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Semi-classical Lagrangian intersections

We investigate normal forms of germs of glancing Lagrangian intersections, and their semiclassical counterparts. This is motivated by singularities of Bessel beams, or diffraction problems by an obstacle with a non convex boundary.

0/ Introduction

Let M = R n , we restrict essentially to the case n = 2.

Parametrices of linear PDE's on M make use of symbolic calculus adapted to Lagrangian intersection, see [MelUhl] for high frequency asymptotics, and [AnDoNaRo] for semi-classics in the framework of Maslov canonical operator.

Let H(x, hD x ; h) be a h-PDO whose symbol has the asymptotic expansion H(x, p; h) ∼ H 0 (x, p)+ hH 1 (x, p) + • • •, and assume that H 0 (x, p) = 0 is a smooth, non critical hypersurface, fibrated by Hamiltonian curves. To start with, we shall denote H 0 simply by H.

On the other hand, let Λ → T * M be a smooth embedded Lagrangian manifold, and f h be a Lagrangian semi-classical distribution microlocally supported on Λ.

The main concern is to construct the asymptotic outgoing solution of (0.2)

H(x, hD x ; h)u h (x) = f h (x), u h (x) = E + f h (x; h) = ∞ 0 e -itH/h f h (x) dt
and in particular to solve Cauchy problem (0.3)

hD t v h + H(x, hD x )v h = 0, v h | t=0 = f h
The local theory amounts to study germs of Lagrangian manifolds and hypersurfaces.

At the classical level the question is about a pair consisting of a Lagrangian submanifold Λ (we call the "initial manifold") and a hypersurface G = {H = 0}. We are interested in the set Λ 1 of characteristics of H intersecting Λ. Global aspects of Lagrangian intersection theory were greatly motivated by Arnold conjectures [Ar] and have been extensively studied (see [ElGr]). Here we simply focus on the germs of the generating functions near an intersection point.

The generic case is when v H is transverse to Λ at t = 0, then Λ 1 is precisely the union of the outgoing/incoming flows Λ ± of Λ by the Hamilton vector field v H in G, see Theorem 1.1 below. This is the situation considered in [MelUhl] and [AnDoNaRo] : Λ and Λ + intersect cleanly along Λ ∩ Λ + = ∂Λ + , and (Λ, Λ + ) is called an intersecting pair of Lagrangian manifolds.

Here we want to consider a point z ∈ Λ where the intersection is not clean, i.e. v G ∈ T z Λ. We call such a point a glancing point, and denote their set by G(Λ, G). We answer first the question :

• What is the classification of such pairs (Λ, G) up to symplectic diffeomorphisms ?

Normal forms which deals with isolated points of non-transversality, called a kiss ( [START_REF] Eliashberg | Lagrangian intersections theory. A finite dimensionnal approach[END_REF]p.19].

This is "the generic case", which has been investigated in [ZaMy], using Morse families. We recall the most simple type of kiss in Theorem 1.2 below.

In case G is tangent to Λ along a non-singular hypersurface ℓ ⊂ Λ, we call (Λ, ℓ, H) a triad.

Of course, such a pair uniquely defines the Lagrangian submanifold Λ 1 .

Next we consider the semi-classical level, and try to represent the solution of (0.3) and (0.2) near a glancing point. The first step is to construct the solution of Hamilton-Jacobi equation parametrizing Λ 1 , which is generically singular.

A similar problem arises in diffraction theory for the wave equation A theorem of Melrose [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators I-IV[END_REF]Theorem 21.4.8] says that such a pair, near the glancing point z, is

H = ∂ 2 t -∆ x in M = (R n x \ O) × R t outside
symplectically equivalent to F = {x 1 = 0} and G = {g = ξ 2 1 -x 1 -ξ 2 = 0}.
The second main question we adress here is the following:

• Given a pair of glancing hypersurfaces (F, G) in T * M at some point z, find the germs at z of some Lagrangian manifolds Λ transverse to F at z and such that v g ∈ T z Λ ?

There are indeed such one-parameter families of Λ, for which we compute

A z (Λ, G), B z (Λ, G), see Propositions 3.1-3.2 below.
Next we construct solutions of Hamilton-Jacobi equation for hD t +(hD x 1 ) 2 -x 1 -hD x 2 with initial condition on Λ. This, conveniently adapted to dimensions n ≥ 3, could be applied to the diffractive Cauchy problem above when the obstacle is not necessarily convex at a point of the boundary, see [Le], [Sm].

1/ Lagrangian intersections

First recall the situation where v H is transverse to Λ. Let ι 0 : Λ 0 → T * M be a smooth embedded Lagrangian manifold, and ι 1 : Λ 1 → T * M be a smooth embedded Lagrangian manifold with smooth boundary ∂Λ 1 (isotropic manifold). Following [MelUhl] we say that (Λ 0 , Λ 1 ) is an intersecting pair of Lagrangian manifolds iff Λ 0 ∩ Λ 1 = ∂Λ 1 and the intersection is clean, i.e.

(1.1)

∀z ∈ ∂Λ 1 T z Λ 0 ∩ T z Λ 1 = T z ∂Λ 1
(in particular Λ 0 and Λ 1 cannot be transverse). On the set of intersecting pairs of Lagrangian manifolds we define an equivalence relation by saying that (Λ 0 , Λ 1 )

∼ (Λ ′ 0 , Λ ′ 1 ) iff near any z ∈ ∂Λ 1 , z ′ ∈ ∂Λ ′ 1 , there is a symplectic map κ such that κ(z) = z ′ , and a neighbhd V ⊂ T * M of z such that κ(Λ 0 ∩ V ) ⊂ Λ ′ 0 , κ(Λ 1 ∩ V ) ⊂ Λ ′ 1 .
We will call the equivalence class a Lagrangian pair. The following result readily extends [MelUhl,Prop.1.3] in the special case of homogeneous Lagrangian manifolds : Theorem 1.1 [MelUhl]: All intersecting pairs of manifolds in T * M are locally equivalent. More precisely near each z ∈ T * M , there exists a canonical map κ : T * M → T * R n such that κ(z) = (0, 0), κ(Λ 0 ∩ V ) ⊂ T * 0 R n (vertical fiber at 0), and κ(Λ 1 ∩ V ) ⊂ Λ 0 + , Λ 0 + being the flow-out of T * 0 R n by the Hamilton vector field v ξ n = ((0, • • • , 0, 1), 0) of ξ n , passing through some (0; ξ) = (0; (ξ ′ , 0)) i.e.

(1.5)

Λ 0 + = {(x, ξ) ∈ T * R n : x = (0, x n ), ξ = (ξ ′ , 0), x n > 0}
Lemma 1.1 has its semi-classical counterpart : near a point z of intersecting pair the normal form for Λ is given by {x = 0} and this of H is (say) hD x n . This solves locally problem (0.2). Namely, let f h be a Lagrangian distribution defined by its amplitude a(x ′ , x n -t, ξ; h), and supported microlocally on the "vertical plane" Λ = {x = 0}. Let θ T ∈ C ∞ (R + ) vanish near +∞ and equal to 1 for t ≤ T , then

(1.6) u(x, h) = i h ∞ 0 θ T (t) dt e i(x ′ ξ ′ +(x n -t)ξ n )/h a(x ′ , x n -t, ξ; h) dξ satisfies (0.2) mod O(h ∞ ) whenever x n ≤ T /2.
Assume instead that Hamilton foliation of H is simply tangent to Λ at some z 0 ∈ Λ ∩ {H = 0}.

Then Λ 1 is a singular Lagrangian manifold near z 0 , and the intersection Λ ∩ Λ 1 is not clean. Such a point z 0 of non-transversality is called glancing.

Near a glancing point Theorem 1.1 does not apply. So we need to extend (locally) Theorem 1.1 to this situation, by finding the normal form of non Lagrangian (or "glancing") intersection for (Λ, G)

near z 0 .
We have the following :

Theorem 1.2 [ZaMy]: Assume the germs (Λ, G) are non-transversal at an isolated point z 0 ∈ T * M , then (Λ, G) has generically the following normal form, up to a symplectic transformation κ ±

(1.7)

Λ = {ξ = ∂φ ± ∂x }, G = {g = 0}
where g(x, ξ) = ξ 1 and the generating functions φ ± (x) = ±

x 3 1 3 + x 1 x 2 2 .
The proof is based on the theory of Morse families, see e.g. [BaWe].

In the case of φ -(x) we get the two isotropic lines

x 1 = ±x 2 , ξ 2 = ±2x 2 2 , ξ 1 = 0 in the intersection of Λ with the Hamiltonian level ξ 1 = 0. Their extension along the characteristics ξ 1 = ξ 2 = x 2 = 0 (v H = (1, 0; 0, 0) at z 0 ) is the union of two Lagrangian submanifolds {ξ 1 = 0, ξ 2 = ±2x 2 2 }.
In the case of φ + (x), the intersection of Λ with ξ 1 = 0 reduces to x = 0.

We are now to define some invariants of (Λ, G) at z = z 0 .

Definition 1.3: Define Λ locally near z by f 1 = f 2 = 0, with {f i , f j } = 0. Consider the symmetric matrix

A z = A z (Λ, G) = {f 2 , {f 2 , g}} -{f 1 , {f 2 , g}} -{f 2 , {f 1 , g}} {f 1 , {f 1 , g}} (z) 
and the vector

B z = B z (Λ, G) = {g, {g, f 1 }} {g, {g, f 2 }} (z)
Let z be a glancing point for the pair (Λ, G) i.e.

g(z) = f 1 (z) = f 2 (z) = 0, {g, f 1 }(z) = {g, f 2 }(z) = 0
We distinguish the following 10 possibilities for the 2-jets of (Λ, G) z :

det A z > 0, B z = 0 (1) det A z > 0, B z = 0 (2) det A z < 0, t B z A z B z = 0 (3) det A z < 0, t B z A z B z = 0, B z = 0 (4) det A z < 0, B z = 0 (5) det A z = 0, t B z A z B z = 0 (6) det A z = 0, A z = 0, t B z A z B z = 0, B z = 0 (7) det A z = 0, A z = 0, B z = 0 (8) A z = 0, B z = 0 (9) A z = 0, B z = 0 (10)
Remark 1.1: Of course, A z and B z are invariant under symplectic transformations, but they are not uniquely defined. However each of the cases above is preserved by a non-degenerate linear transfor-

mation of the type f ′ 1 f ′ 2 = P f 1 f 2 , where P ∈ GL(2) has variable coefficients. Namely if A ′ z is defined as A z with f ′ 1 , f ′ 2 instead of f 1 , f 2 , then A ′ z = (det P z ) 2 t P -1 z A z P -1 z , B ′ z = P z B z
However A z and B z cannot account for higher order terms occurring in the classification of [ZyMa].

Under the hypothesis of Theorem 1.2, an elementary computation shows that

f 1 = ξ 1 ∓ x 2 1 - x 2 2 , f 2 = ξ 2 -2x 1 x 2 , g = ξ 1 : A ± 0 = 2 0 0 ±2 , B ± (0) = ∓2 0
so we are in case (1) for +, and in case (3) for -.

We turn now to the semi-classical level, and try to solve (0.2) or (0.3). Recall Λ t = exp tv H (Λ)

verifies Λ t+s = exp tv H (Λ s ) for all t, s ≥ 0. Let Γ t be the set of points of Λ t such that v H is tangent to Λ t , we have also Γ t+s = exp tv H (Γ s ). So the glancing property is invariant under the Hamiltonian flow.

We can trivially solve in the (ξ 1 , x 2 ) coordinates Hamilton-Jacobi equation ∂Ψ ∂t

+ ∂Ψ ∂x 1 = 0, Ψ| t=0 = φ(x 1 , x 2 ). This gives Ψ(t, x 1 , x 2 ) = φ(-t + x 1 , x 2 ), so the condition Ψ| t=0 = φ ± gives (1.10) Ψ ± (t, x 1 , x 2 ) = ± 1 3 (-t + x 1 ) 3 + (-t + x 1 )x 2
By definition

Λ 1 = {ξ 1 = ∂Ψ ∂x 1 = 0, ξ 2 = ∂Ψ ∂x 2 } = {ξ 1 = ±(-t + x 1 ) 2 + x 2 2 = 0, ξ 2 = 2(-t + x 1 )x 2 }.
For Ψ + we get:

Λ 1 = {ξ 1 = 0, t = x 1 , x 2 = 0, ξ 2 = 0}
This is a one-dimensional isotropic submanifold because the intersection Λ and G is a point. For Ψ - we get:

Λ 1 = {ξ 1 = 0, t = x 1 ± x 2 , ξ 2 = ∓2x 2 2 }.
This is a Lagrangian submanifold with a singular line. (1) For Tricomi Hamiltonian, H(x, p) = x 2 p 2 1 + p 2 2 , the residual points are those for p 1 = 0, the special points those for p 1 = 0 but p 2 = 0, and the ordinary points those for p 1 p 2 = 0.

(2) For Métivier Hamiltonian, H(x, p) = p 2 1 + (x 2 1 + x 2 2 )p 2 2 , the residual points are given by p 2 = 0 or x = (x 1 , x 2 ) = 0, the special points by p 2 = 0 and x = 0, but p, x = 0, and the ordinary points by p 2 x, p = 0.

(3) Let H be the "conformal metric" given by (2.1)

H(x, p) = |p| m 1 ρ(x)
where ρ is a smooth positive function on M , m ≥ 1. The residual points are the critical points of ρ ; at a special point, ∇ρ, p = 0, i.e. v H is tangent to the level curves of ρ. This example of practical interest was extensively studied in [AnDoNaRo2,[START_REF]Applications to the propagation of Bessel beams in nonhomogeneous media[END_REF].

Together with H positively homogeneous of degree m, consider an initial manifold Λ. In the following we try to link Lagrangian intersections with the classification above.

We take first Λ

= T * x 0 M ≈ {x = x 0 } (conormal bundle to {x 0 } in T * M ). Then Λ intersects cleanly Λ + along ∂Λ + .
Consider next the "initial" Lagrangian manifold

(2.3) Λ = {x = X(ϕ, ψ) = ϕω(ψ), p = P (ϕ, ψ) = ω(ψ), ϕ ∈ R}
which is called the "cylinder" ; here ω ∈ S n-1 is the unit vector parametrized by ψ. This is the wave-front set of semi-classical distributions related with Bessel functions.

Let us check first the Lagrangian intersection in this case. The tangent space T z Λ has the parametric equations

δX = ω(ψ)δϕ + ϕω ⊥ (ψ)δψ, δP = ω ⊥ (ψ)δψ, δϕ, δψ ∈ R so v H ∈ T z Λ iff there exist (δψ, δϕ) such that ∂ p H = ω(ψ)δϕ + ϕω ⊥ (ψ)δψ, -∂ x H = ω ⊥ (ψ)δψ
Taking scalar products with ω(ψ), ω ⊥ (ψ), and using Euler identity, we get δϕ

= ∂ p H, P (ψ) = mH = mE, δψ = -∂ x H, ω ⊥ (ψ) . Then, for z ∈ Σ E , (2.5) ∂ p H + ϕ∂ x H, ω ⊥ (ψ) = 0, -∂ x H, ω(ψ) = 0, H(z) = 0
Second relation (2.5) means that z = ϕω(ψ), ω(ψ) is a special point (Definition 1.2). Since

(ω(ψ), ω ⊥ (ψ) form a basis of R 2 , these relations are necessary and sufficient for v H ∈ T z Λ, i.e.

z to be glancing.

Examples 2.2:

(4) When H = p 2 , all points are glancing. When H = |p| m ρ(x) , z(0) is a glancing point iff (2.6) either : ϕ = 0 and ∇ρ = 0, or : ϕ = 0 and ∇ρ(0), ω(ψ) = 0

Second condition means that if z(0) = (0, ω(ψ)) is a special point.

(

) Assume again M = R 2 . For a, b ∈ R, let ρ(x) = 1 + ax 2 1 + bx 2 2 . Consider Hamiltonian on T * R 2 of the form H(x, p) = µ, p ρ(x) 5 
with µ = (1, 0). A computation shows that, with

x 1 = ϕ cos ψ, x 2 = ϕ sin ψ -∂ x H, ω(ψ) = 2ϕ cos ψ ρ 2 (x) (a cos 2 ψ + b sin 2 ψ) -ρ 2 (x) -∂ x H, ω(ψ) = ρ(x) + 2ϕ 2 cos 2 ψ(a -b) sin ψ so choosing a > b > 0 and E > 1, we see that G(Λ, G) = ∅.
Otherwise, there may be a unique glancing point near x = 0.

(6) Consider Hamiltonian with constant coefficients H(x, p) = µ, p , then when ω(ψ) is parallel to µ, the corresponding ray is contained entirely in Λ, so the intersection is not transverse. This corresponds to a triad.

(7) Here is another example of a triad. Consider the scattering problem by an obstacle, e.g. H = -∆ on L 2 (R 2 \ O) with Dirichlet boundary conditions on ∂O, and E = 1 so that the characteristics are parametrized by arc-length.

Let ℓ be a Lagrangian submanifold in {T * ∂O : p 2 = 1} and Λ be its preimage under the natural projection T * ∂O R 2 → T * ∂O. Then (Λ, ℓ, {p 2 = 1}) is a triad and the union of all characteristics in p 2 = 1 intersecting ℓ is a Lagrangian submanifold Λ 1 with singularities.

For example, Λ 1 has cusps along the ray being tangent to an inflection point of ∂O. If n = 3 then Λ 1 can have more interesting singularities: open swallow-tails and open Whitney umbrellas (see [Arn], [Gi], [Sch]).

The submanifold Λ 1 gives a short-wave approximation of solutions for the obstacle problem.

When Λ 1 is singular this is of particular interest since we cannot resort to standard Maslov canonical operator.

Remark 2.2: When (Λ, G) are given by ( 2.3) and ( 2.1) and m = 1, G = {H = E} there is a general Morse family parametrizing Λ t , of the form Φ(x, t, ψ, ϕ, λ) = mEt + ϕ + λ P (t, ϕ, ψ), x -X(t, ϕ, ψ)

where mEt+ϕ is an eikonal coordinate, and (X, P ) the solution of Hamilton equations Ẋ = ∂ x H, Ṗ = -∂ x H with prescribed value on Λ, see [AnDoNaRo3]. But for a glancing Lagrangian intersection, this formula is of little help.

3/ Glancing hypersurfaces and Lagrangian intersections.

Let F, G be two smooth hypersurfaces of T * M intersecting transversally at z. Recall from [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators I-IV[END_REF]Definition 21.4.6] By the theorem of equivalence of glancing hypersurfaces of Melrose [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators I-IV[END_REF]Theorem 21.4.8] there are local symplectic coordinates (x, ξ) vanishing at z such that F, G are defined resp. by x 1 = 0 and ξ 2 1x 1ξ 2 = 0. Then g = ξ 2 1x 1ξ 2 = 0 will be the "normal form" of H in these coordinates. (We use the notation g for the normal form of H, or H -E).

We apply this theorem to G being the energy surface H = E (i.e. g = 0) and F an auxiliary hypersurface intersecting G transversally at a glancing point z. We want to find germs of Lagrangian manifolds Λ such that Λ is transverse to F at z but (Λ, G) has glancing intersection at z. Again, this means that T z Λ ∩ (T z F ) σ = {0} and Rv H (z) = (T z G) σ ⊂ T z Λ, where superscript σ denotes symplectic orthogonal.

All computations below will be carried out in the local symplectic coordinates (x, ξ) vanishing at z.

Constructing some phase functions parametrizing Λ.

The Hamiltonian vector field for g = ξ 2

1x 1ξ 2 takes the form

v g = 2ξ 1 ∂ x 1 -∂ x 2 + ∂ ξ 1 , or using coordinates (δx, δξ) in T T * M , as (3.2) v g = (δx 1 , δx 2 ; δξ 1 , δξ 2 ) = (2ξ 1 , -1; 1, 0)
We know that a general Lagrangian manifold can be parametrized in the mixed representation, so when n = 2 by one of the following cases

(3.3) (I) Λ = {ξ = ∂φ ∂x }, (II) Λ = {x = - ∂φ ∂ξ } (III) Λ = {x 1 = - ∂φ ∂ξ 1 , ξ 2 = ∂φ ∂x 2 , (IV) Λ = {x 2 = - ∂φ ∂ξ 2 , ξ 1 = ∂φ ∂x 1 }
To determine Λ, we write that the glancing intersection of (Λ, G) at z should take place at z = (x 1 , x 2 , ξ 1 , ξ 2 ) = 0, i.e. for z small enough, v g (z) ∈ T z Λ implies z = 0. Then we check that Λ is transverse to F at z = 0. There will be of course many possibilities for Λ, and we content ourselves with a few significant examples.

The linear situation is the case where φ is quadratic. Cases (I),(II),(III) give one-parameter families of Lagrangian manifolds. We show that Case (IV) does not occur.

Proposition 3.1: Consider first a quadratic phase φ = φ 0 .

• In Cases (I),(II),(III) φ 0 are one-parameter families taking values

(3.4) (I) φ 0 (x) = 1 2 (ax 2 1 -2x 1 x 2 ), (II) φ 0 (ξ) = 1 2 (2ξ 1 ξ 2 + cξ 2 2 ), (III) φ 0 (x 2 , ξ 1 ) = 1 2 b(ξ 1 + x 2 ) 2
respectively, where a, b, c = 0. The manifold Λ is transverse to F at z = 0, and the corresponding matrices A z (Λ, G), B z (Λ, G) in Definition 1.3 are then given by

(3.5) (I) A z = 2 1 a a a 2 , B z = 2 -a 1 , (II) A z = 2 0 0 0 1 , B z = 2 1 0 (III) A z = 2 0 0 0 1 , B z = 2 1 0
So with the notations of Definition 1.3, case (I) is of type ( 6) or ( 7) according to a 3 + 2a 2 + 1 = 0 or not, while cases (II) and and (III) are of type (6).

• Case (IV) does not occur.

Proof:

• Case (I). The quadratic phase takes the form

φ 0 = 1 2 (ax 2 1 + 2bx 1 x 2 + cx 2 2 )
. That v g be tangent to Λ at z express as

(3.6) (δx 1 , δx 2 ; aδx 1 + bδx 2 , bδx 1 + cδx 2 ) = (2ξ 1 , -1; 1, 0)
By substitution we find

ξ 1 = b+1 2a = c 2b , so condition ξ 1 = 0 gives b + 1 = c = 0. Substituting in ξ 1 = ax 1 + bx 2 gives ax 1 -x 2 = 0. Then the condition z ∈ G, namely g = 0 gives -x 1 -ξ 2 = 0, so altogether x 1 = -ξ 2 = x 2
a , ξ 1 = 0, and z = (x 1 , ax 1 , 0, -x 1 ). Finally the condition z ∈ F gives x 1 = 0, hence z ∈ F ∩ G gives z = 0. So the phase φ 0 defining Λ is given by φ 0 = 1 2 (ax 2 1 -2x 1 x 2 ). It is also clear that Λ is transverse to F at z = 0. Let us compute the matrix elements of A z , B z . With

f j = ξ j -∂φ ∂x j , we have {f 1 , {f 1 , g}} = 2a 2 , {f 2 , {f 2 , g}} = 2, {f 1 , {f 2 , g}} = -2a, {g, {g, f 1 }} = -2a, {g, {g, f 2 }} = 2
which gives (3.5)(I).

• Case (II). The phase is of the form φ 0 = 1 2 (aξ 2 1 + 2bξ 1 ξ 2 + cξ 2 2 ), Hamilton vector field v g = (-aδξ 1bδξ 2 , -bδξ 1cδξ 2 ; δξ 1 , δξ 2 ) = (2ξ 1 , -1; 1, 0), so necessary condition ξ 1 = 0 gives a = 0, b = 1. The condition z ∈ G gives z = (-ξ 2 , -cξ 2 ; 0, ξ 2 ), and the condition z ∈ Λ gives -x 2 = 0, so we get z = 0.

The phase defining Λ is given by φ 0 = 1 2 (2ξ 1 ξ 2 + cξ 2 2 ). Again Λ is transverse to F at z = 0. With f j = x j + ∂φ ∂ξ j , we have

{f 1 , {f 1 , g}} = 2, {f 2 , {f 2 , g}} = 0, {f 1 , {f 2 , g}} = 0, {g, {g, f 1 }} = 2, {g, {g, f 2 }} = 0
which gives (3.5)(II).

• Case (III). The phase is of the form

φ 0 = 1 2 (aξ 2 1 + 2bx 2 ξ 1 + cx 2 
2 ), and Hamilton vector field

v g = (-aδξ 1 -bδx 2 , δx 2 ; δξ 1 , bδξ 1 + cδx 2 ) = (2ξ 1 , -1; 1, 0), so necessary condition ξ 1 = 0 gives a = b = c.
The condition z ∈ G gives z = (x 1 , -x 1 a ; 0, -x 1 ), and the condition z ∈ Λ gives x 1 = 0, so we get z = 0 as expected. The phase defining Λ is thus given by φ

0 = a 2 (ξ 1 + x 2 ) 2 . Again Λ is transverse to F at z = 0. With f 1 = x 1 + ∂φ ∂ξ 1 , f 2 = ξ 2 -∂φ ∂x 2 we have {f 1 , {f 1 , g}} = 2, {f 2 , {f 2 , g}} = 0, {f 1 , {f 2 , g}} = 0, {g, {g, f 1 }} = 2, {g, {g, f 2 }} = 0
which gives (3.5)(III).

• Case (IV). The quadratic phase takes the form φ = 1 2 (ax 2 1 + 2bx 1 ξ 2 + cξ 2 2 ), but Hamilton vector field v g = (δx 1 , -bδx 1cδξ 2 ; aδx 1 + bδξ 2 , δξ 2 ) = (2ξ 1 , -1; 1, 0) cannot be tangent to Λ near z = 0. ♣ Next we consider φ = φ 0 + φ 1 , where φ 1 is a cubic homogeneous polynomial. The role of the cubic term is suggested by the normal form in Theorem 1.2.

Proposition 3.2:

The phase with a cubic term takes the form φ = φ 0 + φ 1 . The manifold Λ is again transverse to F at z = 0.

• In Case (I) φ 0 fixes entirely the one-parameter family

(3.8) (I) φ(x) = 1 2 (ax 2 1 -2x 1 x 2 ) - 1 3 (ax 1 -x 2 ) 3 , A z = B z = 0 which has type (10) in Definition 1.3. • In Case (III), φ 0 (x 2 , ξ 1 ) = 1 2 b(ξ 1 + x 2 ) 2 , and φ 1 is of the form φ 1 (x 2 , ξ 1 ) = 1 3 (a ′ ξ 3 1 + 3b ′ ξ 2 1 x 2 + 3c ′ ξ 1 x 2 2 + d ′ x 3 2
). Let ∆ be as in (3.17). If ∆ = 0 we have

A z = 2 d ′ -b ′ + c ′ -b ′ + c ′ 1 + b ′ -a ′ , B z = 2 1 -c ′ + 2b ′ b ′ + d ′ -c which has type (1) in Definition 1.3. If ∆ = 0, z = 0 is glancing iff either (1-c ′ )b ′ = 0 or (1-b ′ )c ′ = 0. • In Case (II) (3.10) (II) φ(ξ) = 1 2 (2ξ 1 ξ 2 + cξ 2 2 ) + 1 3 (-ξ 3 1 + 3c ′ ξ 1 ξ 2 2 + d ′ ξ 3 2 )
• Case (IV) does not occur.

Proof:

• Case (I). The phase defining Λ is φ = φ 0 + O(|x| 3 ) with φ 0 = 1 2 (ax 2 1 -2x 1 x 2 ), and

φ 1 = 1 3 (a ′ x 3 1 + 3b ′ x 2 1 x 2 + 3c ′ x 1 x 2 2 + d ′ x 3 2 )
To this order, the condition v g (z) ∈ T z Λ takes the form

δx 1 , δx 2 ; (a + 2a ′ x 1 + 2b ′ x 2 )δx 1 + (-1 + 2b ′ x 1 + 2c ′ x 2 )δx 2 , (-1 + 2b ′ x 1 + 2c ′ x 2 )δx 1 + (2c ′ x 1 + 2d ′ x 2 )δx 2 = (2ξ 1 , -1; 1, 0)
which yields the system (3.12)

-aξ 1 + b ′ x 1 + c ′ x 2 = 2ξ 1 (a ′ x 1 + b ′ x 2 ), ξ 1 + c ′ x 1 + d ′ x 2 = 2ξ 1 (b ′ x 1 + c ′ x 2 )
Eliminating ξ 1 on the LHS gives

(3.13) (b ′ + ac ′ )x 1 + (c ′ + ad ′ )x 2 = 2ξ 1 (a ′ + ab ′ )x 1 + (b ′ + ac ′ )x 2
The condition z ∈ F gives x 1 = 0. Substituting into (3.13) we get

x 2 = 0 or c ′ + ad ′ = 2ξ 1 (b ′ + ac ′ ). Assume x 2 = 0, then the condition z ∈ G gives ξ 2 1 = x 1 + ξ 2 = b ′ x 2 1 + 2c ′ x 1 x 2 + d ′ x 2 2 = 0, so z = 0. Assume instead c ′ + ad ′ = 2ξ 1 (b ′ + ac ′ ).
Then as before c ′ + ad ′ = 0, so either ξ 1 = 0 and (3.12) gives again x 2 = 0, so z = 0. Finally we are left with the condition b ′ + ac ′ = 0. Altogether we

find φ = φ 0 + φ 1 = 1 2 (ax 2 1 -2x 1 x 2 ) -1 3 (ax 1 -x 2 ) 3 .
Again Λ is transverse to F at z = 0. With f j = ξ j + ∂φ ∂x j , a little computation shows that all second brackets vanish at z = 0, which gives (3.8). • Case (III). We recall ψ 0 from (3.4)(III), and try

φ 1 = 1 3 (a ′ ξ 3 1 + 3b ′ ξ 2 1 x 2 + 3c ′ ξ 1 x 2 2 + d ′ x 3 2 ). With φ = φ 0 + φ 1 , we have x 1 = -∂φ ∂ξ 1 , ξ 2 = ∂φ ∂x 2 , i.e.
(3.15)

x 1 = -b(ξ 1 + x 2 ) -a ′ ξ 2 1 -2b ′ ξ 1 x 2 -c ′ x 2 2 ξ 2 = b(ξ 1 + x 2 ) + b ′ ξ 2 1 + 2c ′ ξ 1 x 2 + d ′ x 2 2
with b = 0. The condition for v g (z) = (2ξ 1 , -1; 1, 0) = (δx 1 , δx 2 ; δξ 1 , δξ 2 ) ∈ T z Λ gives δξ 1 = 1 and δx 2 = -1, together with the linear system in (x 2 , ξ 1 ) shows that ξ 1 = 0 (which means z ∈ G). So z = 0 as is claimed.

(3.16) (1 + a ′ -b ′ )ξ 1 + b ′ (1 -c ′ )x 2 = 0 (b ′ -c ′ )ξ 1 + (c ′ -d ′ )x 2 = 0 with determinant (3.17) ∆ = (1 + a ′ )(c ′ -d ′ ) + b ′ (d ′ -b ′ ) + b ′ c ′ (b ′ -c ′ ) If ∆ = 0,
functions φ = φ 0 + φ 1 of inequivalent types (I)-(III) (case (IV) cannot occur), φ 0 , φ 1 are quadratic and cubic polynomials respectively. Moreover all cases (1)-( 10) in Definition 1.3 can occur.

3.2 Solving Hamilton-Jacobi (HJ) equation in (ξ 1 , x 2 ) coordinates.

As before our purpose is to parametrize Λ 1 by a phase function Ψ(x 1 , x 2 ) with prescribed value on Λ. This is the solution of HJ equation for (hD

x 1 ) 2 -x 1 -hD x 2 , namely (3.25) ∂Ψ ∂x 1 2 -x 1 - ∂Ψ ∂x 2 = 0
This equation cannot be solved directly since the Hamilton vector field v g is not transversal to Λ1.

We search Ψ as the critical value of another phase function Φ(x 1 , x 2 , t). This will lead to multivalued solutions of (3.25).

Instead of solving directly HJ for hD t + g(x, hD x ) = hD t + (hD x 1 ) 2x 1 -hD x 2 , we make a partial Fourier transform quantizing the metaplectic transformation (x 1 , x

2 ; ξ 1 , ξ 2 ) → (ξ 1 , x 2 , -x 1 , ξ 2 ),
and consider instead HJ equation for hD

t + hD ξ 1 -hD x 2 + ξ 2 1 . A first change variables (t, x 2 , ξ 1 ) → (s ′ = 1 2 (t -x 2 ), r ′ = 1 2 (t + x 2 ), ξ 1 ), is followed by (s ′ , r ′ , ξ 1 ) → (s = 1 2 (s ′ -ξ 1 ), r = 1 2 (s ′ + ξ 1 ), r ′ ). The inverse map is given by (3.30) x 2 = r ′ -r -s, ξ 1 = r -s, t = r ′ + r + s and operator hD t + hD ξ 1 -hD x 2 + ξ 2 1 is changed to hD s ′ + hD ξ 1 + ξ 2 1 , then to hD r + (r -s) 2 .
In the new variables, HJ equation takes the form (3.31) ∂Φ ∂r + (rs) 2 = 0 and its general solution is given by

(3.32) Φ(r, r ′ , s) = - 1 3 (r -s) 3 + Φ 0 (r ′ , s)
where Φ 0 (r ′ , s) is determined by the initial value at t = 0, corresponding to s = -(r + r ′ ). This yields the condition

(3.33) Φ| t=0 = Φ r, r ′ , -(r + r ′ ) = - 1 3 (2r + r ′ ) 3 + Φ 0 (r ′ , -r -r ′ )
so we need to express the initial value Φ| t=0 on Λ in terms of variables r, r ′ , s.

We discuss again according to Cases (I)-(III) listed in Proposition 3.1.

• Case (I). We start with the linear case φ(x) = φ 0 (x) = 1 2 (ax 2 1 -2x 1 x 2 ). Consider partial Legendre transform x 1 → φ 0 (x)x 1 ξ 1 , the critical point is given by x 1 = 1 a (x 2 + ξ 1 ), and the critical value φ crit = -1 2a (ξ 1 + x 2 ) 2 . Substituting (3.30) at t = 0 (i.e. s = -rr ′ ) gives (3.34)

Φ| t=0 = φ = - 1 2a (3r ′ + 2r) 2
which has a real solution iff q = x 2 + ξ 1 = 0. Then t = ξ 1 = -x 2 is a degenerate critical point, with Summing up, we have proved so far:

∂ t Φ = ∂ 2 t Φ = 0, ∂ 3 t Φ = -3/2,
Proposition 3.4: Let Λ be paramerized by a quadratic phase φ 0 or with a cubic term φ 0 + φ 1 . The critical point of t → Φ(t, ξ 1 , x 2 ) is given by t = ξ 1 .

In Case (I) (quadratic phase φ 0 ) the critical value of t → Φ(t, ξ 1 , x 2 ) given in (3.36) is

(3.51) Φ crit (ξ 1 , x 2 ) = - 1 3 ξ 3 1 - 1 2a (ξ 1 + x 2 ) 2
For φ = φ 0 + φ 1 , Φ(t, x 1 , x 2 ) is independent of t, and equal to (3.51) mod O(ξ 4 1 ). In Case (II) (quadratic phase φ 0 ) the critical value of t → Φ(t, ξ 1 , x 2 ) is again (3.51), with another constant a.

In Case (III) (quadratic phase φ 0 ) the critical value of t → Φ(t, ξ 1 , x 2 ) is again (3.51), with another constant a. For φ = φ 0 + φ 1 , t → Φ(t, ξ 1 , x 2 ) has a real critical point iff q = x 1 + ξ 2 = 0, and the critical value is given by (3.40).

Case (IV) does not occur.

Remarks:

1) Let J = F ∩ G = {x 1 = 0, ξ 2 = ξ 2 1 }, Q = {q = 0}. We note that q = x 2 + ξ 1 Poisson commutes with g = ξ 2

1x 1 + ξ 2 , so G = {g = 0} is the flow out of J through v q . 2) In relevant Cases (I)-(III), Φ crit = -1 3 ξ 3 1 on Q.

3.3

The phase function Φ in (x 1 , x 2 ) coordinates.

As in [Sj] we pass from (ξ 1 , x 2 ) to (x 1 , x 2 ) coordinates by Legendre transform, so Ψ is the critical value of ξ 1 → x 1 ξ 1 + Φ crit (ξ 1 , x 2 ), so within hypotheses of Proposition 3.4, and in general case (3.51) we have (3.52)

ξ 1 = ax 1 -x 2 + O (ax 1 -x 2 ) 2 )
which gives Ψ by substituting in Φ crit (ξ 1 , x 2 ) . . .

In case (3.40) we have the system ξ 2 1x 1 = 0, x 2 + ξ 1 = 0. or since the critical points belong to energy surface G = {g = 0} (3.53) x 1 = x 2 2 , ξ 2 = 0

The caustic is then given by the parabola x 1 = x 2 2 .

  an obstacle O : the question here is about the classification of glancing hypersurfaces (F, G) in T * M at some point z. Here G = {τ 2ξ 2 = 0} and F stands for the lift of the boundary of O in T * M . It turns out that F and G play symmetrical roles.

2 /

 2 Examples of non-Lagrangian intersections. Consider a positively homogeneous Hamiltonian H(x, p) of degree m with respect to p. The energy surface should then be specified as H(x, p) = E. We first classify points z = (x, p) ∈ G = {H = E} according to v H (z). Definition 2.1 [AnDoNaRo3]: Let H be positively homogeneous of degree m with respect to p. We call a point z = (x, p) such that -∂ x H(z) = 0 an ordinary point if -∂ x H(z), p = 0, and a special point otherwise. If -∂ x H(z) = 0 we call z a residual point. Examples 2.1:

F

  and G are said to be glancing at z iff the Hamilton foliation of F = {f = 0} and G = {g = 0} (locally near z) are simply tangent at z. Stated otherwise, we have f (z) = g(z) = {f, g}(z) = 0 (Poisson bracket), but the second Poisson brackets {f, {f, g}}(z), {g, {g, f }}(z) are non zero.

  which holds when (a ′ , b ′ , c ′ , d ′ ) vary in an open set of R 4 , then (3.15) has the trivial solution x 2 = ξ 1 = 0. First Eq. (3.15) then gives x 1 = 0 (which means z ∈ F ) and second Eq.(3.15) 

Assume instead ∆ = 0. Then (3.16) reduces to the first Eq. which has the general solution (3.18) x 2 = λ(1

with λ ∈ R. Substituting into ξ 2 1x 1x 2 = 0 (z ∈ G) and x 1 = 0 (z ∈ F ) leads to the system

Summing up Eq. (3.19), we get rid of the linear term, and substituting (3.17) gives (provided 1 +

We discuss according to the cases (1

In the first case, (3.17) gives

x 1 = 0. Substituting into Eq. (3.19) eventually gives x 2 = 0, so z = 0 as claimed.

Assume and Eq. (3.19) to

Summing up again Eq. (3.20) gives the quadratic equation

, and the condition z ∈ F ∩ G is equivalent to z = 0, which proves our claim.

We are left with the case c ′ = 0, but b ′ = 1.

• Case (II).

• Case (IV).

♣

Let's summarize our construction so far:

Given a point of glancing intersection for the pair of hypersurfaces (F, G), where G takes the form {g = 0} with g(x, ξ) = ξ 2 1 -x 1 -ξ 2 , and F = {x 1 = 0} we can choose Λ transverse to F and such that (Λ, G) has a glancing intersection at z = 0. It is parametrized by phase with

We use (3.32)- (3.33) to express Φ in the original variables as

The map t → Φ(t, ξ 1 , x 2 ) has a degenerate critical point at t = ξ 1 , with

So the situation is similar with the diffraction by an obstacle for the wave equation [Sj], [Ta], [Ro] but Φ does not arise from a Morse family (with an auxiliary θ-parameter). We add now the cubic term

The corresponding critical value of Legendre transform is simply

which turns out to be independent of t, and equals, mod O(ξ 4 1 ), the critical value of (2.54) when the cubic term φ 1 is absent.

• Case (II). We consider only the linear case. We make Legendre transform with respect to ξ 2 variable.

The critical point is ξ 2 = -1 c (x 2 + ξ 1 ), and it turns out that the critical value of Legendre transform is -1 2c (x 2 + ξ 1 ) 2 which gives again the same result as in Case (I) (linear case).

which gives the same result as in Case (I) (linear case).

We add now the cubic term. A computation similar to Case (I) (with cubic term) gives Φ(x 2 , ξ 1 , t) = -

The critical point of t → Φ(t, ξ 1 , x 2 ) is given by (tξ 1 ) 2 + 1 2 (x 2 + ξ 1 ) 2 = 0