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The solution of Liouville’s equation (1850, 1853) and its impact1 

 

E.M. Bogatov, S. Kichenassamy 

Е.М. Богатов, С. Кишнассами 

 

Liouville’s 1853 paper [2], in which he derived in closed form the general local solution of equation 

𝑢𝑧𝑧̅ = 𝑒𝑢, is one of the few papers from the 19th century that 21st century mathematicians routinely 

quote as motivation for their work. We try and understand the reasons for the enduring importance of 

this paper. Because it does not distinguish the real and complex domains, Liouville’s paper 

simultaneously opened the way to a representation of the general solution of two equations, namely 

the elliptic equation 

 

                                             Δ𝑢 = 𝐾𝑒𝑎𝑢                                        (Le) 

and the hyperbolic equation 

                                                        𝑢𝑥𝑦 = 𝐾𝑒𝑎𝑢,                                                   (Lh) 

 

where 𝐾 and 𝑎 are nonzero real constants. Generalizations of (Le) - (Lh) are too numerous to be 

mentioned here. 

Liouville announced his result in his 1850 commentary on Monge’s Applications de l’analyse 

à la géométrie [3]. His original proof is lost: he only published a simpler one [2]. He obtained (Le) 

from the expression for the Gaussian curvature of a surface in isothermal coordinates (see Lützen 

[4]), and obtained his general solution of (Lh) depending on two functions of one variable; thus, for 

𝑎 = 𝐾 = 1, 

𝑢(𝑥, 𝑦) = ln
2𝑓′(𝑥)𝑔′(𝑦)

(𝑓(𝑥)+𝑔(𝑦))
2. 

The same formula may be interpreted as giving a real solution of (Le) depending on one analytic 

function. The regularity and determination of the arbitrary functions was clarified rather recently (see 

[5, §10.6] and [6]).  

Darboux [7, p.170] called (Lh) Liouville’s equation, and Picard [8] gave the same name to 

(Le). Picard’s line of thought led to the boundary blow-up problem for (Le), in relation to conformal 

mapping [9]-[11]. Darboux inserted (Lh) in a general theory of the solution of second-order PDEs in 

two variables. Nonetheless, Liouville’s solution was not forgotten. Thus, Bianchi obtained from 

Liouville’s solution a majorant series for the solution for what we now call the sine-Gordon equation 

[12, cap. XX §298, p. 214-217; cap. XXIV, §370, p. 386]. These lines of thought were apparently cut 

short by WWI, to be taken up again only after the birth of the theory of solitons.  

Equation (Le), and its counterpart in three dimensions also arose as models for isothermal gas 

spheres in astrophysics [13, p. 131-132], thermo-ionic emission [14, p. 50], as a special model of 

incompressible fluid flow as well as other applications [6, 15, 16]. Liouville’s exact solution attracted 

considerable interest in the late 70s as an exactly solvable model of field theory [17, 18]. The 

contemporary emergence of the theory of solitons [19, Ch. 4] triggered a renewed interest in Bäcklund 
 

1 This work is a continuation of research carried out in [1]. 
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transformations, particularly the transformation relating (Lh) to the wave equation 𝑣𝑥𝑦 = 0 [20]. 

Liouville’s solution was also applied to the motion of singularities [21, 22], and was treated by inverse 

scattering [23]. The modern relevance of Liouville’s formula seems to be due to two facts: it is not 

adequately interpreted in terms of the Cauchy and Dirichlet problems; and it admits of a 

generalization to large classes of non-integrable equations in any number of space dimensions. On 

the one hand, the Cauchy problem for (Lh) gives a solution depending on three functions (two Cauchy 

data, and the equation of the curve on which they are prescribed) whereas Liouville’s solution only 

contains two, that are essentially the two singularity data that determine a solution near blow-up [24], 

and this observation generalizes to non-integrable problems in any dimension; in fact, it was the 

starting point of the method of Fuchsian Reduction [5]. On the other hand, for (Le), the Dirichlet 

problem requires two data (the domain and the boundary condition), whereas the boundary blow-up 

problem requires only one [25]-[26].  

 

It is instructive to give special attention to the reception of Liouville equations in Russia and 

the CCCP, that seems to show at work mechanisms that may be of general significance 

F. Minding, who worked since 1844 at the Dorpat University in Russia, made a great 

contribution to the development of the geometry of surfaces [27]. Minding was aware of all the 

achievements in this area but apparently, he did not know about Liouville equation, possibly because  

he was not interested in isothermal coordinates on surfaces. In his works, as well as in the articles of 

his Russian student K.M. Peterson (the founder of the Moscow geometric school), no references to 

the equation in either form could be found. Moscow mathematicians of that time apparently dispensed 

with the use of equation (Le) or (Lh) in their research. Even now, one could argue that special 

coordinates detract from the identification of intrinsic quantities such as are given by tensor calculus. 

By contrast, representatives of the St. Petersburg Mathematical School related to the line of 

P.L. Chebyshev, mentioned Liouville's results. In particular, equation (Le) was present in D. Grave’s 

article in 1927, published in the prestigious collection « In memoriam N. I. Lobatschevskii » in Kazan 

in 1927 [28, p. 26]. But it this paper the above equation was not associated with Liouville’s name. It 

is not known how long it would have taken for this association to appear in Russian sources if the 

forced emigration of S.B. Bergman to Tomsk from Nazi Germany had not happened. Bergman 

organized a scientific seminar at the University of Tomsk on the theory of surfaces using the methods 

of the theory of analytic functions, which met from 1934 to 1936 [29, p. 50-51]. Apparently, it was 

under the influence of Bergman that B.A. Fuchs, who was one of the participants of this seminar, 

began to use the name “Liouville's equation” in his works using the equivalent of equation (Lh) 
1

𝑇

𝜕 log 𝑇

𝜕𝑢𝜕𝑣
= 𝐾  (Llog) 

to describe a constant curvature surface’s metric in 1937 [30, p. 584]. However, after 1938, Fuchs 

stopped referring to Liouville in connection with the use of equation (Llog). 

 It so happens that in spite of the interest of Soviet mathematicians to equations of the form 

(Llog) or (Le), associating them with Liouville name in the mass consciousness of Soviet scientists 

was lost before the end of the 1970s. As a result, equation (Le), obtained during the creating of the 

stationary theory of thermal explosion and based on the Arrhenius law, (D.I. Frank-Kamenetskii, 

1939 [31, p. 740]) was also not accompanied by the references to Liouville.  

 It is important to note that the Dirichlet problem formed by adding to equation (Le), with 𝐾 <
0, the condition u = 0 on a surface  of the form 𝑟̅ = 𝜆𝑟0̅, (𝑚𝑎𝑥|𝑟0̅| = 1; 𝑟̅ is radius-vector of the 

point of the surface) was subjected to group-theoretic analysis by I.M. Gelfand in his famous article 

[32] (1959). He showed that for 𝐾 =  −2 and for symmetric domains , the solution to the Dirichlet 

problem for the equation (Le) has bifurcation points when λ reaches the threshold value 𝜆0, which 

depends on the form of  [32, p. 140-142]. 

 In addition, the integral equation obtained from (Le) by using Green’s function for the Laplace 

equation turned out to be a model example of an equation of which the solutions do not belong to the 

space Lp. That is, the Liouville equation could well have been an additional stimulus for the creation 
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of Orlicz spaces theory and its development by M.A. Krasnoselskii (for the history of this issue see 

[33]). Amazingly, there were no references to Liouville here either! 

The situation changed only after the publication of the textbook "Modern Geometry" (1979) 

[34]. In Chapter 2, §13 (Conformal form of metrics) of this textbook, finally, equations (Le) and (Llog) 

were given with an indication of Liouville. At about the same time, the Liouville equation began to 

appear in the USSR in the works of physicists. Thus, V.A. Andreev constructed an N-soliton solution 

to equation (Lh), describing one moving and N-1 stationary solitons [23]. Russian and Belarusian 

scientists, in relation to the two-dimensional field theory, have studied singular and regular solutions 

of (Lh), and studied generalizations of (Le) and (Lh) etc. [21]-[22]. Soviet scientist A.M. Polyakov, 

known for a number of fundamental contributions to quantum field theory, found a new use for the 

equation (Le) in high energy physics, in the quantum geometry of bosonic strings [35]: indeed, the 

equation of motion associated with the so-called “Liouville action” 

𝑆[𝜑] = 𝐶 ∫ (
1

2
[(

𝜕𝜑

𝜕𝑥
)

2

+ (
𝜕𝜑

𝜕𝑦
)

2

] + 𝜇2𝑒𝜑) 𝑑𝑥𝑑𝑦
Ω

; 𝐶 = 𝑐𝑜𝑛𝑠𝑡. 

reduces to the equation (Le).  

 

Thus, this study has shown that Liouville’s paper has not been fully superseded by any of the later 

developments originating from it for four reasons:  

1. Mathematical traditions have focused on only some aspects of it, playing an essential role in 

the spread (or inhibition) of mathematical ideas. The study of the Russian situation revealed 

the existence of several mathematical communities that received Liouville’s paper differently. 

2. His paper was one of the motivations of several modern theories such as nonlinear partial 

differential equations and functional analysis; the theory of analytical functions and conformal 

mapping; the theory of automorphic functions; the theory of Orlicz spaces; group-theoretical 

analysis; the theory of positive operators; the theory of solitons. At the same time, no single 

later theory can reproduce all of the known results on (Le) - (Lh). 

Furthermore, because Liouville’s solution has robust features that are present in non-integrable 

systems in any dimension, without symmetry, Liouville’s paper stimulated new theories such as 

Fuchsian Reduction. 
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