map via sub-
division following the integer grid, and morphed back onto the ini-
tial 3D shape following the inverse map p−1. By construction, re-
sulting meshes lack interior singularities and low-quality hexes are
generated close to the boundary. In state-of-the-art pipelines, this
issue is partially addressed with post-processing improvements that
insert layers of cells along the boundary [KLSO12, CAS∗19].

We observe that polycube alignment can be quickly estimated
and evaluated, and propose a novel approach based on an evolu-
tionary algorithm [Bä96] to robustly compute polycube labelings.
Starting from a tetrahedral mesh TΩ of the 3D domain Ω, polycube
labeling consists in assigning one of the six base axis directions
{±X ,±Y,±Z} to each face of the boundary ∂TΩ. Adjacent trian-
gles that are assigned the same direction form a chart. Following
the terminology introduced by Livesu et al. [LVS∗13], a labeling
should define a valid polycube topology [EM10, SR15], and com-
promise between the following quality criteria illustrated in Fig. 3:

• Fidelity: angles between assigned directions and triangle nor-
mals remain low;

• Compactness: the number of charts is small;
• Monotonicity: boundaries between charts are exempt from turn-

ing points, i.e. significant changes in boundary direction.

(a) compact
Nc = 8,Da = 1.100

(b) high fidelity
Nc = 56,Da = 1.047

(c) non-monotone
Nc = 56,Da = 1.723

Figure 3: Illustration of labeling properties and associated poly-
cubes. We report the number of corners in the polycube Nc and the
area distortion Da [THCM04].

The nature of the polycube labeling problem makes genetic
methods a good fit. In previous work, labelings were computed us-
ing deterministic operations which explored a limited set of solu-
tions. We observe that generating and evaluating large quantities of
labelings is significantly less costly than computing low-distortion
polycube-maps for all possibilities. We thus propose an evolution-
ary framework that explores a wider range of solutions than pre-
vious methods. Starting from an initial solution, and over several
iterations or generations, we generate new solutions referred to as
individuals. At any given time, the current set of individuals be-
ing considered is referred to as population and is stored in a fixed-
size archive. We measure the quality of an individual with a fitness
function. Each generation, some individuals are sampled from the
archive to undergo labeling modifications named mutations. Indi-
viduals with high fitness are then selected for crossover, where a
pair of individuals generates a third one combining both of its par-
ents traits. At the end of each generation, the fittest individuals are
inserted back into the archive. This process aims to improve pop-
ulation quality over generations. If the content of the archive does
not evolve for several consecutive generations, then we consider
that the algorithm has converged and stop the process. For a large
majority of inputs, Evocube converges towards a labeling associ-
ated with a low-distortion polycube within a dozen generations.

We validate our algorithm on a large collection of over one
thousand CAD and smooth models, showcasing some in Figure 1.
Evocube produced labelings leading to low-distortion polycubes on
an overwhelming majority of inputs, as reported in Section 4. We
also analyze failure cases and comment on the limitations of our
method.

1.1. Related Work

Polycube labeling. Polycubes were first used in computer graphics
for seamless texturing of triangulated surfaces [THCM04]. They
rely on a polyhedral structure and a volumetric map, which can
either be computed one after the other, or together via mesh de-
formation towards the orthogonal polyhedron closest to the input
3D shape. The polyhedral structure is usually defined by labeling
each element of ∂TΩ with a value that represents one of the six base
axes {±X ,±Y,±Z}. A naive labeling can be computed by assign-
ing to each surface triangle the label closest to its normal [GSZ11].
However, this does not produce a valid structure in general and ad-

submitted to COMPUTER GRAPHICS Forum (2/2023).

C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps 3

Figure 4: Starting from a triangular mesh representation of a 3D shape, (a) we generate an initial non-optimal and potentially invalid labeling
using a graph-cut method [LVS∗13]; (b) this labeling is then refined within our Evocube framework; (c) we generate a polycube with topology
matching our labeling, and (d) a grid-like mesh is extracted, padded and morphed back onto the initial 3D shape.

ditional labeling refinement is necessary. This refinement is guided
by a set of sufficient topological conditions for the existence of a
valid polyhedron defined by Eppstein et al. [EM10] and used by
Livesu et al. [LVS∗13]. Similarly, Hu et al. [HZ16] use a modified
Centroidal Voronoï Tesselation labeling in the space of normals,
followed by a post-processing stage to sanitize topological incon-
sistencies.

Polycube deformation. In previous work, mesh deformation is
used to compute an approximate polycube by minimizing an energy
that penalizes surface normals poorly aligned with base axes, until
the polycube structure is revealed [YZWL14, HJS∗14, FXBH16].
Some methods also start from an initial labeling [GSZ11,LVS∗13]
to assist the deformation, or interleave both approaches by updat-
ing a target labeling between each deformation iteration [FBL16].
Mesh deformation may lead to strongly distorted or flipped ele-
ments [GSZ11, HJS∗14]. In recent work [GLYL20], the AMIPS
[FLG15] energy guarantees an inversion-free deformation by di-
verging in the presence of inverted cells. However, in some de-
generate cases and due to inconsistent polyhedron topology, addi-
tional post-processing stages are necessary. Unfortunately, Sokolov
et al. [SR15] show that degenerate conditions are not merely local
and the computation of a globally valid structure remains a chal-
lenging problem.

Hex quality improvements. Hex meshes generated via
polycube-maps do not have inner singularities. As a consequence,
state-of-the-art polycube-based pipelines insert one or more layers
of hexes along the whole boundary [GSZ11]. Such a process gives
more degrees of freedom to smooth the mesh by pushing singular-
ities inside. Unfortunately, naive global insertion can also locally
decrease mesh quality. Kowalski et al. [KLSO12] define three types
of fundamental layers that can be added locally to better capture
boundary curves and surfaces solving an integer linear program.
Similarly, Cherchi et al. [CAS∗19] define selective padding which
is able to add hex layers with a quality improvement guarantee.
Recently, Guo et al. [GLYL20] enhance polycube-maps through
clever cuts directly on the polycube, achieving similar results. Au-
thors of [GPW∗17] propose an approach to simplify a mesh using
its base complex structure. While this approach is more dedicated
to optimize a mesh generated by an overlay-grid approach, it could
be used to post process Polycube-like meshes in order to extract
coarse structure.

Machine learning and mesh generation. A variety of ge-

ometry and mesh generation problems have seen great advance-
ments in the past decade via machine learning techniques [XZ-
COC12, MTP∗15, LYZ∗20, DLLK21]. Marcias et al. [MTP∗15]
describe a novel interactive method to suggest quad surface meshes
to final users. Lim et al. [LYZ∗20] designed an evolutionary algo-
rithm that performs automatic blocking of a 2D manifold. They de-
fine a set of simple genetic operators on a set of points from which
they robustly extract a quad layout. This layout is then evaluated
and used to rank a population of sets of points. Their work achieves
near-optimal blocking configurations after a large number of gen-
erations. Starting from an initial population of 3D models, Xu et
al. [XZCOC12] use an evolutionary algorithm to generate novel
shapes. The process is interactively driven and user preferences de-
fine the fitness function. Shapes are described as an assembly of
parts and the crossover operation swaps different parts between par-
ent shapes. Similarly, we use an evolutionary algorithm to perform
polycube labeling. While the main principle and terminology are
similar, the nature of the problems induces very different choices.
In particular, the highly non-local nature of polycube labeling pre-
vents the use of a naive per-triangle crossover operator.

1.2. Main contributions and pipeline overview

Our contributions are embedded in a full hex meshing pipeline as
illustrated in Figure 4.

• In Section 2, we define Evocube, an extensible evolutionary-
based framework for polycube labeling;

• In Section 3, we compute polycube-maps matching a desired la-
beling, and derive low distortion all-hex meshes.

Finally, in Section 4, we evaluate our method on over a thousand
natural and CAD models, and discuss its limitations. To foster fu-
ture research on polycube labeling, our implementation of Evocube
is open-source and can easily be extended: https://github.
com/LIHPC-Computational-Geometry/evocube

2. Genetic labeling optimization

Our method aims to generate a low-distortion polycube from an
input domain. Precisely, the input to our algorithm is:

• a set of three-dimensional vertices V;
• a set of tetrahedral cells TΩ connecting points in V , along with

its boundary triangular mesh ∂TΩ;

submitted to COMPUTER GRAPHICS Forum (2/2023).

https://github.com/LIHPC-Computational-Geometry/evocube
https://github.com/LIHPC-Computational-Geometry/evocube

4 C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps

• the desired edge length le that defines the size of a cube in our
polycube-map.

We aim to compute new vertex positions V ′ such that all the
normals in (V ′,∂TΩ) are aligned with one of the three main axes
while (V ′,TΩ) remains a low-distortion deformation of (V,TΩ).
For such a problem to be valid, we assume that TΩ defines a vol-
ume, is free of self-intersections, and ∂TΩ is manifold. Specifically,
our work addresses the labeling task, which consists in precom-
puting polycube topology directly on ∂TΩ with a labeling vector
ℓ ∈ {±X ,±Y,±Z}|∂TΩ| assigning any of the six possible orienta-
tions to each boundary triangle.

Intuitively, ℓ subdivides ∂TΩ in a set of charts C comprised of
neighboring triangles sharing target orientation. Charts are sepa-
rated by a set of edge boundaries B. In the event that a boundary
b ∈ B is not straight, we use the method of Livesu et al. [LVS∗13]
described in Section 2.2 to identify turning points.

Previous work [GSZ11, LVS∗13] has shown the feasibility of
precomputing such a labeling of boundary faces using a set of mod-
ification operations that greedily improve an initial labeling. Our
key insight is to embed local labeling fixes and associated quality
criteria in a novel genetic framework. We recast the labeling prob-
lem as one of optimization with an objective function, and define
genetic operations in the context of polycube labeling. Stochastic
selection and crossover of candidate solutions allow Evocube to
simultaneously consider several search directions and reduce sus-
ceptibility to local minima.

The main challenge with an approach based on optimization us-
ing a heuristic is the definition of an appropriate fitness function. In
the case of a genetic framework, fitness evaluation is often a time
bottleneck as every individual generated needs to be ranked and
assessing the quality of a solution is not straightforward. Ideally,
polycube distortion with regards to the input mesh could be used
as a labeling quality metric. However, computing a satisfying vol-
umetric polycube from a labeling is time-consuming and cannot be
performed repeatedly. Hence, we define distortion proxies and la-
beling modifications that guide us towards interesting solutions in
the set of all possible labelings.

2.1. Fitness of a labeling

Evaluating labeling quality is a complex problem that encompasses
several aspects of a labeling and therefore requires the definition of
several metrics. In the following, we distinguish between validity
conditions - which must be fulfilled for a solution to be considered
feasible - and optimization criteria - which we aim to minimize.

Validity proxy. A labeling is said to be valid if there exists a
matching polycube polyhedron. Unfortunately, evaluating the va-
lidity of a labeling for a general shape remains an open prob-
lem, and the partial solutions provided in previous work [EM10,
ZLW∗19] are too computationally costly to be used repeatedly in a
heuristic. Instead, we define a proxy validity criterion which offers
no theoretical guarantee but can be efficiently evaluated.

Considering a set of charts and boundaries, the number of bound-
aries intersecting at a given vertex is referred to as the vertex’s va-
lency. Let us consider the following sets:

• invalid corners Vinv with valency at least 4;
• invalid boundaries Binv between charts with opposite labels;
• invalid charts Cinv with strictly fewer than 4 neighbors.

We thus define the validity proxy of a labeling Vp(ℓ) as:

Vp(ℓ) = |Vinv|+ |Binv|+ ∑
c∈Cinv

(4−Nc) (1)

where Nc is the number of neighbors of chart c. Examples of label-
ings with non-empty invalid sets are shown in Figure 5.

(a) Cinv ̸= ∅ (b) Binv ̸= ∅ (c) Vinv ̸= ∅

Figure 5: Example labelings that do not lead to a valid polycube.

A labeling ℓ will be considered pseudo-valid if and only if Vp(ℓ)
is equal to 0, or equivalently, the three invalid sets are empty. We
provide some additional insight into the limitations of our validity
proxy in Appendix A.

Optimization criteria. Since our objective is the minimization
of volumetric polycube parameterization distortion, which is too
time-consuming to evaluate directly, our method requires a set of
metrics on ℓ that approximate the distortion on (V ′,TΩ).

We observe that a surface polycube of the boundary ∂TΩ can be
computed significantly faster than its volumetric counterpart. We
thus define the workability of a labeling EW (ℓ) using the distor-
tion of the mapping from (V,∂TΩ) to a fast polycube (V f ,∂TΩ).
The term workability refers to the ability of some material to be
easily deformed into a different shape. We compute our fast sur-
face polycube as follows. Given a labeling ℓ defining a set of charts
C, we use a change of variables to constrain all vertices on a chart
to the same value on the chart’s label axis. We then minimize a
least-squares problem aiming to preserve edge lengths on the two
other axes. The solution yields a set of new vertex positions V f .
The per-triangle distortion is measured using the singular values
σ1 and σ2 of the Jacobian of the mapping from the initial triangle
to its equivalent in (V f ,∂TΩ) [THCM04]:

ew = σ1 +σ2 +
1

σ1σ2
+

σ1
σ2

+
σ2
σ1

−4

For some invalid labelings, some triangles may be degenerate
and have infinite ew. We clamp ew to some arbitrarily large value,
greatly penalizing invalid labelings. Finally, we compute the overall
workability EW (ℓ) by integrating e2

w over the boundary ∂TΩ. The
resulting surface polycube may contain inverted triangles which
would require more time-consuming optimization to resolve, but
in practice it remains a good proxy of the final polycube quality
issued from ℓ.

We complement our novel metric with additional ones used in

submitted to COMPUTER GRAPHICS Forum (2/2023).

C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps 5

Figure 6: Architecture of our genetic optimization framework.

previous work [LVS∗13]. First, the fidelity of a given face mea-
sures how well its label fits its orientation. It is defined as the dot
product of its normal vector and its assigned direction. The fidelity
of a labeling EF is then computed by integrating over all boundary
triangles. Finally, compactness EC is the number of corner vertices
in the polycube graph associated with ℓ.

By combining the above metrics, we define a f itness function
that can be embedded in our genetic framework:

f itness(ℓ) =Vp(ℓ)+ω1EW (ℓ)+ω2EF (ℓ)+ω3EC(ℓ)

The coefficients vector ω = (ω1,ω2,ω3) is set to
(102,10−2,10−2) in our experiments. This f itness function
is able to discriminate between candidate solutions and favor
search directions reducing parameterization distortion as evaluated
by our metrics.

2.2. Initial solution

Our algorithm requires an initial labeling to improve upon. We
use the graph-cut initialization method presented by Livesu et al.
[LVS∗13]. Considering the dual graph of a triangle mesh, its main
advantage is the trade-off between:

• a unary cost for assigning a given label to a face, penalizing label
directions poorly aligned with triangle normals;

• and a binary cost for two neighboring triangles labeled differ-
ently, with a greater cost for neighbors that are close to be copla-
nar.

The unary cost helps find a labeling with low fidelity error, while
the binary improves compactness and reduces boundary size. This
method provides us with a satisfying initial solution that encom-
passes important fidelity information. While it is a good starting
point, in general this solution has invalid patches. It cannot be used
as is, and will be enhanced by our proposed genetic framework.
We use a graph-cut optimization library by Boykov et al. [BVZ01]
which implements the improvements described in additional re-
search [BK04, KZ04]. We allow neighbors with opposite orienta-
tions in our initial solution and propose our own fix in Section 2.5.

We compute turning points following a graph-cut approach on
boundary edges, similarly to Livesu et al. [LVS∗13]. Considering a
directed boundary (Fig 7b) and its corresponding axis (Fig 7a), our
graph-cut approach partitions the boundary with two labels (Fig
7e) and we define turning points as the vertices where the label
switches. We use the unary cost u (Fig 7c) to infer a bias based
on the dot product of the axis and a given edge. Then, the binary
cost b encourages cuts between poorly aligned consecutive edges.
Specifically, for a normalized edge e⃗ and its label le, we define these
costs as follows:

u(⃗e,0) = 1− e−
1
2 (

e⃗.a⃗xis
0.9)2

, if e⃗.a⃗xis < 0, and 0 otherwise;

u(⃗e,1) = 1− e−
1
2 (

e⃗.a⃗xis
0.9)2

, if e⃗.a⃗xis > 0, and 0 otherwise;

b(e⃗1, e⃗2, le1 , le2) = e
−(e⃗1 .e⃗2−1)2

2 if le1 ̸= le2 , and 0 otherwise.

(a) Axis (b) Boundary (c) Unary bias (d) Binary cost (e) Labels

Figure 7: Turning points identification.

2.3. Genetic framework

From an initial labeling, our framework generates new solutions
and selects promising search directions. The overall architecture of
our Evocube framework is illustrated in Figure 6. We define the key
elements to select and cross individuals in this section, and labeling
mutations in section 2.4.

Crossover. The crossover operator takes two solutions ℓ1 and ℓ2
as input, and generates a new individual including both of its par-
ents’ mutations. To achieve this, when both parent solutions agree
on a face label, the child is assigned the same label. When labels

submitted to COMPUTER GRAPHICS Forum (2/2023).

6 C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps

conflict, the label that was changed during the most recent genera-
tion is kept. In case of a draw, we consistently pick ℓ1’s label.

Archive. We use an archive system to keep track of the best so-
lutions to date. The archive has a fixed maximum size, and when
an element is submitted, sufficient f itness greater than that of the
worst element is required. The latter is then discarded. When select-
ing an element from the archive, we use a stochastic model favoring
higher ranked solutions, similarly to Lim et al. [LYZ∗20]. For an
archive containing ranked solutions from ℓ1 to ℓn, the probability
of randomly picking ℓi is as follows:

P(ℓi) =
n− i+1

1+ ...+n

Generations. Here, we describe the core architecture of our ge-
netic framework illustrated in Figure 6. The initial solution is gener-
ated using the graph-cut approach described previously. At the be-
ginning of each generation, N candidate solutions are selected from
the archive. Following our stochastic model, the highest-ranked so-
lutions are picked several times. The selected individuals then un-
dergo random mutations. Since individual mutations are indepen-
dent, they are computed in parallel and a greater N can be used
while maintaining reasonable time complexity.
Afterwards, pairs of individuals are stochastically selected and
combined using the crossover operator. This is repeated C times,
leading to a population of size N +C. Finally, we insert all new
solutions with sufficient score in the archive, and discard all unfit
individuals, ending the generation.

This process ends after G= 40 generations, or after three consec-
utive generations without change in the archive’s best solution. In
our experiments, we found that N = 100 and C = 10 were sufficient
to reach convergence for most input meshes.

2.4. Labeling mutations

We propose a set of mutations that aim to improve an initial la-
beling. Given that the search space of all possible labelings is of
size 6|∂TΩ|, we restrict our search to meaningful solutions. Our mu-
tations specifically focus on fixing invalid patches and identified
turning points. These operations may yield poor results under some
circumstances, but by virtue of our genetic framework, our method
identifies and discards detrimental modifications. Our labeling mu-
tations are illustrated in Figure 8. Future work may complement
Evocube with additional operations to account for specific config-
urations, but we found these to be sufficient for most geometries.

Directional path. In Figure 8a, a turning point is chosen ran-
domly, along with one of the 4 orthogonal directions on the chart.
We then greedily select a path matching that desired direction until
we reach another boundary. Once the path is defined, we apply the
new label to the triangles around the path and propagate to their
neighbors. The introduced label is picked from only two possibil-
ities, since the chart’s label and its opposite cannot be picked, and
the path is highly non-constant on its propagation axis, effectively
forbidding two more labels. This operation is similar to the orthog-
onal path described by Gregson et al. [GSZ11].

Chart removal. When a chart is invalid as in Figure 8b, it can
sometimes simply be removed. To perform this, we use the same

(a) Directional path (b) Chart removal (c) Chart propagation

Figure 8: Base mutations in our genetic framework. Turning points
are highlighted in yellow.

graph-cut method used to compute an initial solution, with two
modifications. Firstly, the rest of the labeling is locked to prevent
any unwanted modification, and secondly we forbid the initial label
to be assigned again to the chart that is being removed.

Chart Propagation. Given a random border with a turning
point, the label of one side is applied to the other side around the se-
lected turning point, as illustrated in Fig 8c. If the border is already
monotone, then we propagate along the whole border instead.

In our genetic framework, mutations are chosen randomly and
applied in random locations. In order to help speedup convergence,
we select among invalid charts if some remain for chart removal, or
among turning points for directional path and chart propagation. If
none remains, the location is randomly selected among all charts,
or boundary vertices, respectively. In our experiments, the distance
for propagation mutations is sampled from [lavg, 5 lavg], where lavg
is the average edge length in the mesh.

2.5. Labeling repairs

We complement our labeling mutations with a set of fixes illus-
trated in Figure 9 which rectify some easily identifiable labeling
problems. Unlike mutations, these operations are applied determin-
istically, as specified below.

In a valid labeling, no pair of neighboring charts can have op-
posite labels. We repair any boundary separating two such charts
by introducing a new chart with one of the remaining labels around
the boundary (Fig 9a). The new chart can be inserted on both sides
of the boundary or on either side alone, and its size is taken to be a
multiple of the mesh’s average edge length. We pick the preferred
option by measuring f itness for all possibilities. We apply this re-
pair only on the initial and final solutions.

Similarly, we propose a simple fix for corners with invalid va-
lency in the polycube graph (Fig 9b). We introduce a new chart
with one of the remaining labels around the problematic vertex,

submitted to COMPUTER GRAPHICS Forum (2/2023).

C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps 7

(a) Opposite boundaries (b) High valency corner (c) Path smoothing

Figure 9: Labeling repairs.

and pick the optimal size using our f itness evaluator. Similarly,
this operation is used only on the initial and final solutions.

Finally, any triangle with two edges on the same chart bound-
ary will be flattened in parameterization space. We consider pairs
of triangles to be neighbors only if they share an edge on a chart
boundary. We then smooth boundaries by relabeling any triangle
surrounded by two neighbors sharing a label different of its own
(Figure 9c). In some cases, several iterations are needed to obtain
a smooth labeling. This operation is fast and we apply it to any
individual before evaluation.

3. Hexahedral meshing

Given a pseudo-valid polycube labeling ℓ of the boundary mesh
(V ′,∂TΩ), we now seek to compute a volumetric polycube-map
matching this labeling and an all-hex mesh. Note that previous
work [GSZ11,LVS∗13] has also described effective methods which
could be used in combination with Evocube.

We compute a low-distortion volumetric polycube of (V,TΩ).
This differs from the polycube-based fitness evaluator described in
Section 2.1, which is only a fast surface mapping of (V,∂TΩ). Sim-
ilarly, we first proceed to a change of variable along chart vertices
to enforce the polycube topology induced by our labeling ℓ. Conse-
quently, vertices on the same chart will share the same coordinate
on the axis associated with the chart’s label. We then minimize a
Laplacian energy penalizing edge distortion over both interior and
exterior vertices. After this step, the resulting polycube may still
contain inverted tetrahedra. Subsequently, we minimize the energy
proposed by Garanzha et al. [GKK∗21] under the same change of
variable to restore inverted cells and further improve the quality of
the volumetric polycube-map.

For all-hex meshing, we then quantize our polycube-map us-
ing the robust mixed-integer method described by Protais et al.
[PRR∗20], and extract our initial hexahedral mesh by applying the
inverse mapping from our quantized polycube to input space. While
polycube-based hexahedral meshing is appreciated for its regular-
ity, it also suffers from the lack of inside singularities. We introduce

a layer of elements on the boundary, and smooth the resulting hex
mesh by minimizing a combination of the energy defined in [BG02]
and the mesh distance to the input boundary and features.

There exists various methods to extract an hexahedral mesh from
a valid labeling. We include our method for completeness. In prac-
tice, it has proven to be robust and effective during our experiments.
To further improve on the quality of hex meshes extracted from
polycubes and push singularities towards the interior, our simple
pillowing can be replaced with more advanced methods such as
selective-padding [CAS∗19] or cut-enhancements [GLYL20].

4. Experiments

We tested our method on a collection of 1315 meshes from the
MAMBO dataset [Led20], the natural and CAD shapes used by
Gao et al. [GSP19], and a subset of ABC [KMJ∗19] consisting of
the inputs sampled by Reberol et al. [RGR21]. Our results on these
datasets are synthesized in Table 1. We generate initial solutions
with a ratio of ωunary/ωbinary = 3, as recommended by Livesu et
al. [LVS∗13]. If no pseudo-valid labeling is found on our first at-
tempt, we divide this ratio by 3 and apply our labeling optimization
starting from this new initial solution.

We generate tetrahedral meshes with netgen [Sch97], and use
libigl [JP∗18] for common geometry processing operations. In the
following, all-hex meshes are visualized in HexaLab [BTP∗19]. In
our supplemental material, we provide renderings of all labelings
and polycubes, as well as per-model statistics.

Dataset size mesh Vp(ℓ) = 0 Da < 2 minSJ≥ 0
Mambo 113 100% 100% 97.4% 96.5%
Smooth 93 100% 100% 75.2% 89.2%
CAD 109 100% 94.5% 87.1% 85.3%
ABC 1000 99.4% 95.5% 82.3%* 61.9%*

Table 1: Results on CAD and smooth datasets. For each entry we
report the number of inputs, the ratios of (a) tetrahedral meshes
successfully generated, (b) pseudo-valid labelings, (c) polycubes
with area distortion Da [THCM04] below 2 (the ideal value being
1), and (d) hex meshes with minSJ≥ 0. *Given the size of the ABC
dataset, these results were simply computed using our fast polycube
estimator and libHexEx [LBK16] without any post-processing.

4.1. Comparison

We compare our work with PolyCut [LVS∗13] using the binaries
provided by the authors incorporating subsequent work [LSVT15].
On some inputs, we had to stop labeling optimization after one
hour without progress. We also report on the initial solution com-
puted with graph-cut, showing the importance of our labeling op-
timization. The results, detailed in Table 2, show that our method
converges to a pseudo-valid labeling in an overwhelming major-
ity of cases. When compared with another labeling based method
[LVS∗13], our method is more robust and our labelings subse-
quently lead to high quality hexahedral meshes in a greater range of
cases. Our ability to compute satisfying polycubes on more mod-
els than previous work can be used to improve the robustness of

submitted to COMPUTER GRAPHICS Forum (2/2023).

8 C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps

Figure 10: Comparison with previous methods on moai, cami1, pinion and venus. Mesh quality is reported in Table 2.

previous polycube enhancement methods [CAS∗19, GLYL20] and
further enhance our resulting hex meshes.

As explained in Section 3, we compute volumetric polycubes
and as such we do not optimize for surface polycube distortion
[THCM04]. Our labelings and volumetric polycubes aim to pre-
determine polycube topology and the number of cells subdividing
the input volume. The exact position of these cells in the final hex
mesh is determined by our all-hex smoothing, effectively removing
the need for surface polycubes in comparison with previous work.
To compute a low-distortion surface parameterization, our poly-
cubes can be used as an initial solution for an inverse optimization
with remeshing such as the one used by Livesu et al. [LVS∗13].

We also compare our results with the feature-aware octree-based
method proposed by Gao et al. [GSP19], which is known to be more
robust than polycubes but yield less regular meshes. As expected,
our method produces satisfying hex meshes on a smaller range of
models but still results in better average cell quality on the whole
dataset. As illustrated in Figure 10, our method produces highly
regular hex-meshes with cells of similar sizes, a property which is
greatly appreciated for the interpretation of numerical simulation
results. In comparison, the results of Gao et al. [GSP19] include

cells of varying sizes and are able to capture complex shapes with
more accuracy, at the expense of interpretability and singularities.

4.2. Analysis

Owing to its genetic nature, Evocube is highly parallelizable and
time-efficient. Each generation, individuals mutate and are evalu-
ated independently. In our experiments, this led to a speedup by
a factor of 14, as illustrated in Figure 11. Despite our fast surface
polycube evaluator, which is several magnitudes faster than com-
puting the final polycube, the main time bottleneck of our frame-
work remains fitness evaluation. On average, our method required
around 15 seconds per input for labeling optimization and was able
to compute the labelings leading to Table 1 in under six hours, as
detailed in Appendix B.

Nonetheless, our method failed to find valid labelings on some
inputs. Similarly to previous research on polycube-maps, our
method is unable to deal with complex shapes when they are poorly
aligned with principal axes, as illustrated in Figure 12. There are
also cases in which a pseudo-valid labeling did not lead to a satis-
fying hex mesh, as reported in Tables 1 and 2, where the ratio of
such labelings is higher than the ratio of successful hex-meshes.

submitted to COMPUTER GRAPHICS Forum (2/2023).

C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps 9

Method pseudo-valid minSJ≥ 0 minSJ avgSJ
Mambo Basic
Graph-cut 77.0%
[LVS∗13] 94.6% 73.0% -0.00 0.60
Ours 100% 100% 0.21 0.90
Mambo Simple
Graph-cut 66.7%
[LVS∗13] 96.7% 53.3% -0.24 0.40
Ours 100% 90.0% 0.08 0.84
Mambo Medium
Graph-cut 33.3%
[LVS∗13] 88.9% 11.1% -0.54 0.06
Ours 100% 88.9% -0.00 0.75
Smooth [GSP19]
Graph-cut 18.3%
[LVS∗13] 76.1% 55.7% -0.20 0.37
[GSP19] N/A 100% 0.19 0.81
Ours 100% 89.2% 0.15 0.86
CAD [GSP19]
Graph-cut 72.5%
[LVS∗13] 85.8% 52.8% -0.23 0.39
[GSP19] N/A 100% 0.17 0.83
Ours 94.5% 85.3% 0.19 0.87

Table 2: Comparison in terms of ratio of pseudo-valid labelings,
hex meshes with minSJ≥ 0, and hex quality. We denote X the av-
erage of X over a given dataset. When no output is produced, the
worse possible value of −1 is assumed instead.

0 10 20 30 40 50 60 70

CPU time

Real time

Time in hoursPre-optimization Individual selection
Individual mutations Charts and turning points
Fitness evaluation Crossing
Insertion in archive Post-optimization

Figure 11: Time plot (in hours of real and CPU time) of our labeling
optimization over all 1315 tested models. We provide a detailed
time report in Appendix B.

By construction, our labeling corresponds to base axes and is de-
pendent on the input’s orientation. For some shapes, this assump-
tion leads to non-optimal labelings. For example, a U-shaped cylin-
der will be mapped to a U-shaped polycube, as illustrated in Figure
14, whereas a simple cuboid would be preferable and lead to fewer
singularities in the resulting hex-mesh. This limitation could be ad-
dressed in our framework with recent work focusing on removing
undesired polycube corners [MCBC22].

The consistency and reproducibility of our results are hindered
by the non-deterministic nature of our approach. This drawback can
be mitigated by increasing the number of individuals N per gener-
ation. More mutations are considered each generation, leading to a
greater pool to choose from for the next and an improved breadth of
search overall. In contrast, the number of generations G relates to
the total number of mutations that can be applied, analogous to the

Input Nc angle/area d. minSJ avgSJ #hex
Rocker Fig 4
[GSP19] 0.165 0.813 30k
[LVS∗13] 62 1.066/1.051 0.370 0.890 57k
Ours 74 1.315/1.523 0.241 0.938 60k
Moai Fig 10
[GSP19] 0.263 0.824 25k
[LVS∗13] 8 0.497 0.950 3k
Ours 28 1.073/1.057 0.530 0.968 18k
cami1 Fig 10
[GSP19] 0.056 0.829 25k
Ours 72 1.164/1.221 0.108 0.802 3k
pinion Fig 10
[GSP19] 0.026 0.783 89k
[LVS∗13] 0.106 0.863 5k
Ours 112 1.122/1.096 0.142 0.816 5k
venus Fig 10
[GSP19] 0.131 0.800 20k
Ours 36 1.131/1.122 0.326 0.950 49k
S22 Fig 13 64 1.053/1.032 0.023 0.910 23k
S26 Fig 14 80 1.044/1.027 0.016 0.899 21k
B16 Fig 16 1.160/1.161 0.098 0.917 10k
B51 Fig 32 1.115/1.101 0.085 0.951 20k
B76 Fig 26 1.098/1.058 0.059 0.934 8k
B38 Fig 24 1.303/1.149 0.058 0.845 9k
B49 Fig 12 1.020/1.021 0.083 0.989 49k

Table 3: Statistics of presented polycubes and hex meshes. We re-
port the number of corners Nc of polycubes, angle and area distor-
tion, as well as quality metrics and number of cells for hex meshes.

Figure 12: Example meshes for which our Evocube implementa-
tion did not converge to a pseudo-valid labeling. The majority of
failures fell in one of these categories: complex geometries with
features poorly aligned with the base axes (left); shapes requiring
a polycube with valency 4 corners (middle); and inputs with tiny
holes that are too coarse to be satisfyingly labeled (right).

depth of search. In Figure 15, we observe that a very high number
of generations does not necessarily imply better results.

In complex cases and similarly to previous work [LVS∗13], the
final labeling may assign the same label across some feature-edges.
In such cases, the feature-edge does not appear in the polycube and
is most often deteriorated in the resulting hex-mesh, as illustrated in
Figure 13. For CAD models, this issue could be alleviated in future
work through feature-aware mutations and fitness.

In our experiments, we further observe that when a vastly supe-
rior mutation is found, a single individual and its offspring tend to
overwhelm the archive, reducing population diversity. For the most

submitted to COMPUTER GRAPHICS Forum (2/2023).

10 C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps

Figure 13: In some cases, Evocube finds a low-distortion labeling that assigns the same label across a feature edge. In our current post-
processing pipeline and similarly to other polycube-based methods, such feature edges are not preserved.

Figure 14: Additional results on CAD inputs from the MAMBO dataset. From left to right, top to bottom: S26, B16, B51, B76, B38, B49.

complex shapes, advanced evolutionary mechanisms such as speci-
ation [DS97] could be added to favor solution diversity.

5. Conclusion and future work

We have presented Evocube, a novel evolutionary approach to com-
pute polycube labelings. Our method generates pseudo-valid la-
belings on a wide range of CAD and smooth models, paving the
way for future work on labeling enhancements within this frame-
work. Resulting polycubes have meaningful complexity and pro-
duce high-quality hex meshes on a wide range of input geometries.

Our method has a few limitations which may be addressed in

future work. Additional mutations are required to further improve
our pseudo-valid labelings. In particular, boundary displacement
and feature-aware operations would integrate well in Evocube and
produce more accurate hex meshes while greatly reducing param-
eterization distortion. Tailor-made mutations may also be added to
systematically deal with specific CAD features, such as slopes or
sharp wedges. Finally, we hope our use of an evolutionary algo-
rithm applied to polycube labeling can inspire similar work on other
problems in mesh generation and computer graphics in general.

submitted to COMPUTER GRAPHICS Forum (2/2023).

C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps 11

(a) Initial (b) 5 generations (c) 500 generations

Figure 15: In complex cases, a large number of generations may
not be sufficient to reach a satisfying labeling. On this model (ABC
#4035), sharp wedges are numerous and poorly aligned with base
axes. After 500 generations, Vp(l) is reduced from 45 to 26, but
many invalidities remain and some of the solutions found are not
satisfying.

References
[BG02] BRANETS L. V., GARANZHA V. A.: Distortion measure of tri-

linear mapping. Application to 3-D grid generation. Numerical Linear
Algebra with Applications 9, 6-7 (2002), 511–526. 7

[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental comparison of
min-cut/max- flow algorithms for energy minimization in vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence 26, 9 (2004),
1124–1137. 5

[BM93] BLACKER T. D., MEYERS R. J.: Seams and wedges in plaster-
ing: A 3-d hexahedral mesh generation algorithm. Eng. with Comput. 9,
2 (June 1993), 83–93. 2

[BTP∗19] BRACCI M., TARINI M., PIETRONI N., LIVESU M.,
CIGNONI P.: Hexalab.net: An online viewer for hexahedral meshes.
Computer-Aided Design 110 (2019), 24–36. 7

[BVZ01] BOYKOV Y., VEKSLER O., ZABIH R.: Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions on Pattern Analysis
and Machine Intelligence 23, 11 (2001), 1222–1239. 5

[Bä96] BÄCK T.: Evolutionary algorithms in theory and practice - evo-
lution strategies, evolutionary programming, genetic algorithms. Oxford
University Press, 1996. 2

[CAS∗19] CHERCHI G., ALLIEZ P., SCATENI R., LYON M., BOMMES
D.: Selective padding for polycube-based hexahedral meshing. Com-
puter Graphics Forum 38, 1 (2019), 580–591. 2, 3, 7, 8

[CHL19] CALDÉRAN S., HUTZLER G., LEDOUX F.: Dual-based user-
guided hexahedral block generation using frame fields. In Proceedings
of 28th International Meshing Roundtable (2019). 2

[DLLK21] DIELEN A., LIM I., LYON M., KOBBELT L.: Learning di-
rection fields for quad mesh generation. Computer Graphics Forum 40,
5 (2021). 3

[DS97] DEB K., SPEARS W.: Population structures, c2.6 speciation
methods. In Handbook of Evolutionary Computation. (1997). 10

[EM10] EPPSTEIN D., MUMFORD E.: Steinitz theorems for orthogo-
nal polyhedra. In Proceedings Symposium on Computational Geometry
(2010), p. 429–438. 2, 3, 4, 12

[FBL16] FU X.-M., BAI C.-Y., LIU Y.: Efficient volumetric polycube-
map construction. Computer Graphics Forum 35, 7 (2016), 97–106. 3

[FLG15] FU X.-M., LIU Y., GUO B.: Computing locally injective map-
pings by advanced mips. ACM Trans. Graph. 34, 4 (July 2015). 3

[FXBH16] FANG X., XU W., BAO H., HUANG J.: All-hex meshing
using closed-form induced polycube. ACM Trans. Graph. 35, 4 (2016),
124:1–124:9. 3

[GKK∗21] GARANZHA V., KAPORIN I., KUDRYAVTSEVA L., PROTAIS

F., RAY N., SOKOLOV D.: Foldover-free maps in 50 lines of code. ACM
Trans. Graph. 40, 4 (2021). 7

[GLYL20] GUO H.-X., LIU X., YAN D.-M., LIU Y.: Cut-enhanced
polycube-maps for feature-aware all-hex meshing. ACM Trans. Graph.
39, 4 (2020), 106–1. 3, 7, 8

[GPW∗17] GAO X., PANOZZO D., WANG W., DENG Z., CHEN G.: Ro-
bust structure simplification for hex re-meshing. ACM Trans. Graph. 36,
6 (nov 2017). 3

[GSP19] GAO X., SHEN H., PANOZZO D.: Feature preserving octree-
based hexahedral meshing. Computer Graphics Forum 38, 5 (2019),
135–149. 2, 7, 8, 9

[GSZ11] GREGSON J., SHEFFER A., ZHANG E.: All-hex mesh gener-
ation via volumetric polycube deformation. Computer Graphics Forum
30, 5 (2011), 1407–1416. 2, 3, 4, 6, 7

[HJS∗14] HUANG J., JIANG T., SHI Z., TONG Y., BAO H., DESBRUN
M.: ℓ1-based construction of polycube maps from complex shapes. ACM
Trans. Graph. 33, 3 (2014), 25:1–25:11. 3

[HTWB11] HUANG J., TONG Y., WEI H., BAO H.: Boundary aligned
smooth 3d cross-frame field. ACM Trans. Graph. 30, 6 (2011), 1–8. 2

[HZ16] HU K., ZHANG Y. J.: Centroidal voronoi tessellation based poly-
cube construction for adaptive all-hexahedral mesh generation. Com-
puter Methods in Applied Mechanics and Engineering 305 (2016), 405
– 421. 3

[JP∗18] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 7

[KLF16] KOWALSKI N., LEDOUX F., FREY P.: Smoothness driven
frame field generation for hexahedral meshing. Computer-Aided Design
72 (2016), 65–77. 2

[KLSO12] KOWALSKI N., LEDOUX F., STATEN M. L., OWEN S. J.:
Fun sheet matching: towards automatic block decomposition for hexa-
hedral meshes. Engineering with Computers 28, 3 (2012), 241–253. 2,
3

[KMJ∗19] KOCH S., MATVEEV A., JIANG Z., WILLIAMS F., ARTE-
MOV A., BURNAEV E., ALEXA M., ZORIN D., PANOZZO D.: Abc: A
big cad model dataset for geometric deep learning. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (June 2019).
7

[KZ04] KOLMOGOROV V., ZABIN R.: What energy functions can be
minimized via graph cuts? IEEE Transactions on Pattern Analysis and
Machine Intelligence 26, 2 (2004), 147–159. 5

[LBK16] LYON M., BOMMES D., KOBBELT L.: Hexex: robust hexahe-
dral mesh extraction. ACM Trans. Graph. 35, 4 (2016), 123. 7

[Led20] LEDOUX F.: The MAMBO dataset. https://gitlab.com/
franck.ledoux/mambo, 2020. 7

[LLX∗12] LI Y., LIU Y., XU W., WANG W., GUO B.: All-hex meshing
using singularity-restricted field. ACM Trans. Graph. 31, 6 (2012). 2

[LMPS16] LIVESU M., MUNTONI A., PUPPO E., SCATENI R.:
Skeleton-driven adaptive hexahedral meshing of tubular shapes. Com-
puter Graphics Forum 35, 7 (2016), 237–246. 2

[LSVT15] LIVESU M., SHEFFER A., VINING N., TARINI M.: Practi-
cal hex-mesh optimization via edge-cone rectification. Transactions on
Graphics (Proc. SIGGRAPH 2015) 34, 4 (2015). 7

[LVS∗13] LIVESU M., VINING N., SHEFFER A., GREGSON J.,
SCATENI R.: Polycut: Monotone graph-cuts for polycube base-complex
construction. ACM Trans. Graph. 32, 6 (2013). 2, 3, 4, 5, 7, 8, 9

[LW07] LEDOUX F., WEILL J.: An extension of the reliable whisker
weaving algorithm. In Proceedings of the 16th International Meshing
Roundtable, October 14-17, 2007, Seattle, Washington, USA, Proceed-
ings (2007), Springer, pp. 215–232. 2

[LYZ∗20] LIM C. W., YIN X., ZHANG T., SELVARAJ S. K., SU Y.,
GOH C.-K., MORENO A., SHAHPAR S.: Towards automatic blocking
of shapes using evolutionary algorithm. Computer-Aided Design 120
(2020), 102798. 3, 6

submitted to COMPUTER GRAPHICS Forum (2/2023).

https://gitlab.com/franck.ledoux/mambo
https://gitlab.com/franck.ledoux/mambo

12 C. Dumery et al. / Evocube: a Genetic Labeling Framework for Polycube-Maps

[LZS∗21] LI L., ZHANG P., SMIRNOV D., ABULNAGA S. M.,
SOLOMON J.: Interactive all-hex meshing via cuboid decomposition.
ACM Trans. Graph. 40, 6 (dec 2021). 2

[Mar09] MARÉCHAL L.: Advances in octree-based all-hexahedral mesh
generation: Handling sharp features. In Proceedings of International
Meshing Roundtable (2009), pp. 65–84. 2

[MCBC22] MANDAD M., CHEN R., BOMMES D., CAMPEN M.: Intrin-
sic mixed-integer polycubes for hexahedral meshing. Computer Aided
Geometric Design 94 (2022), 102078. 9

[MTP∗15] MARCIAS G., TAKAYAMA K., PIETRONI N., PANOZZO D.,
SORKINE-HORNUNG O., PUPPO E., CIGNONI P.: Data-driven interac-
tive quadrangulation. ACM Trans. Graph. 34, 4 (Aug. 2015). 3

[OS00] OWEN S. J., SAIGAL S.: H-morph: An indirect approach to
advancing front hex meshing. International Journal for Numerical Meth-
ods in Engineering (5 2000). 2

[PBS20] PALMER D., BOMMES D., SOLOMON J.: Algebraic represen-
tations for volumetric frame fields. ACM TOG 39, 2 (2020). 2

[PBSB07] PARRISH M., BORDEN M. J., STATEN M. L., BENZLEY
S. E.: A selective approach to conformal refinement of unstructured hex-
ahedral finite element meshes. In Proceedings of International Meshing
Roundtable (2007), pp. 251–268. 2

[PRR∗20] PROTAIS F., REBEROL M., RAY N., CORMAN E., LEDOUX
F., SOKOLOV D.: Robust Quantization for Polycube Maps. preprint,
Dec. 2020. 7

[Qua14] QUADROS W. R.: Laytracks3d: A new approach to meshing
general solids using medial axis transform. Procedia Engineering 82
(2014), 72 – 87. 2

[RGR21] REBEROL M., GEORGIADIS C., REMACLE J.-F.: Quasi-
structured quadrilateral meshing in gmsh – a robust pipeline for complex
cad models, 2021. 7

[RSL16] RAY N., SOKOLOV D., LÉVY B.: Practical 3d frame field gen-
eration. ACM Trans. Graph. 35, 6 (2016), 233. 2

[SCB92] STEPHENSON M. B., CANANN S. A., BLACKER T. D.: Plas-
tering: A new approach to automated 3d hexahedral mesh generation, 2
1992. 2

[Sch96] SCHNEIDERS R.: Refining quadrilateral and hexahedral element
meshes. transition 2 (1996), 1. 2

[Sch97] SCHOEBERL J.: Netgen an advancing front 2d/3d-mesh gener-
ator based on abstract rules. Computing and Visualization in Science 1
(07 1997), 41–52. 7

[SERB99] SHEFFER A., ETZION M., RAPPOPORT A., BERCOVIER M.:
Hexahedral mesh generation using the embedded voronoi graph. Engi-
neering with Computers 15, 3 (1999), 248–262. 2

[SJ08] SHEPHERD J. F., JOHNSON C. R.: Hexahedral mesh generation
constraints. Engineering with Computers 24, 3 (2008), 195–213. 1

[SR15] SOKOLOV D., RAY N.: Fixing normal constraints for generation
of polycubes. Tech. rep., LORIA, 2015. 2, 3, 12

[Ste22] STEINITZ E.: Polyeder und raumeinteilungen, 1922. 12

[Tak19] TAKAYAMA K.: Dual sheet meshing: An interactive approach to
robust hexahedralization. Computer Graphics Forum 38, 2 (2019). 2

[TBM95] TAUTGES T. J., BLACKER T., MITCHELL S. A.: The whisker
weaving algorithm: A connectivitybased method for constructing all-
hexahedral finite element meshes, 1995. 2

[THCM04] TARINI M., HORMANN K., CIGNONI P., MONTANI C.:
Polycube-maps. ACM Trans. Graph. 23, 3 (2004). 2, 4, 7, 8

[XZCOC12] XU K., ZHANG H., COHEN-OR D., CHEN B.: Fit and di-
verse: Set evolution for inspiring 3d shape galleries. ACM Trans. Graph.
31, 4 (2012). 3

[YZWL14] YU W., ZHANG K., WAN S., LI X.: Optimizing polycube
domain construction for hexahedral remeshing. Computer-Aided Design
46 (2014), 58 – 68. 3

[ZHB10] ZHANG Y., HUGHES T. J. R., BAJAJ C. L.: An automatic 3d
mesh generation method for domains with multiple materials. Computer
Methods in Applied Mechanics and Engineering 199, 5-8 (2010). 2

[ZLW∗19] ZHAO H., LI X., WANG W., WANG X., WANG S., LEI N.,
GU X.: Polycube shape space. Computer Graphics Forum 38 (2019). 4,
12

Appendix A: Validity limitations

The pseudo-validity conditions adopted by our method are not nec-
essary for the existence of a corresponding polycube polyhedron.
A counterexample is shown in Figure 16a, where a labeling not
fulfilling the conditions still corresponds to a valid polycube poly-
hedron. The conditions are not sufficient either, as illustrated by the
counterexample in Figure 16b [SR15], where a labeling fulfills the
conditions but does not correspond to a valid polycube polyhedron.

Our pseudo-validity conditions are a simplification of the ones
described by Eppstein and Mumford [EM10], adapting the Steinitz
criteria [Ste22] for convex polyhedra. Zhao et al. [ZLW∗19] man-
aged to extend their analysis to orthogonal polyhedra with higher
genus. The main advantage of our validity proxy is that it can effi-
ciently be evaluated, allowing for optimization via a heuristic.

(a) Not necessary (b) Not sufficient

Figure 16: Failure cases of pseudo-validity conditions.

Appendix B: Time measurements

In Table 4, we report detailed time measurements illustrated in Fig-
ure 11. We measure time both in CPU and real time, and observe
a 14 fold speedup. All computations are performed on a 16-core
AMD Ryzen Threadripper 1950X 2.2 GHz and 128 Gb RAM.

Operation CPU time (h) Real time (h)
Pre-optimization computation 0.33 0.33
Individual selection 3.20 0.21
Individual mutations 7.63 0.51
Charts and turning points 6.25 0.42
Fitness evaluation 55.2 3.66
Crossing 10−3 10−3

Insertion in archive 10−4 10−4

Post-optimization 0.21 0.21
Total 72.82 5.34

Table 4: Labeling optimization timings over all 1315 models.

submitted to COMPUTER GRAPHICS Forum (2/2023).

