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Application d'un observateur de fonctionnelle linéaire pour la mesure thermique d'une plaque chauffante

RESUME -La température est un problème crucial dans les modules d'électronique de puissance, or elle n'est pas directement mesurable en tout point de ce module. On propose ici l'application d'un observateur permettant de reconstruire cette grandeur entièrement à partir des mesures fournies par des capteurs thermiques placés en quelques points précis. L'utilisation de cet observateur permet de réduire la dimension du problème considéré.

ABSTRACT -The temperature is an extremely important problem in the power electronics modules, though it is not directly measurable at any point in the module. Here we propose an application of an observer that allows us to remodel this whole physical variable from the measures provided from thermal sensors positioned at a few precise points. The use of this observer permit to reduce the size of the considered problem. MOTS-CLES -Mesure et modèle thermique, observateur de fonctionnelle linéaire.

Introduction

Des études [START_REF] Ciappa | Selected failure mechanisms of modern power modules[END_REF], [START_REF] Ciappa | Some reliability aspects of IGBT modules for high-power applications[END_REF] ont montré que la température avait un impact sur la durée de vie des modules d'électronique de puissance, du fait de l'augmentation des contraintes locales, qu'elles soient purement thermiques ou thermo-mécaniques.

Cependant, la mesure de la température n'est pas possible en tout point. L'objectif consiste donc à reconstruire cette grandeur localement, à partir des données mesurées par des capteurs discrets.

Dans cet article, nous nous intéressons à un système thermique simple 2D, qui sera modélisé en utilisant l'analogie thermique-électrique. Le formalise d'état nous permettra de représenter les équations d'évolution thermique du système. L'utilisation d'un observateur de fonctionnelle linéaire sur ce modèle d'état, nous fournit alors une reconstruction de la température aux points désirés.

Modèle thermique 2D

Dans cet article, nous cherchons à simuler le comportement thermique d'une plaque de surface 30 × 30 mm, qui représente une coupe d'un module d'électronique de puissance.

Figure 1 : Discrétisation surfacique d'une plaque chauffante

Le comportement évolutif thermique de la plaque présentée par la figure 1 est donné en utilisant l'équation de la chaleur (1), [START_REF] Bianchi | Transferts thermiques[END_REF], [START_REF] Pitts | Schaum's Outline of Theory and Problems of Heat Transfer[END_REF], où 𝑇 est la température locale, 𝑡 le temps, 𝜌 la masse volumique, 𝐶 𝑝 la capacité thermique massique, 𝜆 la conductivité thermique, et 𝑠 la chaleur interne produite par le système.

𝜌 𝐶 𝑝 𝜕𝑇(𝑥, 𝑦, 𝑡) 𝜕𝑡 = -𝜆 ( 𝜕 2 𝑇 𝜕𝑥 2 + 𝜕 2 𝑇 𝜕𝑦 2 ) + 𝑠 (1) 
L'équation de la chaleur reflète des phénomènes de transferts linéaires comme le transfert conductif et le transfert convectif dus à la présence de gradients de température, [START_REF] Roye | Définitions des règles de modélisation thermique des machines électriques tournantes[END_REF], [START_REF] Chillet | Identification du modèle thermique d'une machine à induction de puissance moyenne[END_REF].

Une discrétisation par différences finies, de cette équation montre que le comportement thermique est analogue à celui d'un circuit électrique composé de résistances représentant la conduction et la convection thermiques, de condensateurs représentant le stockage de la chaleur, de sources de tension représentant des sources de température et de sources de courant représentant des sources de chaleur, [START_REF] Trajin | Electro-thermal model of an integrated buck converter[END_REF]. Le transfert de chaleur conductif (à l'intérieur de la plaque) est caractérisé par une résistance de conduction R cd = 𝑒 𝜆𝑆 , et celui à convection (à l'extérieur de la plaque) est caractérisé par

R cv = 1 ℎ𝑆
où 𝑒 est l'épaisseur de la plaque, S la surface d'échange, et h le coefficient de convection, [START_REF] Bar-Cohen | Advances in thermal modeling of electronic components and systems[END_REF].

De façon générale, il existe une analogie thermique-électrique, [START_REF] Lasance | Thermal Characterization of Electronic Devices with Boundary Condition Independent Compact Models[END_REF]. Cette analogie nous permet d'obtenir un modèle électrique équivalent au modèle thermique issu de l'équation de la chaleur, afin de décrire le comportement de la plaque en utilisant les outils classiques d'étude des circuits.

Représentation d'état de la plaque chauffante

Á partir de la discrétisation par différences finies de la plaque chauffante, le théorème de Millman [START_REF] Palermo | Précis d'électricité l'essentiel du cours, exercices corrigés[END_REF] permet, pour chaque élément de surface d'exprimer la température T en son centre en fonction des températures de ses voisins et des impédances thermiques Z qui caractérisent les différents modes de transfert de chaleur entre les éléments connectés. À partir de ce modèle thermique exprimé dans le domaine électrique, on retrouve les équations différentielles associées à la température de chaque surface élémentaire. On obtient ainsi une réécriture dans le domaine électrique de l'équation de la chaleur discrétisée sous la forme de l'équation matricielle [START_REF] Ciappa | Some reliability aspects of IGBT modules for high-power applications[END_REF].

{ C th T ̇(t) = AT(t) + Bu(t) y(t) = CT(t) (2) 
où T est le vecteur des températures T i,j , C th la matrice diagonale des capacités thermiques, A la matrice des résistances thermiques, y le vecteur des mesures. C caractérise donc la position du ou des capteurs. u contient les conditions limites et la puissance thermique injectée P th et B traduit leur influence sur la plaque.

Ce modèle d'état fournit alors la simulation des températures locales où seules certaines températures T i,j seraient accessibles à la mesure. Il convient donc de déterminer un observateur de fonctionnelle linéaire pour reconstruire la température locale qui ne pourrait pas être mesurée.

Observateur de fonctionnelle linéaire

On se place dans le cadre d'un système dont le modèle, est décrit par l'équation d'état : Définissons q comme le plus petit entier tel que, rang Σ q = rang [ Σ q LA q ], où : Σ q = (𝐶 𝑇 𝐿 𝑇 (𝐶𝐴) 𝑇 … (𝐶𝐴 𝑞-1 ) 𝑇 (𝐿𝐴 𝑞-1 ) 𝑇 (𝐶𝐴 𝑞 ) 𝑇 ) 𝑇 (5) D'après [START_REF] Roye | Définitions des règles de modélisation thermique des machines électriques tournantes[END_REF], il existe donc une combinaison linéaire, Γ 𝑖 , pour i = 0, . . . , q, et λ i , pour i = 0, . . . , q -1,

{ ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) (3 
tel que : LA q = ∑ Γ i q i=0 CA i + ∑ Λ i LA i q-1 i=0
Il a été montré dans [START_REF] Rotella | Minimal single linear functional observers for linear systems[END_REF], [START_REF] Kailath | Linear systems[END_REF] que cela permettrait d'obtenir la structure (4), avec,

F = ( 0 … 0 Λ 0 1 ⋱ 0 Λ 1 ⋮ ⋱ 0 ⋮ 0 0 1 Λ q-1 ) , G = ( Φ 0 Φ 1 ⋮ Φ q-1 ) , H = ( Γ 0 + Λ 0 Γ q Γ 1 + Λ 1 Γ q ⋮ Γ q-1 + Λ q-1 Γ q) , P = [0 0 … 0 1], et V = Γ q où, pour 𝑖 = 0, … , 𝑞 -2, Φ 𝑖 = [LA q-1-i -∑ Γ 𝑗 q j=i+1 𝐶𝐴 j-i-1 -∑ Λ j 𝐿𝐴 j-i-1 q-1 j=i+1 ]𝐵 et, Φ 𝑞-1 = [L -Γ 𝑞 ]𝐵
Lorsque la matrice F est une matrice de Hurwitz, on obtient un observateur asymptotique de la fonctionnelle linéaire Lx(t). Dans le cas contraire ou si les valeurs propres de la matrice ne conviennent pas, il convient d'augmenter l'ordre q et de réitérer la réalisation à un ordre plus élevé, [START_REF] Rotella | Some new standpoints in the design of asymptotic functional linear observers[END_REF], [START_REF] Trinh | Design of scalar functional observers of order less than (𝜈 -1)[END_REF]. 

Exemple appliqué sur la plaque chauffante

f 0 -d 0 f 0 0 g f 0 -d 0 f 0 -d 0 ) , (6) 
C = (0 0 0 1 0 0 0 0 0), L = (0 0 0 0 0 0 0 1 0)

Où, a = -7.6 × 10 -3 , b = 1.3 × 10 -3 , c = -6.4 × 10 -3 , d = -5.1 × 10 -3 , f = 2.5 × 10 -3 et g = 0.1276

Les étapes suivantes illustrent la procédure de conception d'un observateur minimal :

(1) Test pour l'observateur minimum. Comme, CA = (0.0013 0 0 -0.0064 0.0013 0 0.0013 0 0) LA = (0 0 0 0 0.0013 0 0.0013 -0.0064 0.0013) Nous obtenons le rang(Σ 1 ) = 3 et le rang ( Σ 1 𝐿𝐴 ) = 4, donc, l'observateur minimum de premier ordre n'est pas réalisable.

(2) Test pour l'observateur minimal, q=2. Comme, C𝐴 2 = 10 -3 (-0.1781 0.0325 0 0.4528 -0.1461 0.0163 -0.1781 0.0325 0) L𝐴 2 = 10 -3 (0 0.0163 0 0.0325 -0.1461 0.0325 -0.1781 0.4528 -0.1781) Nous obtenons le rang(Σ 2 ) = 5 et le rang ( Σ 2 LA 2 ) = 6, donc, l'observateur minimum de premier ordre n'est pas réalisable.

(3) Test pour l'observateur minimal, q = 3. Nous obtenons le rang(Σ 3 ) = 7 et le rang ( Σ 3 LA 3 ) = 7. Comme, LA 3 ) , P = (0 0 1), V = 1

Compte tenu des ordres des grandeurs des coefficients des matrices G et H, on pourra approximer leurs valeurs par :

G = ( 0 0 -2.7879 × 10 -6 1.6453 × 10 -4 0 0 
) , H = ( 0 0 0

) , P = (0 0 1), V = 1

La conception de cet observateur est terminée et la procédure peut être arrêtée. Néanmoins les pôles sont fixes. Si les pôles (-0.0051, -0.0064, -0.0089) ne sont pas acceptables, nous devons augmenter l'ordre de l'observateur.

La figure [START_REF] Roye | Définitions des règles de modélisation thermique des machines électriques tournantes[END_REF], montre le résultat de simulation du l'observateur conçu, et le système initial. On remarque que les conditions initiales sont nulles pour la figure (5-a). En effet, on supposera que le système est à l'équilibre thermique avec le milieu ambiant et que P th = 0, pour t < 0. Ainsi, seule une étude de la variation de température du système autour du point d'équilibre est nécessaire.

Le problème thermique considéré étant symétrique, on devrait avoir G = 0, et une sortie de l'observateur égale à la température simulée.

Afin de tester la robustesse de l'observateur, on a également réalisé une simulation avec des conditions initiales non nulles, qui en pratique seront les conditions initiales précédent chaque nouveau changement de consigne comme le montre la figure (5-b).

On vérifie à nouveau la convergence asymptotique entre la température simulée v, et celle estimée v ̂.

Nous avons effectué également une modélisation du système avec une discrétisation des différences finies plus fine traduit par un modèle d'état d'ordre 121. On choisit les positions du capteur et du point à observer de manière à avoir V ≠ 1. On obtient un observateur de fonctionnelle linéaire d'ordre réduit q = 10.

On vérifie toujours la convergence asymptotique entre la température simulée v, et celle estimée v ̂ suivant la même démarche détaillée ci-dessus. La figure [START_REF] Chillet | Identification du modèle thermique d'une machine à induction de puissance moyenne[END_REF], montre le résultat de simulation. 

Conclusion

Nous avons présenté la modélisation thermique d'une plaque chauffante, à travers la discrétisation par différences finies de l'équation de la chaleur, en arrivant à une représentation d'état du système avec une analogie thermique-électrique.

À partir de cette expression d'état, nous avons utilisé une procédure constructive d'un observateur de fonctionnelle linéaire afin d'estimer la température dans des points désirés, ainsi que l'application de ce type d'observateur qui montre une réduction pertinente de l'ordre de l'observateur. La position des capteurs, et les points qu'on cherche à estimer traduit par la matrice L influencent la dimension de l'observateur.

Nous avons traité ici un problème physique thermique 2D. Dans le cadre de l'observation de la température d'un module complet d'électronique de puissance, il sera nécessaire d'établir des modèles thermiques 3D. De plus, ces modèles seront par nature hétérogènes. Ainsi, les représentations d'états obtenues seront potentiellement de très grande dimension. Malgré la réduction de dimension engendrée par l'utilisation d'un observateur de fonctionnelle linéaire, il est probable que l'observateur soit toujours de trop grande dimension pour être implémentable sur calculateur embarqué temps-réel. Dans ce cas, nous pourrions nous intéresser à la construction d'observateurs à partir de transferts identifiés expérimentalement, ce qui permettrait d'en réduire encore l'ordre.
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  En effet, chaque surface élémentaire est donc représentée par un réseau d'impédances traduisant la conduction entre le centre et les bords de cette surface. Le stockage d'énergie thermique dans une surface élémentaire est modélisé par une capacité thermique 𝐶 𝑡ℎ connectée entre le centre et la masse (référence thermique), et donnée par : C th = ρ C p V. Par ailleurs, on injecte une puissance thermique P th au milieu de la plaque, pour engendrer le fonctionnement dynamique du système thermique. La modélisation complète est ensuite réalisée en juxtaposant les modèles des différentes surfaces élémentaires liées physiquement. La figure (2) présente le modèle thermique associé dans le domaine électrique.

Figure 2 :

 2 Figure 2 : Interconnexion des modèles des différents surfaces élémentaires. [11]

Figure 3 :

 3 Figure 3 : Principe d'un estimateur Afin de concevoir un observateur rapide et implémentable sur un calculateur embarqué, nous devons rechercher l'ordre minimum d'un observateur de fonctionnelle linéaire. En effet, l'ordre de l'observateur dépend de plusieurs facteurs tels que la distance entre les capteurs et le lieu où la température est estimée.

  Pour la clarté de l'exposé, nous choisissons une discrétisation des différences finies en trois blocs, comme le montre la figure (4), qui est exprimé par un modèle d'état d'ordre 9, où Cap est le capteur traduit par la matrice C, S la puissance thermique injectée au milieu de la plaque, O le point qu'on cherche à estimer traduit par la matrice L.

Figure 4 :

 4 Figure 4 : Position des différents capteurs

Σ 3 - 1 =)( 4 )

 314 ( 2.8672 × 10 -7 -2.8672 × 10 -7 1.3387 × 10 -4 -1.3387 × 10 -4 0.0203 1 )On en déduit que, Λ 0 = -2.8672 × 10 -7 , Λ 1 = -1.3387 × 10 -4 , Λ 2 = -0.0203.Les valeurs propres de F sont : (-0.0051 -0.0064 -0.0089), l'observateur d'ordre q = 3, est réalisable. Conception de l'observateur minimal d'ordre q = 3, d'après, LA3 Σ 3 -1 , on a : Γ 0 = 2.8672 × 10 -7 , Γ 1 = 1.3387 × 10 -4 , Γ 2 = 0.0203, Γ 3 = 1 Nous obtenons, G = ( 5.7271 × 10 -19 4.3215 × 10 -18 -2.7879 × 10 -6 1.6453 × 10 -

Figure 5 :

 5 Figure 5 : Résultat de simulation pour la mise en oeuvre d'observateur minimal pour (6)

Figure 6 :

 6 Figure 6 : Résultat de simulation pour la mise en oeuvre d'observateur minimal d'ordre 𝐪 = 𝟏𝟎, pour un modèle d'état d'ordre 121, avec conditions initiales nulles.

4.2 Implémentation sur calculateur embarqué

  Le but de l'observateur de fonctionnelle linéaire d'ordre minimal est de pouvoir être implémenter sur un calculateur numérique embarqué. Pour cela, il est nécessaire, pour une application temps-réel, de minimiser le nombre d'opérations élémentaires effectuées par le calculateur à chaque nouvelle donnée (échantillon) acquise pour estimer la température.Compte tenu de l'équation (4), il vient la dimension des matrices 𝐹(𝑞 × 𝑞), 𝐺(𝑞 × 𝑟), 𝐻(𝑞 × 1), 𝑃(1 × 𝑞) et 𝑉(1 × 1). Il est donc possible d'évaluer aisément un majorant du nombre de multiplications et d'additions nécessaires à la reconstruction de la sortie estimée v ̂ à chaque échantillon. On montre alors qu'un majorant du nombre de multiplications est proportionnel à 𝑞 2 et qu'un majorant du nombre d'additions est proportionnel à 𝑞. On comprend alors la nécessité de minimiser la dimension de l'observateur.Dans le cadre de l'observation d'un problème thermique, les constantes de temps mises en jeu par le système sont souvent « lente » (plusieurs centaines de seconde dans notre exemple). Un calculateur embarqué ayant une fréquence d'échantillonnage adaptée aux constantes de temps du système et une horloge de calcul « rapide » (typiquement quelques dizaines de kilo Hertz) parviendra sans peine à reconstruire la température estimée pour chaque échantillon temporel.