Pierre Fraigniaud

Patrick Lambein-Monette

Mikaël Rabie

Colorier le cycle sans attendre ses voisins: tolérance aux pannes dans les réseaux asynchrones †

Keywords: Réseaux asynchrones, Tolérance aux pannes, Renaming, Coloration de graphe distribuée, Algorithmes wait-free, Modèle LOCAL

Nous présentons un algorithme distribué calculant une bonne coloration du cycle 𝐶 𝑛 , à partir d'identifiants uniques initiaux, dans un modèle calculatoire totalement asynchrone et où les processus peuvent tomber en panne (crash). Notre algorithme est sans attente (wait-free) : les processus corrects terminent en un nombre borné d'étapes calculatoires, indépendamment du nombre de pannes ou des choix de l'ordonnanceur. L'algorithme est indépendant de 𝑛 ⩾ 3, et s'exécute sur 𝐶 𝑛 en 𝑂 (log * 𝑛) étapes, égalant la complexité optimale du problème dans le modèle synchrone et sans pannes. Notre algorithme est également (quasi)-optimal en nombre de couleurs utilisées -au plus six -grâce à une borne inférieure connue de 2𝑛 -1 noms nécessaires pour résoudre sans attente le problème du renommage (renaming) dans les systèmes à mémoire partagée à 𝑛 processus, dès lors que 𝑛 est une puissance d'un nombre premier. En effet, notre modèle coïncide avec le modèle à mémoire partagée pour 𝑛 = 3 processus, où cinq noms sont nécessaires au renommage distribué sans attente du système. Ce travail est le premier à considérer la tolérance forte aux pannes dans les réseaux asynchrones, et constitue un premier pas vers le rapprochement entre deux grandes théories en calcul distribué : d'une part, celle des réseaux fiables et synchrones, et, d'autre part, celle des systèmes asynchrones et sujets aux pannes.

Introduction

Objective

Two forms of coloring tasks are at the core of distributed computing. One is vertex-coloring [START_REF] Barenboim | Distributed Graph Coloring: Fundamentals and Recent Developments[END_REF] in the framework of synchronous distributed network computing [START_REF] Cole | Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking[END_REF][START_REF] Linial | Locality in Distributed Graph Algorithms[END_REF], the so-called LOCAL model. The other is renaming [START_REF] Attiya | Renaming in an asynchronous environment[END_REF] in the framework of asynchronous shared-memory or message-passing distributed computing [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF]. For both tasks, each process 𝑝 starts with its own identifier 𝑋 𝑝 ∈ N as input, which is supposed to be unique in the system, and must compute a color as output. The identifiers are supposed to be in a large range of values (typically of size poly(𝑛) when there are 𝑛 processes), while the output colors are expected to be in a small range of values (typically { 1, . . . , 𝑘 } for some small 𝑘 ⩾ 1); depending on the context, we speak of 𝑘-coloring the network, or of 𝑘-renaming the system. In the context of network computing, the output color of every processing node must be different from the color of each of its neighboring nodes in the network. In the context of shared-memory or message-passing computing, each process's output color must be unique in the system, i.e., different from the color of any other process.

On the negative side, the distributed 2-coloring of even-sized cycles is known [START_REF] Linial | Locality in Distributed Graph Algorithms[END_REF] to be a "hard" problem, in the sense that Ω(𝑛) synchronous rounds of communication are required to solve this problem in 𝑛-node cycles. A round consists of (1) an exchange of information between the two end-points of every edge in the network, and (2) a local computation at every node. Similarly, it is known [CR10; HS99] that wait-free 𝑘-renaming an 𝑛-processes asynchronous shared-memory system is impossible when 𝑘 < 2𝑛 -1 and 𝑛 is a power of a prime number (𝑛 = 6 is the smallest integer for which this bound does not hold [START_REF] Castañeda | New combinatorial topology bounds for renaming: the upper bound[END_REF]). In this model, processes alternate between read and write operations, as dictated by an asynchronous scheduler; waitfree essentially means that each process terminates in a bounded number of read/write steps, independently from the asynchronous scheduling of the 𝑛 -1 other processes.

On the positive side, it is known that 3-coloring the 𝑛-node cycle can be achieved in 1 2 log * 𝑛 + O(1) § synchronous rounds thanks to an efficient color-reduction technique due to Cole and Vishkin [START_REF] Cole | Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking[END_REF]. This bound is tight: no algorithms can 3-color the 𝑛-node cycle in less than 1 2 log * 𝑛 -1 rounds, thanks to Linial's celebrated lower bound [START_REF] Linial | Locality in Distributed Graph Algorithms[END_REF]. In shared-memory systems, while (2𝑛 -2)-coloring (a.k.a., (2𝑛 -2)-renaming) is impossible wait-free for infinitely many values of 𝑛, (2𝑛 -1)-coloring can be achieved wait-free for all values of 𝑛 ⩾ 2 [START_REF] Attiya | Renaming in an asynchronous environment[END_REF].

In pursuit of bringing these two rich lines of research closer, we study wait-free vertex coloring of the 𝑛-node cycle 𝐶 𝑛 , in a round-based and asynchronous computing model, where each round of a processing node consists of the following sequence of operations: (1) writing in its local register, (2) reading the local registers of its two neighbors in 𝐶 𝑛 , and (3) updating its local state. The rounds are asynchronous, and some processes may perform many rounds at the same time other processes perform just a few, or even zero, rounds. We address basic questions in this classic model: Is wait-free proper vertex-coloring at all possible in 𝐶 𝑛 ? If yes, with how many colors? And in how many rounds?

Related Work

The recent contributions that are the most related to our work are [START_REF] Castañeda | Making Local Algorithms Wait-Free: the Case of Ring Coloring[END_REF], and the follow up work [START_REF] Delporte-Gallet | Distributed Computing in the Asynchronous LOCAL Model[END_REF]. In these papers, the DECOUPLED model considers 𝑛 asynchronous and crash-prone processes that occupy the 𝑛 nodes of a synchronous and reliable network. It is a stronger model than the one considered here; in fact, [START_REF] Delporte-Gallet | Distributed Computing in the Asynchronous LOCAL Model[END_REF] shows that tasks solvable in poly-logarithmic time in the LOCAL model continue to be solvable, with the same complexity, in the DECOUPLED model. In contrast, some tasks that are trivial in the LOCAL model, like 3-coloring the ring 𝐶 3 , become just impossible in our fully asynchronous model.

The model considered in this paper bears similarities with some of the models used in the context of self-stabilization. Many papers (see, e.g., [START_REF] Blin | Memory Lower Bounds for Self-Stabilization[END_REF] and references therein) have addressed the design of self-stabilizing algorithms for 3-coloring the cycles, or for (𝛥 + 1)-coloring graphs with maximum degree 𝛥. Self-stabilization assumes that the processing elements can behave arbitrarily bad (all variables can be corrupted). The objective is to design algorithms which, starting from an arbitrary initial configuration, eventually compute a legal configuration (e.g., a configuration in which the colors assigned to the nodes form a proper coloring) whenever no failures occur during a sufficiently long period. In contrast, we assume an initial configuration in which variables are correctly set (e.g., the content of the shared registers are initialized to ⊥). However, we do not assume that the system will be failure-free during the execution of the algorithm, and the presence of crash-failures should not prevent the correct processing nodes from computing a solution. While 3-coloring the cycle 𝐶 𝑛 is possible in a self-stabilizing manner for all 𝑛 ⩾ 3, 𝑘-coloring 𝐶 3 is impossible in our fully asynchronous model for 𝑘 < 5.

Our Results

We describe a wait-free algorithm for proper coloring the 𝑛 nodes of the asynchronous crash-prone cycle 𝐶 𝑛 , given in Algorithm 1. The algorithm is independent of 𝑛 ⩾ 3, uses a palette of 𝑘 = 6 colors, and runs in 𝑂 (log * 𝑛) rounds in 𝐶 𝑛 , as expressed in our main theorem. Theorem. In any execution of Algorithm 1 over the ring 𝐶 𝑛 with a proper coloring provided by the values (𝑋 𝑝) 𝑝∈ [𝑛] given to the processes as input:

Colorier le cycle sans attendre ses voisins 2 Fast, wait-free coloring of the cycle Our main algorithm, given in Algorithm 1, runs two parallel "coloring" schemes in separate components: processes try to pick a unique color 𝑐 𝑝 from a small palette, while adjusting their larger identifier 𝑋 𝑝 , to speed up the first component.

The first component spans lines 7 to 10 of the algorithm, and guarantees that every process eventually adopts a color from a palette of six; call it the wait-free component. A process 𝑝 tries to find a color 𝑐 𝑝 = (𝑎 𝑝 , 𝑏 𝑝) that does not appear in its neighborhood. Upon success, 𝑝 returns 𝑐 𝑝 ; otherwise it tries a new color, adjusting 𝑎 𝑝 to avoid conflict with its neighbors with a larger identifier, and similarly adjusting 𝑏 𝑝 for its other neighbors. Note that 𝑎 𝑝 = 2 implies 𝑏 𝑝 = 0, and symmetrically 𝑏 𝑝 = 2 implies 𝑎 𝑝 = 0, and thus 𝑎 𝑝 + 𝑏 𝑝 ⩽ 2, resulting in a six-color palette.

Moreover, processes with locally extremal identifiers stubbornly maintain either 𝑎 𝑝 or 𝑏 𝑝 constant, and terminate quickly, leading their neighbors to become, in turn, locally extremal among the remaining active processes. Convergence then propagates through the network, from neighbor to neighbor, and the worstcase complexity thus grows with the length of the longest sequence of neighboring nodes with increasing identifiers. As such, it may take some nodes as much as Θ(𝑛) rounds before returning a color.

The second component spans lines 11 to 17, and serves to shorten such monotonous sequence through iterate calls of a function ¶ 𝑓 , adapted from Cole and Vishkin's algorithm [START_REF] Cole | Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking[END_REF]. Each process 𝑝 tracks, in a counter 𝑟 𝑝 , its number of iterate calls to 𝑓 , to avoid progressing in this component faster than its neighbors, which could break the proper coloring of the identifiers, no longer unique in the system. Because of this synchronization mechanism, this component is not, itself, wait-free; call it the blocking component.

Lack of progress in the blocking component indicates that some process is progressing faster than a neighbor; in this case, the wait-free component quickly terminates. Otherwise, by construction of the function 𝑓 , each iteration of the blocking component logarithmically shrinks the identifiers, which end up in constant bounds after O(log * 𝑛) iterate calls to 𝑓 . The wait-free component then terminates in O(1) rounds, as all monotonous sequences are of bounded length.

The interaction between the two components of our algorithm guarantees that every node eventually decides a final color in { 1, . . . , 6 }, in 𝑂 (log * 𝑛) asynchronous rounds. The termination condition ensures that a process never returns a color that might have been returned by a neighbor, ensuring a proper coloring of the output.

Conclusion and future works

We have presented a wait-free distributed algorithm for proper coloring the 𝑛 nodes of the asynchronous cycle 𝐶 𝑛 , for every 𝑛 ⩾ 3. This algorithm performs in O(log * 𝑛) rounds, which is optimal, thanks to Linial's lower bound [START_REF] Linial | Locality in Distributed Graph Algorithms[END_REF] that applies even to the synchronous execution. The algorithm uses 6 colors to properly color any cycle 𝐶 𝑛 , 𝑛 ⩾ 3, which is close to the minimum number 5 of colors required to properly color the asynchronous cycle 𝐶 3 [CR10; HS99]. It is not clear whether a wait-free algorithm exists for 5-coloring all cycles 𝐶 𝑛 , 𝑛 ⩾ 3, in O(log * 𝑛) rounds, or even just in O(𝑛) rounds. In fact, for 𝑛 > 3, the existence of a 3-coloring algorithm is not directly ruled out by [START_REF] Castañeda | New combinatorial topology bounds for renaming: the lower bound[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF].

A natural extension of this work is to consider wait-free coloring arbitrary graphs. Note that, by the renaming lower bound, coloring graphs with maximum degree 𝛥 requires a palette of at least 2𝛥 + 1 colors whenever 𝛥 + 1 is a power of a prime. This is because the shared memory model coincides with ours in the clique with 𝑛 = 𝛥 + 1 nodes. We do not know if 2𝛥 + 1 colors suffice for properly coloring all graphs of maximum degree 𝛥 in a wait-free manner. It is however easy to extend the wait-free component of our algorithm into an algorithm that colors any connected graph using a palette of 𝑘 = O(𝛥 2) colors when the maximum degree is 𝛥 ⩾ 2. We omit this algorithm for brevity, but note that its running time may be as large as O(𝑛).

 ¶. For any natural number 𝑍, we denote its binary decomposition by 𝑍 = 𝑘 ∈N 𝑍 𝑘 2 𝑘 , whose length is | 𝑍 | log 2 (𝑍 + 1) . The function 𝑓 is as follows. Given two natural numbers 𝑋 and 𝑌 , we set 𝑓 (𝑋,𝑌) = 2𝑖 + 𝑋 𝑖 where 𝑖 min{ | 𝑋 |, |𝑌 | } ∪ { 𝑘 ∈ N | 𝑋 𝑘 ≠ 𝑌 𝑘 }

† Extended abstract. The full paper was submitted for publication at the 41st ACM Symposium on Principles of Distributed Computing (PODC 2022), review pending.‡ Additional support from the project ANR-20-CE48-0006 (DUCAT).

Algorithm 1: Fast 6-coloring algorithm, code for process 𝑝 with neighbors 𝑞 and 𝑞 ′ .

1 Input: 𝑋 𝑝 ∈ N ⊲ process 𝑝's unique identifier 2 Initially:

In the synchronous setting, there is an algorithm for O(𝛥 2)-coloring performing in O(log * 𝑛) rounds [START_REF] Linial | Locality in Distributed Graph Algorithms[END_REF]. However, the techniques used for reducing the number of colors from O(𝛥 2) to 𝛥 + 1 seem hard to transfer to the asynchronous setting.

More generally, it is not clear which of the classical graph problems studied in synchronous failure-free networks (e.g., maximal independent set, maximal matching, etc.) can be solved wait-free, and with what complexity.