Table S1: Traits database

Values (if continuous) and modalities (if categorical) for each trait for each species from the literature (abbreviated names, see scientific names in Table S3). Species size (adult abdomen and body sizes, larval body size) are in millimeters. Voltinism traits are boolean. Flight start modalities are April-May (ApMa) or June-July (JunJul) and flight end modalities are July-August (JuAu) or September-November (SepNo). Flight duration is expressed in month. Overwintering stage modalities are eggs (E), larvae (L) or both (EL). Courtship trait takes the value "yes" if species perform tandem during the oviposition and "no" otherwise. Dispersal ability is a score evaluated by experts in the database of Harabiš and Hronková (2020). Other trait modalities are explicit.

Data sources for each trait and each species are indicated with colors: Harabiš & Hronková, 2020 (yellow), Powney et al., 2014 (purple), Corbet et al., 2006 (pink), Inventaire National Du Patrimoine Naturel, 2003 (blue), Denis, 2018 (gray), Heiser, 2012 (green), Boudot & Kalkman, 2015 (orange), Lambret & Deschamps, 2011 (brown).

	Abdo	0 1 0		a		B 1 b 1		Flight	Flight	Flight		Overwintering	Flight	a	Dispersal	Migratory	- - - - - - - - - -	Larval	Larval
Species	Size	Body Size	Partivoltine	Semivoltine	Univoltine	Bivoltine	Multivoltine	Start	End	Duration	Oviposition	Stage	Mode	Courtship	Ability	behaviour	Territoriality yes yes yes yes yes yes no no no no no no no no no no	Body	behaviour
AESAFF	46	61.5	0	0	1	0	0	JunJul	SepNo	3	Endophytic	E	flier	yes	3.69	yes	yes	34	claspers
AESCYA	55.5	71.5	1	1	1	0	0	JunJul	SepNo	4.5	Endophytic	EL	flier	no	3.06	no	ves	40	claspers
AESMIX	46	60	0	0	1	0	0	JunJul	SepNo	3	Endophytic	E	flier	no	3.38	ves	ves	32.5	claspers
ANAIMP	55	75	0	1	1	1	0	ApMa	JuAu	3.5	Endophytic	L	flier	no	3.38	no	ves	53	claspers
BRAPRA	41.5	58.5	1	1	1	0	0	ApMa	JuAu	2	Endophytic	L	flier	no	2.25	no	ves	38.5	claspers
CALSPL	36.5	46.5	0	1	1	0	0	ApMa	SepNo	4	Endophytic	L	percher	no	2.63	no	ves	21	claspers
CALVIR	36.5	47	0	1	1	0	0	ApMa	SepNo	4.5	Endophytic	Ĺ	percher	no	2.5	no	ves	20	claspers
CHAVIR	35	43.5	0	0	1	0	0	JunJul	SepNo	3.5	Endophytic	E	percher	ves	2.33	ves	no	17.5	sprawler
COEPUE	26.5	34	Ō	1	1	Ō	0	ApMa	JuAu	3.5	Endophytic	Ē	percher	ves	2.5	no	no	12.5	sprawler
COESCI	24	31.5	0	ō	ī	0	0	ApMa	JuAu	2	Endophytic	l l	percher	ves	2.67	no	no	11.5	sprawler
CROERY	40	40.5	ō	õ	ī	1	ō	JunJul	SepNo	3	Exophytic	ī	percher	no	3.63	ves	ves	18	sprawler
FNACYA	26	32.5	Ō	Ō	1	ō	Ō	ApMa	SepNo	5	Endophytic		percher	ves	2.88	no	no	16	sprawler
FRYLIN	25.5	33	ŏ	ŏ	ī	ŏ	ŏ	ApMa	JuAu	3.5	Endophytic	Ĩ	percher	ves	2.8	no	no	14	sprawler
FRYNAI	27.5	33	0	Ō	1	Ō	0	ApMa	JuAu	4	Endophytic	-	percher	ves	2.13	no	no	20	sprawler
ERYVIR	23.5	29	Ő	Õ	ĩ	õ	Õ	JunJul	SepNo	3	Endophytic	Ĩ.	percher	ves	2.78	no	no	13	sprawler
GOMPUI	36	48.5	1	1	0	0	0	ApMa	luAu	3	Exophytic	Ē	flier	ves	2.8	Ves	no	27.5	burrower
HEMEPH	50	67 57	ō	ō	ŏ	ĭ	ŏ	ApMa	SepNo	6	Endophytic	ĩ	flier	no	2.8	Ves	Ves	44	claspers
ISCELE	25.5	32	Ő	ĩ	ĭ	1	ĭ	ApMa	SepNo	5	Endophytic	-	percher	no	2.81	no	no	14	sprawler
ISCPUM	23	28.5	ŏ	ō	ī	ī	ī	ApMa	SepNo	4.5	Endophytic	Ĩ	percher	no	3.06	no	no	11.5	sprawler
LESBAR	30.5	42.5	Ő	õ	1	ō	ō	lunlul	SepNo	4	Endophytic	Ē	percher	Ves	3 19	Ves	no	17.5	sprawler
LESDRY	29	37.5	Ő	Ő	1	õ	Ő	Juniul	SepNo	á	Endophytic	Ē	percher	ves	2 53	no	no	19.5	sprawler
LESSPO	29	37	ŏ	ŏ	ī	ŏ	ŏ	ApMa	SepNo	5	Endophytic	F	percher	ves	2.53	no	no	19	sprawler
LESVIR	29	34.5	Ő	õ	1	Ő	Ő	lunlul	SepNo	45	Endophytic	F	percher	ves	2 23	no	no	175	sprawler
LIBDEP	25	43.5	ŏ	1	1	õ	Ő	AnMa	SepNo	45	Exophytic	-	percher	ves	3 47	no	Ves	23.5	burrower
LIBELI	275	43.5	ŏ	1	Ô	ŏ	õ	AnMa	ΙμΑμ	3	Exophytic	ĩ	percher	no	2.46	no	Ves	21.5	burrower
LIBOUA	29.5	44	ŏ	ō	ĭ	ŏ	ŏ	ApMa	SepNo	4.5	Exophytic	Ĩ	percher	no	3.13	Ves	Ves	24.5	burrower
ORTALB	33	47.5	Ő	Ő	1	õ	õ	AnMa	μΔιι	35	Exophytic	Ĩ	percher	no	3 25	00	Ves	23	burrower
ORTBRU	29.5	45	ĭ	ĭ	1	ŏ	ŏ	AnMa	JuAu	3.5	Exophytic	ĩ	percher	no	3 25	no	Ves	195	burrower
ORTCAN	32	47	Î	1	ī	ŏ	ŏ	ApMa	SepNo	4	Exophytic	-	percher	no	3.31	no	ves	24	burrower
OXYCUR	36	50.5	ō	1	Ō	Ő	Ő	AnMa	luAu	à	Exophytic	Ĩ	flier	Ves	2.8	no	Ves	20.5	sprawler
PLAACU	27	36	0	0	1	0	0	AnMa	ΙυΑυ	3	Endophytic	i i	nercher	no	2 38	no	no	14	sprawler
PLALAT	275	36	ő	Ő	1	ő	ő	AnMa	SenNo	45	Endophytic	ĩ	percher	no	2.38	no	no	14	sprawler
PLAPEN	29	36	Ő	Ő	1	õ	Ő	ApMa	SepNo	5	Endophytic	-	percher	no	2.38	no	no	14	sprawler
PYRNYM	27	34 5	ŏ	ĭ	1	ŏ	ŏ	AnMa	luAu	4	Endophytic	ĩ	percher	Ves	2.28	no	no	135	sprawler
SOMELA	38.5	49.5	1	1	Ô	õ	õ	AnMa	ΙυΔυ	3	Exophytic	FI	flier	00	2.53	no	Ves	20.5	sprawler
SYMELIS	28.5	36.5	Ō	0	1	ő	0	lunlul	ΙυΔυ	10 5	Endophytic	F	nercher	Ves	2.33	Ves	yc3	15	sprawler
SYMEON	25.5	36.5	ő	õ	1	õ	õ	AnMa	SenNo	4	Exophytic	FI	percher	Ves	3.91	Ves	Ves	175	sprawler
SYMMER	25	37.5	ő	Ő	1	ő	ő	lunlul	SepNo	3	Exophytic	F	percher	Ves	3.63	Ves	no	16	sprawler
SYMSAN	23	36.5	Ő	0	1	Ő	0	lunlul	SenNo	4	Exophytic	F	percher	Ves	3.06	Ves	no	14.5	sprawler
SYMSTR	27.5	39.5	ŏ	ŏ	1	ĭ	ŏ	JunJul	SepNo	5	Exophytic	EL	percher	ves	3.25	ves	no	16	sprawler

Boudot, J.-P., & Kalkman, V. (2015). Atlas of the European dragonflies and damselflies http://www.knnvuitgeverij.nl/EN/webwinkel/coming%20soon/0/85084.
Corbet, P. S., Suhling, F., & Soendgerath, D. (2006). Voltinism of Odonata: a review. International Journal of Odonatology, 9(1), 1–44. https://doi.org/10.1080/13887890.2006.9748261

- Denis, A. S. (2018). Impacts de l'anthropisation sur la diversité odonatologique au sein des cours d'eau : vers une meilleure prise en compte des espèces de la directive habitats faune flore [Phd, Université de Toulouse, Université Toulouse III Paul Sabatier]. http://thesesups.ups-tlse.fr/3964/
- Harabiš, F., & Hronková, J. (2020). European database of the life-history, morphological and habitat characteristics of dragonflies (Odonata). EJE, 117(1), 302–308. https://doi.org/10.14411/eje.2020.035
- Heiser, M. (2012). Die Biogeographie der Libellen der Paläarktis und ihre Relevanz für die naturschutzrechtliche Normsetzung und Normanwendung.
- Inventaire National du Patrimoine Naturel. (2003). Muséum national d'Histoire naturelle. https://inpn.mnhn.fr
- Lambret, P., & Deschamps, C. (2011). Bilan de la migration d'*Hemianax ephippiger* (Burmeister, 1839) en France en 2011 (Odonata, Anisoptera: Aeshnidae). Martinia, Hors-série, 29–46.
- Powney, G., Brooks, S., Barwell, L., Bowles, P., Fitt, R., Pavitt, A., Spriggs, R., & Isaac, N. (2014). Morphological and Geographical Traits of the British Odonata. Biodiversity Data Journal, 2, e1041. https://doi.org/10.3897/BDJ.2.e1041

Table S2: Summary of environmental conditions

S2A Protocols for measuring local environmental conditions

The water quality was measured bi-monthly in one large representative drainage ditch connected to the ditches included in the transect for each hydrological unit. Three water quality variables were measured *in situ* in the top 30 cm of the water column using a portable electronic multi-parameter probe (WTW 3430, Thermo Fisher scientific Inc.): electrical water conductivity, pH and dissolved oxygen (expressed in % saturation). A water sample was also collected in the top 30 cm of the water column to measure the ammonium, nitrite, nitrate, total nitrogen (Kjeldahl), orthophosphate and dissolved organic carbon concentrations in the laboratory. The chlorophyll a concentration was measured by spectrophotometry after acetone extraction. The water quality measurements were averaged for the March–August period (the same value was used for the two transects belonging to each unit) which describes the conditions experienced by Odonata at the time they were sampled in the field.

The hedge cover index was calculated as the product of three visually assessed ordinal scores (hedge length (score from 1 to 5), hedge width (score from 1 to 3) and hedge height (score from 1 to 3) that were subsequently summed over the two banks of the sampled ditch. This index was updated due to hedge removal once over the study period for two transects; otherwise, the values remained unchanged over the study period.

The two indices characterizing the herbaceous vegetation density were also visually estimated on the lower banks (helophyte species) and upper banks (other herbaceous species) close to each transect, by multiplying its height (cm) by its cover (%) on the two banks. We differentiated helophyte species from other herbaceous species as they might play different ecological functions during the life cycle of Odonata (Lenz 1991; Rouquette and Thompson 2005).

Algae cover (mainly *Enteromorpha* and *Ulva* spp.) and aquatic vegetation cover were visually assessed in the ditches occurring along the transects as described in Mauchamp et al. (2021).

Abundance of the red swamp crayfish (*Procambarus clarkii*) was annually assessed in one representative ditch per hydrological unit using 25 funnel traps deployed in a 250-m long stretch for 24 hours in mid-June. The same crayfish abundance value was used for the two transects assigned to each hydrological unit.

- Lenz N. (1991). The importance of abiotic and biotic factors for the structure of odonate communities of ponds. *Faunistisch-ökologische Mitteilungen*. **6**, 175–189
- Mauchamp A., Gore O., Paillisson J.-M., Bergerot B. & Bonis A. (2021). Delineating the influence of water conditions and landscape on plant communities in eutrophic ditch networks. *Wetlands Ecology and Management* 29, 417-432. https://doi.org/10.1007/s11273-021-09792-x
- Rouquette J.R. & Thompson D.J. (2005). Habitat associations of the endangered damselfly, *Coenagrion mercuriale*, in a water meadow ditch system in southern England. *Biological Conservation* **123**, 225–235. https://doi.org/10.1016/j.biocon.2004.11.011

S2B Summary (mean and range values) of the environmental variables recorded in the studied sites and at which spatial scale they were measured

Variable name	Abbreviated names	Unit	Scale of measurement	Mean	Min	Max
Water depth in July	waterdepth7	meters	Transect	0.4	0	1.2
Drying duration	drying	days	Hydrological unit	23	0	194
Duration of spring flooding of 20% of the meadow surface	flood_spr	days	Hydrological unit	6.9	0	52
Water conductivity	cond	µS.cm ⁻¹	Hydrological unit	1071	478	3985
Ammonium concentration	nh4	mg.L ⁻¹	Hydrological unit	0.15	0.01	2.03
Nitrite concentration	no2	mg.L ⁻¹	Hydrological unit	0.12	0.01	0.39
Nitrate concentration	no3	mg.L ⁻¹	Hydrological unit	15.14	0.32	53.67
Orthophosphate concentration	orthop	mg.L ⁻¹	Hydrological unit	0.10	0.02	0.94
Saturation in oxygen	sato2	%	Hydrological unit	81	45	128
рН	ph	-	Hydrological unit	8	7	9
Hedge Index	hedge_index	-	Transect	35	0	90
Vegetation density on lower banks	veg_low	-	Transect	18	0	111
Vegetation density on upper banks	veg_up	-	Transect	35	13	74
Total aquatic vegetation cover	veg_aqua	%	Transect	26	0	94
Algae cover	algae	%	Transect	10	0	66
Crayfish abundance	crayfish	individuals	Hydrological unit	96	1	414
Ditches length	ditch	meters	Transect	13113	3311	23140
Woodland cover	wood	%	Transect	15	0	64
Meadow cover	meadow	%	Transect	66	36	93
Crop cover	crop	%	Transect	15	0	41

S2C Correlation between the remaining environmental variables (abbreviated names) after the Variance Inflation Factor (VIF) procedure

Three variables of water quality (chlorophyll a, total nitrogen and dissolved organic carbon) and all water depth variables except the water depth of July were excluded during the VIF procedure. Total nitrogen was highly correlated to orthophosphate concentration. Dissolved organic carbon was also highly correlated to the chlorophyll a concentration. All excluded water depths were highly correlated to the water depth of July.

Table S3: Details on Odonata data along the 22 transects from 2015 to 2019: scientific and abbreviated (a six-letter code, three for genus names plus three for species names) names and abundance (number of individuals) all years combined.

Suborder	Species	Abbreviation	01_1	01_2	02_1	02_2	03_1	03_2	04_1	04_2	05_1	05_2	06_1	06_2	07_1	07_2	08_1	08_2	09_1	09_2	10_1	10_2	11_1	11_2	Total
Zygoptera	Calopteryx splendens	CALSPL	1		1			2			7		26	11	1		6			1	3	1	4		64
	Calopteryx virgo	CALVIR		1									17	11	1				1						31
	Chalcolestes viridis	CHAVIR		3							8			1		5	1								18
	Coenagrion puella	COEPUE						42		1	5	5	1	1	1		7				8	4			75
	Coenagrion scitulum	COESCI	3		3	2	4	55								27	2								96
	Enallagma cyathigerum	ENACYA					2				1				2	2									7
	Erythromma lindenii	ERYLIN	30	9	6	5	2	30		1	63	5			1	29	4	27			40				252
	Erythromma najas	ERYNAJ							1						1						1				3
	Erythromma viridulum	ERYVIR	1362	1183	40	187	342	132			192				3	450	24	65			3				3983
	Ischnura elegans	ISCELE	581	797	411	534	495	268	37	28	525	46	4	11	12	474	291	259	8	17	61	14	9	10	4892
	Ischnura pumilio	ISCPUM	32	3	2	2	1		1	2		2							3			4		2	54
	Lestes barbarus	LESBAR	2	5	15	14	13				21		4	5		4		32	1						116
	Lestes dryas	LESDRY			3	13	3								2										21
	Lestes sponsa	LESSPO						7																	7
	Lestes virens	LESVIR									2			3											5
	Platycnemis acutipennis	PLAACU	47	3	394	17		15	42	46	39	1			14	6	70	54		1	129		17		895
	Platycnemis latipes	PLALAT							32	65	19				5		48	25			54		2	1	251
	Platycnemis pennipes	PLAPEN	17	1	8	1		5	34	23	115	24	7	18	195		66	94	55	42	77	22	110	65	979
	Pyrrhosoma nymphula	PYRNYM	1	2									1												4
	Sympecma fusca	SYMFUS		1								2			1				2	1	2	2		2	13
Anisoptera	Aeshna affinis	AESAFF	2	2	2	6	1	2	1	1	5	3	17	38											80
	Aeshna cyanea	AESCYA													1										1
	Aeshna mixta	AESMIX	1	_			_	_										_							1
	Anaximperator	ANAIMP	4	5	1	1	2	2	1		12	2			2	1	1	5	2	1	1				43
	Brachytron pratense	BRAPRA							1			5						_			2				8
	Crocothemis erythraea	CROERY	37	52	2	2	8	1			25				1	4		7			1	2			142
	Gomphus pulchellus	GOMPUL	4	2				5			2	4			8		3	4			29		8		69
	Hemianax ephippiger	HEMEPH	1				1											-			-	-	-		2
	Libellula depressa	LIBDEP	1	1	1		2	1				40						2	3	1	6	3	5	9	/5
	Libellula quadrimaculata	LIBQUA		_								2													2
	Orthetrum albistylum	ORTALB	4	/	2	2	2		10	2	20	36						22	4	38	2		1	42	194
	Orthetrum brunneum	ORTBRU	5	6		47	47					3		~		~				-			1	2	1/
	Orthetrum cancellatum	ORICAN	49	59	3	1/	1/	2	2	4		106	1	6	8	6			3	5	66	3	18	2	3//
	Oxygastra curtisii																				15		3		18
	Somatocniora flavomacui	GSUNIFLA	10	2	1	1	1									1		1			1				1
	Sympetrum ponscolombii	SYNTEON	13	3	1	12	1							4	1	1	7	1			2		1		21
	Sympetrum meriaionale	SYNNIVIER	34	43	1	13	2				1	2	47	4	1	3			1	1	2	~	1		111
	Sympetrum sanguineum	SYNISAN	2	1	1	1					1	3	4/	95	2		8	8	1	1		0	3		160
	Symberrum stribiatum			-	4.0		47	4.5		10	10				0	10		4		10		4.0	10	_	10
	Total species nu	mber	23	23	19	17	17	15	11	10	18	17	11	13	21	13	15	15	11	10	20	10	13	9	39
	Zygoptera species	number	10	11	10	9	8	9	6	7	12	7	7	8	13	8	10	7	6	5	10	6	5	5	20
	Anisoptera species	number	13	12	9	8	9	6	5	3	6	10	4	5	8	5	5	8	5	5	10	4	8	4	19
	Total individu	als	2233	2190	897	818	898	569	162	173	1062	289	126	206	268	1012	540	609	83	108	503	61	182	135	13124
	Zvgoptera indivi	duals	2076	2008	883	775	862	556	147	166	997	85	60	61	239	997	519	556	70	62	378	47	142	80	11766
	Anisontera indiv	iduals	157	182	14	43	36	13	15	7	65	204	66	145	29	15	21	53	13	46	125	14	40	55	1358
	oopcord many						50							2.0					20						2000

Table S4: GDM analysis using Odonata abundance data.

S4A Results of the GDM analysis on the relation between beta diversity (abundance data), geographic distance and environmental variables. Proportion of explained deviance is calculated as the change in explained deviance between a model fit with and without that variable while holding all other variables constant. Relative importance is obtained by summing I-splines coefficient for each variable. All predictors in the table are significantly correlated to beta diversity and they are ranked according to their relative importance. Full GDM models respectively accounted for 48%, 43% and 15% of the total deviance for all species, Zygoptera, and Anisoptera.

	Predictor	Explained deviance (%)	Relative importance
All species	Geographic distance	39	2.044
	Drying duration	9	1.062
	Vegetation density (lower banks)	7	0.582
	Water depth in July	3	0.571
	Hedge index	4	0.397
Zygoptera	Geographic distance	43	2.291
	Drying duration	6	0.729
	Vegetation density (lower banks)	7	0.562
	Water depth in July	2	0.531
	Hedge index	3	0.353
	Aquatic vegetation cover	2	0.301
Anisoptera	Nitrite	16	1.062
	Geographic distance	36	0.773
	Water depth in July	16	0.765
	Vegetation density (upper banks)	16	0.685

S4B. Generalized dissimilarity model-fitted I-splines for variables significantly associated with beta diversity for (a) all species, (b) Zygoptera and (c) Anisoptera (abundance data). The first panel of each line shows the relationship between the observed compositional dissimilarity and the linear predictor of the regression equation from Generalized Dissimilarity Modelling (predicted ecological distance between transect pairs). Remaining panels show the fitted functions (partial ecological distance between transect pairs) for each environmental variable significantly associated with compositional turnover. The maximum height reached by each I-spline indicates the total amount of species turnover associated with that variable holding all other variables constant. The slope of the curve indicates the rate of species turnover and how this rate varies along the gradient of a given variable, holding all other variables constant.

Accepted manuscript / Final version

Table S5: RLQ tables: species scores, coefficients for traits and for environmental variables for the two first axes of the co-inertia. Species are ranked according to their score on the first axis, and traits and variables according to their coefficients along the first axis. Colors are gradients from blue to red to help visualizing the range of values. Codes for species name, traits name and environmental variables are available in Table S3, Table S1 and Table S2B, respectively.

Specie	s scores		Traits coeffi	cients		Environmental variables coefficients						
Species	AxcQ1	AxcQ2	Iraits	CS1	CS2	Environmental variables	RS1	RS2				
SYMMER	-3.36	0.66	Overw.E	-1.50	-0.18	meadow	-0.79	-0.01				
LESBAR	-2.84	-0.77	F sta.JunJul	-1.46	-0.05	ph	-0.65	0.62				
SYMSTR	-2.82	0.35	Overw.EL	-1.36	0.61	cond	-0.59	0.28				
AESAFF	-2.68	1.64	Migra.yes	-1.01	0.41	veg aqua	-0.47	0.03				
CROERY	-2.65	1.85	Court.yes	-0.53	0.08	waterdepth7	-0.32	0.06				
SYMSAN	-2.58	-0.37	Univoltine	-0.49	-0.40	sato2	-0.27	0.55				
SYMFON	-2.33	1.92	Dispersal ability	-0.35	0.66	crayfish	-0.07	-0.30				
CHAVIR	-2.18	-1.44	Larva.sprawler	-0.31	-0.54	drying	0.05	-0.40				
AESMIX	-2.05	1.02	F end.SepNo	-0.30	-0.21	orthop	0.07	-0.37				
LESDRY	-1.81	-1.60	Terit.no	-0.14	-0.53	flood spr	0.09	-0.19				
ERYVIR	-1.77	-0.79	F mod.percher	-0.09	-0.18	nh4	0.13	-0.37				
LESVIR	-1.43	-2.18	Bivoltine	-0.05	-0.14	crop	0.14	0.03				
ISCPUM	-0.69	-1.68	Ovipo.Endophytic	-0.05	-0.52	algae	0.27	-0.05				
LESSPO	-0.52	-2.07	Flight duration	0.07	-0.49	vegup	0.33	-0.57				
COESCI	-0.51	-0.19	Multivoltine	0.07	-0.39	no2	0.41	-0.51				
SYMFUS	-0.32	-3.23	Ovipo.Exophytic	0.10	1.11	no3	0.44	-0.60				
ENACYA	-0.25	-1.35	Larva.claspers	0.12	0.56	ditch	0.51	0.14				
ERYLIN	-0.19	-0.49	Abdo size	0.16	0.53	veg low	0.54	-0.31				
LIBQUA	0.15	1.61	body size	0.22	0.68	hedge index	0.72	-0.49				
ISCELE	0.40	-1.94	larval body	0.24	0.66	wood	0.83	-0.14				
AESCYA	0.43	2.20	Terit.ves	0.28	1.05							
PLAACU	0.45	-0.95	Migra.no	0.30	-0.12							
PLALAT	0.46	-1.94	Overw.L	0.32	0.02							
ERYNAJ	0.58	-1.21	Court.no	0.37	-0.06							
PLAPEN	0.60	-2.10	F sta.ApMa	0.48	0.02							
LIBDEP	0.61	2.09	Partivoltine	0.51	0.62							
ORTALB	0.67	2.50	F end.JuAu	0.58	0.40							
COEPUE	0.77	-0.76	Semivoltine	0.62	0.30							
CALSPL	1.05	-0.66	F mod.flier	0.67	1.36							
PYRNYM	1.12	-1.14	Larva.burrower	0.96	1.49							
ANAIMP	1.13	2.46										
CALVIR	1.30	-0.99										
ORTCAN	1.54	2.94										
ORTBRU	1.82	3.36										
HEMEPH	2.26	2.08										
BRAPRA	2.42	2.03										
OXYCUR	3.11	2.54										
SOMFLA	3.58	3.20										
GOMPUL	3.69	3.95										
LIBFUL	3.73	2.30										