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We investigated how naturalistic actions in a highly immersive, multimodal, interactive 3D virtual reality 

(VR) environment may enhance word encoding by recording EEG in a pre/post-test learning paradigm. 

While behavior data has shown that coupling word encoding with gestures congruent with word meaning 

enhances learning, the neural underpinnings of this effect have yet to be elucidated. We coupled EEG 

recording with VR to examine whether “embodied learning” improves learning and creates linguistic 

representations that produce greater motor resonance. Participants learned action verbs in an L2 in two 

different conditions: Specific action (observing and performing congruent actions on virtual objects) and 

Pointing (observing actions and pointing to virtual objects). Pre and post-training participants performed 

a Match-mismatch task as we measured EEG (variation in the N400 response as a function of match 

between observed actions and auditory verbs) and a Passive listening task while we measured motor 

activation (mu (8-13 Hz) and beta band (13-30Hz) desynchronization during auditory verb processing) 

during verb processing. Contrary to our expectations, post-training results revealed neither semantic nor 

motor effects in either group when considered independently of learning success. Behavioral results 

showed both groups learned the verbs, but also a great deal of variability in learning success. When 

considering performance, Low performance learners showed no semantic effect and High performance 

learners exhibited an N400 effect for Mismatch vs Match trails post-training, independent of the type of 

learning. Taken as a whole, our results suggest that embodied processes can play an important role in L2 

learning. 

 
1. Introduction 

Current theories of embodied cognition contend that language and motor processing are 

intertwined rather than independent, based on the assumption that cognition is grounded in multimodal 

representations originating in human experience (Barsalou, 2008; Pulvermüller, 2005). As concerns 

language, this entails that modal representations replace amodal symbolic linguistic representations 

(Fodor, 1983), giving motor processes an essential role in language processing (Wilson & Golonka, 

2013). Indeed, sensory and motor systems are recruited during lexical processing, both during 

development (James & Swain, 2011) and in adults (Hauk, Johnsrude & Pulvermüller, 2004; Pulvermüller, 

1999, 2005; Thompson-Schill, 2003). Furthermore, neuroimaging has revealed an overlap in neural 

mechanisms for processing speech and hand movements (Nishitani, Schürmann, Amunts & Hari, 2005). 
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Along the same lines, gestural studies have suggested that gesture and speech comprise an integrated 

system (Goldin-Meadow, 2011; Graziano & Gullberg, 2018). Language processing is facilitated by 

gesture such that language-action congruency that occurs early in sentence processing can prime lexical 

retrieval (Glenberg & Kaschak, 2002). Furthermore, the retrieval of stored semantic representations 

directly influences sensorimotor activation as indexed by greater motor preparation when congruent 

action language is presented prior to movement (Aravena et al., 2012). Importantly, incongruity between 

actions and meaning can cause interference in meaning retrieval (Aravena et al., 2010; Barsalou, 1999). 

These results suggest that motor representations are not simply reactivated by linguistic representations 

post-lexically (Mahon & Caramazza, 2009), but play an active part in meaning representation. In the 

current investigation, we examined the interaction between motor and semantic processes and how it may 

affect the mapping of novel action verbs to physical actions. Word encoding was coupled with compatible 

physical actions in an interactive virtual environment allowing for pseudo-natural movements, to test 

whether motor activation enhances novel action word learning in a foreign language. We examined 

whether action verbs learned with specific actions produce greater motor activation post-training, as 

revealed by a decrease in the beta and mu band power, compared to verbs learned without accompanying 

actions. Finally, we examined whether our experimental manipulation lead to improved retention, as a 

result of a stronger motor trace in memory (Engelkamp & Krumnacker, 1980).   

 Encoding new words is an essential part of language learning and has been addressed in various 

learning studies that investigated cortical changes associated with learning, whether in the native language 

(L1) or in a second language (L2). In a seminal study, McLaughlin and colleagues (2004) found 

differences in L2 learners’ cortical activity after 14 hours of classroom instruction when processing newly 

learned L2 words, compared to pseudo words, as indexed by an N400 effect (McLaughlin, Osterhout & 

Kim, 2004). Importantly, the N400 modulation was found despite participants showing chance level 

accuracy behaviorally. However, N400 modulations due to semantic processing, as revealed in a primed 

lexical decision task, were only observed after 4 months of classroom instruction. In another study, the 

establishment of lexical representations for newly learned L2 words was revealed by an increase in N400 
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amplitude for L2 words after one semester of learning (Soskey, Holcomb & Midgley, 2016). While these 

studies showed changes in the cortical response to newly learned L2 words, they investigated effects after 

extended L2 training. They did not allow for the observation of cortical changes occurring during the very 

first stages of encoding. In this vein, rapid cortical changes have been observed as a result of contextual 

word learning (Borovsky, Elman & Kutas, 2012; Borovsky, Kutas & Elman, 2010; Mestres-Missé, 

Rodriguez-Fornells & Münte, 2007; Shtyrov, Nikulin & Pulvermüller, 2010). Changes in N400 

amplitude, suggesting meaning integration (Kutas & Federmeier, 2011), have been reported after as few 

as three exposures to novel words in highly constraining sentential contexts in the L1 (Mestres-Misse et 

al., 2007). Borovsky et al. (2010) concluded from their ERP data that a single exposure to nouns in highly 

constraining contexts is sufficient to extract information concerning semantic restrictions. Subsequently, 

Borovsky et al. (2012) reported significant N400 modulations in a primed lexical decision task for both 

known and newly learned words. For newly learned words, the N400 effect was reported to be restricted 

to words learned in highly constrained contexts, as shown in independent pairwise comparisons. Finally, 

Bakker and colleagues (2015) found that ERPs only showed effects of lexicalization after a 24-hour 

period of consolidation (Bakker, Takashima, van Hell, Janzen & McQueen, 2015). From the above 

studies we can conclude that the neural response associated with semantic encoding can be modified 

following relatively little exposure. Nonetheless, the neural underpinnings of learning after a short 

training period have not yet been fully explored. The current study aims to help to fill this void by 

observing cortical activity after a two-day, explicit, word-learning training using physical movement.  

The benefit of physical movement for memorization and language learning is well established 

(Moskowitz, 1976; Quinn-Allen, 1995). Outside of the language domain, a number of studies have shown 

that participants encode new information better when they perform gestures that are congruent with the 

new content. Physical activity - more than verbalization - facilitated the integration of sung melodies 

(Wakefield & James, 2011), as well as mathematical (Kontra, Lyons, Fischer & Beilock, 2015) and 

scientific principles (Johnson-Glenberg & Megowan-Romanowicz, 2017; Johnson-Glenberg, Megowan-

Romanowicz, Birchfield & Savio-Ramos, 2016). Behavioral studies dating back to the 1980s have shown 
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that illustrative gestures support language retention better than other conditions (Engelkamp & 

Krumnacker, 1980; Engelkamp & Zimmer, 1984). For example, Engelkamp and Krumnacker (1980) 

showed that verb phrases such as “shuffle the cards” were better memorized when participants performed 

representative gestures during learning compared to either watching someone else perform the action, 

imagining the action or simply listening to the sentence. This “enactment effect”, has been replicated in 

second language and artificial language word-learning studies. After 20-30 minutes of learning novel 

words by simply pointing to or touching the corresponding objects, participants showed associations 

between sensorimotor experiences (the location of an object in a vertical space) and the novel words (Öttl, 

Dudschig & Kaup, 2017).  

It has been argued that truly embodied learning involves “self-performed” or “self-generated” 

action, as opposed to simply observing or imagining action (James & Bose, 2011; James & Swain, 2011; 

Johnson-Glenberg, 2017, 2018; Johnson-Glenberg & Megowan-Romanowicz, 2017). In other words, 

highly embodied learning generally implies that learners physically perform gestures or movements that 

are directly linked to the content they are learning (Johnson-Glenberg, 2018). Both L1 and L2 lexical 

encoding studies generally use representative or iconic gestures (McNeil, 1992) that illustrate and map 

onto meaning directly. Studies with both adults (de Nooijer, van Gog, Paas and Zwaan, 2013; Macedonia 

& Knösche, 2011) and children (Tellier, 2008) have shown that the production and recall of (L2) lexical 

items is enhanced by performing representative gestures.  

The studies cited above indicate that action boosts memory performance and therefore supports 

language encoding. However, the cognitive processes that underlie this facilitation remain to be 

explained. One explanation is that physical action relays and helps establish implicit knowledge. Indeed, 

we often express information without realizing it through gestures (Church & Goldin-Meadow, 1986). 

According to Sun and colleagues (2001), what they describe as the “synergy” between explicit and 

implicit performance can aid in learning new skills (Sun, Merrill & Peterson, 2001, p.1). The theory of 

Hebbian associative learning claims that the synchronous activity of neurons forms neuronal assemblies 

(Hebb, 1949); hence when lexical items are acquired along with action, cortical areas involved in 
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language processing and those involved in action planning and execution quickly develop into shared 

neural circuits (Pulvermüller, 1999, 2005; Tomasello, Garagnani, Wennekers & Pulvermüller, 2018). To 

better understand how learning may be enhanced by movement, several studies have examined the neural 

underpinnings of lexical-motor interactions. In two functional magnetic resonance imagining (fMRI) 

studies, results showed that directly interacting with objects (James & Swain, 2011) and/or performing 

meaningful gestures (Macedonia, Muller & Friederici, 2011) led to activation in the motor system during 

the subsequent auditory processing of newly learned lexical items. Moreover, performing iconic gestures 

during the learning of new lexical labels led to greater activation of the semantic network or “deeper 

semantic encoding” (Krönke, Mueller, Friederici & Obrig, 2013).   

Despite the importance of the above studies, fMRI may not be the ideal tool to show motor to 

language effects or vice versa. Indeed, much debate surrounds the role of motor activation during 

language processing. One of the arguments against embodied semantics is that language-induced motor 

activations are post-lexical and not a necessary part of language processing (Mahon & Caramazza, 2008). 

High temporal resolution – an advantage of EEG compared to fMRI – is hence an important element 

when arguing for embodied language representations. One way of quantifying motor cortex activity is to 

use EEG to measure event-related synchronization/desynchronization (ERS/ERD) via stimulus-locked 

time-frequency analysis (Vukovic & Shtyrov, 2014). A decrease in alpha, mu (8-13 Hz) and beta-band 

(13-30 Hz) power, mostly over central or centro-parietal sites, has been associated with sensorimotor 

activation involved in movement preparation and execution (Pfurtscheller & Lopes da Silva, 1999; 

Niccolai et al., 2014; Pineda, 2005). A decrease in the alpha rhythm has likewise been linked to motor 

imagery (Höller et al., 2013). Recently, a decrease in energy in frequencies associated with motor 

processes has also been observed during action language comprehension. Reading sentences describing 

manual actions versus abstract sentences led to the suppression of mu rhythms at fronto-central sites 

(Alemanno et al., 2012; Moreno et al., 2015). This does not entail a one-to-one mapping between power 

decreases in specific frequency bands and specific cognitive functions. However, it does reveal an 

association between mu and beta oscillations over central and centro-parietal sites and 



 6 

motor/sensorimotor activity, which can be used to index language-motor interactions (cf. Klepp et al., 

2019). To our knowledge, the only study that has used time-frequency to measure motor activation during 

language processing pre and post-training was conducted by Fargier and colleagues (Fargier et al., 2012). 

They showed that learning novel words in association with specific self-performed actions led to greater 

mu desynchronization over centro-parietal sites post-training, which they interpreted as motor activation, 

compared to learning in association with abstract animations. (Fargier et al., 2012). However, on the 

second day of training, a fronto-central distribution of the effect, as opposed to a typical centro-parietal 

mu distribution, lead the authors to conclude that it was confined to a convergence zone. 

The above-described evidence points to the need to develop this line of investigation. Embodied 

cognition binds social and physical contexts to cognition, suggesting that the environment in which 

learning takes place could potentially play an important role in learning outcome (Black, Segal, Vitale & 

Fadjo, 2012). According to Atkinson (2010), learning is not just a mental process but one that occurs in 

environments made up of “bodies, cognitive tools, social practices and environmental features” and this 

multimodality calls for an experimental approach that is likewise multimodal. One caveat of experimental 

protocols that examine “embodied” learning is that, given the need for control, movement is generally 

reduced to minimal hand actions and training most often occurs in isolated and decontextualized 

environments (Peeters, 2019). This is especially true of studies that analyze the neural correlates of 

language processing and learning using techniques such as fMRI, MEG or EEG. For instance, when 

interaction with objects has been made possible, it has been limited to pointing at or touching objects, 

hence making it impossible for participants to map specific actions to specific words. When one considers 

the importance of interlocutors, social context and physical cues on how language is understood in real 

life (Knoeferle, 2015), physical and environmental limitations likely affect how language is learned. 

Within the framework of embodied cognition, it is especially important to take a closer look at the gap 

between real-life language processing and that which takes place in an experimental environment (Tromp, 

Peeters, Meyer & Hagoort, 2018). 
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Virtual reality (VR) is an important tool for investigating embodied language learning. In a 3-D 

environment, participants are presented with auditory and visual stimuli, including objects with which 

they can interact while receiving real-time feedback for their actions via a graphic rendering system 

(Zappa et al., 2019). Numerous L2 studies have used virtual environments and VR paradigms involving 

varying degrees of immersion to investigate language learning. They have generally found facilitation for 

learning in immersed conditions compared to word-word or picture-word paired associations (Berns, 

Gonzalez-Pardo & Camacho, 2013; Lan, Fang, Legault & Li, 2015). Furthermore, participants who 

learned in a virtual environment using avatars (Second Life) showed neural activations that were more 

distributed and associated with more “embodied brain networks” compared to the control group (Lan et 

al., 2015). However, Second Life paradigms are limited when it comes to exploring truly interactive 

embodied learning (for a review of L2 video games, see Legault et al., 2019). To overcome this, Legault 

and colleagues (2019) taught participants a set of L2 words in an ecologically valid immersive virtual 

reality zoo or kitchen, using word-word paired association as a control. In the immersive VR condition, 

they wore an HMD and encountered new words within their contexts (i.e., kitchen items in a kitchen). 

Participants — especially less successful learners — showed higher accuracy in the immersive VR 

condition (Legault et al., 2019).  

Peeters (2019) claimed that VR “shifts the theoretical focus toward the interplay between 

different modalities [...] in dynamic and communicative environments, complementing studies that focus 

on one modality in isolation.” (p.1, 2019). VR uses visual and auditory stimuli to create an immersive 

sensory experience, providing participants with credible environments. In addition, participants’ head and 

body movements are tracked by input tools (e.g. hand controls) and participants are given real-time 

feedback for their actions, which provides a sensation analogous to real life (Burdea & Coiffet, 2003). 

The fact that participants can interact with the environment by manipulating virtual objects and carrying 

out naturalistic actions gives them a sense of “agency” (Johnson-Glenberg, 2018). Compared to 

traditional experiments, this leads to a greater implication of the sensorimotor system, with responses and 

actions being closer to what occurs in real life (Bohil, Alicea, & Biocca, 2011). Finally, VR combines 
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ecological validity with full control over the onset, location and duration of presentation of the 

multimodal stimuli. Very few studies have paired virtual reality with EEG to study language processing. 

In an exploratory EEG-VR experiment, participants listened to a sentence (“I just ordered this salmon”) 

and saw a virtual object that either matched (salmon) or mismatched (pasta) the object in the sentence. An 

N400 effect was observed for mismatched versus matched pairs, and the authors interpreted this as proof 

of validity for combining VR and EEG to examine language processing (Tromp et al., 2018). However, 

participants did not manipulate objects and the involvement of the motor cortex was not examined. 

Recently, Zappa and colleagues measured motor-related EEG activity in an interactive virtual reality 

environment while participants performed a Go-Nogo task and listened to action verbs prior to executing 

the corresponding actions. Motor activation was found via a decrease in power in the mu and beta bands 

during verb processing and prior to movement proper, providing compelling evidence in a naturalistic 

setting of how motor and linguistic processes interact (Zappa et al., 2019). Moreover, greater ERD was 

found for Go trials, suggesting that motor preparation influenced semantic processing. These results 

provide the basis for the present study, investigating the association of new linguistic labels to motor 

actions. 

Our study used a combined EEG-VR methodology to explore the neural correlates of embodied 

learning. EEG and VR were not employed simultaneously, but EEG was used to measure learning pre and 

post-training and VR was used to facilitate embodied and situated learning. Using a head mounted VR 

system (Oculus Rift) and controller, participants were exposed to an auditory L2 lexicon of action verbs 

associated with videos of congruent physical actions. They were assigned to one of two groups, according 

to whether they were required to perform a specific motor action that corresponded to the observed 

action, the Specific action condition (eg. pick up an object and throw it for the verb “throw”) or the 

Pointing condition (point to the object). Both pre and post training, learners’ knowledge of the semantic 

meaning of the training verbs was measured behaviorally and through EEG using a match-mismatch task. 

Motor resonance was also measured using EEG while participants listened to the training verbs as well as 

a set of filler verbs that were never taught, both pre and post-training (See Table. 1). We expected motor 
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resonance during auditory verb processing to vary as a function of learning condition during the post-

training session but not the pre-training session. We hypothesized that verbs learned with specific actions 

would be encoded with a stronger motor trace and hence produce greater motor activation than verbs 

learned in the pointing condition. We also predicted that embodied learning using specific self-performed 

congruent physical actions would lead to better learning outcomes post-training compared to the pointing 

condition, as revealed by behavioral accuracy.  

 

2. Hypotheses 

1. In accordance with the theory that learning lexical items along with action can form shared neural 

networks (Pulvermüller, 1999, 2005; Tomasello et al., 2018) and studies showing greater motor 

activation for object labels learned with direct object interactions (James & Swain, 2011) or specific 

self-performed actions (Fargier et al., 2012), we expected to find a decrease in beta (13-30 Hz) and 

mu (8-13 Hz) band power (motor activation) post-training compared to pre-training during the 

processing of the training verbs (passive listening task). Given that only training verbs were 

associated with meaning, these effects were not expected to be observed for filler verbs, for which no 

variation pre-post training should have occurred. 

2. Activity in the premotor context has been found when learners process verbs learned with iconic 

gestures but not those learned with meaningless gestures (Macedonia et al., 2011). We therefore 

expected to find greater motor resonance for verbs learned in the Specific action group compared to 

the Pointing group.  

3. Studies have shown that learners associate a new word-form to semantic content after very little 

exposure (Borovsky et al., 2012; Mestres-Missé et al., 2007; Yum, Midgley, Holcomb & Grainger, 

2014). During the match-mismatch task, we expected that pre-training, we would not find an N400 

effect for match versus mismatch trials. Post-training, we expected to find greater N400 amplitude for 

mismatch versus match trials in both learning groups, due to participants accessing the semantic 

meaning of newly learned verbs.  
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4. Along with studies in non-linguistic domains showing enhanced learning when gestures are used 

(Broaders, Cook, Mitchell & Goldin-Meadow, 2008; Johnson-Glenberg et al., 2016; Johnson-

Glenberg & Megowan-Romanowicz, 2017; Kontra et al., 2015; Wakefield & James, 2011), both 

behavioral and electrophysiological evidence from L2 learning studies has revealed that congruent 

gestures support linguistic memory and encoding and improve performance (de Nooijer et al., 2013; 

Macedonia & Knösche, 2011; Macedonia et al., 2011; Mayer, Yildiz, Macedonia & von Kriegstein, 

2015; Tellier, 2008). We therefore hypothesized that the N400 effect outlined in hypothesis 3 would  

be greater for the Specific action group compared to the Pointing group.  

5. In accordance with hypotheses 3 and 4, we expected to find a positive correlation between greater 

motor resonance during the passive listening task and a greater N400 amplitude for mismatch versus 

match trials in the match-mismatch task.  

6. In accordance with hypothesis 4, we predicted that our behavioral results would show greater 

accuracy for verbs learned in the Specific action condition compared to the Pointing condition.   

 

3. Methods 

In the current study we manipulated the type of action performed (specific object manipulation vs 

pointing) during L2 learning in a VR environment. During learning, participants saw movements 

performed by a virtual hand. The Specific action group reproduced the movement on a virtual object and 

the Pointing group pointed to the virtual object on which the action was performed. EEG was recorded 

both pre and post-training.  

 

3.1. Ethics. This research complies with all relevant ethical regulations and has been approved by the 

local university ethics committee.  

 

3.2. Statistical power analysis. For hypothesis 1, a statistical power analysis was performed for sample 
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size estimation using G*Power 3.1 (Faul, Erdfelder, Buchner & Lang, 2009). The analysis was based on 

data from a previous published study (Zappa et al., 2019) (N=20), comparing decrease in mu and beta 

band power for Nogo vs Go trials. The effect size (ES) in this study was .8, which is considered to be 

large using Cohen's (1988) criteria. However, given that large effect-sizes are often over-estimated and 

rare, we selected a medium effect-size (.5) for our power analysis using a Cohen's d. With an alpha = .05 

and power = 0.80, the projected sample size needed is approximately N = 34 for the simplest within group 

comparison (Hypothesis 1). Thus, our proposed sample size of 42 is adequate for the three within-subjects 

comparisons (Hypotheses 1, 3 and 5) as they either concern a decrease in power in the mu/beta bands or 

the N400 effect, which has been shown to require a smaller sample than 42 where semantic effects are 

concerned (Borovsky et al., 2012; Fields & Kuperberg, 2019, Tromp et al., 2018). Note, however, that 

this is not the case for more subtle N400 effects, such as those resulting from pre-activating the 

phonological form of upcoming words (Nicenboim, Vasishth & Frank. 2020) or determiner gender 

(Nieuwland et al., 2018).  As regards hypotheses 2, 4 and 6, we ran a power analysis using Cohen’s d that 

calculated the estimated power for our between-subjects analysis, given a sample size of 42 per condition 

and a medium effect-size (.5). The estimated power came out to 0.60. The final sample size of 42 as 

concerns the between-participant hypotheses is therefore motivated by practicality (budgetary and time 

constraints) as well providing sufficient power for the within-subjects hypothesis.   

 

3.3. Participants. Eighty-four (42 per group) right-handed French native speakers (aged 19–26) with no 

previous knowledge of Serbian or related languages participated in the study. Four participants’ data were 

excluded due to excessively noisy data, leaving 39 participants in the Specific action group and 41 in the 

Pointing group. Participants were volunteers from the student population of the Aix-Marseille University, 

having no history of neurological insult. All participants gave their written informed consent prior to the 

experiment and received 40 euros for their participation. Data collection was inadvertently commenced 

prior to IPA, before the analysis plans had been finalized.  
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3.4. Stimuli. Auditory stimuli consisted of 12 imperative transitive verbs in Serbian that were not 

transparent with their translation equivalents in French, Spanish, Italian, Portuguese, German or English. 

Serbian is a South Slavic language that is linguistically distant from both Romance and Germanic 

languages such that transparency posed little threat. The verbs denoted actions that can be performed 

using one’s hand and arm, and were previously validated in a VR environment (Zappa et al., 2019): 

/ˈgurni/[push], /zαˈɡrεbiː/ [scratch], /ˈpuːstiː/ [drop], /ˈbαtsiː/ [throw], /oˈkrεniː/ [pivot], /ˈprεmεstiː/ 

[move], /ˈkuːtsniː/ [tap] , /ˈuхυαtiː/ [catch], / podiɡniː/ [lift], /ˈluːpiː/ [hit], /oˈboriː/ [tip over], / proˈtrεsiː/ 

[shake]. Verbs were recorded in a professional sound booth by two native female speakers of Serbian. 

Learners learned with words recorded by one of the speakers and were tested post-training with words 

recorded by the second speaker, to avoid familiarity effects. Participants in both groups (Specific action 

vs. Pointing) heard Speaker 1 during training and Speaker 2 during EEG testing. A set of 12 filler verbs 

denoting different actions was recorded for the passive listening EEG task. Visual stimuli for learning 

consisted of an office environment containing a 3D 10-point star polygon and a CRT screen (Figure 1.) 

 

 

 

Figure 1. 

 

Animations of hand and arm movements corresponding to the training verbs, performed on the 3D 10-

point star polygon were recorded. These animations were used in both learning conditions to teach 
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participants the movements that  corresponded to the verbs and for the match-mismatch task pre and post-

training.  

 

3.5. Learning apparatus. An Oculus VR headset and controller was used for training purposes. The 

Oculus headset visually immerses participants by presenting them with a 360-degree visual scene and 3D 

virtual objects. The controller allowed participants to manipulate objects while motion capture was 

recorded online.  

 

3.5.1. Software. During pre and post-tests, StimPres (Tufts University) was used for stimulus presentation 

on a desktop computer and a 64-channel Biosemi system (Actiview) was used for acquisition. UNITY 

software controlled virtual object presentation during learning.  

 

3.6. General Procedure. The experiment took place over two days. On the first day, participants 

underwent EEG and behavioral pre-tests followed by a VR learning session. On the second day, 

participants took part in a second VR learning session with the same materials as day 1, followed by the 

EEG recording and behavioral post-tests. Learning sessions lasted roughly half an hour each day.  

 

3.6.1. Learning procedure. Participants were comfortably seated at a desk wearing a VR Oculus headset 

and holding a controller. Participants in both the Specific action and the Pointing groups were presented 

with an auditory verb and requested to overtly repeat the verb prior to observing an action on the virtual 

CRT screen within the VR environment. Following this, a virtual object appeared on the virtual desk. The 

Specific action group manipulated the object via the controller, performing the action observed on the 

virtual CRT screen (Figure 2.). The Pointing group pointed to the object. Participants were exposed to 

each verb six times during the first session (day one) and four times during the second session (day two). 

The number of exposures was established after pilot studies showed that some participants showed at 

celling accuracy post-training after 8 and 6 exposures.  
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Figure 2. 

 

3.6.2. EEG procedure. EEG was recorded during both pre and post-tests. Participants were comfortably 

seated at a desk situated 60 cm away from a computer screen in an electrically shielded sound-attenuated 

booth.  

 

3.6.2.1. Passive listening task. During the first task participants were asked to listen to the list of verbs 

passively, with no associated task. They heard the 12 verbs used for learning and 12 filler verbs, three 

times. A trial began with an ocular fixation cross displayed in the center of the computer monitor for 200 

msec prior to and for the duration of the auditory word, which was presented via electrically shielded 

speakers. A visual “blink” prompt was displayed immediately thereafter for 2 seconds. The experimental 

session lasted roughly 10 minutes. 
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3.6.2.2. Match-Mismatch task. During the match-mismatch task the auditory verbs used in learning were 

preceded by either the compatible (match) or an incompatible (mismatch) animation. A question mark 

appeared directly following the auditory verb. Participants were required to answer yes or no on a 

response box. A visual “blink” prompt was displayed immediately thereafter for 2 seconds. The 

experimental session lasted roughly 25 minutes, including one break. 

 

3.6.3. Behavioral procedure. Binary behavioral responses (match/mismatch) and response times were 

recorded during the match-mismatch task.  

 

In an exploratory manner, word-retention was tested behaviorally in two tasks, after each training session.  

In the translation task, participants listened to the learned verbs and were asked to provide a French 

translation for each one. For the production task, participants saw the animations of the verbs they learned 

and were asked to write the learned words phonetically. 

 

3.7. EEG data acquisition. During pre and post-tests, EEG activity was recorded continuously from 64 

scalp electrodes located at midline as well as left and right hemisphere positions over frontal, central, 

parietal, occipital, and temporal areas by means of a 64-channel electrode cap mounted with silver-

chloride active electrodes (BioSemi Active Two system AD box). During acquisition, the offset of the 

electrodes was maintained within the -/+20mV range, in line with common practice using active electrode 

set-ups and data was sampled online at 512 Hz. Blinks and vertical eye movements were monitored via an 

electrode placed under the right eye and horizontal eye movements was monitored via an electrode placed 

at the outer canthus of the left eye. One electrode was placed over each mastoid. EEG was recorded 

continuously during the experiment and periods spanning from -150 pre-stimulus onset to 1100 msec 

post-stimulus onset were used post-recording for analyses.  

 

3.8. EEG data processing. EEG data was bandpass filtered between 0.1 and 40 Hz using a 1408-order 
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FIR filter windowed (Kaiser) sinc filter. The filtered data was re-referenced offline to the average of the 

two mastoids. To detect noisy electrodes, we applied several approaches to take into account different 

noise sources such as muscle artifacts, electrode pops, ocular movements etc. First, based on the 

continuous data, we identified those electrodes whose amplitudes exceeded a pre-defined threshold of +/- 

50mV and, for each electrode, the total above-threshold time was calculated. In addition, we determined 

those electrodes with extreme amplitudes by calculating the robust z-score, as described by Bigdely-

Shamlo and colleagues (Bigdely-Shamlo, Mullen, Kothe, Su & Robbins, 2015). The robust z-score is 

calculated based on the median and the robust standard deviation (zrobust = 0.17413 * interquartile range) 

and those electrodes with a zrobust > 5 were marked as bad. We also tested the electrodes based on the 

noisiness criterion described by Bigdely-Shamlo and colleagues (Bigdely-Shamlo et al., 2015), which 

calculates the ratio of the power of high frequency signal components to the power of low frequency 

components. This was complemented by visual examination of the power spectral density of each 

electrode to determine those with excessive low and high frequency activity or contaminated by line 

noise. We performed a baseline correction using a 150 msec pre-stimulus period for both the time-

frequency and ERP analyses. 

Noisy electrodes marked for rejection were removed. Before carrying out independent 

components analysis (ICA), to correct for ocular movements, sections of the EEG signal that were highly 

contaminated with noise were removed from the dataset. ICA was carried out on the continuous data of 

each participant. Principal component analysis (PCA) was applied prior to ICA computation to reduce the 

dimension of the data and accelerate the ICA computation time. The number of PCA components was 

estimated by calculating the explained variance of each principal component and conserving only those 

principal components explaining 99% of the variance. Those independent components corresponding to 

eye-blinks were identified automatically and rejected. Once the ocular artifacts were corrected using ICA, 

the rejected electrodes were interpolated using spherical spline interpolation. The data was then 

segmented and epochs were visually inspected. Those contaminated by noise were removed. The epoched 

data was then divided into separate conditions for analyses.  
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3.9. EEG data analysis 

3.9.1. ERPs. The ERP data was modeled using linear mixed effect models for the mean voltage 

amplitudes in the established N400 window, between 300-600msec (Kutas & Federmeier, 2011; Tromp et 

al., 2018), time-locked to the onset of the verb. Analyses for the N400 component were conducted on the 

data acquired at 35 electrodes, including 5 over midline (Fz, FCz Cz, CPz, Pz), and 30 lateral electrodes 

divided equally over the left (F1, F3, F5, FC1, FC3, FC5, C1, C3, C5, CP1, CP3, CP5, P1, P3, P5) and 

right (F2, F4, F6, FC2, FC4, FC6, C2, C4, C6, CP2, CP4, CP6, P2, P4, P6) hemispheres. A linear mixed 

effects model (lmer) including the fixed factors Group (Specific movement vs. Pointing), Session (Pre vs. 

Post), Condition (Match vs. Mismatch), and ROI (Midline, Left and Right lateral electrodes) and their 

interactions was performed. Participant and Item both included random intercepts. Condition included a 

random slope for Participant and for Item provided the model converge. The fixed factors were sum-

coded to allow for the interpretation of main effects. 

In an exploratory analysis to determine where significant differences between Match and 

Mismatch conditions emerged, a permutation test with false discovery rate (FDR) correction was carried 

out on all time points of the post stimulus interval for each electrode. A significant difference was only 

considered (q ≤.05) if its duration exceeded 10msec (~5 consecutive time samples for a sampling 

frequency of 512Hz). 

 

3.9.2. Event-related Spectral Perturbation (ERSP).  

To test the hypothesis of a difference in ERSP between Filler and Test verbs pre vs post-training 

the data were modeled using linear mixed effect regressions, with the LmerTest package (Kuznetsova & 

Christensen, 2017) implemented in R (R Core Team, 2017) for activity in the mu, high beta and low beta 

bands. The event-related spectral perturbation (ERSP) was calculated on the data from the passive 

listening task, time-locked to the onset of the verb, using the MNE-Python software (Gramfort, et al, 

2013).   
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Based on our previous study (Zappa et al., 2019), analyses included 9 fronto-central electrodes 

associated with motor processes (FC3, FC4, C3, C4, CP3, CP4, FCz, Cz and CPz). Before computing the 

ERSP, individual trials for each participant were padded. This was carried out to deal with the short 

baseline duration (150 msec), which made it difficult to resolve the lower frequencies of interest, and to 

limit edge effects. Padding was carried out by concatenating 1 second of data composed of repetitions of 

the first data sample of the baseline interval to the start of each trial. This padding yielded a baseline 

interval with a duration of 1150 msec.  

To compute the ERSP, time-frequency decomposition was effectuated at the single trial level for 

each participant and each condition (Pre-training, Post-training, Test verbs, Filler verbs) by applying 

complex Morlet wavelets over the 5 Hz to 32 Hz frequency band. The number of wavelet cycles was 

varied linearly from 5 to 10 cycles as a function of frequency and yielded a FWHM (full width at half 

maximum) of 225 msec and 187 msec at 10Hz and 12Hz respectively (mu-band), 175 msec at 15Hz 

(beta-band) and 135 msec at 25Hz (upper beta-band). A mean baseline was computed by averaging the 

trial-level baselines, this yielded a single mean baseline for both verb-types (Test verbs and Filler verbs) 

and for each participant. The post-stimulus intervals of individual trials were expressed in terms of 

decibel change relative to the mean baseline (-150 msec to 0 msec).  

A linear mixed effects model (lmer) including the fixed factors Session (Pre vs Post), Group 

(Specific action vs Pointing), Verb (Learned vs Filler) and ROI (Midline (FCz, Cz, CPz), Left lateral 

(FC3, C3, CP3), Right lateral (FC4, C4, CP4)) as well as their interactions, was performed. Participant 

and Item both included random intercepts. Condition included a random slope for Participant and for Item 

provided the model converge. The fixed factors were sum-coded to allow for the interpretation of main 

effects.  

 

3.10. Behavioral data analysis. A generalized linear mixed effects model (glmer) was used to examine 

accuracy in the match-mismatch task. The sum-coded fixed effects factors included Condition (Match vs. 

Mismatch), Session (Pre vs. Post-training), Group (Specific action vs. Pointing) and their interactions. 
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Participant and Item both included random intercepts, provided the model converge.  

 

For the translation task, as participants never heard the French translations for the learned words, 

translations that described an action that matched the learned action were scored correct, independent of 

the actual verb used (i.e., toss or throw). For the production task, as participants were never shown the 

words in writing, words that were considered recognizable were scored as correct (i.e., baci or batsi). 

Words that begun with the correct phoneme but were not recognizable as the Serbian word received a .5 

score (i.e., bafi). Given that all words ended in the same phoneme [i], this did not apply to word 

terminations.  

 

4. Results 

4.1 Declared analyses: 

To determine the pattern of data, we ran a series of comparisons for both behavioural and 

electrophysiological measures using mixed effect models. We compared the data across sessions 

(Pre vs. Post-training). When interactions emerged, we ran subsequent independent models (in 

each session, and for each group). 

 

 
4.1.1 Match-Mismatch task: ERP data. 

To test the hypothesis of a significant difference in N400 effect for Match vs Mismatch trails, Post vs Pre-

training, we compared mean voltage amplitudes in the established N400 window, between 300-600msec, 

time-locked to the onset of the verb. An interaction between Condition, Group and Session emerged. To 

test the hypothesis of an N400 effect for Match vs Mismatch Post (but not Pre) training, we modeled the 

data independently for Pre-training and Post-training. No effect of Condition was found for either group.  

 

Pre vs. Post-training 
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We ran a first model which included the sum-coded fixed factors Session (Pre vs. Post), Group (Specific 

action vs. Pointing), Condition (Match vs. Mismatch), ROI (midline, left hemisphere, right hemisphere) 

and their interactions, with random intercepts for Participant and Item. Condition included a random slope 

for Participant and for Item but as this model did not converge, we applied the model without these 

slopes. The model revealed an interaction of Condition:Group:Session (β = 1.12, se = 2.18, t = 5.145, p < 

.001. The data were modeled independently thereafter for each training session.  

 

Pre-training 

The model included the sum-coded fixed factors Group (Specific action vs. Pointing), Condition (Match 

vs. Mismatch), ROI (midline, left hemisphere, right hemisphere) and their interactions, with random 

intercepts for Participant and Item. Condition included a random slope for Participant and for Item but as 

this model did not converge, we applied the model without these slopes.  No effect of condition was 

found (β = 1.42, se = 2,54 t = 0.559, ns., nor was there an effect of Group (β =2.39, se = 3.25, t=0.736, ns) 

or an interaction between the two (β =1.79, se = 1.57, t=1.140, ns). 

 

Post-training   

The model included the sum-coded fixed factors Group (Specific action vs. Pointing), Condition (Match 

vs. Mismatch), ROI (midline, left hemisphere, right hemisphere) and their interactions, with random 

intercepts for Participant and Item. Condition included a random slope for Participant and for Item but as 

this model did not converge, we applied the model without these slopes. No effect of Condition was 

found (β = 2.60, se = 3.18 t = 0.89, ns), nor was there an effect of Group (β = 1.85, se = 4.16 t = 0.443, 

ns) or an interaction (β = 1.90, se = 1.95 t = 0.974, ns). 

4.1.2 Passive listening task: Time-frequency data 

4.1.2.1 Mixed Models 

Based on our hypothesis of greater desynchronization in the mu, low beta and high beta bands Post-

training compared to Pre-training for Learned (but not filler) verbs and for both Test and Control groups, 
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we carried out a Post vs Pre-training comparison of the ERSP of Filler and Learned verbs. We tested the 

hypothesis of a difference in ERSP between Filler and Learned verbs Post vs Pre-training, specifically 

greater desynchronization in the mu, high beta and low beta bands Post-training, compared to Pre-

training, for Learned (but not Filler) verbs, for both groups and possibly greater for the Test group.  

In a Pre vs Post training comparison, an interaction between Verb, Group and Session emerged. We 

modeled the data independently for Pre-training and no effect of Verb was found for either group. Post-

training, an interaction between Verb and Group emerged. We modeled the data independently for both 

Groups and no effect of Verb was found for either group.   

 

Pre vs. Post-training 

The model included the sum-coded fixed factors Session (Pre vs. Post), Group (Specific action vs. 

Pointing), Verb (Filler vs. Learned) and their interactions and ROI (Midline, Left lateral, Right lateral), 

with random intercepts for Participant and Item. Verb included a random slope for Participant and for 

Item but as this model did not converge, we applied the model without these slopes. The model revealed a 

three-way interaction of Verb:Group:Session (β = -6.25, se = 2.08, t = -3,00, p < .001). The data were 

modeled independently thereafter for each training session.  

 

Pre-training 

The model included the sum-coded fixed factors Group (Specific action vs. Pointing), Verb (Filler vs. 

Learned), ROI (Midline, Left lateral, Right lateral) and their interaction, with random intercepts for 

Participant and Item. Verb included a random slope for Participant and for Item but as this model did not 

converge, we applied the model without these slopes. No effect of Verb was found (β = -5.24, se = 1,85 t 

= -0.283, ns). 

 

Post-training   
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The model included the sum-coded fixed factors Group (Specific action vs. Pointing), Verb (Filler vs. 

Learned), ROI (midline, left hemisphere, right hemisphere) and their interaction with random intercepts 

for Participant and Item. Verb included a random slope for Participant and for Item. The model revealed 

an interaction of Verb:Group (β = 3,19, se = 1.56, t = 2.045, p < .001). The data were modeled 

independently thereafter for each experimental group.  

 

Post-training, Specific Action group 

The model included the sum-coded fixed factors Verb (Filler vs. Learned) and ROI (midline, left 

hemisphere, right hemisphere), with random intercepts for Participant and Item. No effect of Verb was 

found (β = -7.85, se = 6,09 t = -0.129, ns). 

 

Post-training, Pointing group 

The model included the sum-coded fixed factors Verb (Filler vs. Learned) and ROI (midline, left 

hemisphere, right hemisphere), with random intercepts for Participant and Item. No effect of Verb was 

found (β = -3.72, se = 4,93, t = -0.756, ns). 

 

4.1.3 Behavioral performance for Match-Mismatch task 

To test the hypothesis of better behavioural accuracy Post vs Pre training, and, in the Post-training 

session, for the Specific Action vs Pointing group, we compared behavioural accuracy during the Match-

Mismatch task using a generalized linear mixed effects model (glmer). A first model, comparing accuracy 

during Pre vs Post training sessions revealed an interaction of Condition by Session. Participants 

performed at chance Pre-training and above chance Post-training (Fig.3). When the Post-training data 

were modeled separately, a significant effect of Condition emerged, but no effect of Group or interaction 

was found.  
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The first model included the sum coded fixed factors Training session (Pre- vs. Post), Group (Specific vs. 

Pointing), Condition (Match vs. Mismatch) and their interactions, with random intercepts for Participant 

and Item. The model revealed an interaction of Condition:Session (β = - 0.96, se = 0.02, z = -4.174, p < 

.001). The data were modeled independently thereafter for each training session.  

 

Pre-training 

The model included the sum-coded fixed factors Group (Specific action vs. Pointing), Condition (Match 

vs. Mismatch) and their interaction, with random intercepts for Participant and Item. No effect of 

Condition was found (β = 0.15, se = 0.12, z = 0.559, ns) nor of Group (β =0.824, se = 0.066, z = 12.458, 

ns) or their interaction (β = -0.024  se = 0.05,  z =  -0.439, ns).  

 

Post-training   

The same model conducted on the post-training data revealed an effect of Condition (β = -0.44, se = 0.10 

z = -4.09, p < .001). The effect of Group was not significant (β =-0.04, se = 0.139, z = 1.626, ns), nor was 

the interaction (β =0.089, se = 0.054 z = 1.626, ns).   
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Figure 3. Match-mismatch scores pre and post-training for Pointing Group and Specific action Group 

 

4.2 Exploratory analyses 

4.2.1 Behavioral performance, production scores and translation 

To measure learning, participants performed a written translation task (from Serbian into French) and a 

written production task (of the Serbian verbs) post-training.  

 

As can be seen in the Figure 4, below, both groups showed a great deal of variability in performance post-

training. Given this variability, we separated both original groups (Specific action and Pointing) into two 

Performance groups (High and Low performance learners). High performance learners scored above 50% 

accuracy for the average of the Production and Translation tasks. These learners included 55 learners, 30 

from the Specific action group and 25 from the Pointing Group). Low performance learners scored below 

50% accuracy and included 25 learners, 9 High Performance learners and 16 from the Pointing Group. 
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We then performed exploratory analyses on these two subgroups separately, which we report in a separate 

section, below.  

 

Figure 4. Production and Translation test percentage post-training for Pointing and Specific action Groups 

 

4.2.2 Match-Mismatch (ERPs) 

To test the hypothesis of a significant N400 effect for Match vs Mismatch trails, Post-training, for the 

High Performance (but not Low Performance) learners, we compared mean voltage amplitudes in the 

N400 window Post-training, across both groups. An interaction between Condition and Performance 

Group emerged. The data were modeled separately for each Performance Group, revealing no effect of 

Condition for the Low performance learners and a significant effect of Condition (N400 effect for 

Mismatch vs Match trials) for the High performance learners. An interaction of Condition by Group 

emerged and we performed analyses on High performance participants across the two learning groups 

(Specific action vs Pointing). The model revealed an effect of Condition for both learning groups 

individually. 

 

Post-training   
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The model included the sum-coded fixed factors Group (Specific action vs. Pointing), Performance Group 

(High vs. Low performance), Condition (Match vs. Mismatch), ROI and their interaction, with random 

intercepts for Participant and Item. The model revealed an interaction of Condition:Performance group (β 

= 4,12, se = 4.63, t = 8.888, p < .001). The data were modeled independently thereafter for each 

Performance group.  

 

Post-Training: High performance learners 

We performed analyses on High performance participants across the two learning groups (Specific action 

vs Pointing), using the same subset of centro-posterior electrodes listed in the above section. The model 

included the sum-coded fixed factors Group (Specific action vs. Pointing), Condition (Match vs. 

Mismatch), ROI (midline, left hemisphere, right hemisphere) and their interactions, with random 

intercepts for Participant and Item. The model revealed an interaction of Condition:Group (β = 6.29, se = 

4.72, t = 13.310, p < .001). The data were modeled independently thereafter for each experimental group 

(Specific action vs. Pointing), using the same model structure as above without the fixed factor Group. 

 

Post-training Pointing group, High performance learners 

We ran the same model as above, without the factor Group.  The model revealed an effect of Condition (β 

= 8.10, se = 6.52, t = 12.432, p < .001), that did not interact with ROI (β = 3.18, se = 8.20, t =0.388, ns & 

β =1.65, se =1.09, t =0.152, ns) (Figure 5). 

 

Post-training Specific action group, High performance learners 

The same model revealed a significant effect of Condition (β = 4.27, se = 6.80, t = 6.284, p < .001) that 

did not interact with ROI (β = -9.62, se = 8.49  , t =-0.113, ns & β =1.32, se =1.13, t =0.117, ns) (Figure 

6). 

 

Post Training: Low performance learners 
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We performed analyses on Low performance participants across the two learning groups (Specific action 

vs Pointing), using the same subset of centro-posterior electrodes listed in the above section. The model 

included the sum-coded fixed factors Group (Specific action vs. Pointing), Condition (Match vs. 

Mismatch), ROI (midline, left hemisphere, right hemisphere) and their interactions, with random 

intercepts for Participant and Item. No effect of condition was found (β = -1.18, se = 6.16, t = 0.851, ns) 

(Figure 7.) 

 

 

Figure. 5 Post-Training Pointing Group – High performance learners. Significant two-tailed permutation tests are 

indicated in red. 
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Figure. 6 Post-Training, Specific action Group – High performance learners. Significant two-tailed permutation 

tests are indicated in red. 
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Figure. 7 Post-Training, Both Groups – Low performance learners.  

 

4.2.3 Passive listening task: Time-frequency T-tests 

In order to further test the hypothesis of greater motor activation for Test Compared to Filler verbs, post 

training, we performed paired t-tests comparing Pre vs Post (Post – Pre) activity in the Control group for 

Filler verbs, in the Control group for Learned verbs, in the Test group for Filler verbs and in the Test 

group for Learned verbs. Once again, no significant activity emerged in either the mu, high beta or low 

beta frequency bands according to our statistical analysis. Time frequency figures illustrating these 

analyses are included in the Annex.  
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5. Discussion 

The current study explored the neural correlates of embodied learning in a pre/post-test word-learning 

paradigm. Our primary aim was to investigate whether learning action verbs in an L2 is enhanced by 

action performance and, if so, whether this enhancement is indexed by motor activation during word 

processing, post-training. Participants learned L2 words by either observing and performing specific 

actions that were compatible with the semantic content of words or simply observing these actions and 

pointing to objects, in an interactive virtual environment. We measured vocabulary acquisition using 

behavioral and EEG measures as participants performed a Match-Mismatch task pre and post training as 

well as a post-training production and translation task. Based on previous results showing that performing 

actions that are congruent with learned meaning facilitates word-learning (Engelkamp & Krumnacker, 

1980; Johnson-Glenberg & Megowan-Romanowicz, 2017), we hypothesized that our manipulation would 

lead to semantic integration as indexed by an N400 effect for Mismatch vs. Match trials post-training in 

both groups. We also expected that if performing actions strengthens the association between newly 

learned verbs and motor actions more than simply observing actions and pointing, the N400 effect would 

be larger for the Specific Action group. Behavioral analysis for accuracy scores for the Match-Mismatch 

task revealed that, overall, both experimental groups learned the L2 vocabulary, but no differences 

emerged between the two groups. In relation to the neural response, analyses of the Match-Mismatch task 

at pre-training did not reveal any differences in the ERP trace between conditions, in line with 

predictions. Contrary to our expectations, post-training, no differences emerged between these two 

conditions in the N400 time window, for either group (Specific action vs. Pointing group) in our planned 

comparisons.  

 

Participants also performed a Passive listening task during which we measured motor activation via EEG 

as they listened to learned verbs and fillers pre- and post-training. In line with embodied theories, we 

expected our manipulation (training), which involved action performance versus observation and 

pointing, to mimic real-word embodied learning and link motor activity to the semantic meaning of the 
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verbs. As viewing actions has been shown to activate the motor cortex in the same manner (albeit less) as 

action performance, we expected both learning conditions to lead to motor activation during passive 

listening post-training and for this activation to be greater post-training for verbs learned with Specific 

actions. Pre-training, no motor resonance as indexed by Mu, Low Beta or High Beta was seen for either 

group. Once again, contrary to our expectations, our results did not reveal greater motor activation for 

learned words compared to fillers for either experimental group (Specific action vs Pointing) post-

training.  

 

Embodied theories attribute a key role to motor processes in cognition and assume that semantic, and 

hence linguistic, representations are multimodal and grounded in real-world experience (Barsalou, 2008; 

Pulvermüller, 2005). Sensory and motor systems have been shown to be recruited during lexical 

processing, during both L1 and L2 action language processing (Hauk, Johnsrude & Pulvermüller, 2004; 

Pulvermüller, 1999, 2005; Thompson-Schill, 2003; Zappa et al., 2019). According to the “correlational 

learning principle,” the co-occurrence of action-perception and meaning results in the common firing of 

neurons, forming neural distributed neural networks that subserve semantic processing (Pulverm ller, 

1999; 2013). Although a handful of previous EEG studies have found motor activation during action 

language processing in an L2, L2 speakers who show these effects were highly proficient in the L2 

(Vukovic, 2013; Vukovic & Shtyrov, 2014). The only study to examine motor activation during the early 

phases of novel word-learning, observed a pattern of activation that could be interpreted as motor 

activation immediately post-training (same day) but which became less interpretable the next day (Fargier 

et al., 2012). Indeed, motor activation during L2 processing seems to be contingent on proficiency and 

“real word” experience with the L2. Seminal memory studies that show the enactment effect used the first 

language (Engelkamp & Krumnacker, 1980; Engelkamp & Zimmer, 1984). Hence, motor activation has 

been shown to be robust in the L1, likely due to innumerous instances of coupling of action performance 

and viewing over time. Our manipulation involved action observation with pointing vs action observation 

and performance of specific actions during two 30-minute sessions, over two consecutive days. Our 
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results indicate that this exposure did not result in a sufficiently robust “motor trace”, or motor-to-

semantic association. Future studies would benefit from having participants learn novel words over a 

longer learning period, which would allow them to form better associations between actions and learned 

words. 

 

Participants showed a great deal of variability in learning, as revealed by performance on the written 

production and translation tasks at the post-test. This was true for both the specific action and the control 

group. We can note that vocabulary acquisition was rather difficult, as participants had to learn 12 verbs 

in a completely unfamiliar language (Serbian) that is unrelated to their native language (French) after only 

ten exposures over the two learning sessions. While all of the Serbian words were phototactically legal in 

French, they bore no relationship to their French counterparts. Cognitive abilities (Kroll et al., 2002) have 

been shown to play an important role in L2 learning. For example, a handful of studies have found that 

working memory affects L2 processing in general (Reichle et al., 2016), and word learning in particular 

(Borges Mota & Verçosa, 2007), including cross-modal working memory binding abilities (Wang et al., 

2017). Although we did not test participants for such individual differences, it is possible that they could 

underlie learning success, which could in turn have affected electrophysiological results (N400 effect for 

Match-mismatch task and motor activation during Passive listening task).  

 

The extreme variability in participants’ vocabulary learning could have directly impacted the neural 

pattern obtained for the group analyses.  Otherwise stated, it is possible that participants who showed 

little success in learning, as revealed by their ability to produce and translate the vocabulary, could 

statistically eliminate predicted effects in those who learned the action verbs, in both experimental groups. 

To explore this, we separated learners into High performance and Low performance learners, based on 

their ability to produce and translate the action verbs post-training. We performed statistical analyses on 

the Match-mismatch task (ERPs) which revealed an interaction between Learning Performance and 

Condition. The results for the Match-mismatch task post-training matched our initial expectations for 
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both learning groups. For High performance learners, an N400 effect emerged for Mismatch compared to 

Match in both the Specific action and the Pointing groups. No such effect was found for Low 

performance learners in either experimental group.  

 

These results show that High Performance learners succeeded in quickly learning a L2 vocabulary, as 

demonstrated by both the establishment of an N400 effect for newly learned words and by their ability to 

translate and produce the learned vocabulary. Several studies have shown N400 modulations related to 

learning an L2 and artificial languages following extended L2 training (Chun, Choi & Kim, 2012; 

McLaughlin et al., 2004; Stein et al., 2006; Yum, Midgley, Holcomb & Grainger, 2014; Soskey et al., 

2016) but only a handful have shown these effects during early stages of encoding (Zappa et al., 2022). 

Although L1 studies have shown a very rapid emergence of the N400 for novel words presented in highly 

constraining contexts (Borovsky et al., 2012; Mestres-Misse et al., 2007), ours is the first to show this 

effect as a result of more naturalistic embodied L2 word-learning using VR, after two 30 minute sessions 

of training.  

 

As concerns embodied learning, it is an open debate whether physically performing congruent actions as 

opposed to simply viewing actions is advantageous for one-to-one mapping between labels and actions. 

Indeed, a handful of studies have shown that simply viewing actions that are congruent to semantic 

content provides a learning advantage compared to viewing pictures or receiving verbal input alone 

(Macedonia et al., 2019; Sweller et al.,2020). In fact, Swell and colleagues compared viewing gestures 

while learning to perform them and found no differences between conditions. We expected that if action 

performance creates a stronger motor trace (i.e., the “enactment effect” or embodied learning), the 

Specific action group, who both observed and performed congruent actions during learning, would 

achieve better semantic integration of the taught words compared to the Pointing group. On the other 

hand, if performance does not lead to better integration than observation, the Pointing group, who only 

observed actions and systematically pointed to virtual objects, should have integrated the taught words as 
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well as the Specific action group. Our results for the High production leaners do not reveal significant 

differences between the Pointing and Specific action groups.  

 

Overall, these results differ from both behavioral studies showing the “enactment effect” (Engelkamp & 

Krumnacker, 1980; Engelkamp & Zimmer, 1984; Moskowitz, 1976; Öttl, Dudschig & Kaup, 2017; 

Quinn-Allen, 1995) and those of several fMRI studies, outlined in the introduction, showing that learning 

novel words is better supported when accompanied by self-performed congruent gestures compared to 

viewing images, or being exposed to only verbal content (Macedonia et al., 2019; Mayer et al. 2015). This 

improved performance is generally linked to the creation of an “embodied representation” based on 

greater activity in specialized visual and motor areas for words learned with picture visualization or self-

performed actions (Mayer et al., 2015) or more distributed sensorimotor networks, for more learning 

modalities (Macedonia et al., 2019). Instead, our results suggest that action observation is as effective as 

action performance (Kormi-Nouri, 2000; Macedonia et al., 2019; Sweller et al.,2020). 

 

As regards the Passive listening task, the statistical power analyses we performed called for a sample size 

of 42 participants for the within-subjects comparisons in the time-frequency analyses. Given that we had 

30 High performance participants in the Specific action group and 25 in the Pointing group, we were 

unable to perform time-frequency analyses on these specific groups, due to lack of power. Nonetheless, 

the semantic effects we found point to a clear contribution of both action performance and observation to 

L2 word learning, in line with theories of embodied semantics, which claim that simulation is involved in 

language processing and learning.  

 

6. Caveats 

 As pointed out above, the great variability in learning success in both experimental groups is likely due 

to individual differences for which we did not control, such as executive and working memory. The main 

caveat of the current study is not taking these factors into account. Future studies would benefit from 
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testing for individual differences pre-training, and having participants perform an initial non-language 

related learning task to control for learning abilities. Another caveat is that both experimental conditions 

involved viewing actions, which induces motor activation. Including a control condition which does not 

involve any direct motor activation, such as rote learning using still images, would have allowed us to 

better link induced motor activation to learning success. It would also have allowed us to draw finer 

comparisons between induced motor activation during training and motor activation post-training during 

action verb processing. This comparison would tease apart motor effects that are a direct result of motor 

activation during L2 learning while observing and/or performing actions, and those that are already 

associated with L1 translations of learned verbs.  

 

7. Conclusion 

Within the framework of embodied semantics, the current study examined whether action verbs learned 

with specific actions would lead better L2 verb learning and produce more motor activation post-training.  

Declared analyses failed to show either semantic or motor effects post-training, most likely due to a high 

level of variability in learning success across experimental groups. Exploratory analyses revealed that 

learners in both groups who were able to translate and produce verbs behaviorally showed semantic 

effects post-training. These effects did not differ according to the learning condition. Semantic effects add 

electrophysiological evidence to rapid L2 word learning, supported by observing or performing actions, 

observed in numerous behavioral studies. These results lend support to embodied theories that claim that 

semantic meaning is represented multimodally. Furthermore, ours is the first study to use VR to induce 

motor activation during L2 learning and validates the experimental use of such a setup to explore other 

aspects of embodied L2 learning.  

 

Anonymized raw data and digital study materials are available on Zenodo: 10.5281/zenodo.10301899 

 

The approved Stage 1 protocol can be found on the Open Science Framework: 

https://osf.io/futns/?view_only=951661c9eac7483bbfa80128fe67e5bb 

 
 

https://osf.io/futns/?view_only=951661c9eac7483bbfa80128fe67e5bb
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Sebian word English translation French translation 

gurni push pousser 

zagrebi scratch gratter 

pusti drop lacher 

baci throw lancer 

okreni pivot faire pivoter 

premesti move déplacer 

protresi shake secouer 

kucni tap tapoter 

uhvati catch attraper 

podigni lift soulever 

lupi hit cogner 

obori tip over faire tomber 

 

Table 1. Stimuli 
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Annex. 

 

Time frequency figures illustrating t-test (4.2.3) 

 
Fig.1 Paired t-test for Control group, Post minus Pre-training activity, for the Filler verbs 

 

 
 

Fig.2 Paired t-test for Control group, Post minus Pre-training activity, for the Learned verbs 
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Fig.3 Paired t-test for Test group, Post minus Pre-training activity, for the Filler verbs 

 

 
Fig.3 Paired t-test for Test group, Post minus Pre-training activity, for the Learned verbs 

 

 

 

 

 

 

 

 

 

 


