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Abstract—Datacenter networks routinely support the data
transfers of distributed computing frameworks in the form
of coflows, i.e., sets of concurrent flows related to a common
task. The vast majority of the literature has focused on the
problem of scheduling coflows for completion time minimiza-
tion, i.e., to maximize the average rate at which coflows are
dispatched in the network fabric. Modern applications, though,
may generate coflows dedicated to online services and mission-
critical computing tasks which have to comply with specific
completion deadlines. In this paper, we introduce DCoflow, a
lightweight deadline-aware scheduler for time-critical coflows in
datacenter networks. The algorithm combines an online joint
admission control and scheduling logic and returns a σ-order
schedule which maximizes the number of coflows that attain
their deadlines. Extensive numerical results demonstrate that
the proposed solution outperforms existing ones.

Index Terms—Time-sensitive coflow scheduling, coflow admis-
sion control, σ-order, deadline.

I. INTRODUCTION

Modern traffic engineering in datacenter networks is based
on the notion of coflow originally defined in [1]. The interest
for this traffic abstraction has originally been motivated by the
need to capture the structure of the data exchanges occurring
in distributed computing frameworks such as MapReduce or
Spark [2, 3]. Such software frameworks rely on the so called
dataflow computing model for large-scale data processing, i.e.,
a distributed computing paradigm, where each intermediate
computation stage is distributed over a set of nodes and
its output is transferred to nodes hosting the next stage. In
between two computation stages, such dataflows are producing
a set of network flows traversing the datacenter fabric and are
abstracted as a coflow. A popular example of such data transfer
is the shuffle phase of Hadoop MapReduce [2].

The customary performance metric for the data transfer
phase is the makespan or the weighted coflow completion time
(CCT). Minimizing the average CCT is an appropriate goal in
order to increase the number of computing jobs dispatched per
hour in a datacenter. The weighted CCT minimization has thus
been addressed in several works, e.g., [1, 4–6]. A decade’s
research on the problem has shed light on its complexity
and several algorithmic solutions have been devised. The
problem was proven NP-hard and inapproximable below a
factor of 2 by reduction to the job scheduling problem on
multiple correlated machines. Near-optimal algorithms with

4-approximation performance bounds have been proposed in
the literature [5–7]. However, the context changes radically in
the case of time-sensitive jobs, where the data transfer phase
may be subject to strict coflow deadlines.

Here, coflow scheduling is typically combined with ad-
mission control in order to reduce the number of violations,
i.e., the number of coflows to complete after their deadlines.
The resulting problem is the coflow deadline satisfaction
(CDS) problem introduced in [8]. Each coflow is subject
to a completion deadline and the target is to operate joint
coflow admission control and scheduling in such a way to
maximize the number of admitted coflows which respect
their deadlines. This problem is NP-hard as well and it is
proved inapproximable within any constant factor from the
optimum [8].

Even though the problem has been identified quite early in
the literature [9], with a few exceptions, the vast majority of
works on coflow scheduling have not dealt with the problem of
time-sensitive coflows. On the other hand, as confirmed later
in our performance analysis, even near-optimal algorithms for
CCT minimization may fail to respect the coflow deadline.
In reality, the notion of time-sensitive coflows has become
pervasive in the way how modern datacenters operate as
distributed networks. In fact, not only computing frameworks
are often tasked with time-sensitive jobs: modern web and
mobile applications are implemented using microservice ar-
chitectures, so that the users requests issued to an application
may activate hundreds or thousands of services from as many
servers to retrieve the users data. The last incoming bit of
data, i.e., the CCT of this batch of flows, determines the lag
to the service response, and large delays degrade the quality
of experience.

In this paper, we address the problem of maximizing the
Coflow Acceptance Rate (CAR), in which each coflow is
subject to a completion time deadline. In principle, one can
solve this problem by formulating a suitable Mixed Integer
Linear Program (MILP). However, in datacenters with tens
of thousands of coflows [4], techniques based on MILPs or
their relaxations may be not viable. For designing scalable
algorithms, the main idea appearing in many research works
is to schedule coflows using a priority order of coflows. Once
an ordering, denoted as σ, is determined, it is enough to adopt
a work-conserving transmission policy. We focus on σ-order



schedulers since they offer a key implementation advantage:
at the level of rate control, any work conserving preemptive
dynamic rate allocation is allowed as long as it is compatible
with the input coflow priority (the maximal performance loss
within said rate allocation policies is bounded by a factor
of 2 [6]). For instance, using fixed coflow priorities under
DiffServ satisfies the definition of a σ-order scheduler. On the
other hand, in order to avoid per-flow rate control, commercial
switches have built-in priority queues and per-flow tagging can
be used to prioritize active coflows. In principle, this permits
to perform a greedy rate allocation which is compatible with
a target σ-order. The exact mapping from a coflow σ-order
to the switch priority queuing mechanism (and the inevitable
limitations of legacy hardware therein) while an interesting
subject, is out of the scope of the present paper.

Contributions. This paper proposes a lightweight method to
perform coflow scheduling under deadlines. The proposed
solution provably outperforms existing ones in the literature
and does not rely on the solution of a linear program.
In particular, we propose first a baseline offline admission
control policy which is combined with a scheduler drawn
in the class of σ-order coflow schedulers [6]. The output
of the algorithm is an order of priority restricted to the set
of admitted coflows. The algorithm is hence extended to
perform joint admission control and scheduling in the online
scenario, when coflows are generated at runtime at unknown
release times. Through extensive numerical experiments on
a wide variety of scenarios, we show that our algorithm
systematically outperforms the ones currently available in the
literature. These experiments are performed on both offline
and online setting using both synthetic traces and real traces
obtained from the Facebook data [9]. The main observation is
that, under higher workloads (i.e., when the acceptance ratio
is lower), our algorithm outperforms significantly the existing
ones. Thus, it proves robust to workload variations as well to
the type of data set used to generate the coflows.

The rest of the paper is organized as follows. Sec. II de-
scribes the general problem tackled in the paper and the coflow
ordering models, whereas Sec. III describes the proposed
algorithms. Numerical results are then provided in Sec. IV. In
Sec. V, we describe the literature on deadline-aware coflow
scheduling. Concluding remarks and future research directions
are given in Sec. VI.

II. PROBLEM STATEMENT AND THEORETICAL ANALYSIS

In this section, we present the system model and formulate
the acceptance rate maximization problem for a given input
set of coflows. Table I summarizes the main notations used
throughout the paper. The datacenter network (or datacenter
fabric) is represented as a Big-Switch model [9], a non-
blocking switch whose ingress (egress) port ` has capacity
B` equal to the corresponding bandwidth inbound (outbound)
capacity to connect servers to the top-of-rack (ToR) switch.
Due to large bisection capacity and customary usage of load
balancing, in fact, traffic congestion is typically observed only
at the rack access ports leading to the ToR switches.

We consider a batch of N coflows C = {1, 2, ..., N}. A
coflow is a collection of flows, in which each flow represents
a shuffle connection over a pair of fabric ingress-egress ports.
Denote Fk as the set of flows of coflow k ∈ C and assume
that the volume vk,j of each flow j ∈ Fk is known. For the
sake of clarity, we suppose that all coflows arrive at the same
time, i.e., their release time is zero. Also, each coflow k is
subject to a completion deadline Tk. Similarly, we let F`,k be
the set of flows in Fk which uses port ` ∈ L either as ingress
port or as egress port. The total volume of data sent by coflow
k on port ` is then given by v̂`,k =

∑
j∈F`,k

vk,j . Let p`,k be
the transfer completion time in isolation, i.e., at full rate, of
coflow k at port `, which is given by p`,k = v̂`,k/B`. Let
rk,j(t) ∈ R+ be the rate allocated to flow j ∈ Fk at time t.
The CCT of coflow k, denoted as ck, thus writes

ck = max
j∈Fk

vk,j
r̄k,j

, where r̄k,j =
1

CTk,j

∫ CTk,j

0

rk,j(t) dt, (1)

and r̄k,j is the average rate of flow j through its lifetime
and CTk,j is its completion time. This quantity rules the dis-
patching time for the volume traversing the so-called coflow
bottleneck which determines the CCT of the said coflow.
Hence a coflow k satisfies the deadline when the last flow
of the coflow finishes before Tk, i.e., ck ≤ Tk.

Let zk ∈ {0, 1} be an indicator of whether coflow k finishes
before Tk. Maximizing the number of coflows meeting their
deadline corresponds to maximizing the sum of zk subject
to the constraint of bandwidth capacity at ingress and egress
ports. The CAR maximization problem can be formulated as

max
r

∑
k∈C

zk (P1)

s.t.
∑
k∈C

∑
j∈Fk,l

rk,j(t) ≤ B`, ∀` ∈ L,∀t ∈ T , (2)

∫ Tk

0

rk,j(t) dt ≥ vk,jzk, ∀j ∈ Fk,∀k ∈ C, (3)

Constraint (2) expresses that, at any instant t within the time
horizon T , the total rate that port ` assigns to flows cannot
exceed its capacity B`. Constraint (3) ensures that the data
of flows of each accepted coflow k should be completely
transmitted before the deadline Tk.

Lemma 1 (Proposition 1 in [8]). There exists a polynomial
time reduction of the CAR problem (P1) to the problem of
minimizing the number of late jobs in a concurrent open shop
[10]. Hence, the CAR problem is NP-hard.

A. Motivating Example

We will take CS-MHA [11] as our starting point to address
the CAR problem. CS-MHA has introduced a new direction to
solve the scheduling problem by means of a static coflow pri-
oritisation. The prioritisation is used in order to approximate
the solution of the coflow scheduling problem that maximizes
the CAR. CS-MHA computes the scheduling orders at each port
using the Moore-Hodgon’s algorithm which also determines
the set of admitted coflows at each port ` ∈ L. Since different
ports could have different sets of admitted coflows, a coflow is



TABLE I
MAIN NOTATIONS.

Symbol Description

L set of fabric ports
M number of machines, M = |L|/2
B` available bandwidth of port ` ∈ L
C set of coflows. C has cardinality of N
σ scheduling order of coflows, σ = {σ1, · · · , σN−1, σN}
Tk deadline of coflow k

Fk (F`,k) set of flows of coflow k (that use port `)
vk,j volume of flow j ∈ Fk of coflow k
v̂`,k total volume transmitted by coflow k on port `
p`,k processing time of coflow k on port `

ck (c`,k) completion time of coflow k on port `
CTk,j completion time of flow j of coflow k

admitted if it is admitted at all ports. For all rejected coflows, a
second round is applied to check if some rejected coflows can
actually satisfy their deadline. The algorithm selects a coflow
with the minimum bandwidth required at the bottleneck port
since it is more likely to catch up with its deadline.

The simple example depicted in Fig. 1 illustrates the
limitations of CS-MHA. It uses the standard Big-Switch model
to abstract a datacenter fabric: the example will be used
as a running example throughout the paper. The instance
contains 5 coflows: C1 has 4 flows and C2, C3, C4 and
C5 each have one flow. To ease the presentation, the flows
are organised in virtual output queues at the ingress ports.
The virtual queue index represents the flow output port,
modulo the number of machines. The numbers on the flows’
representations correspond to their normalized volumes. All
fabric ports have the same normalized bandwidth of 1.
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Fig. 1. Motivating example with a Big-Switch fabric composed of 4
ingress/egress ports connecting to 4 machines. Flows in ingress ports are
organized by destinations and are color-coded by coflows. The example has
5 coflows. Coflow C1 (blue) has 4 flows, with each ingress port sending 1
units of data to one egress port: its deadline is 1; coflows C2 (green), C3

(red), C4 (orange) and C5 (purple) have a single flow, each sending (1 + ε)
unit of data. The deadline of these coflows is 2.

At the first iteration, CS-MHA computes the scheduling order
on each port using Moore-Hodgson algorithm [12], which is
based on the Earliest Due Date rule and is known to minimize
the number of missed deadlines on a single machine (or port
in the coflow context). Since coflow C1 uses all ports and has
the smallest deadline (T1 = 1), then at each port, C1 will be
scheduled first. As consequence, all other coflows are rejected
since they cannot satisfy their deadline when scheduled after
C1. Given that coflow scheduling, the CAR is 1

5 . However,

an optimal scheduling solution would be {C2, C3, C4, C5, C1}
or any combination that has coflow C1 as the last one to be
scheduled. The latter scheduler attains a CAR of 4

5 . From
this example, we can see that CS-MHA can be made arbitrarily
worse compared to the optimal solution.

The above example can easily be extended to show that
in the worst-case scenario, the CAR of CS-MHA can be made
arbitrarily small (as close to 0 as needed). Consider M ma-
chines, coflow C1 that uses all ports, and coflows C2, . . . , CM
with one flow each. The other parameters remain the same as
above. It can be seen that the CAR obtained using CS-MHA
and DCoflow are 1

M , M−1
M , respectively. In this setting, the

CAR obtained using CS-MHA is close to zero when M is high,
while using DCoflow, the CAR is close to one.

The key observation is that CS-MHA neglects the impact that
a coflow may have on other coflows on multiple ports. Indeed,
a coflow causing multiple deadlines to be missed should have
lesser priority, even when its deadline is the earliest. When this
is neglected, the coflow ordering is misjudged thus degrading
the CAR. In this work, we start from this observation and
propose a new σ-order scheduler, called DCoflow.

B. Coflow Ordering

Problem (P1) implicitly depends on the CCT. An alternative
approach to maximize the CAR is to order the coflows in some
appropriate way, and then to leverage the priority forwarding
mechanisms of the underlying transport network [13].

In this approach, once such an ordering σ is determined, it
is enough to adopt work-conserving transmission policies and
use forwarding priorities in such a way that a flow j ∈ Fσk

is blocked if and only if either its ingress or egress port is
busy serving a flow j′ ∈ Fσk′ for some k′ < k, i.e., a flow
of a coflow with higher priority according to σ. Such a flow
scheduling is called σ-order-preserving.

The formulation of Problem (P1) can be transformed into an
Integer Linear Program (ILP) as follows. We define the binary
variable δi,k as 1 if coflow i has higher priority than coflow
k 6= i, and 0 otherwise. The ordering of coflows can then be
modeled using the following standard disjunctive constraints

δk,k′ + δk′,k = 1, ∀k, k′ ∈ C, (4)
δk,k′ + δk′,k” + δk”,k ≤ 2, ∀k, k′, k” ∈ C. (5)

It should be clear that the ordering σ can easily be derived
from the variables {δk,k′}k,k′∈C . This ordering should be such
that as many coflows as possible are accepted, that is,

∑
i∈C zk

is maximized. A central difficulty here is to compute the
completion time of a coflow, which stems from the fact that
data transmissions on the various ports are not independent:
the transmission of a flow may be blocked until the ingress
port becomes available even if the egress port is idle, and vice
versa. However, assuming that the ports are independent, we
can obtain a lower bound on the completion time of coflow
k on port ` as follows

c`,k ≥
∑
k′ 6=k

p`,k′δk′,kzk′ + p`,k, ∀` ∈ L, k ∈ C. (6)



This lower bound assumes that the transmission of coflow k on
port ` can start as soon as all flows of all coflows k′ scheduled
before k have been transmitted on port `. Note that the above
constraint is not linear due to the product δk′,kzk′ . However, it
can easily be linearized by introducing binary variables yk′,k
satisfying the constraints

yk′,k ≤ zk′ ; yk′,k ≤ δk′,k; yk′,k ≥ zk′ + δk′,k − 1, (7)

(6) thus becomes

c`,k ≥
∑
k′ 6=k

p`,k′yk′,k + p`,k, ∀` ∈ L, k ∈ C. (8)

A lower bound on the completion time of coflow k is then
obtained as ck = max`∈L c`,k, and this coflow can meet its
deadline only if ck ≤ Tk. The deadline constraint can then be
described as

c`,k ≤ Tkzk, ∀` ∈ L, k ∈ C. (9)

We can thus obtain an upper bound on the number of accepted
coflows by solving the following ILP,

max
∑
k∈C

zk, s.t. (4, 5, 7, 8, 9). (P2)

It is easy to verify that Problem (P2) is NP-hard and so
that it may become unfeasible to find an optimal solution in
large-scale datacenter networks. In the next section, we hence
propose an efficient heuristic algorithm to determine the order
in which coflows must finish in order to maximize the coflow
acceptance rate.

III. σ-ORDER SCHEDULING WITH DCoflow

In this section, we present DCoflow, an algorithm to solve
the problem of joint coflow admission control and scheduling.
Given a list of N coflows, it provides a permutation σ =
(σ1, σ2, .., σN ) of these coflows, with the aim of maximizing
the coflow acceptance rate. We observe that, when a coflow
is served according to the corresponding σ-order-preserving
schedule, lower-priority coflows will be impacted. It is hence
possible that some of these lower-priority coflows will not
respect their deadline. Hence our objective is to evaluate the
impact of a scheduled coflow with respect to the original
CAR problem. The problem is combinatorial in nature, since
there are N ! possible coflow orderings. Hence, we propose a
new approach that uses the formulation of Problem (P2) by
deriving a necessary condition satisfied by all feasible coflow
orders solving Problem (P2).

Consider a feasible solution to Problem (P2) and a subset
S ⊆ C of coflows. Given a coflow k ∈ C, let S−k =
{k′ ∈ S : δk′,k = 1} be the set of coflows in S which are
scheduled before k. Condition (6) may be rewritten as

c`,k ≥ p`,k +
∑
k′∈S−k

p`,k′zk′ , (10)

which implies

c`,kp`,kzk ≥ p2
`,kz

2
k + p`,kzk

∑
k′∈S−k

p`,k′zk′ . (11)

Using the inequality Tk ≥ c`,kzk and summing over all
coflows k ∈ S, we obtain∑
k∈S

p`,kTk ≥
∑
k∈S

c`,kp`,kzk ≥
∑
k∈S

(p`,kzk)
2 +

∑
k∈S,k′∈S−

k

p`,kp`,k′zkzk′

=
1

2

∑
k∈S

(p`,kzk)
2 +

1

2

∑
k∈S

(p`,kzk)
2 + 2

∑
k∈S

p`,kzk
∑
k′∈S−

k

p`,k′zk′


=

1

2

∑
k∈S

(p`,kzk)
2 +

1

2

(∑
k∈S

p`,kzk

)2

. (12)

We thus conclude that any feasible solution to Problem (P2)
satisfies the condition

∑
k∈S p`,kTk ≥ f`(S) for any subset

S ⊆ C of accepted coflows, where f`(S) = 1
2

∑
k∈S p

2
`,k +

1
2

(∑
k∈S p`,k

)2
. These conditions are the so-called parallel

inequalities and provide valid inequalities for the concurrent
open shop problem [14]. Note that they do not depend on the
ordering of the coflows.

We shall use the parallel inequalities to determine the
coflows that should not be admitted. Consider a solution to
Problem (P2) and assume that, in this solution, there exists a
subset S of accepted coflows (i.e., zk = 1 for all k ∈ S) such
that

∑
k∈S p`,kTk < f`(S) for at least one port ` ∈ L. This

implies that this solution is not feasible and can only become
feasible by rejecting a coflow k′ among the accepted coflows
using port `. We choose this coflow k′ so as to minimize the
quantity f`(S \ {k′})−

∑
k∈S\{k′} p`,kTk, in the hope that it

becomes negative. Observe that

f` (S)=

1
2
p2`,k′+

1

2

∑
k∈S\{k′}

p2`,k

+1

2

p`k′ + ∑
k∈S\{k′}

p`k

2

= f`
(
S \ {k′}

)
+ p`,k′

∑
k∈S

p`,k, (13)

from which it follows that

f`
(
S \ {k′}

)
−

∑
k∈S\{k′}

p`,kTk = f` (S)−
∑
k∈S

p`,kTk

+ p`,k′

(
Tk′ −

∑
k∈S

p`,k

)
(14)

The above relation will be used to define our coflow ad-
mission control algorithm. In general, it suggests possible
heuristics to remove a coflow k′ from S in order to satisfy
the parallel inequalities. For instance, one such heuristics is
to minimize the quantity

Ψ`,k′ := p`,k′

(
Tk′ −

∑
k∈S

p`,k

)
. (15)

In fact, the term
∑
k∈S p`,k − Tk′ represents how much the

completion time of coflow k′ on port ` exceeds its deadline,
assuming that it is scheduled latest. Hence, we could reject
coflow k′ with both large processing time p`,k′ on port
` and large deadline violation. More admission rationales
based on (14) will be detailed in describing DCoflow, whose
pseudocode is reported in Algorithm 1. Generally, DCoflow
takes a list of unsorted coflows and provides as output the



Algorithm 1: DCoflow

1 S = {1, 2, . . . , N}; . initial set of unscheduled coflows
2 σ = ∅; . initial scheduling order
3 σ? = ∅; . initial set of pre-rejected coflows
4 n = N ; . round counter
5 while S 6= ∅ do
6 `b = arg max

`∈L

∑
k∈S p`,k; . bottleneck port

7 S`b =
{
k ∈ S : p`b,k > 0

}
; . set of coflows using `b

8 # Coflows that can finish in time when scheduled last
9 Sd`b ← {j ∈ S`b |

∑
k∈S`b

p`b,k ≤ Tj};
10 if Sd`b 6= ∅ then
11 kn = arg max

k∈C
Tk; . admit coflow with largest deadline

12 σn = kn; . append kn to σ
13 S = S \ {kn}; . remove kn from S
14 else
15 k? = RejectedCoflow(S); . select a coflow to reject
16 σn = k?; . append k? to σ;
17 σ? = σ? ∪ {k?}; . append k? to σ?
18 S = S\ {k?}; . remove k? from S
19 n = n− 1; . update the round index

20 σ = RemoveLateCoflows (σ, σ?);
21 return σ; . final scheduling order
22 Function RemoveLateCoflows(σ, σ?):
23 while σ? 6= ∅ do
24 k? ← arg min

k
{σk ∈ σ?}; . first coflow in σ?

25 cσk? ← evalCCT
(
{σk}k∈[1,k?]

)
; . CCT of coflow σk?

26 if cσk? > Tσk? then
27 σ ← σ\ {σk?};
28 σ? ← σ?\ {σk?};
29 return σ;

scheduling order of accepted coflows. It works in rounds and
at each round, it either accepts a coflow or it rejects one.
DCoflow starts by computing the total completion time at

each port and finds the bottleneck `b, i.e., the port with the
largest completion time. Having this, it determines Sd`b , the
set of coflows active on the bottleneck port `b (line 8) which
complete before their deadline if scheduled last on `b. If Sd`b
is not empty (Lines 10–13), it selects a coflow kn ∈ Sd`b that
has the largest deadline in Sd`b . If Sd`b is empty (Lines 14–
18), i.e., no coflow respects its deadline when scheduled last
on the bottleneck (Line 13), the algorithm selects a coflow
to be removed using function RejectedCoflow, whose aim
is to comply with parallel inequalities according to (14). We
consider two variants, each of which corresponds to a slightly
different criterion to select the candidate coflow k? by taking
into account its weight.

The first variant, namely DCoflow v1, finds the candidate
k? ∈ Sb and every port ` used by k where it fails to meet the
deadline (that is, Ψ`,k < 0),

k? = arg min
k∈Sb

( ∑
`:Ψ`,k<0

Ψ`,k

)
. (16)

The second variant, namely DCoflow v2, finds the candidate
k? ∈ Sb and every port ` used by k that has at least γ times the
congested level of the bottleneck, i.e., ` :

∑
j p`j ≥ γ

∑
j pbj ,

k? = arg min
k∈Sb

( ∑
`:
∑

j p`j≥γ
∑

j pbj

Ψ`k

)
. (17)

TABLE II
EXECUTION OF DCoflow ON THE EXAMPLE OF FIG. 1.

Unscheduled coflows (set S) `b
{

Ψ1,Ψ2,Ψ3,Ψ4,Ψ5

}
S = {C1,C2, C3, C4, C5} 1 {−4 (1 + ε) ,−ε, · , · , · }
S = {C2, C3, C4, C5} 1 { · , 0, · , · , · }
S = {C3, C4, C5} 2 { · , · , 0, · , · }
S = {C4, C5} 3 { · , · , · , 0, · }
S = {C5} 4 { · , · , · , · , 0}

Once the initial scheduling order σ is obtained, DCoflow uses
the function RemoveLateCoflows to estimate the CCT and
remove from σ the coflows that do not satisfy the deadline
constraint (Line 20). Briefly, RemoveLateCoflows considers
each pre-rejected coflow k? in σ? (Line 24). It calls the
function evalCCT to evaluate the CCT of k?, given all the
coflows in σ that are scheduled before k? (Line 25). If k?

cannot meet its deadline, i.e., cσk? > Tσk? , it will be removed
permanently from σ? and σ. RemoveLateCoflows performs
a swipe on the admitted coflows (as in [11]) and iteratively
removes coflows in σ that belong to σ? until the estimated
CCT cσk

of each coflow σk ∈ σ is of at most Tσk
.

It is important to note that the final solution yielded by
DCoflow does not guarantee all coflows in σ to satisfy
their deadlines. In Sec. IV, the prediction error of DCoflow

indicates the gap between the estimated CAR and the actual
CAR after applying resource allocation.

Example. To illustrate the difference between DCoflow and
CS-MHA, we consider again the example illustrated in Fig. 1.
Table II shows the execution of DCoflow v1 on that example.
At the first step, DCoflow v1 chooses bottleneck ingress port
1, which is used by coflows C1 and C2. It computes Ψk =∑
`:Ψ`,k<0 Ψ`,k for both coflows and selects the coflow with

smallest Ψ̄k (in this case, C1) to be scheduled last. Since all
unscheduled coflows do not share any port in the fabric, any
ordering of remaining coflows gives the same average CAR.
Given the final schedule, DCoflow obtains 4

5 as the average
CAR, which is the optimal solution.

Online Implementation. DCoflow can be also be run online,
when coflows arrive sequentially and possibly in batches. For
this, define f to be the frequency of updates, i.e., instants at
which DCoflow recomputes a schedule. The updates can be
performed either at arrival instants of coflows (in which case
we set f = ∞) or periodically with period 1/f . We assume
that the scheduler knows the volumes of the flows of each
arrived coflow. However, it neither knows the volumes nor
the release times of future coflows.

At each update instant, DCoflow recomputes the scheduling
order for coflows currently available in the network. These in-
clude the ones that were scheduled in the previous scheduling
instants and have not yet finished; the ones that were rejected
in the previous scheduling instants but whose deadline has
not yet expired and the arrivals during the update interval.
DCoflow calculates the new order for this set of coflows
based on the remaining volumes of the flows and not on the
original volumes. Note that it is assumed that coflows can be



preempted [4]. This process is repeated at each update instant.

Complexity Analysis. The complexity of DCoflow is O(N2).
Specifically, in DCoflow, the values

∑
i∈S p`,i and Ψ`,x of

each remaining coflow x can be pre-stored by calculating them
at a cost O(NL), where L = |L| is the number of ports. Then
these values can be updated at a cost O(L) per coflow at each
iteration. The number of operations required at Lines 11–13
is O(N) and at Lines 15–16 is O(N), so that finally across
iterations it adds to O(N2). On the other hand, it is easy to
verify the complexity of RemoveLateCoflows is O(NL).

IV. PERFORMANCE EVALUATION

We evaluate via simulations our proposed heuristics (two
variants of DCoflow1) along with some existing algorithms
such as CS-MHA2 and the solution provided by the optimization
method CDS-LP proposed in [8]. The relaxed version of
CDS-LP, named CDS-LPA, is also implemented3. By using the
solution derived from CDS-LP as an upper bound, we would
get the sense of how close the algorithms are to the optimum.
A brief description of the reference algorithms has been given
in Sec. I. We also compare the performance of our schedulers
against Sincronia [13] and Varys [9] that aim to minimize
the average CCT.

Once we obtained the σ-order, the actual coflow resource
allocation for our solution is implemented by the greedy rate
allocation algorithm GreedyFlowScheduling [13]. At any
given point of time, GreedyFlowScheduling reserves the
full port bandwidth to one flow at the time. It does so by
complying to the scheduling order in σ of the coflow to which
the flow belongs [13]. We note that, in the case of CDS-LP,
CDS-LPA, and Varys, instead, the rate allocation is part of the
algorithmic solution.

The network fabric is represented by M machines or
end-hosts connected to a non-blocking Big-Switch fabric, of
which each access port has a normalized capacity of 1. The
algorithms will be evaluated on both small-scale and large-
scale networks, where a network is denoted by [M,N ] to
indicate different fabric size and number of coflows (N ) used
in the simulations. Small-scale networks have a fabric of size
M = 10, whereas large-scale networks have a fabric with
either 50 or 100 machines. The coflows in these networks are
generated from both synthetic and real traffic traces.

The MILP solver gurobi is used to solved CDS-LP and
CDS-LPA. Due to the high complexity, CDS-LP and CDS-LPA
are only evaluated on small-scale networks. In what follows,
the detailed setup, comparison metrics, and simulation results
are presented.

1The flow-level simulator and the implementation of all algorithms tested in
this paper are available at https://github.com/luuquangtrung/CoflowSimulator.

2We only reimplemented the centralized algorithm (CS-MHA) presented in
[11], which has been reported to be better than the decentralized version
(D2-CAS) in terms of CAR.

3It is worth noting that the formulation of CDS-LP and CDS-LPA use the
same decision variables {zk}k∈C as those introduced in Problem (P1). In
CDS-LP, zk are binaries, whereas in CDS-LPA, zk are continuous variables
taking values in [0, 1]. For any solution yielded by CDS-LPA, only coflows k
whose zk strictly equals 1 are considered as accepted ones.

A. Simulation Setup

Synthetic Traffic. The synthetic traffic comprises two types
of coflows. Type-1 coflows have only one flow, whereas
the number of flows of Type-2 coflows follows a uniform
distribution in [2M/3,M ]. Each generated coflow is randomly
assigned to either Class 1 or Class 2 with probability of
respectively 0.6 and 0.4. Moreover, each coflow k is assigned
a random deadline within [CCT0

k, 2CCT0
k]), where CCT0

k is
the completion time of coflow k in isolation. Flows of Class-
1 coflows are assigned a random volume of mean of 1 and
standard deviation of 0.2. The volume ratio for the flows of
Class-1 and Class-2 coflows is 0.8.

Real Traffic. Real traffic datasets are obtained by the Face-
book traces dataset [9], based on a MapReduce shuffle trace
collected from one of Facebook’s 3000-machine cluster with
150 racks. The data traces consist of 526 coflows. It has a
skewed coflow width distribution, ranging from coflows with
a single flow to very large ones (the largest coflow has 21170
flows). For detailed statistics of the Facebook traces we refer
the reader to [15]. For each configuration [M,N ], N coflows
are randomly sampled from the Facebook dataset. Coflows are
only selected from the ones that have at most M flows. The
volume of each flow is given by the dataset.

Metric. We evaluate the algorithms based on the average
CAR. We also present the gains in percentiles of each al-
gorithm with respect to the solution yielded by CDS-LP in
terms of CAR. These gains are calculated using the formula:
average gain in CAR = compared CAR

CAR under CDS-LP − 1.

B. Results with Offline Setting

In the offline setting, we consider that all coflows arrive
at the same time, i.e., their release time is zero. For each
simulation with a specific scale of the network and either
synthetic or real traffic traces, we randomly generate 100
different instances and compute the average performance of
algorithms over 100 runs.

1) Average CAR Under Synthetic Traffic: Figs. 2a–2b show
the average CAR with respectively small-scale networks and
large-scale networks. The percentile gains of each algorithm
with respect to CDS-LP are shown in Fig. 4a, in terms of
average CAR for the configuration [10, 60].

It is observed that our proposed heuristics are closest in
terms of CAR to the optimum (CDS-LP) than all other algo-
rithms, with both small- and large-scale networks. Among two
variants of DCoflow, DCoflow v1 yields the best performance
and even outperforms CDS-LPA, the approximation version of
CDS-LP. For instance, on the network [10, 10], DCoflow v1

improves the CAR on average by 6.5%, 11.5%, 15.1%,
and 26.6%, compared respectively to CDS-LPA, CS-MHA,
Sincronia, and Varys. Interestingly, the improvement be-
comes higher when the load is increased. For example, the
corresponding improvement on average CAR on a [10, 60]
network are 67.2%, 98.3%, 59.9%, and 36.8% (see Fig. 2a).
The improvement is even higher when performed on a large-
scale netork. For example, compared to CS-MHA, Sincronia,
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(a) Synthetic traffic traces on a small-scale network.
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(b) Synthetic traffic traces on a large-scale network.

Fig. 2. Average CAR with synthetic traffic traces using (a) small-scale and (b)
large-scale networks. Each point in the x-axis represents the network [M,N ].

and Varys, on the network [100, 400], the improvement in
terms of average CAR are respectively 648.1%, 32.3%, and
17.9%. (see Fig. 2b). It is worth noting how the performance
of CS-MHA falls drastically when dealing with large-scale
networks. This is expected since CS-MHA computes prioritizes
coflows that use a large number of ports over those that use a
few. In instances with a large number of coflows of the latter
type, the CAR of CS-MHA goes to 0 (see detailed explanation
with the motivating example in Sec. II-A)

The result in Fig. 4a shows that the two variants of DCoflow
achieve a smaller gap to the optimal in almost all values
of percentile compared to other algorithms. For instance,
compared to Sincronia, DCoflow v1 improves the CAR in
50% of 100 instances by 50% and it achieves around 43% at
99th percentile.

2) Average CAR Under Real Traffic Traces: This section
presents the results obtained with the Facebook traffic traces,
using the same configurations as those used in Sec. IV-B1.
Figs. 3a–3b show the average CAR with respectively small-
and large-scale networks. The gains in percentiles of each
algorithm with respect to CDS-LP, in terms of average CAR
when using a [10, 60] fabric are shown in Fig. 4b. Similar
to what observed in the results with the synthetic traces (see
Sec. IV-B1), DCoflow v1 and DCoflow v2 yield a significant
improvement in terms of average CAR compared to other
heuristics. For instance, with a [10, 60] configuration, the two
variants of DCoflow improve the average CAR on average
by 24.4%, 25%, 52.2%, 93.1%, compared respectively to
CDS-LPA, CS-MHA, Sincronia, and Varys. (see Fig. 3a). The
improvement is even higher when performed on a large-scale
network. For example, compared to CS-MHA, Sincronia, and
Varys, on [100, 400] network, the improvement in terms of
average CAR are respectively 36.6%, 55.3%, and 147.5%.

Moreover, the results in Fig. 4b show that the two variants
of DCoflow achieve a smaller gap to the optimal in almost
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(a) Facebook traffic traces on a small-scale network.
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(b) Facebook traffic traces on a large-scale network.

Fig. 3. Average CAR with Facebook traces using (a) small-scale network and
(b) large-scale network. Each point in the x-axis represents network [M,N ].
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(b) Facebook traces.

Fig. 4. The 1st-10th -50th-90th-99th percentiles of the average gain in CAR
with small-scale network [10, 60] using (a) synthetic and (b) Facebook traces.

all values of percentile compared to the other algorithms. For
instance, compared to Sincronia, DCoflow v1 improves the
CAR in 57% of 100 instances by 50% and it achieves around
35% at 99th percentile.

3) Prediction Error of DCoflow: As mentioned at the end
of Sec. III, we also evaluate the prediction error (|σ|−|σ̂|)/|σ|
of our heuristics, where σ̂ ⊆ σ is the set of coflows in
σ that satisfy the deadline constraint after performing the
actual resource allocation using GreedyFlowScheduling.
Both variants of DCoflow provide a prediction of CAR with
an average error below 3.6% for both traffic traces.

C. Online Setting

We now present a series of numerical results on the per-
formance of the online version of DCoflow. The metric used
for the performance evaluation is the average CAR obtained
over 40 instances. In each instance, coflows arrive sequentially
according to a Poisson process of rate λ, i.e., the inter-arrival
time of coflows is exponentially distributed with rate λ. Unless
stated otherwise, coflow priorities are computed upon arrival
of a new coflow (f =∞).

As both versions of DCoflow provide similar results, we
only present the results obtained with DCoflow v1. The
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Fig. 5. Average CAR using synthetic traffic with varying λ and (a) M = 10
and (b) M = 50.

average CAR obtained with DCoflow v1 is compared against
those obtained with the online version of Varys with deadline
[16], CS-MHA and Sincronia. We investigate the effect of
two main parameters: (i) the coflow arrival rate λ and (ii) the
frequency f at which coflow priorities are updated.

1) Impact of Arrival Rate: We first study the impact of
the arrival rate λ on the CAR obtained with the various
algorithms. The CAR is averaged over 40 instances, each
one with 4000 coflow arrivals. The deadline of a coflow k
is drawn from a uniform distribution in [CCT0

k, 4CCT0
k]. We

also consider two scenarios: a small fabric with M = 10
machines, and a large fabric with M = 50 machines. For
each scenario, results are presented for the following values
of λ: λ = 8, λ = 12, λ = 16, and λ = 20.

Our results are shown in Figs. 5a and 5b, for the small
fabric scenario and the large one, respectively. We observe
that DCoflow v1 achieves a higher average CAR for all values
of λ, and that the gain with respect to the other scheduling
algorithms increases with the value of λ. If all algorithms
achieve more or less the same CAR for a lightly loaded fabric,
DCoflow v1 clearly outperforms the other algorithms when
the fabric is highly congested.

Figs. 6a and 6b show respectively the average CAR ob-
tained with M = 10 and M = 100, both with 4000 coflows,
using the Facebook dataset. Similar to what obtained with
the synthetic traffic traces, DCoflow v1 outperforms all other
methods with significant gains. When the fabric is highly
congested (i.e., with M = 10), again DCoflow v1 yields
a higher gain compared to other algorithms. For instance,
DCoflow v1 achieves 9.3% higher CAR than Sincronia

when M = 100 (see Fig. 6b), while with M = 10, the gap
becomes 16.4% (see Fig. 6a).

2) Impact of Update Frequency: We now evaluate the
impact of the update frequency f on the average CAR. We
consider the following values of f : f = λ

2 , f = λ, f = 2λ,
and f = ∞. Recall that f = ∞ means that priorities are
updated upon each coflow arrival. We assume that M = 10
and compute the CAR by averaging over 40 instances. For
each instance, we simulate 8, 000 coflow arrivals according
to a Poisson process at rate λ, assuming that the deadline of
a coflow k is uniformly distributed in [CCT0

k, 2CCT0
k]. We

present the average CAR obtained for different values of f
(f ∈ {λ2 , λ, 2λ,∞}) and for different values of the arrival
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Fig. 6. Average CAR using Facebook traffic with varying λ and (a) M = 10
and (b) M = 100.
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Fig. 7. Average CAR of DCoflow v1 and CS-MHA using synthetic traffic with
[10, 8000] and varying λ, when obtaining (a) one single coflow per arrival;
and (b) a random batch of coflow per arrival.

rate λ (from 2 to 10).

The results in Fig. 7a are obtained from a simulation, in
which each arrival corresponds to one single coflow. We note,
as before, that for a low arrival rate, both algorithms provide
a similar average CAR (for λ = 2, CS-MHA achieves a slightly
higher CAR than DCoflow v1), but that DCoflow v1 clearly
outperforms CS-MHA when the fabric is highly congested. We
also note that a higher frequency f significantly improves
the CAR for both algorithms. For instance, for λ = 2 (resp.
λ = 10), the average CAR is increased by 52% (resp. 46%) if
we update coflow priorities upon arrival of each new coflow
instead of using the periodic scheme with f = λ

2 . These
results suggest that there is a need for a trade-off between
the computational complexity of updating coflow priorities at
a high frequency and the CAR achieved. In Fig. 7b, we present
a similar result, but assuming that coflows arrive in batches.
The batch size follows a uniform distribution U([5, 15]). Since
the average number of coflows in each batch is 10, in this
setting, we divide the batch arrival rate by 10 to obtain the
same coflow arrival rates as in Fig. 7a. The results obtained
for batch arrivals are similar to those obtained previously, but
we note that the gains of DCoflow v1 with respect to CS-MHA
are significantly higher in this case. Moreover, we note that
the benefit of using a higher update frequency is lower in this
case (e.g., for λ = 10, the average CAR is increased only by
17% if we use f =∞ instead of f = λ

2 ).



V. RELATED WORK

As discussed in Sec. I, most works in the literature focus
on CCT minimization, and deadline scheduling has received
comparatively less attention. Varys [9] was one of the first
algorithms for deadline-sensitive coflow scheduling. It uses
a cascade of coflow admission control and scheduling. The
scheduler strives for CCT minimization combining (i) a coflow
ordering heuristic based on the per coflows bottleneck’s
completion time; and (ii) an allocation algorithm to assign
bandwidth to individual flows of each coflow. Rate allocation
in Varys is performed to approximately align the completion
time of all coflows to the bottleneck one.
Chronos [16] is a heuristic for deadline scheduling which

avoids starvation for flows that do not meet their deadlines
by granting them the residual bandwidth. A priority order is
determined first, and coflows are hence allocated the minimum
necessary bandwidth to meet their individual deadlines. Once
all the flows that meet their deadlines have been allocated
bandwidth, the residual bandwidth is shared by the remaining
coflows in proportion to their demands.

In [11], a connection between deadline scheduling of
coflows and the well-known problem of minimizing late jobs
in a concurrent open shop—a known NP-hard problem, is
made. A heuristic based on the Moore-Hodgson’s algorithm
[12] for a single link is proposed. Both centralized as well as
decentralized heuristics are introduced (namely CS-MHA and
D2-CAS, respectively).

A formal description of the deadline scheduling problem
including bandwidth allocation of flows was given in [8]. The
CDS maximization problem is formulated as an MILP (called
CDS-LP). Time is divided into intervals whose boundaries
are the coflow deadlines arranged in increasing order. The
program determines which coflows to accept and the amount
of bandwidth to allocate in each interval. CDS-LP is shown to
be NP-hard, and an approximation based on LP relaxation
(called CDS-LPA) of the binary variables is also proposed.
CDS-LPA only accepts coflows for which the relaxed variable
is strictly equal to 1, i.e., only coflows that are completely
accepted by the LP relaxation are retained.

For completeness, we also cite a few works considering
the minimization of CCT [4–6, 17, 18] as well as the survey
article [19]. Popular among CCT minimization algorithms is
Sincronia proposed in [13]. It considers scheduling on the
network bottlenecks and returns a scheduling coflow order
achieving a 4–approximation factor.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new joint coflow admission
control and scheduling algorithm for a batch of coflows with
deadlines. The proposed schemes leverage results from open-
shop scheduling to determine a subset of coflows to schedule
and a corresponding σ-order which is then employed in order
to schedule coflows in priority.

Numerical results show that on small-scale networks, our
algorithms perform similar to or better than other deadline-
sensitive algorithms proposed in the literature. On large-scale

networks, however, it shows significant improvements with
respect to existing algorithms, e.g., 98% higher CAR than
CS-MHA in an offline setting. Our scheme also has a low pre-
diction error: even though the admission control is performed
using a bottleneck approximation for the CCT, almost all
accepted coflows actually finish within their deadline when
being actually scheduled.

This behaviour is observed in both offline and online
settings, both with synthetic traces and for real traces from
the Facebook data set. This shows that the algorithm is robust
with respect to the coflow size distribution and performs very
well across a wide range of network sizes.

Several extensions of this research line are possible. In
future works, we shall study the performance of our online
solution in the case when coflows tend to be released in
batches, e.g., when a distributed framework polls worker
nodes with given period. Furthermore, a relevant case is that
of incomplete information on flow volumes, i.e., because the
volume of a flow is not directly available to the scheduler
but only, for instance, via some a priori distribution. Finally,
issues of starvation and fairness issue among coflows represent
interesting issues we have not addressed yet.
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