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ABSTRACT 15 

The Arctic tundra is characterised by harsh conditions and environmental gradients are 16 

especially pronounced. Variation in functional traits along such gradients provide insights into 17 

the drivers of species abundance and distribution, and are particularly valuable in this region 18 

currently experiencing strong climate warming. Over three consecutive years, we analysed the 19 

interacting effect of two environmental factors, habitat and elevation, on the abundance, body 20 

size and clutch size in two common Low-Arctic invertebrate predators (Lycosidae, Araneae), 21 

Pardosa furcifera (Thorell 1875) and Pardosa hyperborea (Thorell 1872). Using generalised 22 

linear models, we firstly showed a habitat partitioning between P. furcifera, which dominated 23 

wet habitats like fens, and P. hyperborea, which was more associated with drier habitats like 24 

shrubs. Secondly, we found smaller body sizes at high elevation in P. hyperborea, a species 25 

that has a southern distribution in Greenland, and we identified season length as a major driver 26 

of the development in this species. In P. furcifera, a species likely more cold-adapted, we found 27 

no body size difference between elevations, suggesting that local conditions (e.g. prey 28 

availability or snowmelt timing) are more important in explaining body size variations. Finally, 29 

body size and clutch size were strongly correlated in both species, but clutch size was not 30 

affected by habitat or elevation. We argue that fecundity is likely influenced by trade-offs, and 31 

that considering additional complementary trait measurements would allow for a better 32 

understanding of the mechanisms underlying patterns in species life-history traits along 33 

environmental gradients. 34 

Keywords: Converse Bergmann’s rule, Latitudinal compensation, Southern Greenland, Trade-35 

off, Body size, Fecundity   36 
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INTRODUCTION 51 

The Arctic tundra is characterised by harsh conditions like extreme cold temperatures 52 

and a brief growing season (Hobbie et al. 2021). Such conditions shape a diversity of habitat 53 

patches with pronounced local environmental gradients (e.g. in vegetation or in soil moisture; 54 

Hobbie et al. 2021; Hansen et al. 2016) across short distances. This in turn results in distinct 55 

spatial variation in arthropod community composition (Høye et al. 2018; Dahl et al. 2018; Hein 56 

et al. 2019a), a group that constitutes the majority of animal species in the region (Schmidt et 57 

al. 2017). Similarly, elevation also creates environmental variation and affects species 58 

distribution and development (Körner 2007; Hein et al. 2019b; Viel et al. 2022). At higher 59 

elevation, environments become more variable and less predictable, both in terms of abiotic 60 

(e.g. season length) and biotic (e.g. food availability) conditions (Blanckenhorn 1997; 61 

Hodkinson 2005). Elevational gradients are thus considered useful for studying variations in 62 

species abundance and life-history (Körner 2007; Høye et al. 2020). In this regard, Arctic 63 

ecosystems represent an opportunity to investigate underlying ecological processes through 64 

functional approaches, for instance via trait-based methods (sensu Violle et al. 2007), providing 65 

complementary insights to classic taxonomic studies (Bartomeus et al. 2016; Bonfanti et al. 66 

2018; Høye and Culler 2018; Wong et al. 2019). 67 

Among functional traits, life-history traits represent a particularly valuable source of 68 

information because they are strongly linked to the fitness of organisms and are expected to be 69 

significantly sensitive to different environmental stressors (Moretti et al., 2017). Body size is 70 

certainly the most studied trait (e.g. Mammola et al. 2019; Koltz and Wright 2020; Monsimet 71 

et al. 2021) because it affects nearly all aspects of an organism (Kingsolver and Huey 2008) 72 

and reflects the conditions experienced during the development (Ameline et al. 2018). The well-73 

known Bergmann’s rule was developed to explain spatial variation in body size of individuals 74 

across latitudinal and altitudinal gradients (e.g. Ray 1960; McNab 1971; Meiri and Dayan 75 
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2003). It predicts that individuals would be larger at higher latitude or altitude because a smaller 76 

surface-area-to-volume ratio reduces heat loss. On the other hand, the Converse Bergmann’s 77 

rule (see e.g. Blanckenhorn and Demont 2004) states that the active season length is more 78 

important than temperature in some cases (e.g. Blanckenhorn 1997; Høye et al. 2009). It 79 

predicts smaller body sizes with increasing elevation as a decreasing season length limits the 80 

amount of time for foraging, growth and maturation. Lastly, body size is interesting because it 81 

is highly correlated to other life-history traits like fecundity, especially in invertebrates (e.g. 82 

Dearn 1977; Kingsolver 1983; Puzin et al. 2011; Berry et al. 2018). This trait thus represents a 83 

good metric to understand variation in e.g. maternal investment or reproductive output along 84 

environmental gradients (Ameline et al. 2018; Wolz et al. 2020).  85 

Among terrestrial arthropods, which are known to quickly respond to environmental 86 

changes (Spiller et al. 2017; Beckers et al. 2018; Høye 2020), wolf spiders are often regarded 87 

as relevant bio-indicators because of their importance in ecological communities as prey and 88 

predators (Marshall and Rypstra 1999; Jocqué and Alderweireldt 2005; Foelix 2011). They 89 

usually exhibit high spatial variation in abundance, reflecting their physiological tolerance to 90 

different environmental conditions, like humidity, temperature, or salinity for instance (see e.g. 91 

DeVito et al. 2004; Frick et al. 2007; Pétillon et al. 2011). In Arctic ecosystems, wolf spiders 92 

are dominant top-predators in the food web (Høye and Hammel 2010; Schmidt et al. 2017) and 93 

are present at high densities in many habitats (Bowden and Buddle 2012; Høye et al. 2021). 94 

Finally, females lay their eggs into cocoons that they transport by keeping them attached to 95 

their spinnerets until they hatch (Jocqué and Alderweireldt 2005; Piacentini and Ramírez 2019), 96 

making it possible to obtain concomitant specimen-specific trait measurements of individuals 97 

and their progeny. Therefore, wolf spiders such as Pardosa species, offer the possibility of 98 

studying co-variations between such traits, and sometimes even of investigating potential trade-99 

offs in maternal investment (e.g. Hendrickx and Maelfait 2003; Ameline et al. 2017). 100 
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Whilst global warming is particularly strong in the Arctic (IPCC 2019), transform tundra 101 

landscapes (e.g. Frost et al. 2013; Rich et al. 2013; Hobbie et al. 2017; Bowden et al. 2018), 102 

and is becoming a concerning threat to arthropods (Høye 2020; see also Halsch et al. 2021), a 103 

need for more insights about the Arctic biodiversity from a wide range of locations is needed 104 

(Høye et al. 2020; Taylor et al. 2020). In this study, based on three consecutive years of 105 

sampling, we investigate habitat selection of two common Arctic wolf spider species, Pardosa 106 

hyperborea (Thorell 1872) and Pardosa furcifera (Thorell 1875), and we analyse the interacting 107 

effects of habitat and elevation on two life-history traits, i.e. body size and clutch size. In other 108 

words, we try to identify the role of two major factors that act at two different scales, on the 109 

two most abundant predators species of the study area (Høye et al. 2018), and thus a key 110 

component of the trophic web in the region. At this latitude, the relative importance of local- 111 

(e.g. micro-habitat factor effects in Hansen et al. 2016) vs broad-scale factors (Hein et al. 2019) 112 

in driving arthropod populations has not been clearly understood. Moreover, the way elevation 113 

affects ectotherms is still debated (e.g. Blanckenhorn and Demont 2004). We thus aim to better 114 

understand how two locally dominant species are spatially distributed, and to determine the 115 

importance of environmental factors for these species by analysing functional trait variation.  116 

We predict that the distribution of the studied species over space is determined by both 117 

environmental factors, with abundances decreasing with increasing elevation, and a habitat 118 

partitioning with more individuals of P. hyperborea in relatively dry and shrubby habitats, e.g. 119 

shrub, and more individuals of P. furcifera in relatively wet and open habitats, e.g. fens 120 

(Marusik 2015; Hansen et al. 2016). Further, we predict that the number of eggs per cocoon (or 121 

clutch size), as proxy for individual fecundity, is determined by maternal body size (Marshall 122 

and Gittleman 1994), i.e. that these traits are positively correlated. Finally, we predict a 123 

predominant effect of the broad-scale factor on measured traits, i.e. elevation, compared to the 124 

local factor, i.e. habitat, in both species (Hein et al. 2019b), and more specifically, a Converse 125 
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Bergmann’s Rule pattern (Blanckenhorn and Demont 2004), i.e. individuals with smaller body 126 

sizes and smaller clutch sizes at higher elevation sites compared to lower elevation sites. 127 

 128 

MATERIALS AND METHODS 129 

Studied species 130 

Whilst Pardosa species from temperate latitudes are known to have annual life-cycles, 131 

in northern zones, it has been reported that boreal and Arctic wolf spider species usually show 132 

a biennial life-cycle model (e.g. Høye et al. 2009). Young are developing as juveniles and sub-133 

adults two winters in a row, and mature as adults the third active season where they breed and 134 

die (Buddle 2000; Pickavance 2001; Ameline et al. 2017; Viel et al. 2022). 135 

Here, the studied Pardosa models represent the two most abundant spider species of the region 136 

(Høye et al. 2018), occurring in the same geographic area and sharing similar broad 137 

environmental conditions, i.e. being sympatric. Pardosa hyperborea on the one hand, a fairly 138 

well studied species (e.g. Pickavance 2001; Viel et al. 2022) measuring between 4.5 and 5.6 139 

mm in body length (Paquin and Dupérré 2003), is widespread over boreal and Low-Arctic areas. 140 

It usually occurs in open forests and amongst lichens in the tundra (Dondale and Redner 1990; 141 

Paquin and Dupérré 2003; Marusik 2015; Nentwig et al. 2021). In Arctic landscapes 142 

specifically, the species is described as indicative of heath and shrub habitats (Hansen et al. 143 

2016; Høye et al. 2018). On the other hand, P. furcifera, a bigger spider measuring between 7.2 144 

and 8.7 mm in body length, seems to be a more northerly species known from Low-Arctic and 145 

alpine environments (Dondale and Redner 1990; Paquin and Dupérré 2003; Marusik 2015). 146 

The species is usually found in a variety of habitats (Hansen et al. 2016; Høye et al. 2018) but 147 

is predominantly found on moss layers and in snow beds, seemingly preferring moist areas 148 

(Dondale and Redner 1990; Marusik 2015). 149 

 150 
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Study area and experimental design 151 

The study area is located near Narsarsuaq, South Greenland (61.16°N, 45.40°W; Fig. 152 

1), in the Sub-Arctic/Low-Arctic transition zone where the vegetation cover is continuous and 153 

where shrubs are frequent (Polunin 1960; CAFF 2013). The experimental design (see Høye et 154 

al. 2018 for more details) consisted of transects of yellow pitfall traps each 10 cm in diameter, 155 

containing a 50% propylene glycol:water mixture as preservative with a few drops of detergent 156 

to break the surface tension of the trapping liquid.  157 

Transects have been installed in the two most common habitats of the study area, 158 

constituting a mosaic across the landscape, i.e. either in fen type habitats, consisting in 2 rows 159 

of 40 m long with 9 pitfall traps 5 m apart, or in tall shrub type habitats, consisting in 2 rows of 160 

20 m long with 5 pitfall traps 5 m apart. The limited size of shrub patches in studied sites did 161 

not allow to make the transects as long as the fen transects (Høye et al. 2018). The fen type 162 

patches were overall characterised by wet soils and by a relatively short vegetation composed 163 

of mosses, Betula glandulosa and different species of Carex, with higher dominance of lichens 164 

at higher elevations (Høye et al. 2018). The shrub type patches were overall distinguished by 165 

drier soils and by a relatively high cover of dwarf shrubs like Vaccinium uliginosum and 166 

Empetrum hermaphroditum and lichens, whilst some parts were almost completely covered by 167 

Salix glauca with occasional herb species like Campanula rotundifolia (Høye et al. 2018). 168 

The experimental set-up was designed to capture fine-scale environmental gradients, as 169 

for instance, some traps were installed in drier parts of fen patches and in shorter vegetation 170 

surrounding shrub patches, i.e. in more moor-heath type habitats. However, here we are looking 171 

at the habitat scale since wolf spiders are known to be active wandering hunters having large 172 

movement ranges (Morse 1997; Kiss and Samu 2000; but see also Ahrens and Kraus 2006). 173 

In total, in each habitat type, three transects have been set up at 50 m above sea level, 174 

i.e. at low elevation, and two transects have been set up at 450 m above the sea level, i.e. at high 175 
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elevation, which represents a total of 140 pitfalls traps. Monthly average ground surface 176 

temperatures at low sites are typically 1-2°C degrees warmer during summer than at high sites 177 

(data for the months of June, July and August, from the years 2016 and 2017, unpubl. data). In 178 

this study, samples from only one transect line in each plot have been used, i.e. across 70 pitfall 179 

traps, while samples from the other transect have been kept for future molecular analyses. Traps 180 

were collected weekly during the growing seasons of the period 2015−2017. 181 

 182 

Laboratory work 183 

In the laboratory, spiders were identified to species level and samples containing female wolf 184 

spiders were kept separate with their cocoon if any. Over the four wolf spider species that were 185 

collected, i.e. P. furcifera, P. hyperborea, Pardosa groenlandica (Thorell 1872) and Arctosa 186 

insignita (Thorell 1872), the last two were omitted due to low sample size (17 and 76 females 187 

of P. groenlandica and A. insignita, respectively. Only one individual of P. groenlandica and 188 

A. insignita with a cocoon were found over the three years. Females of the two selected species 189 

having a cocoon were then photographed individually on laminated graph paper using a stereo 190 

microscope and a smartphone camera. The carapace width (i.e. prosoma width) was measured 191 

from the pictures by calibrating size against the graph paper using the software ImageJ 192 

v.1.8.0_112. As the prosoma is known to be fixed in adult spiders, i.e. not varying with diet or 193 

hydration for example, this part is usually used as a proxy for the body size of individuals (e.g. 194 

Hagstrum 1971; Jakob et al. 1996; Pickavance 2001; Legault and Weis 2013). Finally, the 195 

cocoons were opened and their content counted. Specimens are preserved in 75% ethanol and 196 

stored at the Natural History Museum Aarhus, Denmark. 197 

 198 

Statistics 199 

Accepted manuscript / Final version



10 

 

Data from all three years were combined in the analyses to focus on general spatial 200 

trends, and we only considered female individuals. Spiders are indeed known to show 201 

differences in response to environmental drivers between sexes (e.g. Pekár and Vaňhara 2006; 202 

Høye and Hammel 2010; Bowden et al. 2013), and we are not investigating sexual size 203 

dimorphism here. 204 

To investigate the abundance of each species across elevations and habitats, we built a 205 

Generalized Linear Model (GLM) with a Poisson distribution for P. furcifera and a GLM using 206 

a negative binomial distribution for P. hyperborea to overcome overdispersion of residuals 207 

(package “MASS”: Venables and Ripley 2002). We then analysed the effect of both elevation 208 

and habitat type on the carapace width of specimens by running a simple linear regression 209 

model for the two studied species. The relationship between body size and clutch size was tested 210 

for each species using GLMs with a negative binomial distribution, and predictions from these 211 

models were visualized with the package “ggplot2” (Wickham 2016). Finally, we tested the 212 

effect of elevation and habitat on clutch size for each species by building GLMs with a negative 213 

binomial distribution, including female body size as predictor. Analyses of the relation between 214 

body size and clutch size were made on clearly identified mother/cocoon pairs. However, both 215 

P. hyperborea and P. furcifera females have been shown to be able to produce two clutches in 216 

one active season with the second clutch being smaller than the first (Viel et al. 2022). 217 

Therefore, in order to avoid potentially mixing smaller second clutches with the larger first 218 

clutches, we used the method in Viel et al. (2022) to only keep clutches from the first laying 219 

episode. Specifically, we found no evidence of differences in date thresholds amongst species 220 

and elevations and thus excluded clutches collected after week 31 of the year (i.e. around 221 

August 1st; see details in Online Resource 1). 222 

For each model, the linearity and the normality (when required) of residuals was 223 

checked from plots of residuals versus predicted values and QQ-plots with a Shapiro-Wilk test 224 
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(package “RVAideMemoire”: Hervé 2019). Significances of explanatory variables and factors 225 

were tested with ANOVA tests type II (package “car”: Fox and Weisberg 2019). The compared 226 

means, presented with standard errors, were estimated marginal means obtained with the 227 

package “emmeans” (Lenth 2019). All analyses were performed using the software R v.3.6.2 228 

(R Core Team 2019). 229 

 230 

RESULTS 231 

Abundances 232 

Over the three years, habitat had a significant effect on the abundance of P. furcifera (Table 1), 233 

with more female individuals per pitfall trap along transects in fens than in shrub habitats (1.79 234 

± 0.09, n = 946 vs. 1.53 ± 0.06, n = 314; Log-likelihood ratio test: χ² = 5.67, df = 1, p = 0.0172; 235 

Fig. 2a). Elevation did not show any significant effect on the abundance of this species. For P. 236 

hyperborea, we found a significant interaction between habitat and elevation on the abundance 237 

of females (Log-likelihood ratio test: χ² = 4.10, df = 1, p = 0.0428; Table 1). Specifically, in 238 

both habitat types there were significantly more females individuals per pitfall trap along 239 

transects at low elevation than at high elevation (in shrubs: 4.46 ± 0.17, n = 2259 vs. 2.59 ± 240 

0.18, n = 471; in fens: 2.85 ± 0.10, n = 1951 vs. 2.08 ± 0.15, n = 416) and more female specimens 241 

per pitfall trap along transects in shrubs than in fens at low elevation (4.46 ± 0.17, n = 2259 vs. 242 

2.85 ± 0.10, n = 1951; Fig. 2b). Finally, the model showed that the difference in abundance 243 

between habitats at high elevation was not significant for this species. 244 

 245 

Body size and fecundity 246 

We found a significant and positive effect of carapace width on the number of eggs per cocoon 247 

for P. furcifera (Log-likelihood ratio test: χ² = 17.15, df = 1, p < 0.0001), as well as for P. 248 

hyperborea (Log-likelihood ratio test: χ² = 89.33, df = 1, p < 0.0001; Table 1; Fig. 3).  249 
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Concerning the effect of environmental factors on body size, for P. furcifera the linear model 250 

showed no significant effect of elevation on the carapace width of females (3.01 ± 0.04 mm, n 251 

= 75 at low elevation vs. 2.99 ± 0.03 mm, n = 27 at high elevation; Sum of squares = 0.01; F1,99 252 

= 0.16; p = 0.0287; Table 1). However, females were significantly larger in fen than in shrub 253 

habitats (3.05 ± 0.03 mm, n = 70 vs. 2.95 ± 0.04 mm, n = 32; Sum of squares = 0.22; F1,99 = 254 

4.92; p = 0.6935; Table 1; Fig. 4a). By contrast, for P. hyperborea, analyses revealed no 255 

significant effect of habitat on the carapace width of females (1.75 ± 0.01 mm, n = 182 in fens 256 

vs. 1.75 ± 0.01 mm, n = 132 in shrubs; Sum of squares = 0.001; F1,311 = 0.08; p = 0.7779; Table 257 

1), but there were significantly larger individuals at low elevation than at high elevation (1.79 258 

± 0.01 mm, n = 267 vs. 1.71 ± 0.02 mm, n = 47; Sum of squares = 0.20; F1,311 = 10.58; p = 259 

0.0013; Table 1; Fig. 4b). Finally, our models testing the influence of the studied factors on 260 

clutch sizes did not show any significant effect of habitat or elevation for either P. furcifera 261 

(85.37 ± 3.31, n = 70 in fens vs. 84.80 ± 4.20, n = 32 in shrubs; and 80.01 ± 2.86, n = 75 at low 262 

elevation vs. 90.49 ± 4.77, n = 27 at high elevation) or P. hyperborea (21.65 ± 0.61, n = 182 in 263 

fens vs. 22.51 ± 0.69, n = 132 in shrubs; and 22.73 ± 0.42, n = 267 at low elevation vs. 21.44 ± 264 

0.96, n = 47 at high elevation; Table 1; Online Resource 1). However, for P. furcifera, we found 265 

a tendency towards larger clutch sizes, i.e. more eggs per cocoon, at higher elevations, but this 266 

trend was only marginally significant (Log-likelihood ratio test: χ² = 3.68, df = 1, p = 0.0551). 267 

 268 

DISCUSSION 269 

Combined effects of habitat and elevation on abundance 270 

The abundance of female wolf spiders varied amongst habitat types and elevation in 271 

different ways between the two studied species. Whilst P. furcifera was more common in fen 272 

habitats and showed similar abundances between elevations, P. hyperborea was fluctuating 273 
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between elevations according to habitats, being more common at low elevation and almost 274 

twice as abundant in low elevation shrub patches compared to low elevation fen patches. 275 

These results, based on a consistent dataset, indicate that P. furcifera is more related to wet 276 

habitats than P. hyperborea, which is in line with earlier anecdotal evidence (Dondale and 277 

Redner 1990; Marusik 2015). We also provide a better understanding of the ecology of a species 278 

that is rather poorly documented. In the Arctic, wetlands are known to support high prey 279 

availability for predators like spiders (Böcher et al. 2015; Bowden et al. 2015; Loboda et al. 280 

2018; Koltz et al. 2018), which select their prey mostly according to abundance (Wirta et al. 281 

2015). Local conditions like habitat characteristics thus appear to be more important for the 282 

distribution of this species than larger scale factors, e.g. temperature gradients induced by 283 

changes in elevation. This idea is supported by the fact that abundances did not differ 284 

significantly between elevations, which therefore contradicts our first hypothesis of a negative 285 

effect of elevation on population abundance. 286 

For P. hyperborea, our first hypothesis was only partly confirmed. Individuals were 287 

indeed more common at low elevation in both habitat types, but we observed a partitioning 288 

between habitats only at lower elevations. Our results suggest that at low elevations, females of 289 

P. hyperborea are more abundant in habitats that tend to be drier, like shrub patches, contrasting 290 

with its congeneric P. furcifera. This is in accordance with previous findings describing P. 291 

hyperborea as indicative of heath-like and shrub-like landscapes (Marusik 2015; Hansen et al. 292 

2016; Høye et al. 2018).  293 

With increasing altitude, growth conditions deteriorate (Blanckenhorn 1997; Hodkinson 294 

2005; Körner 2007) as abiotic conditions become more severe and resources generally become 295 

scarcer (Bowden et al. 2013; Ameline et al. 2018). One can thus expect lower populations sizes 296 

at high elevation compared to low elevation in line with patterns of species richness (Bowden 297 

and Buddle 2010). Hence, P. hyperborea would only show habitat preferences at low elevation 298 
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with similar abundances at higher altitudes, because conditions at high elevation might be 299 

especially restrictive for this species and would reduce the advantages of preferred habitats. In 300 

other words, the distribution of P. hyperborea in Arctic ecosystems would be determined by 301 

local conditions in favourable contexts, e.g. at low elevations, but by broader drivers like 302 

climatic gradients in harsher conditions, e.g. at higher elevations. Similarly, conditions at high 303 

elevation in the study area could be close to the ones at the northern edges of the climatic range 304 

boundaries of P. hyperborea, which would explain the significant spatial variation in habitat 305 

specificity between elevation (Oliver et al. 2009). In this case, such pattern is likely to change 306 

over time because of the quick warming occurring in the Arctic region, e.g. high elevation sites 307 

could become suitable enough for the species to observe clear habitat preferences in 308 

populations. In comparison, P. furcifera would be more adapted to cold environments than its 309 

congeneric. This species is known from more northern latitudes (Dondale and Redner 1990; 310 

Marusik 2015; see also Hansen et al. 2016; Ameline et al. 2017) which could explain why 311 

densities are not affected by elevation in this species, especially in an area far from its northern 312 

range limit.  313 

Despite our robust methodology, it is likely that we were not able to sample the entire 314 

active season. Indeed, local weather data suggest that temperatures generally remain positive at 315 

the study site for the period of the season corresponding to 3-4 weeks after our last trapping  316 

(i.e. an average of 5-10 °C between weeks 37 to 39, for the period 2012-2016; Høye, unpubl. 317 

data). As phenology of arthropods like spiders varies across elevations (e.g. Viel et al. 2022), 318 

an incomplete sampling season could have introduced a bias towards high elevation sites where 319 

the season is shorter, and thus where the information about abundances may have been better 320 

captured over time compared to low elevation sites. However, considering the relatively high 321 

number of traps we used for the study and because we are looking for patterns across a three 322 
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years period, we assume that our results would have remained the same even with a longer 323 

season. 324 

 325 

Body size 326 

We found that elevation did not have any effect on the body size of P. furcifera, but that 327 

the habitat did, with larger females in fen than in shrub patches. Our third hypothesis, which 328 

predicted that elevation is an important driver of body size variation with individuals following 329 

the Converse Bergmann’s Rule, is therefore not supported for P. furcifera. On the contrary, 330 

females of P. hyperborea were smaller at high elevation with no significant effect of habitat, 331 

which confirms our third hypothesis for this species. The pattern of body size thus appears to 332 

be species-specific (see also Ameline et al. 2018), and the lack of an elevational effect in P. 333 

furcifera supports the idea that this species is cold-adapted and less sensitive to variation in 334 

growing season temperatures than P. hyperborea. 335 

Our results for P. furcifera are in agreement with previous studies investigating different 336 

wandering spider species, whose conclusions show that elevation is not always a factor 337 

explaining the body size of individuals (e.g. A. insignita in Greenland: Høye and Hammel 2010; 338 

Myro kerguelenensis in a Sub-Antarctic island: Lee et al. 2012; Alopecosa aculeata in Canada: 339 

Bowden et al. 2013). Several non-exclusive arguments can explain this observation. Firstly, the 340 

lack of an elevational pattern was explained in Pardosa palustris in Southern Norway (Beckers 341 

et al. 2020) by short and long-distance dispersal of individuals during all life stages (e.g. 342 

ballooning of spiderlings, see Foelix 2011). However, we argue that it is more likely that the 343 

elevational difference between our sampling stations, i.e. 400 meters, is not large enough to 344 

generate an effect on the body size of P. furcifera. Such explanation is supported by the findings 345 

of Ameline et al. (2018) on Pardosa glacialis in Zackenberg (Greenland). Therefore, it would 346 

be relevant to extend the elevational gradient or to set up the experiment at higher latitudes to 347 
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compare more extreme conditions, especially for P. furcifera. On the other hand, it could be 348 

that organisms living at high latitudes or altitudes are able to compensate for seasonal time 349 

constraints by growing faster compared to their low latitude or altitude conspecifics 350 

(Blanckenhorn and Demont 2004). This phenomenon is referred to as the “countergradient 351 

variation”, or “latitudinal compensation”, and would be equivalent to the Converse Bergmann’s 352 

rule but from a perspective of a genetic response of individuals (Blanckenhorn and Demont 353 

2004). According to this hypothesis, individuals of P. furcifera at high elevations would 354 

compensate for the effect of a shorter season length by growing faster and reach similar body 355 

sizes as populations at lower elevation. 356 

The altitudinal pattern in P. hyperborea seems easier to explain, as it matches with the 357 

Converse Bergmann’s rule. A decreasing body size concomitant with an increase in elevation 358 

would be the consequence of a shorter season length, leading to a shorter time available for 359 

growth and development (Blanckenhorn and Demont 2004). Such a pattern has been 360 

documented in four Pardosa species in Norway by Otto and Svensson (1982), where females 361 

were declining in size with elevation. The same relation between elevation and body size was 362 

documented in P. glacialis and P. groenlandica on Disko Island, Greenland by Høye and 363 

Hammel (2010). The authors argued that a contracting season length along elevational gradients 364 

would induce smaller growth increments during moults or fewer moults in individuals. Such 365 

variation in the number of instars required to reach maturity is a common feature in spiders 366 

(Deevey 1949; Edgar 1972; Buddle 2000). Additionally, a trend of decreasing size could be 367 

related to resource limitation at higher elevation, as already discussed above. More precisely, 368 

Chown and Gaston (1999) showed that ectotherms having a generation time that constitutes a 369 

significant proportion of the growing season are substantially influenced by the season length, 370 

because of constraints on resource availability (see also Chown and Klok 2003; Horne et al. 371 

2015). Pardosa species studied from high altitudes and northern latitudes usually require more 372 
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than one year to complete their development, spending sometimes two active seasons as 373 

juvenils and sub-adults (Schmoller 1970; Buddle 2000; Frick et al. 2007; Høye et al. 2009). 374 

Therefore, the pattern we describe in P. hyperborea is probably ascribed to a seasonality effect 375 

of resource availability, as found in P. palustris (Hein et al. 2019). Elevation is therefore likely 376 

more important for spatial variation in body size variation in this species than local factors such 377 

as habitat characteristics.. 378 

Females of P. furcifera were both more abundant and bigger in wet habitats. Food 379 

quality and quantity are thought to be important drivers of body size in terrestrial arthropods, 380 

including wolf spiders (Miyashita 1968; Bowden et al. 2015; Hein et al. 2019b). Although 381 

Arctic spiders are described as generalist species (Wirta et al. 2015), it could also be that food 382 

resources from wetlands better fit the nutritional needs of P. furcifera (Greenstone 1984; García 383 

et al. 2018; but see Eitzinger et al. 2019). An alternative interpretation could be that the present 384 

pattern is linked to snow dynamic, an abiotic parameter that influences Arctic arthropods in 385 

many ways (e.g. Legault and Weis 2013; Hein et al. 2014; Beckers et al. 2018). Bowden et al. 386 

(2015) for instance, proposed that later snowmelt in wetter patches would lead to a delayed 387 

maturation for overwintering sub-adults. Knowing that a longer development time has a 388 

positive effect on the body size of individuals (Roff 1980; Høye and Hammel 2010; Ameline 389 

et al. 2018) and that local topography controls the snow-cover dynamic (Wundram et al. 2010), 390 

a late snowmelt in wet habitats could explain the bigger individuals observed in P. furcifera.  391 

 392 

Fecundity 393 

We found a strong positive influence of maternal body size on clutch size in both 394 

species. Moreover, in both species the fecundity did not differ between habitat types and 395 

elevation. A positive relationship between body size and clutch size is common in wolf spiders 396 

as well in other spider families (e.g. Wise 1975; Simpson 1993; Marshall and Gittleman 1994; 397 
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Ameline et al. 2018), and has been reported across a diversity of habitat types (e.g. Eberhard 398 

1979; Killebrew and Ford 1985; Simpson 1995; Hein et al. 2018). This relationship explains 399 

the difference in reproductive output with P. furcifera producing bigger clutches than P. 400 

hyperborea. According to the metabolic theory of ecology (Brown et al. 2004), larger females 401 

can retain more energy for reproduction. Thereby, larger individuals can increase their 402 

fecundity more efficiently than smaller individuals, and ultimately their fitness (Ameline et al. 403 

2018). 404 

 It is commonly observed that resource limitations lead to lower fecundity in organisms 405 

(Ameline et al. 2017), with increasing elevation bringing harsher abiotic conditions (e.g. Körner 406 

2007). However, the effect of elevation on wolf spider fecundity appears to be inconsistent over 407 

space and between species. For instance, Ameline et al. (2018) investigated this topic for several 408 

lycosid species in several locations. Similarly to our finding (50-450m elevation gradient), the 409 

authors did not find an effect of elevation on the clutch size of P. hyperborea in Godthaabsfjord 410 

(ca. 0-700m elevation gradient) and Narsarsuaq (ca. 50-450m elevation gradient) in Greenland. 411 

But they also report a negative effect of elevation on fecundity for the same species at 412 

Kobbefjord (0-200m elevation gradient) in Greenland. In P. palustris in Iceland (ca. 0-400m 413 

elevation gradient) and Faroe Islands (samples collected at 350m), and in P. glacialis in 414 

Zackenberg (0-200m elevation gradient) in Greenland, the researchers did not observe any 415 

altitude-fecundity relationship either. On the contrary, Bowden et al. (2013) found that females 416 

of Pardosa lapponica in the Low-Arctic Canada (ca. 650-1450m elevation gradient) produced 417 

fewer progeny at higher elevations and that in Pardosa uintana, females collected at the highest 418 

spots were the ones showing the lowest fecundity as well. Finally, Punzo and Farmer (2006) 419 

reported smaller clutches from high elevation study sites in females of Pardosa sierra (ca. 900-420 

1800m elevation gradient). Therefore, clutch size is not always following the same pattern 421 

across space and species, and although body size of females is strongly related to this 422 
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reproductive trait, it is likely not the only driving parameter of fecundity (Buddle 2000). 423 

Hodkinson (2005) for instance, summarised several examples of insects species that show 424 

declining fecundity with increasing elevation, and relates these observations to a potentialy 425 

lower food quality at high elevation sites (see also Deevey 1949). He also proposed that local 426 

topography causes important microclimatic variations, which would determine the reproductive 427 

success of insects by producing effects over short vertical distances overriding broader 428 

elevational trends (but see Hein et al. 2019b). 429 

In P. furcifera, clutch size was not significantly affected by elevation either, although, 430 

we found a tendency towards a higher number of eggs per clutch at high elevation. We argue 431 

that the high mobility of wolf spiders (Morse 1997; Beckers et al. 2020) combined with 432 

behavioural traits such as sun basking (Hodkinson 2018) would allow individuals to buffer the 433 

impact of harsh conditions. This would result in a reduced elevational cline for fecundity, e.g. 434 

in P. hyperborea, or even in a positive effect of elevation in cold-adapted species like P. 435 

furcifera. Alternatively, it has been suggested that larger amounts of snow at higher elevations 436 

(Hodkinson 2005) creates a more stable and warmer subnivean thermal environment that may 437 

reduce the high metabolic costs of overwintering (Legault and Weis 2013). According to this 438 

idea, P. furcifera might perform better than its congeneric under colder conditions, females at 439 

high elevation would use less energy to survive during the inactive season and would be able 440 

to invest more energy into reproduction during the active season than females at lower 441 

elevation. Similarly, Beckers et al. (2020) suggested that environmental conditions at high 442 

elevation could be less detrimental for ground-dwelling arthropods than what is usually 443 

assumed, because of a lower and a less dense vegetation cover that would lead to a higher solar 444 

irradiance. In such context where temperatures can rise very quickly, arthropods could rapidly 445 

respond by showing a higher activity that may result in higher reproductive rates (Hein et al. 446 

2018).  447 
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 448 

CONCLUSION 449 

In this study, we analysed the interacting effect of elevation and habitat along local 450 

environmental gradients on the spatial distribution and two reproductive traits in P. furcifera 451 

and P. hyperborea. These two wolf spider species co-occurring in the same habitats and thus 452 

sharing similar environmental conditions, are very abundant in the Low-Arctic (Marusik and 453 

Koponen 2002; Bowden and Buddle 2012) and are considered as top predators in the trophic 454 

web (Schmidt et al. 2017). In spite of being closely related, we showed that the two species are 455 

responding in different ways to environmental factors, in terms of abundance but also 456 

morphologically. Specifically, we identified a spatial partitioning with P. furcifera being more 457 

common in wetter habitats and P. hyperborea being more abundant in shrub-dominated 458 

habitats. The distribution of these species across the tundra are thus driven by local 459 

environmental conditions like habitat characteristics. Moreover, we showed contrasting effects 460 

of abiotic factors on the body size of females. The body size of P. hyperborea was determined 461 

by elevation, displaying a pattern corresponding to the Converse Bergmann Rule, i.e. smaller 462 

individuals at high elevation. In contrast, the body size of P. furcifera was not influenced by 463 

elevation, likely because this species is adapted to colder conditions. Body size variation in this 464 

species was driven by habitat characteristics, with bigger individuals found in fen patches with 465 

likely higher availability of prey and later snowmelt timing. Finally, we showed that clutch size 466 

was strongly and positively related to the body size of females in both species, but that fecundity 467 

is likely also influenced by other parameters, e.g. inherent metabolic efficiency of species under 468 

cold conditions, or abiotic factors like temperature, solar irradiance or snow amount. Indeed, 469 

we did not observe any effect of habitat or elevation on such life-history trait. Body size and 470 

clutch size are therefore probably influenced by several factors whose effect might be additive 471 

or synergistic but that are difficult to detect and unravel. To better understand resource 472 
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allocation for reproduction in spiders like Pardosa species allocate for reproduction (see 473 

Marshall and Gittleman 1994; Fox and Czesak 2000), fecundity could also be assessed by 474 

measuring other metrics such as the size of eggs, a well-studied life-history trait (e.g. Pétillon 475 

et al. 2009; Berry et al. 2018) which would be relevant to consider for further trait-based studies. 476 

To conclude, we argue that wolf spiders hold a great bio-indicator potential in northern 477 

latitudes, particularly relevant in a context of rapid climatic changes that will probably affect 478 

the entire Arctic trophic web (Hodkinson 2005; Schmidt et al. 2017). For effective monitoring, 479 

collaborations between researchers appear to be a powerful way to efficiently improve 480 

specialised and general knowledge in the long term (Høye and Culler 2018), e.g. through the 481 

formalisation of standardised study protocols (e.g. Moretti et al. 2017) or by building global 482 

databases on spider traits (e.g. Pekár et al. 2021).  483 
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TABLE  792 

Table 1 793 

Generalized linear models (GLM) with Poisson or Negative Binomial (NB) distributions, and 794 

linear models (LM) performed to test the effect of habitat (H) and elevation (E) on the mother 795 

carapace width (CW) or on clutch size (CS), and comparisons using Anova type II. The 796 

coefficient of determination R² is specified for linear models. Not significant interactions 797 

between environmental factors are indicated as "N.S.". The main numbers under the 798 

explanatory variables represent the p-values, in bold when significant (*) or almost significant 799 

(•). The numbers in italics represent (i) either the sum of squares (for LM) or the result of a 800 

likelihood ratio test (for GLM), (ii) the degrees of freedom, and (iii) the F-value (for LM).   801 
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FIGURE LEGENDS 802 

Figure 1 803 

Map of the study area. The light and dark grey dots indicate the location of fen and shrub 804 

plots at high elevation, respectively. The white and black dots indicate the location of fen and 805 

shrub plots at low elevation, respectively. The airport at Narsarsuaq is marked with a white 806 

square. The interval between contour lines is 100 m. The inset indicates where the study area 807 

is located in Greenland. Modified from Høye et al. (2018). 808 

 809 

Figure 2 810 

Mean number of females per pitfall trap according to a) habitat type for Pardosa furcifera, 811 

and b) habitat type and elevation for P. hyperborea, in Narsarsuaq between 2015 and 2017. 812 

The bars represent the standard error, statistically different means do not share letters, and the 813 

number of observations is given in italics. 814 

 815 

Figure 3 816 

Negative Binomial Regressions between the number of eggs per cocoon and the carapace 817 

width (CW) of females in millimetres (mm) for Pardosa furcifera (triangle shape in black) 818 

and for P. hyperborea (round dots in dark grey), in Narsarsuaq (data from 2015 to 2017 819 

pooled together).  820 

 821 

Figure 4 822 
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Mean carapace width of females in millimeters (mm) according to a) habitat for Pardosa 823 

furcifera, and b) elevation for P. hyperborea in Narsarsuaq (data from 2015 to 2017 pooled 824 

together). The bars represent the standard error, statistically different means do not share 825 

letters, and the number of observations is given in italics. 826 
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Response Variable Species Model (distribution) R² Explanatory 

Variables    

    Habitat  Elevation CW Interaction 

Abundance P. furcifera GLM (Poisson)  "0.0172 * 

5.67|1" "0.2802  

1.17|1"  N.S. 

Abundance P. hyperborea GLM (NB)  "<0.0001 * 

75.1|1" "<0.0001 * 

56.3|1"  "0.0428 * 

4.10|1" 

Clutch Size P. furcifera GLM (NB)    "<0.0001 * 

17.14|1"  

Clutch Size P. hyperborea GLM (NB)    "<0.0001 * 

89.33|1"  

Body Size P. furcifera LM 0.0477 "0.0287 * 

0.22|1|4.92" " 0.6935 

0.01|1|0.16"  N.S. 

Body Size P. hyperborea LM 0.0331 "0.7779 

0.001|1|0.08" "0.0013 * 

0.20|1|10.58"  N.S. 

Clutch Size P. furcifera GLM (NB)  "0.9158 

0.01|1" "0.0551• 

3.68|1" "<0.0001 * 

17.42|1" N.S. 

Clutch Size P. hyperborea GLM (NB)  "0.2495 

  1.33|1" "0.2287 

 1.45|1" "<0.0001 * 

83.85|1" N.S. 
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Response 
Variable 

Species 
Model 

(distribution) 
R² 

Explanatory Variables 

Habitat  Elevation CW Interaction 

Abundance P. furcifera 
GLM 

(Poisson) 
  

0.0172 * 
5.67|1 

0.2802  
1.17|1 

  N.S. 

Abundance 
P. 

hyperborea 
GLM (NB)   

<0.0001 * 
75.1|1 

<0.0001 * 
56.3|1 

  
0.0428 * 

4.10|1 

Clutch Size P. furcifera GLM (NB)       
<0.0001 

* 
17.14|1 

  

Clutch Size 
P. 

hyperborea 
GLM (NB)       

<0.0001 
* 

89.33|1 
  

Body Size P. furcifera LM 0.0477 
0.0287 * 

0.22|1|4.92 
 0.6935 

0.01|1|0.16 
  N.S. 

Body Size 
P. 

hyperborea 
LM 0.0331 

0.7779 
0.001|1|0.08 

0.0013 * 
0.20|1|10.58 

  N.S. 

Clutch Size P. furcifera GLM (NB)   
0.9158 
0.01|1 

0.0551• 
3.68|1 

<0.0001 
* 

17.42|1 
N.S. 

Clutch Size 
P. 

hyperborea 
GLM (NB)   

0.2495 
  1.33|1 

0.2287 
 1.45|1 

<0.0001 
* 

83.85|1 
N.S. 
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