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Nous étudions le nombre de diviseurs effectifs, ayant un degré donné, d'un corps de fonctions algébriques sur un corps fini. Nous déterminons tout d'abord des bornes inférieures et des bornes supérieures de ce nombre quand le corps de fonctions, le degré des diviseurs et le corps fini sous-jacent sont fixés. Nous étudions ensuite le comportement de ce nombre de diviseurs effectifs quand certains paramètres, notamment le corps fini, le degré des diviseurs effectifs, le corps de fonctions algébriques, sont des variables.

We study the number of effective divisors of a given degree of an algebraic function field defined over a finite field. We first give somme lower bounds and upper bounds when the function field, the degree and the underlying finite field are fixed. Then we study the behavior of the number of effective divisors when some of the parameters, namely the underlying finite field, the degree of the effective divisors, the algebraic function field can be variable.

Introduction

The algebraic properties of algebraic function fields defined over a finite field is somehow reflected by their numerical properties, namely their numerical invariants such as the number of places of degree one over a given ground field extension, the number of classes of its Picard group, the number of effective divisors of a given degree and so on. In this paper, we are interested in the study of the number of effective divisors of a given degree and in the asymptotic behavior of this number under various assumptions.

The context of our study is as follows. We consider a function field F/F q of genus g over the finite field F q with q elements. Sometimes we will use the dual language of curves. We will denote by X a curve defined over F q , having F/F q for algebraic function field over F q and by X(F q ) the set of F q -rational points of X, corresponding to the set of places of degree one of F/F q .

For any integer n ≥ 0, let A n (F/F q ) be the number of effective divisors of degree n of F/F q , h(F/F q ) its class number and B n = B n (F/F q ) its number of places of degree n. If there is no ambiguity we will set A n = A n (F/F q ), h = h(F/F q ) and B n = B n (F/F q ).

In the study of the quantity A n , we need distinguish the two following cases:

(a) n ≤ g -1;

(b) arbitrary n. Indeed, in the first case the quantity A n is linked to the functional equation [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] involving several fundamental invariants, in particular the class number of the algebraic function field and the following S(F/F q ) and R(F/F q ) quantities:

S(F/F q ) = g-1 n=0 A n + g-2 n=0 q g-1-n A n and R(F/F q ) = g i=1 1 | 1 -α i | 2 ,
where (α i , α i ) 1≤i≤g are the reciprocal roots of the numerator of the zeta-function Z(F/F q , T ) of F/F q . By a result due to G. Lachaud and M. Martin-Deschamps [START_REF] Lachaud | Nombre de points des jacobiennes sur un corps finis[END_REF], we know that [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] S(F/F q ) = hR(F/F q ).

Let us also recall that the zeta-funtion of F/F q is given by:

Z(t) = +∞ m=0 A m t m = L(t) (1 -t)(1 -qt) where L(t) = 2g i=0 a i t i is in Z[t].

Organization

The paper is organized in the following way. In Section 3 the study is done when the finite field F q and the algebraic function field F/F q are fixed. We first give in Subsection 3.1 general results and general formulae on the numbers A n for any positive n. Then in Subsection 3.2 we present some lower bounds on A n for any positive n and finally in Subsection 3.3 we give when 1 ≤ n ≤ g -1 some upper bounds on A n h .

Next in Section 4 we study the asymptotic behavior of A n (F/F q ) when some of the parameters n, F, q are variable. More precisely, in Subsection 4.1 we study the case of a fixed curve X, a fixed degree n for the effective divisors and q growing to infinity, namely, starting from a finite field F q 1 we consider a sequence of extensions F q i of F q 1 where q i is growing to infinity. In Subsection 4.2 we suppose that the field F q is fixed and we consider a sequence of curves (X k ) k of genus g k = g(X k ) growing to infinity. For each curve X k we fix a degree d k . In this case we study the behavior of the sequence A d k (F k /F q ) k where F k /F q is the algebraic function field associated with the curve X k and where d k is linked to g k in some way.

Non-asymptotical case

3.1. General results. In this section, we consider the case where the degree n is an arbitrary integer. Let us set

∆ = {i ∈ N | 1 ≤ i ≤ g -1 and B i ≥ 1} . U n = b = (b i ) i∈∆ | b i ≥ 0 and i∈∆ ib i = n . Note first that if B i ≥ 1 and b i ≥ 0, the number of solutions of the equation n 1 + n 2 + • • • + n B i = b i with integers ≥ 0 is: (2) B i + b i -1 b i = B i + b i -1 B i -1 .
Then the number of effective divisors of degree n is given by the following result, already mentioned in [START_REF] Tsfasman | Asymptotic properties of zetafunctions[END_REF], [START_REF] Ballet | Lower bounds on the class number of algebraic function fields defined over any finite field[END_REF] and [START_REF] Ballet | Lower bounds on the number of rational points of Jacobians over finite fields and application to algebraic function fields in towers[END_REF]:

Proposition 3.1. The number of effective divisors of degree n of an algebraic function field F/F q is:

A n = b∈Un i∈∆ B i + b i -1 b i .
Proof. It is sufficient to consider that in the formula, b i is the sum of coefficients that are applied to the places of degree i. So, the sum of the terms ib i is the degree n of the divisor. The number of ways to get a divisor of degree ib i with some places of degre i is given by the binomial coefficient [START_REF] Ballet | On the existence of dimension zero divisors in algebraic function fields defined over F q[END_REF]. For a given b , the product of the second member is the number of effective divisors for which the weight corresponding to the places of degree i is ib i . Then it remains to compute the sum over all possible b to get the number of effective divisors.

Proposition 3.2. Let F/F q be a function field of genus g and let L(t) = 2g i=0 a i t i be the numerator of its zeta-function. Moreover, let us set a i = 0 for any integer i > 2g. Then, for any integer n ≥ 0, we have:

(3) A n = n i=0 q n-i+1 -1 q -1 a i and (4) 
δ n = A n+1 -A n = n+1 i=0 q n-i+1 a i .
In particular, if B 1 > 0, we have δ n ≥ 0.

Proof. The zeta-function can be written as

Z(t) = +∞ n=0 A n t n = L(t) (1 -t)(1 -qt) = 2g i=0 a i t i (1 -t)(1 -qt) .
From the equality

1 (1 -t)(1 -qt) = H 1 -t + G 1 -qt where H = -1 q -1 and G = q q -1
, and the power series expansions

1 1 -t = 1 + t + t 2 + ... + t k + ... and 1 1 -qt = 1 + qt + q 2 t 2 + ... + q k t k + ...,
we obtain:

∞ n=0 A n t n = ∞ n=0 (H + q n G)t n × ∞ n=0 a n t n .
Hence,

A n = i+j=n (H + q j G)a i = i+j=n -1 q -1 + q j+1 q -1 a i .
Then, we have:

A n = n i=0 q n-i+1 -1 q -1 a i .
The value of δ n follows.

If B 1 > 0, let P be a place of degree one. The map φ P from the set of effective divisors of degree n to the set of effective divisors of degree n + 1 defined by φ P (D) = D + P is injective. Hence A n+1 ≥ A n .

Lower bounds on

A n . From Proposition 3.1 we obtain in the next proposition a lower bound on the number of effective divisors of degree n containing in their support only places of some fixed distinct degrees r 1 , r 2 , ..., r k ≥ 1.

Proposition 3.3. Let (r µ ) µ=1,...,p be a family of distinct integers ≥ 1 such that B rµ > 0 and n be an integer > 0. Suppose that B 1 > 0. Then (5)

A n ≥ p µ=1 B rµ + m rµ (n) -1 B rµ -1 B 1 + s rµ (n) -1 B 1 -1
where m rµ (n) and s rµ (n) are respectively the quotient and the remainder of the Euclidian division of n by r µ .

Proof. For any integer r µ , let a µ = (a µ,i ) i∈∆ ∈ U n such that a µ,i = 0 for i ∈ ∆ \ {1, r µ }, a µ,1 = s rµ (n) and a µ,rµ = m rµ (n). Then by Proposition (3.1), we have:

A n = b∈Un i∈∆ B i + b i -1 b i ≥ p µ=1 i∈∆ B i + a µ,i -1 a µ,i = p µ=1 B rµ + m rµ (n) -1 B rµ -1 B 1 + s rµ (n) -1 B 1 -1 .
In particular, if p = 1 and r 1 = 1 we obtain:

A n ≥ B 1 + n -1 n = B 1 + n -1 B 1 -1 .
Moreover, if the degrees r µ are > 1 and divide n, we do not need the assumption of the existence of places of degree one. Proposition 3.4. Let n be an integer > 0. Let (r µ ) µ=1,...,p be a family of distinct integers ≥ 1 dividing n. Suppose that B rµ > 0 for any µ = 1, ..., p. Then (6)

A n ≥ p µ=1 B rµ + m rµ (n) -1 B rµ -1
where m r (n) is the quotient of the Euclidian division of n by r µ .

Proof. For any integer r µ , let a µ = (a µ i ) i∈∆ ∈ U n such that a µ,i = 0 for i ∈ ∆ \ {r µ } and a µ,rµ = m rµ (n). Then by Proposition (3.1), we have:

A n = b∈Un i∈∆ B i + b i -1 b i ≥ p µ=1 i∈∆ B i + a µ i -1 a µ i = p µ=1 B rµ + m rµ (n) -1 B rµ -1 .
Proposition 3.5. Let (r µ ) µ=1,...,p be a family of distinct integers > 1 such that B rµ > 0 and n be an integer > 0. Suppose that B 1 ≥ 1. Let m = (m rµ ) µ=1,...,p be a family of integers ≥ 0 such that

p µ=1 m rµ r µ ≤ n. Then (7) A n ≥ B 1 + n -1 B 1 + p µ=1 B rµ + m rµ B rµ . Proof. Let V n = b = (b rµ ) µ=1,...,p | b rµ ≥ 0, p µ=1 r µ b rµ ≤ n .
As B 1 ≥ 1 the following holds:

A n = b∈Un i∈∆ B i + b i -1 b i ≥ b∈Vn p µ=1 B rµ + b rµ -1 b rµ . Let C n = p µ=1 {0, .., m rµ }. Then C n ⊂ V n , hence A n ≥ b∈Cn p µ=1 B rµ + b rµ -1 b rµ . But b∈Cn p µ=1 B rµ + b rµ -1 b rµ = p µ=1 mr µ br µ =0 B rµ + b rµ -1 b rµ = p µ=1 B rµ + m rµ m rµ .
In the previous estimate, we did not take into account the effective divisors built only with places of degree one. Hence, the result is obtained by adding the number of such divisors.

Example 3.6. Let us suppose that r µ = µ + 1 for any 1 ≤ µ ≤ p and that we only know the value of B 1 and that B µ+1 ≥ 1. Then the m i are such that p+1 i=2 im i ≤ n and

A n ≥ B 1 + n -1 B 1 + p+1 i=2 (1 + m i ).
Let us set

x i = 1 + m i . Then p+1 i=2 ix i ≤ (p + 1)(p + 2) 2 -1 + n.
To optimize the choice of the m i , we will optimize the product p+1 i=2 x i under the constraint p+1 i=1 ix i = K where K = (p+1)(p+2)

2

-1 + n. This is done by the method of Lagrange's multipliers. Let us introduce the following function:

L(x 2 , • • • , x p+1 , λ) = p+1 i=2 x i -λ p+1 i=2 ix i -K .
Let us denote by π j the incomplete product:

x 2 x 3 • • • x j-1 x j+1 • • • x p+1 .
We have to solve the system:

           ∂L(x 2 ,••• ,x p+1 ,λ) ∂x 2 = π 2 -2λ = 0, . . . . . . . . . . . . . . . ∂L(x 2 ,••• ,x p+1 ,λ) ∂x p+1 = π p+1 -(p + 1)λ = 0, ∂L(x 2 ,••• ,x p+1 ,λ) ∂λ = p+1 i=2 ix i -K = 0. Hence x i = 2 i x 2 . Hence p+1 i=2 ix i = 2px 2 = K.
This gives a value for x 2 and then for the x i . These values are not always integers. Then we have to choose the best way to give to each x i a integer value near the computed value, in order to obtain an optimal solution for the m i = x i -1. For example if p = 3 and n = 9, then K = 18. We conclude that x 2 = 3, 

x 3 = 2, x 4 = 3/2.
(1 + m 2 )(1 + m 3 )(1 + m 4 ) (it is impossible to do better).
3.3. Upper Bounds in the case n ≤ g -1.

Proposition 3.7. Let F/F q be a function field of genus g and let L(t) = 2g i=0 a i t i be the numerator of its zeta-function. Then

A g-k = 1 q -1 q -k+1 h - g+k-1 i=0 a i - g-k i=0 a i . Proof. From Z(t) = +∞ m=0 A m t m = L(t) (1 -t)(1 -qt) = 2g i=0 a i t i (1 -t)(1 -qt)
we deduce that for all 0 ≤ m ≤ 2g,

A m = m i=0 q m-i+1 -1 q -1 a i .
In particular,

(q -1)A g-k = g-k i=0 (q g-k-i+1 -1)a i .
Since a i = q i-g a 2g-i , for all i = 0, . . . g, we get

(q-1)A g-k = q g-k+1 g-k i=0 q -i a i - g-k i=0 a i = q g-k+1 g-k i=0 q -i q i-g a 2g-i - g-k i=0 a i . Hence (q -1)A g-k = q -k+1 g-k i=0 (a 2g-i -a i ) - g-k i=0 a i + q -k+1 g-k i=0 a i .
Furthermore, we know that h = L(1) = 2g i=0 a i , therefore

g-k i=0 (a 2g-i -a i ) = h - g+k-1 i=0 a i - g-k i=0 a i ,
which completes the proof.

Remark 3.8. For k = 1 one obtains the two following equalities in the interesting particular case of divisors of degree g -1:

(8)

A g-1 = 1 q -1 h -a g + 2 g-1 i=0 a i . (9) A g-1 = g-1 i=0
(a 2g-i -a i ) .

Now we can give general bounds about the quantity

A d h which can be of interest.
Let us give different useful bounds for R(F/F q ). Proposition 3.9.

(10) R(F/F q ) ≤ g ( √ q -1) 2 . (11) R(F/F q ) ≥ g ( √ q + 1) 2 . (12) R(F/F q ) ≤ 1 (q -1) 2 (g + 1)(q + 1) -B 1 (F/F q ) . (13) R(F/F q ) ≤ 1 (q -1) 2 (g + 1)(q + 1) . (14) R(F/F q ) ≥ 1 (q + 1) 2 (g + 1)(q + 1) -B 1 (F/F q ) .
Proof. It is known by [START_REF] Lachaud | Nombre de points des jacobiennes sur un corps finis[END_REF] that the quantity R(F/F q ) is bounded by the following upper bound:

(15) R(F/F q ) ≤ 1 (q -1) 2 (g + 1)(q + 1) -B 1 (F/F q ) .
The inequality ( 12) is obtained as follows:

R(F/F q ) = g i=1 1 (1 -α i )(1 -α i ) = g i=1 1 1 + q -(α i + α i )
.

Multiplying the denominators by the corresponding conjugated quantities, we get:

R(F/F q ) ≤ 1 (q -1) 2 g i=1 (1 + q + α i + α i ).
This last inequality associated to the following formula deduced from the Weil's formulas:

g i=1 (α i + α i ) = 1 + q -B 1 (F/F q ),
gives the inequality [START_REF] Weil | Basic Number Theory[END_REF]. The inequality [START_REF] Weil | Basic Number Theory[END_REF] cannot be improved in the general case. Remark that in the same way we can prove that ( 16) R(F/F q ) ≥ 1 (q + 1) 2 (g + 1)(q + 1) -B 1 (F/F q ) . Remark 3.10. Note that Bound [START_REF] Weil | Basic Number Theory[END_REF] is better than Bound (10) because of the lower Weil bound. Indeed,

B 1 (F/F q ) ≥ q + 1 -2g √ q, then 1 (q -1) 2 (g + 1)(q + 1) -B 1 (F/F q ) ≤ 1 (q -1) 2 (g + 1)(q + 1) -(q + 1) + 2g √ q .
and we can conclude thanks to the following equality: 1 (q -1) 2 (g + 1)(q + 1) -(q + 1) + 2g

√ q = g ( √ q -1) 2 .
Moreover (13) is interesting when the number of places of degree one is unkown and q + 1 -2g √ q < 0. Indeed in this case (13) is better than [START_REF] Tsfasman | Asymptotic properties of zetafunctions[END_REF]. On the contrary, if q + 1 -2g √ q > 0 (10) is better than (13).

The following theorem gives upper bounds on A d h .

Theorem 3.11. For any function field F/F q of genus g defined over F q and any degree n such that 1 ≤ n ≤ g -1, the following holds:

(17)    An h < 1 2q g-n-1 2 
( √ q-1) 2 if n < g -1, An h < 1 ( √ q-1) 2 for n = g -1.
(18)

A n h ≤ g q g-n-1 √ q -1 2 .
(

19)

A n h ≤ (g + 1)(q + 1) q g-n-1 (q -1) 

L(t) = g j=1 (1 -α j t)(1 -α j t)
the numerator of the zeta-function of F/F q . Then

h = L(1) = g j=1 |1 -α j | 2 .
The Hecke formula (see [START_REF] Lachaud | Nombre de points des jacobiennes sur un corps finis[END_REF]) implies (20)

A g-1 + g-2 d=0 A d 1 + q g-1-d = h g j=1 1 |1 -α j | 2 .
But by Formula (10)

g j=1 1 |1 -α j | 2 ≤ g ( √ q -1) 2 , then A g-1 + g-2 d=0 A d 1 + q g-1-d ≤ gh ( √ q -1) 2 ,
hence for any n such that 1 ≤ n ≤ g -1 the following holds:

A n q g-1-n ≤ gh ( √ q -1) 2 .
From this last inequality we get (18). Replacing Formula (10) by Formula (13) we obtain (19).

If B 1 ≥ 1 inequalities (18) and ( 19) can be improved. by the following proposition: Proposition 3.12. Let F/F q be a function field of genus g defined over F q and n an integer such that 1 ≤ n < g -1. Suppose that B 1 ≥ 1. Then the following holds:

(21) A n h ≤ 1 2( √ q -1) 2 1 2 + √ q √ q g-n-1 -1 √ q-1 . (22) A n h ≤ (g + 1)(q + 1) -B 1 (q -1) [(q -1)(g -n) + q (q g-n-1 -1)]
.

Proof. In order to prove Formula (21) we use the following inequality established in [2, Formula (6)]:

2 g-2 d=0 q (g-1-d)/2 A d + A g-1 ≤ h ( √ q -1) 2 .
Then, as B 1 ≥ 1, we know by Proposition 3.2 that A n+1 ≥ A n . Hence

2A n g-2 d=n q (g-1-d)/2 + A n ≤ h ( √ q -1) 2 ,
from which we deduce (21).

To prove Formula (22), first we can replace inequalities [START_REF] Tsfasman | Asymptotic properties of zetafunctions[END_REF] and ( 13) by the better inequality [START_REF] Weil | Basic Number Theory[END_REF]. Next we know by Proposition 3.2 that A n+1 ≥ A n . Hence we can deduce from formula (20) the following ones:

A n (g -n) + g-2 d=n q g-d-1 ≤ h (q -1) 2 (g + 1)(q + 1) -B 1 , A n (g -n) + q (q g-n-1 -1) (q -1) ≤ h (q -1) 2 (g + 1)(q + 1) -B 1 .
This last inequality leads to the result.

If we compare Inequalities (17), ( 18) and (19) we can see that each of them can be better than the other depending on the parameters. A complete study is done in Annexe A.

We can also obtain bounds concerning directly the quantity A n from bounds on

A n h by using the Weil bounds [START_REF] Weil | Sur les courbes algébriques et les variétés qui s'en déduisent. Variétés abéliennes et courbes algébriques[END_REF] [12]:

(23) ( √ q -1) 2g ≤ h ≤ ( √ q + 1) 2g .
A better upper bound for h than the Weil bound, due to P. Lebacque and A. Zykin [START_REF] Lebacque | On the number of rational points of jacobians over finite fields[END_REF] can be used if we know upper bounds for the number of rational points of the curve X(F q k ) over the fields

F q k for 1 ≤ k ≤ N where N is an integer ≥ 1 : (24) h ≤ q g exp N k=1 1 kq k | X(F q k ) | - N k=1 1 + q -k k + 2g ( √ q -1)(N + 1)q N 2 .
Moreover, in the special case n = g -1, the estimates for A g-1 h can be improved. Let us introduce

Q r,s = s k=0 1 q rk 2 B r + k -1 k . Lemma 3.13. Q r,s = q r 2 q r 2 -1 Br -B r B r + s B r 1 q r 2 0 ( 1 q r 2 -t) s (1 -t) Br+s+1 dt. Proof. Let us set S r (X) = ∞ k=0 X k B r + k -1 k , T r (X, s) = s k=0 X k B r + k -1 k , and R r (X, s) = ∞ k=s+1 X k B r + k -1 k .
Let us remark that

Q r,s = T r 1 q r 2
, s and S r (X) = 1 (1 -X) Br which converges for |X| < 1 and moreover S r (X) = T r (X, s) + R r (X, s).

By the Taylor Formula, we get

R r (X, s) = B r B r + s B r X 0 (X -t) s (1 -t) Br+s+1 dt. Then Q r,s = q r 2 q r 2 -1 Br -B r B r + s B r 1 q r 2 0 ( 1 q r 2 -t) s (1 -t) Br+s+1 dt.
Lemma 3.14. Let F/F q be a function field of genus g defined over F q . Let let m = (m r ) r∈∆ be a finite sequence of integers such that m r ≥ 0 and r∈∆ rm r ≤ g -2. Then the following inequality holds:

g-2 k=0 A k q k 2 ≥ r∈∆ Q r,mr .

Proof. By Proposition 3.1 we know that

A k = b∈U k i∈∆ B i + b i -1 b i . If one set V = g-2 k=0 U k = b = (b r ) r∈∆ | b r ≥ 0 and r∈∆ rb r ≤ g -2
the following holds:

g-2 k=0 A k q k 2 = b∈V r∈∆ 1 q rbr 2 B r + b r -1 b r .
Let C be the subset of V defined by

C = r∈∆ {0, • • • , m r }. Then g-2 k=0 A k q k 2 ≥ b∈C r∈∆ 1 q rbr 2 B r + b r -1 b r = r∈∆ mr k=0 1 q rk 2 B r + k -1 k = r∈∆ Q r,mr .
Proposition 3.15. Let F/F q be a function field of genus g defined over F q . Let m = (m r ) r∈∆ be a finite sequence of integers such that m r ≥ 0 and r∈∆ rm r ≤ g -2.

Then the following inequalities holds:

(25) A g-1 ≤ h ( √ q -1) 2 -2q g-1 2 r∈∆ Q r,mr , (26) 
A g-1 ≤ ( √ q + 1) 2g ( √ q -1) 2 -2q g-1 2 r∈∆ Q r,mr ,
where for any r ≥ 1 and s ≥ 0 the following holds:

Q r,s = q r 2 q r 2 -1 Br -B r B r + s B r 1 q r 2 0 ( 1 q r 2 -t) s (1 -t) Br+s+1 dt.
Proof. Let us recall the following inequality established in [2, Formula (6)]:

2q (g-1)/2 g-2 d=0 A d q d/2 + A g-1 ≤ h ( √ q -1) 2 .
We know by Proposition 3.14 that

g-2 k=0 A k q k 2 ≥ r∈∆ Q r,mr .
Then the inequality (25) holds.

The inequality (26) directly follows from the inequality (25) and from the upper Weil bound.

Finally, Lemma 3.13 gives the last equality.

Remark 3.16. The inequality (26) can be improved by using, if possible, the upper bound (24).

Theorem 3.17. For any curve X of genus g defined over F q . If 1 ≤ d ≤ g -1 the following holds:

(27) A d ≤ g √ q + 1 2g q g-d-1 √ q -1 2 .
Proof. From ( 18) and ( 23) we obtain (27). As previously remarked, if possible, we can use (24) instead of (23) and get the bound: (28)

A d ≤ gq g exp N k=1 1 kq k | X(F q k ) | -N k=1 1+q -k k + 2g ( √ q-1)(N +1)q N 2 q g-d-1 √ q -1 2 .

Asymptotical case

The study of the asymptotic behavior of certain quantities associated to curves or function fields can be done from many point of view depending on the parameter tending to infinity. The simpler cases are described by the two following situations:

• Increasing the size of the definition function field of one fixed curve. The first case corresponds to the situation of a unique fixed curve X 0 of genus g and a fixed degree d 0 . Let us remark that if the curve X 0 is defined on the finite field F q 1 , it is also defined on any extension F q of F q 1 , and then we can study the asymptotic behavior of quantities related to the curve X 0 when q is growing to infinity. In particular in section 4.1 we will study the asymptotic behaviour of A d 0 (F 0 /F q ) h(F 0 /F q ) when q is growing to infinity, where d 0 is a fixed degree and F 0 /F q , the function field over F q associated to the curve X 0 .

• Case of a family of curves defined over the same finite field F q . Let (X k ) k≥1 be a family of curves defined over F q . We study the sequence of function fields (F k /F q ) k . Let us denote by g k = g(X k ) the genus of the curve X k . We will suppose in the following that the genus sequence (g k ) k is growing to infinity. In section 4.2 we will study the asymptotic behaviour of many interesting quantities when k (and then g k ) is growing to infinity, and when the degree d is linked to g k by a relation. We will study in particular the case where d is a linear function of g k . Some asymptotic behaviours are deduced from absolute formulae, namely true for any value of the variables (g(X), q, d). Many such formulae exist, each of them being mainly adapted to a particular asymptotic study. We can consider this point of view by using the results obtained in the section 3.

4.1.

Case of a fixed curve and a fixed degree. In this section the curve X of genus g is fixed and d is a fixed integer such that d ≤ g -1. Let us recall that A d (F/F q ) is the number of degree d effective divisors of F/F q and that h(F/F q ) is its class number. We give here the asymptotic behaviour of the quotient A d (F/F q ) h(F/F q ) . Theorem 4.1. Let us suppose that g ≥ 1 and d ≤ g -1. Then when q is growing to infinity, the following holds:

A d (F/F q ) h(F/F q ) = 1 q g-d 1 + O 1 q ,
where the O Landau function depends upon X and d.

This theorem is a consequence of the two following lemmata. Let us denote by W 0 d the following set:

W 0 d = {[D] ∈ Pic d (X) | dim(D) > 0}. If d ≤ g -1, the elements of W 0 d are special divisor classes. |X(F q )| = q + 1 -trace (π).
Lemma 4.2. If g ≥ 1 and d ≤ g then when q tends to infinity

W 0 d (F q ) = q d -q d-1 trace (π) + O(q d-1
). Proof. The restriction of the projection

Π : Div d (X) → Pic d (X)
gives a surjective morphism [1, p. 190], [9, Prop. 5.1, p. 182]). The Albanese variety of W 0 d is J ac(X) (see [START_REF] Milne | Jacobian varieties[END_REF]Prop. 5.3,p. 183]). We conclude by [START_REF] Ghorpade | Etale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields[END_REF]Cor. 11.4].

Π : Div + d (X) → W 0 d . The scheme W 0 d is a dimension d irreducible normal sub-variety of Pic d (X) defined over F q (see
Lemma 4.3. If g ≥ 1 and d ≤ g -1 then when q tends to infinity

A d (F/F q ) = W 0 d (F q ) + O(q d-1 ). Proof. Recall that A d (F/F q ) = [D]∈Pic d (Fq) q dim(D) -1 q -1 .
The dimension of included varieties

W r d = {[D] ∈ Pic d (F q ) | dim(D) ≥ r + 1} is the Brill-Noether number (see [1, p. 180]) ρ(r) = g -(r + 1)(g -d + r),
and W r d = ∅ if r > d/2 by the Clifford's theorem. When q is growing to infinity the following holds:

A d (F/F q ) = +∞ l=1 q l -1 q -1 W l-1 d (F q ) -W l d (F q ) , A d (F/F q ) = +∞ l=1 l-1 i=0 q i W l-1 d (F q ) -W l d (F q ) , A d (F/F q ) = +∞ l=0 l i=0 q i W l d (F q ) - +∞ l=1 l-1 i=0 q i W l d (F q ) , A d (F/F q ) = W 0 d (F q ) + +∞ l=1 q l W l d (F q ) , A d (F/F q ) ≤ W 0 d (F q ) + +∞ l=1 q l+ρ(l) 1 + O(q -1/2 ) , A d (F/F q ) ≤ W 0 d (F q ) + q d +∞ l=1 q -l 2 q -(g-d)l 1 + O(q -1/2 ) .
But when q tends to infinity

+∞ l=1 q -l 2 ∼ q -1 hence A d (F/F q ) ≤ W 0 d (F q ) + O(q d-1 ). On the other hand A d (F/F q ) ≥ |W 0 d (F q )|, then A d (F/F q ) = W 0 d (F q ) + O(q d-1 ).
Proof of Theorem 4.1. Let us remark that h(F/F q ) = |Pic d (F q )| = q g -q g-1 trace (π) + O(q g-1 ). Then we deduce the result from Lemma 4.2 and Lemma 4.3.

4.2.

Case of a fixed finite field.

Introduction.

When, for a given finite ground field, the sequence of the genus of a sequence of algebraic function fields tends to infinity, there exist asymptotic formulae for different numerical invariants. In this section, we are interested by the asymptotic study with respect to the genus g of the number of effective divisors of certain degrees. Let (X k ) k be a sequence of smooth irreducible curves defined over the finite field F q . We denote by F/F q = (F k /F q ) k the corresponding sequence of algebraic function fields defined over F q . We denote by g k the genus of X k and we suppose that the sequence (g k ) k is growing to infinity. For any integer k, let d k be an integer. We denote by A d k ,k the number A d k (F k /F q ) of degree d k effective divisors of F k /F q and by h k its class number.

M. Tsfasman and S. Vladut give in [START_REF] Tsfasman | Asymptotic properties of zetafunctions[END_REF]Teorem 5.1], under some assumption on the behaviour of d k g k when k is growing to infinity, the following asymptotic estimate when the family F/F q = (F k /F q ) k is an asymptotically exact family: 4.2.2. General sequences. In this section, we consider general sequences of algebraic function fields namely which are not necessarly asymptotically exact. Then, we obtain a result in two parts which respectively follows from formulae (17) and (18) of Section 3. For each case, we choose the formula giving the best result.

(29) A d k ,k h k ∼ 1 q g k -d k q q -1 .
Theorem 4.5. Let (d k ) k be a sequence of integers such that

1 ≤ d k ≤ g k -1. Let us set d k = g k -φ(g k )
where φ is a function with integer value. If there exists an integer k 0 such that for any integer k, the function φ is such that

0 ≤ φ(g k ) ≤ 2 log q (g k ) + 1 then (30) 0 ≤ lim sup k→+∞ A d k ,k h k ≤ lim sup k→+∞ √ q 2( √ q -1) 2 q -φ(g k ) 2
, else, supposing that the following limit exists δ = lim k→+∞ d k

g k and satisfies 0 ≤ δ ≤ 1, we have

(31) lim sup k→+∞ A d k ,k h k 1 g k ≤ 1 q 1-δ .
Proof. Note that for the borderline case d k = g k -1, the estimate (17) is clearly better than the estimate (18). Now we suppose that d k < g k -1. The inequality (17) implies the inequality (30) and the inequality (18) implies the inequality (31). Indeed, first let us compare the two estimates (17) and (18). The estimate (17) is better than (18) if and only if

1 2q g k -d k -1 2 √ q -1 2 ≤ g k q g k -d k -1 √ q -1 2 namely, φ(g k ) ≤ 2 log q (g k ) + 1 + 2 log q (2).
Then if there exists an integer k 0 such that for any integer k ≥ k 0 , φ(g k ) ≤ 2 log q (g k ) + 1, we obtain the formula (30) else, if the limit δ = lim k→+∞ d k g k exists and satisfies 0 ≤ δ ≤ 1, we obtain the estimate (31).

Corollary 4.6. Let us set d k = g k -φ(g k ) where φ is a function with integer value. If for any integer k, the function φ is such that 0 ≤ φ(g k ) ≤ 2 log q (g k ) + 1 and if lim k→+∞ φ(g k ) = +∞, then we have

(32) lim k→+∞ A d k ,k h k = 0.
Proof. The result is a straightforward consequence of formula (30). √ q + 1 √ q . In the following we compare K 17 to K 18 and to K 19 .

Appendix

(1) Case d = g -1.

K 17 = 1 ( √ q -1) 2 , K 18 = g ( √ q -1) 2 , K 19 = (g + 1)(q + 1) (q -1) 2 .
We remark that in this case K 17 ≤ K 18 .

(a) For g ≤ 1 2 √ q + 1 √ q : from the previous results the following inequalities hold:

K 17 ≤ K 18 ≤ K 19 . (b) For g ≥ 1 2 √ q + 1 √ q : K 17 K 19 = ( √ q + 1) 2
(g + 1)(q + 1) .

But

(g + 1)(q + 1) -( √ q + 1) 2 = gq -2 √ q + g. The last right member is a quadratic polynomial in √ q which has a discriminant ≤ 0. The sign is constant and ≥ 0. We conclude that:

K 17 ≤ K 19 ≤ K 18 .
(2) Case d = g -2. In this case

K 17 = 1 2 √ q( √ q -1) 2 , K 18 = g q( √ q -1) 2 , K 19 = (g + 1)(q + 1) q(q -1) 2 . (a) For g ≤ 1 2 √ q + 1 √ q : K 17 K 18 = √ q 2g . (i) If 1 2 √ q ≤ g ≤ 1 2
√ q + 1 √ q , then the following inequalities hold:

K 17 ≤ K 18 ≤ K 19 . (ii) If g ≤ 1 2 √ q then K 17 K 19 = √ q( √ q + 1) 2 
2(g + 1)(q + 1) .

But as g ≤ 1

2

√ q, the following holds:

√ q( √ q + 1) 2 -2(g + 1)(q + 1) ≥ 2gq + 2q + 2g -(2gq + 2g + 2q + 2)
and √ q( √ q + 1) 2 -2(g + 1)(q + 1) ≥ 2.

Hence K 19 ≤ K 17 and

K 18 ≤ K 19 ≤ K 17 . (b) For g ≥ 1 2 √ q + 1 √ q : 2(g + 1)(q + 1) - √ q( √ q + 1) 2 ≥ √ q + 1 √ q (q + 1) + 2(q + 1) - √ q( √ q + 1) 2 = ( √ q + 1) 2 .
Then K 17 ≤ K 19 and K 17 ≤ K 19 ≤ K 18 .

(3) Case d ≤ g -3.

(a) The case q = 2 and d = g -3 (g ≥ 3) is the only case such that

√ q + 1 √ q > q g-d-1 2 
.

By a simple computation we obtain:

K 17 ≤ K 19 ≤ K 18 .
(b) For q = 2 or d < g -3 we have

K 17 K 19 = q g-d-1 2 
2g .

(i) If we have the following inequalities

1 2 √ q + 1 √ q ≤ g ≤ 1 2 q g-d-1 2 then K 19 ≤ K 18 ≤ K 17 . (ii) If g ≤ 1 2 √ q + 1 √ q ,
then K 18 ≤ K 17 , K 18 ≤ K 19 and

K 17 K 19 = q g-d-1 2 
( √ q + 1) 2 2(g + 1)(q + 1) .

But q g-d-1 2 ( √ q + 1) 2 -2(g + 1)(q + 1) ≥ q g-d 2 (q + 2 √ q + 1) -(q + 1 + 2 √ q)(q + 1) = (q + 2 √ q + 1) q g-d 2

-(q + 1) .

(A) If q = 2 and g -d ≥ 4 then q g-d 2

-(q + 1) ≥ q 2 -q -1 > 0.

(B) If q ≥ 3 (and g -d ≥ 3) then q g-d 2

-(q + 1) ≥ q 3 2 -(q + 1) > 0. In any cases K 19 ≤ K 17 . Hence

K 18 ≤ K 19 ≤ K 17 . (iii) If g ≥ 1 2 q g-d-1 2 
, then K 17 ≤ K 18 , K 19 ≤ K 18 and

K 17 K 19 = q g-d-1 2 
( √ q + 1) 2 2(g + 1)(q + 1) .

Let us set g = 1 2 q g-d-1 2

+ a

where a ≥ 0. Then the sign of K 17 -K 19 is the sign of 2(g -a)( √ q + 1) 2 -2(g + 1)(q + 1), namely the sign of 2g √ q -(q + 1) -a( √ q + 1) 2 .

Remark that 2g √ q -(q + 1) is ≥ 0. Hence:

(A) if a ≤ 2g √ q -(q + 1) (1) g and d < g -1 are fixed, q large enough, then Bound K 18 is the best of the three bounds: we are in cases (2) (a) (ii) or (3) (b) (ii);

( √ q + 1)
(2) g is fixed and d = g -1, for any q, Bound K 17 is the best one: we are in case (1);

(3) q and d are fixed, g large enough, then Bound K 19 is the best one: we are in the case (3) (b) (i);

(4) q fixed, g and d large: (i) if α > 2 log(q) then we are in the case (3) (b) (i), hence the best bound is (19).

(ii) if α ≤ 2 log(q) then we are in the case (3) (b) (iii) (B), hence the best bound is (17).

The following example is an example of the case (3) (b) (iii) (A). Set q = 4, g = 520 and d = 509. Hence (g -d -1)/2) = 5. Then = 512 < g.

We can compute a = g -1 2 q g-d-1 2 = 8.

Now 2g

√ q -(q + 1)

( √ q + 1) 2 = 2075 9 .
Hence a ≤ 2g √ q -(q + 1)

( √ q + 1) 2 .
Here the best bound is K 19 .

Then we can try m 2 = 3 , m 3 = 1 2 = 2 , m 3 = 0 and m 4 = 1 .

 233122341 and m 4 = 0. or m 2 = 1, m 3 = 1 and m 4 = 1 or m The two first solutions give the maximum 8 for the product

Remark 4 . 4 .

 44 The assumption done in[START_REF] Tsfasman | Asymptotic properties of zetafunctions[END_REF] Teorem 5.1] is made precise in[START_REF] Tsfasman | Asymptotic properties of zetafunctions[END_REF] Lemma 5.1]. It turns out that it is verified if there is an > 0 and an integer k 0 ≥ 1 such that for all k ≥ k 0 the inequalityd k g k ≥ 2λ +holds, where λ is the unique root of the equationH 1+ 1 √ q (x) = 0 on [0, 1], H y (x)being the entropy function defined by H y (x) = x log y (y -1) -x log y (x) -(1 -x) log y (1 -x).

  (a) d = g -c where c is a constant, then Bound K 17 is the best one; for c = 1 we are in the case (1), for c = 2 we are in the case (2) (b) and for c < 2, we are in the case (3) (a) or in the case (3) (b) (iii) (B); (b) d = g(1 -) where is a constant, then Bound K 19 is the best one; we are in the case (3) (b) (i); (c) d = g -α log(g) -1, then g -d -

2 .

 2 Proof. Inequality (17) was obtained in the proof of[START_REF] Ballet | On the existence of dimension zero divisors in algebraic function fields defined over F q[END_REF] Theorem 3.3]. We prove here inequalities (18) and (19). Note that Inequality (18) was also proved by I. Cascudo, R. Cramer, C.Xing in[START_REF] Cascudo | Torsion limits and Riemann-Roch Systems for Function Fields and Applications[END_REF] Proposition 3.4]. Let us denote by

  A A.1. Comparison of bounds. Let us denote by K 17 , K 18 and K 19 the respective second members of the inequalities (17), (18) and (19). In Remark 3.10 we proved that K 18 ≤ K 19 if and only if g ≤ 1 2

  2 then K 19 ≤ K 17 and K 19 ≤ K 17 ≤ K 18 . then K 19 ≥ K 17 and K 17 ≤ K 19 ≤ K 18 . A.2. Examples. Let us give some examples where we compare bounds K 17 , K 18 , and K 19 :

	(B) else if	a ≥	2g	√ q -(q + 1) ( √ q + 1) 2