
HAL Id: hal-03657285
https://hal.science/hal-03657285

Preprint submitted on 2 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-classical Lagrangian intersections
Ilya Bogaevsky, Michel L. Rouleux

To cite this version:

Ilya Bogaevsky, Michel L. Rouleux. Semi-classical Lagrangian intersections. 2022. �hal-03657285�

https://hal.science/hal-03657285
https://hal.archives-ouvertes.fr


Semi-classical Lagrangian intersections

Ilya BOGAEVSKY1 & Michel ROULEUX2

1 Faculty of Mechanics and Mathematics, Lomonosov Moscow State University Leninskie Gory,

Moscow, Russia ; ibogaevsk@gmail.com
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Abstract: We investigate normal forms of germs of glancing Lagrangian intersections, and their semi-

classical counterparts. This is motivated by singularities of Bessel beams, or diffraction problems by

an obstacle with a non convex boundary.

0/ Introduction

Let M = Rn, we restrict essentially to the case n = 2.

Parametrices of linear PDE’s on M make use of symbolic calculus adapted to Lagrangian in-

tersection, see [MelUhl] for high frequency asymptotics, and [AnDoNaRo] for semi-classics in the

framework of Maslov canonical operator.

LetH(x, hDx;h) be a h-PDO whose symbol has the asymptotic expansionH(x, p;h) ∼ H0(x, p)+

hH1(x, p) + · · ·, and assume that H0(x, p) = 0 is a smooth, non critical hypersurface, fibrated by

Hamiltonian curves. To start with, we shall denote H0 simply by H.

On the other hand, let Λ → T ∗M be a smooth embedded Lagrangian manifold, and fh be a

Lagrangian semi-classical distribution microlocally supported on Λ.

The main concern is to construct the asymptotic outgoing solution of

(0.2) H(x, hDx;h)uh(x) = fh(x), uh(x) = E+fh(x;h) =

∫ ∞

0

e−itH/hfh(x) dt

and in particular to solve Cauchy problem

(0.3) hDtvh +H(x, hDx)vh = 0, vh|t=0 = fh

The local theory amounts to study germs of Lagrangian manifolds and hypersurfaces.

At the classical level the question is about a pair consisting of a Lagrangian submanifold Λ (we

call the “initial manifold”) and a hypersurface G = {H = 0}. We are interested in the set Λ1 of

characteristics of H intersecting Λ. Global aspects of Lagrangian intersection theory were greatly

motivated by Arnold conjectures [Ar] and have been extensively studied (see [ElGr]). Here we simply

focus on the germs of the generating functions near an intersection point.

The generic case is when vH is transverse to Λ at t = 0, then Λ1 is precisely the union of the

outgoing/incoming flows Λ± of Λ by the Hamilton vector field vH in G, see Theorem 1.1 below.

This is the situation considered in [MelUhl] and [AnDoNaRo] : Λ and Λ+ intersect cleanly along

Λ ∩ Λ+ = ∂Λ+, and (Λ,Λ+) is called an intersecting pair of Lagrangian manifolds.

Here we want to consider a point z ∈ Λ where the intersection is not clean, i.e. vG ∈ TzΛ. We

call such a point a glancing point, and denote their set by G(Λ, G). We answer first the question :
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• What is the classification of such pairs (Λ, G) up to symplectic diffeomorphisms ?

Normal forms which deals with isolated points of non-transversality, called a kiss ([ElGr,p.19].

This is “the generic case”, which has been investigated in [ZaMy], using Morse families. We recall

the most simple type of kiss in Theorem 1.2 below.

In case G is tangent to Λ along a non-singular hypersurface ℓ ⊂ Λ, we call (Λ, ℓ,H) a triad.

Of course, such a pair uniquely defines the Lagrangian submanifold Λ1.

Next we consider the semi-classical level, and try to represent the solution of (0.3) and (0.2) near

a glancing point. The first step is to construct the solution of Hamilton-Jacobi equation parametrizing

Λ1, which is generically singular.

A similar problem arises in diffraction theory for the wave equation H = ∂2t − ∆x in M =

(Rn
x \ O) × Rt outside an obstacle O : the question here is about the classification of glancing

hypersurfaces (F,G) in T ∗M at some point z. Here G = {τ2 − ξ2 = 0} and F stands for the lift of

the boundary of O in T ∗M . It turns out that F and G play symmetrical roles.

A theorem of Melrose [Hö,Theorem 21.4.8] says that such a pair, near the glancing point z, is

symplectically equivalent to F = {x1 = 0} and G = {g = ξ21 − x1 − ξ2 = 0}.

The second main question we adress here is the following:

• Given a pair of glancing hypersurfaces (F,G) in T ∗M at some point z, find the germs at z of some

Lagrangian manifolds Λ transverse to F at z and such that vg ∈ TzΛ ?

There are indeed such one-parameter families of Λ, for which we compute Az(Λ, G), Bz(Λ, G),

see Propositions 3.1-3.2 below.

Next we construct solutions of Hamilton-Jacobi equation for hDt+(hDx1
)2−x1−hDx2

with initial

condition on Λ. This, conveniently adapted to dimensions n ≥ 3, could be applied to the diffractive

Cauchy problem above when the obstacle is not necessarily convex at a point of the boundary, see

[Le], [Sm].

1/ Lagrangian intersections

First recall the situation where vH is transverse to Λ.

Let ι0 : Λ0 → T ∗M be a smooth embedded Lagrangian manifold, and ι1 : Λ1 → T ∗M be a

smooth embedded Lagrangian manifold with smooth boundary ∂Λ1 (isotropic manifold). Following

[MelUhl] we say that (Λ0,Λ1) is an intersecting pair of Lagrangian manifolds iff Λ0 ∩ Λ1 = ∂Λ1 and

the intersection is clean, i.e.

(1.1) ∀z ∈ ∂Λ1 TzΛ0 ∩ TzΛ1 = Tz∂Λ1

(in particular Λ0 and Λ1 cannot be transverse). On the set of intersecting pairs of Lagrangian

manifolds we define an equivalence relation by saying that (Λ0,Λ1) ∼ (Λ′
0,Λ

′
1) iff near any z ∈ ∂Λ1,

z′ ∈ ∂Λ′
1, there is a symplectic map κ such that κ(z) = z′, and a neighbhd V ⊂ T ∗M of z such that

κ(Λ0 ∩ V ) ⊂ Λ′
0, κ(Λ1 ∩ V ) ⊂ Λ′

1. We will call the equivalence class a Lagrangian pair. The following

result readily extends [MelUhl, Prop.1.3] in the special case of homogeneous Lagrangian manifolds :

Theorem 1.1 [MelUhl]: All intersecting pairs of manifolds in T ∗M are locally equivalent. More

precisely near each z ∈ T ∗M , there exists a canonical map κ : T ∗M → T ∗Rn such that κ(z) = (0, 0),
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κ(Λ0 ∩ V ) ⊂ T ∗
0R

n (vertical fiber at 0), and κ(Λ1 ∩ V ) ⊂ Λ0
+, Λ

0
+ being the flow-out of T ∗

0R
n by the

Hamilton vector field vξn = ((0, · · · , 0, 1), 0) of ξn, passing through some (0; ξ) = (0; (ξ′, 0)) i.e.

(1.5) Λ0
+ = {(x, ξ) ∈ T ∗Rn : x = (0, xn), ξ = (ξ′, 0), xn > 0}

Lemma 1.1 has its semi-classical counterpart : near a point z of intersecting pair the normal form

for Λ is given by {x = 0} and this of H is (say) hDxn
. This solves locally problem (0.2). Namely, let

fh be a Lagrangian distribution defined by its amplitude a(x′, xn−t, ξ;h), and supported microlocally

on the “vertical plane” Λ = {x = 0}. Let θT ∈ C∞(R+) vanish near +∞ and equal to 1 for t ≤ T ,

then

(1.6) u(x, h) =
i

h

∫ ∞

0

θT (t) dt

∫

ei(x
′ξ′+(xn−t)ξn)/ha(x′, xn − t, ξ;h) dξ

satisfies (0.2) mod O(h∞) whenever xn ≤ T/2.

Assume instead that Hamilton foliation of H is simply tangent to Λ at some z0 ∈ Λ ∩ {H = 0}.

Then Λ1 is a singular Lagrangian manifold near z0, and the intersection Λ ∩ Λ1 is not clean. Such a

point z0 of non-transversality is called glancing.

Near a glancing point Theorem 1.1 does not apply. So we need to extend (locally) Theorem 1.1

to this situation, by finding the normal form of non Lagrangian (or “glancing”) intersection for (Λ, G)

near z0.

We have the following :

Theorem 1.2 [ZaMy]: Assume the germs (Λ, G) are non-transversal at an isolated point z0 ∈ T ∗M ,

then (Λ, G) has generically the following normal form, up to a symplectic transformation κ±

(1.7) Λ = {ξ =
∂φ±
∂x

}, G = {g = 0}

where g(x, ξ) = ξ1 and the generating functions φ±(x) = ±
x3

1

3 + x1x
2
2.

The proof is based on the theory of Morse families, see e.g. [BaWe].

In the case of φ−(x) we get the two isotropic lines x1 = ±x2, ξ2 = ±2x22, ξ1 = 0 in the intersection

of Λ with the Hamiltonian level ξ1 = 0. Their extension along the characteristics ξ1 = ξ2 = x2 = 0

(vH = (1, 0; 0, 0) at z0 ) is the union of two Lagrangian submanifolds {ξ1 = 0, ξ2 = ±2x22}.

In the case of φ+(x), the intersection of Λ with ξ1 = 0 reduces to x = 0.

We are now to define some invariants of (Λ, G) at z = z0.

Definition 1.3: Define Λ locally near z by f1 = f2 = 0, with {fi, fj} = 0. Consider the symmetric

matrix

Az = Az(Λ, G) =

(

{f2, {f2, g}} −{f1, {f2, g}}
−{f2, {f1, g}} {f1, {f1, g}}

)

(z)

and the vector

Bz = Bz(Λ, G) =

(

{g, {g, f1}}

{g, {g, f2}}

)

(z)
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Let z be a glancing point for the pair (Λ, G) i.e.

g(z) = f1(z) = f2(z) = 0, {g, f1}(z) = {g, f2}(z) = 0

We distinguish the following 10 possibilities for the 2-jets of (Λ, G)z :

detAz > 0, Bz 6= 0(1)

detAz > 0, Bz = 0(2)

detAz < 0, tBzAzBz 6= 0(3)

detAz < 0, tBzAzBz = 0, Bz 6= 0(4)

detAz < 0, Bz = 0(5)

detAz = 0, tBzAzBz 6= 0(6)

detAz = 0, Az 6= 0, tBzAzBz = 0, Bz 6= 0(7)

detAz = 0, Az 6= 0, Bz = 0(8)

Az = 0, Bz 6= 0(9)

Az = 0, Bz = 0(10)

Remark 1.1: Of course, Az and Bz are invariant under symplectic transformations, but they are not

uniquely defined. However each of the cases above is preserved by a non-degenerate linear transfor-

mation of the type
(f ′

1

f ′

2

)

= P
(

f1
f2

)

, where P ∈ GL(2) has variable coefficients. Namely if A′
z is defined

as Az with f ′
1, f

′
2 instead of f1, f2, then

A′
z = (detPz)

2 tP−1
z AzP

−1
z , B′

z = PzBz

However Az and Bz cannot account for higher order terms occurring in the classification of [ZyMa].

Under the hypothesis of Theorem 1.2, an elementary computation shows that f1 = ξ1 ∓ x21 −

x22, f2 = ξ2 − 2x1x2, g = ξ1:

A±
0 =

(

2 0
0 ±2

)

, B±(0) =

(

∓2

0

)

so we are in case (1) for +, and in case (3) for −.

We turn now to the semi-classical level, and try to solve (0.2) or (0.3). Recall Λt = exp tvH(Λ)

verifies Λt+s = exp tvH(Λs) for all t, s ≥ 0. Let Γt be the set of points of Λt such that vH is tangent

to Λt, we have also Γt+s = exp tvH(Γs). So the glancing property is invariant under the Hamiltonian

flow.

We can trivially solve in the (ξ1, x2) coordinates Hamilton-Jacobi equation ∂Ψ
∂t +

∂Ψ
∂x1

= 0, Ψ|t=0 =

φ(x1, x2). This gives Ψ(t, x1, x2) = φ(−t+ x1, x2), so the condition

Ψ|t=0 = φ±

gives

(1.10) Ψ±(t, x1, x2) = ±
1

3
(−t+ x1)

3 + (−t+ x1)x
2
2
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By definition

Λ1 = {ξ1 =
∂Ψ

∂x1
= 0, ξ2 =

∂Ψ

∂x2
} = {ξ1 = ±(−t+ x1)

2 + x22 = 0, ξ2 = 2(−t+ x1)x2}.

For Ψ+ we get:

Λ1 = {ξ1 = 0, t = x1, x2 = 0, ξ2 = 0}

This is a one-dimensional isotropic submanifold because the intersection Λ and G is a point. For Ψ−

we get:

Λ1 = {ξ1 = 0, t = x1 ± x2, ξ2 = ∓2x22}.

This is a Lagrangian submanifold with a singular line.

2/ Examples of non-Lagrangian intersections.

Consider a positively homogeneous Hamiltonian H(x, p) of degree m with respect to p. The

energy surface should then be specified as H(x, p) = E. We first classify points z = (x, p) ∈ G =

{H = E} according to vH(z).

Definition 2.1 [AnDoNaRo3]: Let H be positively homogeneous of degree m with respect to p. We

call a point z = (x, p) such that −∂xH(z) 6= 0 an ordinary point if 〈−∂xH(z), p〉 6= 0, and a special

point otherwise. If −∂xH(z) = 0 we call z a residual point.

Examples 2.1:

(1) For Tricomi Hamiltonian, H(x, p) = x2p
2
1 + p22, the residual points are those for p1 = 0, the

special points those for p1 6= 0 but p2 = 0, and the ordinary points those for p1p2 6= 0.

(2) For Métivier Hamiltonian, H(x, p) = p21+(x21+x
2
2)p

2
2, the residual points are given by p2 = 0

or x = (x1, x2) = 0, the special points by p2 6= 0 and x 6= 0, but 〈p, x〉 = 0, and the ordinary points

by p2〈x, p〉 6= 0.

(3) Let H be the “conformal metric” given by

(2.1) H(x, p) = |p|m
1

ρ(x)

where ρ is a smooth positive function on M , m ≥ 1. The residual points are the critical points of ρ ;

at a special point, 〈∇ρ, p〉 = 0, i.e. vH is tangent to the level curves of ρ. This example of practical

interest was extensively studied in [AnDoNaRo2,3].

Together with H positively homogeneous of degree m, consider an initial manifold Λ. In the

following we try to link Lagrangian intersections with the classification above.

We take first Λ = T ∗
x0
M ≈ {x = x0} (conormal bundle to {x0} in T ∗M). Then Λ intersects

cleanly Λ+ along ∂Λ+.

Consider next the “initial” Lagrangian manifold

(2.3) Λ = {x = X(ϕ,ψ) = ϕω(ψ), p = P (ϕ,ψ) = ω(ψ), ϕ ∈ R}
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which is called the “cylinder” ; here ω ∈ Sn−1 is the unit vector parametrized by ψ. This is the

wave-front set of semi-classical distributions related with Bessel functions.

Let us check first the Lagrangian intersection in this case. The tangent space TzΛ has the

parametric equations

δX = ω(ψ)δϕ+ ϕω⊥(ψ)δψ, δP = ω⊥(ψ)δψ, δϕ, δψ ∈ R

so vH ∈ TzΛ iff there exist (δψ, δϕ) such that

∂pH = ω(ψ)δϕ+ ϕω⊥(ψ)δψ, −∂xH = ω⊥(ψ)δψ

Taking scalar products with ω(ψ), ω⊥(ψ), and using Euler identity, we get δϕ = 〈∂pH,P (ψ)〉 = mH =

mE, δψ = 〈−∂xH,ω
⊥(ψ)〉. Then, for z ∈ ΣE,

(2.5) 〈∂pH + ϕ∂xH,ω
⊥(ψ)〉 = 0, 〈−∂xH,ω(ψ)〉 = 0, H(z) = 0

Second relation (2.5) means that z =
(

ϕω(ψ), ω(ψ)
)

is a special point (Definition 1.2). Since

(ω(ψ), ω⊥(ψ) form a basis of R2, these relations are necessary and sufficient for vH ∈ TzΛ, i.e.

z to be glancing.

Examples 2.2:

(4) When H = p2, all points are glancing. When H = |p|m

ρ(x)
, z(0) is a glancing point iff

(2.6) either : ϕ 6= 0 and ∇ρ = 0, or : ϕ = 0 and 〈∇ρ(0), ω(ψ)〉 = 0

Second condition means that if z(0) = (0, ω(ψ)) is a special point.

(5) Assume again M = R2. For a, b ∈ R, let ρ(x) = 1 + ax21 + bx22. Consider Hamiltonian on

T ∗R2 of the form

H(x, p) =
〈µ, p〉

ρ(x)

with µ = (1, 0). A computation shows that, with x1 = ϕ cosψ, x2 = ϕ sinψ

〈−∂xH,ω(ψ)〉 =
2ϕ cosψ

ρ2(x)
(a cos2 ψ + b sin2 ψ)

− ρ2(x)〈−∂xH,ω(ψ)〉 =
(

ρ(x) + 2ϕ2 cos2 ψ(a− b)
)

sinψ

so choosing a > b > 0 and E > 1, we see that G(Λ, G) = ∅. Otherwise, there may be a unique glancing

point near x = 0.

(6) Consider Hamiltonian with constant coefficients H(x, p) = 〈µ, p〉, then when ω(ψ) is parallel

to µ, the corresponding ray is contained entirely in Λ, so the intersection is not transverse. This

corresponds to a triad.

(7) Here is another example of a triad. Consider the scattering problem by an obstacle, e.g. H =

−∆ on L2(R2 \ O) with Dirichlet boundary conditions on ∂O, and E = 1 so that the characteristics

are parametrized by arc-length.
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Let ℓ be a Lagrangian submanifold in {T ∗∂O : p2 = 1} and Λ be its preimage under the natural

projection T ∗
∂OR

2 → T ∗∂O. Then (Λ, ℓ, {p2 = 1}) is a triad and the union of all characteristics in

p2 = 1 intersecting ℓ is a Lagrangian submanifold Λ1 with singularities.

For example, Λ1 has cusps along the ray being tangent to an inflection point of ∂O. If n = 3

then Λ1 can have more interesting singularities: open swallow-tails and open Whitney umbrellas (see

[Arn], [Gi], [Sch]).

The submanifold Λ1 gives a short-wave approximation of solutions for the obstacle problem.

When Λ1 is singular this is of particular interest since we cannot resort to standard Maslov canonical

operator.

Remark 2.2: When (Λ, G) are given by (2.3) and (2.1) and m = 1, G = {H = E} there is a general

Morse family parametrizing Λt, of the form

Φ(x, t, ψ, ϕ, λ) = mEt + ϕ+ λ〈P (t, ϕ, ψ), x−X(t, ϕ, ψ)〉

wheremEt+ϕ is an eikonal coordinate, and (X,P ) the solution of Hamilton equations Ẋ = ∂xH, Ṗ =

−∂xH with prescribed value on Λ, see [AnDoNaRo3]. But for a glancing Lagrangian intersection, this

formula is of little help.

3/ Glancing hypersurfaces and Lagrangian intersections.

Let F,G be two smooth hypersurfaces of T ∗M intersecting transversally at z. Recall from

[Hö,Definition 21.4.6] F and G are said to be glancing at z iff the Hamilton foliation of F = {f = 0}

and G = {g = 0} (locally near z) are simply tangent at z.

Stated otherwise, we have f(z) = g(z) = {f, g}(z) = 0 (Poisson bracket), but the second Poisson

brackets {f, {f, g}}(z), {g, {g, f}}(z) are non zero.

By the theorem of equivalence of glancing hypersurfaces of Melrose [Hö,Theorem 21.4.8] there

are local symplectic coordinates (x, ξ) vanishing at z such that F,G are defined resp. by x1 = 0 and

ξ21 − x1 − ξ2 = 0. Then g = ξ21 − x1 − ξ2 = 0 will be the “normal form” of H in these coordinates.

(We use the notation g for the normal form of H, or H −E).

We apply this theorem to G being the energy surface H = E (i.e. g = 0) and F an auxiliary

hypersurface intersecting G transversally at a glancing point z. We want to find germs of Lagrangian

manifolds Λ such that Λ is transverse to F at z but (Λ, G) has glancing intersection at z. Again,

this means that TzΛ ∩ (TzF )σ = {0} and RvH(z) = (TzG)σ ⊂ TzΛ, where superscript σ denotes

symplectic orthogonal.

All computations below will be carried out in the local symplectic coordinates (x, ξ) vanishing at

z.

3.1 Constructing some phase functions parametrizing Λ.

The Hamiltonian vector field for g = ξ21 −x1− ξ2 takes the form vg = 2ξ1∂x1
−∂x2

+∂ξ1 , or using

coordinates (δx, δξ) in TT ∗M , as

(3.2) vg = (δx1, δx2; δξ1, δξ2) = (2ξ1,−1; 1, 0)

7



We know that a general Lagrangian manifold can be parametrized in the mixed representation, so

when n = 2 by one of the following cases

(3.3)

(I) Λ = {ξ =
∂φ

∂x
}, (II) Λ = {x = −

∂φ

∂ξ
}

(III) Λ = {x1 = −
∂φ

∂ξ1
, ξ2 =

∂φ

∂x2
, (IV) Λ = {x2 = −

∂φ

∂ξ2
, ξ1 =

∂φ

∂x1
}

To determine Λ, we write that the glancing intersection of (Λ, G) at z should take place at z =

(x1, x2, ξ1, ξ2) = 0, i.e. for z small enough, vg(z) ∈ TzΛ implies z = 0. Then we check that Λ is

transverse to F at z = 0. There will be of course many possibilities for Λ, and we content ourselves

with a few significant examples.

The linear situation is the case where φ is quadratic. Cases (I),(II),(III) give one-parameter

families of Lagrangian manifolds. We show that Case (IV) does not occur.

Proposition 3.1: Consider first a quadratic phase φ = φ0.

• In Cases (I),(II),(III) φ0 are one-parameter families taking values

(3.4) (I) φ0(x) =
1

2
(ax21 − 2x1x2), (II) φ0(ξ) =

1

2
(2ξ1ξ2 + cξ22), (III) φ0(x2, ξ1) =

1

2
b(ξ1 + x2)

2

respectively, where a, b, c 6= 0. The manifold Λ is transverse to F at z = 0, and the corresponding

matrices Az(Λ, G), Bz(Λ, G) in Definition 1.3 are then given by

(3.5)

(I) Az = 2

(

1 a
a a2

)

, Bz = 2

(

−a

1

)

, (II) Az = 2

(

0 0
0 1

)

, Bz = 2

(

1

0

)

(III) Az = 2

(

0 0
0 1

)

, Bz = 2

(

1

0

)

So with the notations of Definition 1.3, case (I) is of type (6) or (7) according to a3 +2a2 +1 = 0 or

not, while cases (II) and and (III) are of type (6).

• Case (IV) does not occur.

Proof:

• Case (I). The quadratic phase takes the form φ0 = 1
2 (ax

2
1 + 2bx1x2 + cx22). That vg be tangent to

Λ at z express as

(3.6) (δx1, δx2; aδx1 + bδx2, bδx1 + cδx2) = (2ξ1,−1; 1, 0)

By substitution we find ξ1 = b+1
2a

= c
2b
, so condition ξ1 = 0 gives b + 1 = c = 0. Substituting in

ξ1 = ax1 + bx2 gives ax1 − x2 = 0. Then the condition z ∈ G, namely g = 0 gives −x1 − ξ2 = 0,

so altogether x1 = −ξ2 = x2

a
, ξ1 = 0, and z = (x1, ax1, 0,−x1). Finally the condition z ∈ F gives

x1 = 0, hence z ∈ F ∩G gives z = 0. So the phase φ0 defining Λ is given by φ0 = 1
2
(ax21 − 2x1x2). It

is also clear that Λ is transverse to F at z = 0. Let us compute the matrix elements of Az , Bz . With

fj = ξj −
∂φ
∂xj

, we have

{f1, {f1, g}} = 2a2, {f2, {f2, g}} = 2, {f1, {f2, g}} = −2a, {g, {g, f1}} = −2a, {g, {g, f2}} = 2
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which gives (3.5)(I).

• Case (II). The phase is of the form φ0 = 1
2 (aξ

2
1 +2bξ1ξ2+ cξ

2
2), Hamilton vector field vg = (−aδξ1−

bδξ2,−bδξ1 − cδξ2; δξ1, δξ2) = (2ξ1,−1; 1, 0), so necessary condition ξ1 = 0 gives a = 0, b = 1. The

condition z ∈ G gives z = (−ξ2,−cξ2; 0, ξ2), and the condition z ∈ Λ gives −x2 = 0, so we get z = 0.

The phase defining Λ is given by φ0 = 1
2
(2ξ1ξ2 + cξ22). Again Λ is transverse to F at z = 0. With

fj = xj +
∂φ
∂ξj

, we have

{f1, {f1, g}} = 2, {f2, {f2, g}} = 0, {f1, {f2, g}} = 0, {g, {g, f1}} = 2, {g, {g, f2}} = 0

which gives (3.5)(II).

• Case (III). The phase is of the form φ0 = 1
2
(aξ21 + 2bx2ξ1 + cx22), and Hamilton vector field vg =

(−aδξ1 − bδx2, δx2; δξ1, bδξ1 + cδx2) = (2ξ1,−1; 1, 0), so necessary condition ξ1 = 0 gives a = b = c.

The condition z ∈ G gives z = (x1,−
x1

a
; 0,−x1), and the condition z ∈ Λ gives x1 = 0, so we get

z = 0 as expected. The phase defining Λ is thus given by φ0 = a
2
(ξ1 + x2)

2. Again Λ is transverse to

F at z = 0. With f1 = x1 +
∂φ
∂ξ1

, f2 = ξ2 −
∂φ
∂x2

we have

{f1, {f1, g}} = 2, {f2, {f2, g}} = 0, {f1, {f2, g}} = 0, {g, {g, f1}} = 2, {g, {g, f2}} = 0

which gives (3.5)(III).

• Case (IV). The quadratic phase takes the form φ = 1
2
(ax21 + 2bx1ξ2 + cξ22), but Hamilton vector

field vg = (δx1,−bδx1 − cδξ2; aδx1 + bδξ2, δξ2) = (2ξ1,−1; 1, 0) cannot be tangent to Λ near z = 0. ♣

Next we consider φ = φ0 + φ1, where φ1 is a cubic homogeneous polynomial. The role of the

cubic term is suggested by the normal form in Theorem 1.2.

Proposition 3.2: The phase with a cubic term takes the form φ = φ0 +φ1. The manifold Λ is again

transverse to F at z = 0.

• In Case (I) φ0 fixes entirely the one-parameter family

(3.8) (I) φ(x) =
1

2
(ax21 − 2x1x2)−

1

3
(ax1 − x2)

3, Az = Bz = 0

which has type (10) in Definition 1.3.

• In Case (III), φ0(x2, ξ1) = 1
2
b(ξ1 + x2)

2, and φ1 is of the form φ1(x2, ξ1) = 1
3
(a′ξ31 + 3b′ξ21x2 +

3c′ξ1x
2
2 + d′x32). Let ∆ be as in (3.17). If ∆ 6= 0 we have

Az = 2

(

d′ −b′ + c′

−b′ + c′ 1 + b′ − a′

)

, Bz = 2

(

1− c′ + 2b′

b′ + d′ − c

)

which has type (1) in Definition 1.3. If ∆ = 0, z = 0 is glancing iff either (1−c′)b′ = 0 or (1−b′)c′ = 0.

• In Case (II)

(3.10) (II) φ(ξ) =
1

2
(2ξ1ξ2 + cξ22) +

1

3
(−ξ31 + 3c′ξ1ξ

2
2 + d′ξ32)

• Case (IV) does not occur.

9



Proof:

• Case (I). The phase defining Λ is φ = φ0 +O(|x|3) with φ0 = 1
2
(ax21 − 2x1x2), and

φ1 =
1

3
(a′x31 + 3b′x21x2 + 3c′x1x

2
2 + d′x32)

To this order, the condition vg(z) ∈ TzΛ takes the form

(

δx1, δx2; (a+ 2a′x1 + 2b′x2)δx1 + (−1 + 2b′x1 + 2c′x2)δx2,

(−1 + 2b′x1 + 2c′x2)δx1 + (2c′x1 + 2d′x2)δx2
)

= (2ξ1,−1; 1, 0)

which yields the system

(3.12) −aξ1 + b′x1 + c′x2 = 2ξ1(a
′x1 + b′x2), ξ1 + c′x1 + d′x2 = 2ξ1(b

′x1 + c′x2)

Eliminating ξ1 on the LHS gives

(3.13) (b′ + ac′)x1 + (c′ + ad′)x2 = 2ξ1
(

(a′ + ab′)x1 + (b′ + ac′)x2
)

The condition z ∈ F gives x1 = 0. Substituting into (3.13) we get x2 = 0 or c′ + ad′ = 2ξ1(b
′ + ac′).

Assume x2 = 0, then the condition z ∈ G gives ξ21 = x1 + ξ2 = b′x21 + 2c′x1x2 + d′x22 = 0, so z = 0.

Assume instead c′ + ad′ = 2ξ1(b
′ + ac′). Then as before c′ + ad′ = 0, so either ξ1 = 0 and (3.12)

gives again x2 = 0, so z = 0. Finally we are left with the condition b′ + ac′ = 0. Altogether we

find φ = φ0 + φ1 = 1
2
(ax21 − 2x1x2) −

1
3
(ax1 − x2)

3. Again Λ is transverse to F at z = 0. With

fj = ξj +
∂φ
∂xj

, a little computation shows that all second brackets vanish at z = 0, which gives (3.8).

• Case (III). We recall ψ0 from (3.4)(III), and try φ1 = 1
3
(a′ξ31 + 3b′ξ21x2 + 3c′ξ1x

2
2 + d′x32). With

φ = φ0 + φ1, we have x1 = − ∂φ
∂ξ1

, ξ2 = ∂φ
∂x2

, i.e.

(3.15)
x1 = −b(ξ1 + x2)− a′ξ21 − 2b′ξ1x2 − c′x22

ξ2 = b(ξ1 + x2) + b′ξ21 + 2c′ξ1x2 + d′x22

with b 6= 0. The condition for vg(z) = (2ξ1,−1; 1, 0) = (δx1, δx2; δξ1, δξ2) ∈ TzΛ gives δξ1 = 1 and

δx2 = −1, together with the linear system in (x2, ξ1)

(3.16)
(1 + a′ − b′)ξ1 + b′(1− c′)x2 = 0

(b′ − c′)ξ1 + (c′ − d′)x2 = 0

with determinant

(3.17) ∆ = (1 + a′)(c′ − d′) + b′(d′ − b′) + b′c′(b′ − c′)

If ∆ 6= 0, which holds when (a′, b′, c′, d′) vary in an open set of R4, then (3.15) has the trivial

solution x2 = ξ1 = 0. First Eq. (3.15) then gives x1 = 0 (which means z ∈ F ) and second Eq. (3.15)

shows that ξ1 = 0 (which means z ∈ G). So z = 0 as is claimed.
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Assume instead ∆ = 0. Then (3.16) reduces to the first Eq. which has the general solution

(3.18) x2 = λ(1 + a′ − b′), ξ1 = −λb′(1− c′)

with λ ∈ R. Substituting into ξ21 − x1 − x2 = 0 (z ∈ G) and x1 = 0 (z ∈ F ) leads to the system

(3.19)
(1− b′)ξ21 − 2c′ξ1x2 − d′x22 = b(ξ1 + x2)

a′ξ21 + 2b′ξ1x2 + c′x22 = −b(ξ1 + x2)

Summing up Eq. (3.19), we get rid of the linear term, and substituting (3.17) gives (provided 1 +

a′ − b′ 6= 0)

(1 + a′ − b′)(c′ − d′) + b′(1− c′)(−b′c′ − b′ + 2c′) = 0

which combines with ∆ = 0 to

(1− c′)b′(1− b′)c′ = 0

We discuss according to the cases (1− c′)b′ = 0 and (1− b′)c′ = 0.

In the first case, (3.17) gives ξ1 = 0. The condition z ∈ F ∩ G is then equivalent to ξ1 = ξ2 =

x1 = 0. Substituting into Eq. (3.19) eventually gives x2 = 0, so z = 0 as claimed.

Assume next (1−c′)b′ 6= 0, but (1−b′)c′ = 0. When c′ = 0, ∆ = 0 reduces to (1+a′−b′)d′+b′2 = 0,

and Eq. (3.19) to

(3.20)
a′ξ21 + 2b′ξ1x2 = −b(ξ1 + x2)

(b′ − 1)ξ21 + d′x22 = −b(ξ1 + x2)

Summing up again Eq.(3.20) gives the quadratic equation

b′2ξ21 − 2b′d′ξ1x2 + d′2x22 = (b′ξ1 − d′x2)
2 = 0

or since b′ 6= 0, ξ1 = d′

b′
x2 = 0. Substituting into first Eq.(3.20) yields

x2
(

d′(a′d′ + 2b′2)x2 + bb′(b′ + d′)
)

= 0

When x2 = 0, (3.20) gives ξ1(b + a′ξ1) = 0. Since b 6= 0, we must have (ξ1 is small) ξ1 = 0, so

ξ1 = x2 = 0, and the condition z ∈ F ∩G is equivalent to z = 0, which proves our claim.

We are left with the case c′ 6= 0, but b′ = 1.

• Case (II).

• Case (IV).

♣

Let’s summarize our construction so far:

Theorem 3.3: Let M = R2. Given a point of glancing intersection for the pair of hypersurfaces

(F,G), where G takes the form {g = 0} with g(x, ξ) = ξ21−x1−ξ2, and F = {x1 = 0} we can choose Λ

transverse to F and such that (Λ, G) has a glancing intersection at z = 0. It is parametrized by phase
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functions φ = φ0 + φ1 of inequivalent types (I)-(III) (case (IV) cannot occur), φ0, φ1 are quadratic

and cubic polynomials respectively. Moreover all cases (1)-(10) in Definition 1.3 can occur.

3.2 Solving Hamilton-Jacobi (HJ) equation in (ξ1, x2) coordinates.

As before our purpose is to parametrize Λ1 by a phase function Ψ(x1, x2) with prescribed value

on Λ. This is the solution of HJ equation for (hDx1
)2 − x1 − hDx2

, namely

(3.25)
( ∂Ψ

∂x1

)2
− x1 −

∂Ψ

∂x2
= 0

This equation cannot be solved directly since the Hamilton vector field vg is not transversal to Λ1.

We search Ψ as the critical value of another phase function Φ(x1, x2, t). This will lead to multivalued

solutions of (3.25).

Instead of solving directly HJ for hDt + g(x, hDx) = hDt + (hDx1
)2 − x1 − hDx2

, we make a

partial Fourier transform quantizing the metaplectic transformation (x1, x2; ξ1, ξ2) 7→ (ξ1, x2,−x1, ξ2),

and consider instead HJ equation for hDt + hDξ1 − hDx2
+ ξ21 . A first change variables (t, x2, ξ1) 7→

(s′ = 1
2
(t− x2), r

′ = 1
2
(t+ x2), ξ1), is followed by (s′, r′, ξ1) 7→ (s = 1

2
(s′ − ξ1), r =

1
2
(s′ + ξ1), r

′). The

inverse map is given by

(3.30) x2 = r′ − r − s, ξ1 = r − s, t = r′ + r + s

and operator hDt + hDξ1 − hDx2
+ ξ21 is changed to hDs′ + hDξ1 + ξ21 , then to hDr + (r− s)2. In the

new variables, HJ equation takes the form

(3.31)
∂Φ

∂r
+ (r − s)2 = 0

and its general solution is given by

(3.32) Φ(r, r′, s) = −
1

3
(r − s)3 +Φ0(r

′, s)

where Φ0(r
′, s) is determined by the initial value at t = 0, corresponding to s = −(r+ r′). This yields

the condition

(3.33) Φ|t=0 = Φ
(

r, r′,−(r + r′)
)

= −
1

3
(2r + r′)3 +Φ0(r

′,−r − r′)

so we need to express the initial value Φ|t=0 on Λ in terms of variables r, r′, s.

We discuss again according to Cases (I)-(III) listed in Proposition 3.1.

• Case (I). We start with the linear case φ(x) = φ0(x) =
1
2
(ax21 − 2x1x2). Consider partial Legendre

transform x1 7→ φ0(x) − x1ξ1, the critical point is given by x1 = 1
a
(x2 + ξ1), and the critical value

φcrit = − 1
2a
(ξ1 + x2)

2. Substituting (3.30) at t = 0 (i.e. s = −r − r′) gives

(3.34) Φ|t=0 = φ = −
1

2a
(3r′ + 2r)2
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with

(3.35) Φ0(r
′, s) = −

1

3
(2s+ r′)3 −

1

2a
(−2s+ r′)2

We use (3.32)-(3.33) to express Φ in the original variables as

(3.36) Φ(t, ξ1, x2) = −
1

3
(t− ξ1)

3 −
1

3
ξ31 −

1

2a
(ξ1 + x2)

2

The map t 7→ Φ(t, ξ1, x2) has a degenerate critical point at t = ξ1, with ∂tΦ = ∂2t Φ = 0, ∂3tΦ = −2.

So the situation is similar with the diffraction by an obstacle for the wave equation [Sj], [Ta], [Ro] but

Φ does not arise from a Morse family (with an auxiliary θ-parameter). We add now the cubic term

φ1(x) = − 1
3
(ax1 − x2)

3. Consider partial Legendre transform x1 7→ φ0(x) + φ1(x)− x1ξ1, the critical

point is given by the quadratic equation a3x21 − 2a(ax2 +
1
2
)x1 + ax22 − x2 − ξ1 = 0 which yields

x1 =
(

1 + 2ax2 −
√

1− 4aξ1
)

/(2a2) =
1

a
(x2 + ξ1) + ξ21 −

a

4
ξ31 +O(ξ41)

The corresponding critical value of Legendre transform is simply φcrit = − 1
2a
(ξ1+x2)

2− 1
3
ξ31 +O(ξ41).

Substituting (3.30) at t = 0 gives as before Φ0(r
′, s) = − 1

2a
(r′ − 2s)2 + O

(

(r′ + 2s)4
)

. We use

(3.32)-(3.33) to express Φ in the original variables as

(3.38) Φ(t, ξ1, x2) = −
1

3
ξ31 −

1

2a
(ξ1 + x2)

2 +O(ξ41)

which turns out to be independent of t, and equals, mod O(ξ41), the critical value of (2.54) when the

cubic term φ1 is absent.

• Case (II). We consider only the linear case. We make Legendre transform with respect to ξ2 variable.

The critical point is ξ2 = − 1
c (x2 + ξ1), and it turns out that the critical value of Legendre transform

is − 1
2c (x2 + ξ1)

2 which gives again the same result as in Case (I) (linear case).

• Case (III). So φ(x2, ξ1) = φ0(x2, ξ1) =
1
2
b(ξ1 + x2)

2 is expressed already in the right coordinates. A

simple calculation shows

(3.39) Φ(t, x2, ξ1) = −
1

3
ξ31 −

1

3
(t− ξ1)

3 +
b

2
(x2 + ξ1)

2

which gives the same result as in Case (I) (linear case).

We add now the cubic term. A computation similar to Case (I) (with cubic term) gives

Φ(x2, ξ1, t) = −
1

3
ξ31 +

b

2
(x2+ ξ1)

2+
b′

3
(x2+ ξ1)

3−
1

2
(t− ξ1)

3−
1

2
(t+x2)

2
( t− x2

2
− ξ1

)

+
1

12
(x2+ ξ1)

3

The critical point of t 7→ Φ(t, ξ1, x2) is given by

(t− ξ1)
2 +

1

2
(x2 + ξ1)

2 = 0
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which has a real solution iff q = x2 + ξ1 = 0. Then t = ξ1 = −x2 is a degenerate critical point, with

∂tΦ = ∂2t Φ = 0, ∂3t Φ = −3/2, and the critical value is

(3.40) Φcrit = −
1

3
ξ31 =

1

3
x32

Summing up, we have proved so far:

Proposition 3.4: Let Λ be paramerized by a quadratic phase φ0 or with a cubic term φ0 + φ1. The

critical point of t 7→ Φ(t, ξ1, x2) is given by t = ξ1.

In Case (I) (quadratic phase φ0) the critical value of t 7→ Φ(t, ξ1, x2) given in (3.36) is

(3.51) Φcrit(ξ1, x2) = −
1

3
ξ31 −

1

2a
(ξ1 + x2)

2

For φ = φ0 + φ1, Φ(t, x1, x2) is independent of t, and equal to (3.51) mod O(ξ41).

In Case (II) (quadratic phase φ0) the critical value of t 7→ Φ(t, ξ1, x2) is again (3.51), with

another constant a.

In Case (III) (quadratic phase φ0) the critical value of t 7→ Φ(t, ξ1, x2) is again (3.51), with

another constant a. For φ = φ0 +φ1, t 7→ Φ(t, ξ1, x2) has a real critical point iff q = x1 + ξ2 = 0, and

the critical value is given by (3.40).

Case (IV) does not occur.

Remarks:

1) Let J = F ∩G = {x1 = 0, ξ2 = ξ21}, Q = {q = 0}. We note that q = x2+ ξ1 Poisson commutes

with g = ξ21 − x1 + ξ2, so G = {g = 0} is the flow out of J through vq.

2) In relevant Cases (I)-(III), Φcrit = − 1
3
ξ31 on Q.

3.3 The phase function Φ in (x1, x2) coordinates.

As in [Sj] we pass from (ξ1, x2) to (x1, x2) coordinates by Legendre transform, so Ψ is the critical

value of ξ1 7→ x1ξ1 +Φcrit(ξ1, x2), so within hypotheses of Proposition 3.4, and in general case (3.51)

we have

(3.52) ξ1 = ax1 − x2 +O
(

(ax1 − x2)
2)

which gives Ψ by substituting in Φcrit(ξ1, x2) . . .

In case (3.40) we have the system ξ21 − x1 = 0, x2 + ξ1 = 0. or since the critical points belong to

energy surface G = {g = 0}

(3.53) x1 = x22, ξ2 = 0

The caustic is then given by the parabola x1 = x22.
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