Xavier Dallaire 
  
Claire Mérot 
email: claire.merot@gmail.com
  
A setback into a success: what can batch effects tell us about best practices in genomics?

The increasing access to high-throughput sequencing is certainly one of the major changes that molecular The reduced costs of next-generation sequencing have translated into a rapidly growing number of genomic studies, which are providing new insights into fundamental and applied questions in evolutionary biology and ecology. For comparative genomics and population genomics, increasing data availability brings the opportunity to increase sample size and to broaden the spatial or temporal scale of studies by reusing and merging datasets.

However, uncorrected bias, missing data, filtering parameters, sample heterogeneity, and some analytical choices are known to generate artefactual signals [START_REF] Goh | Why batch effects matter in omics data, and how to avoid them[END_REF]Tom et al., 2017). Moreover, the need to analyze large genomic datasets turned most of us into apprentices at bioinformatics. Along such a tortuous road, who hasn't wondered what the best practices are? How can we be sure that we are using the best tools or the best parameters to analyze our specific dataset? Is there uncorrected bias that may explain the observed patterns more than biological reasons? The matter can complicate further when reusing and/or combining previously generated datasets: how to deal with uncontrolled study design, variable qualities and coverage, differences in sequencing technologies, etc? The study by [START_REF] Lou | Batch effects in population genomic studies with low-coverage whole genome sequencing data : Causes, detection, and mitigation[END_REF] provides helpful answers to such questions as they explore the consequences of different technical artefacts that emerged in their dataset.

The first issue faced by [START_REF] Lou | Batch effects in population genomic studies with low-coverage whole genome sequencing data : Causes, detection, and mitigation[END_REF] is batch effect, which is a pattern of variation due to the merging of datasets produced separately that can confound or mask biological patterns. While usually mitigated by randomization or consistency in methods (e.g., library preparation and sequencing procedure), batch effect represents a major concern for studies carried over several years or across multiple labs, as well as for re-analysis of public datasets. In particular, with the rapid evolution of sequencing technology, whole-genome sequences may have been produced by different methods and may differ in read type and length. For instance, the switch from a 4-colour technology (Illumina HiSeq) to a 2-colour technology (NextSeq) as well as a different assessment of quality score between technologies led to spurious SNPs (single-nucleotide polymorphisms) and an overestimate of heterozygosity differences [START_REF] Lou | Batch effects in population genomic studies with low-coverage whole genome sequencing data : Causes, detection, and mitigation[END_REF]. Moreover, the switch from single-end to paired-end, and from 125 to 150 base pairs, affected read mapping and lead to artifactual high differentiation between the two batches. Fortunately, while such artefacts are worrying, they can be detected by simple bioinformatic procedures and mitigated by filtering choices accounting for technology differences.

Besides batch effects, the paper also draws attention to usually overlooked biases that may arise from heterogeneity in DNA quality and sequencing depth, even within the best-controlled single batch design. For example, the authors observed higher heterozygosity in samples with degraded DNA, a pattern they link to the identification of false polymorphism through deamination of cytosines. This effect might be particularly strong in long-term studies if samples vary significantly in age and were preserved in various conditions. DNA quality, as well as fragment size of the libraries, imperfectly balanced pooling, and sequencing choices, may also lead to heterogeneity in sequencing depth between samples and between batches. Lou & Therkildsen explored this issue with simulated data and showed that the higher proportion of missing data in shallow-covered samples might dampen population structure signals, although this can be controlled with appropriate tools even for low (<4X) to very low coverage (<1X).

More generally, some emerging artefacts reported by [START_REF] Lou | Batch effects in population genomic studies with low-coverage whole genome sequencing data : Causes, detection, and mitigation[END_REF] are worth considering in most sequencing datasets. For instance, this study confirms the warning from De-Kayne et al. ( 2021) about the enrichment of guanine (G) at the end of NextSeq reads that might cause artifactual SNPs and an overestimation of genetic diversity, suggesting that the trimming procedure may need adjustment. Moreover, the current trend is reducing sequencing depth to allow the analysis of large numbers of biological samples in a cost-effective way [START_REF] Lou | A beginner's guide to low-coverage whole genome sequencing for population genomics[END_REF]. While this shift has merits based on the fact that many population genomics analyses produce more robust results with more samples at low coverage than with fewer samples at high coverage (Alex [START_REF] Buerkle | Population genomics based on low coverage sequencing: how low should we go?[END_REF], [START_REF] Lou | A beginner's guide to low-coverage whole genome sequencing for population genomics[END_REF] remind us that low-coverage whole-genome sequencing is more sensitive to artefacts due to DNA degradation, depth heterogeneity or DNA quality. That being said, some artefacts such as reference bias and alignment errors are equally problematic with high-coverage data [START_REF] Gage | Multiple maize reference genomes impact the identification of variants by genome-wide association study in a diverse inbred panel[END_REF][START_REF] Lloret-Villas | Investigating the impact of reference assembly choice on genomic analyses in a cattle breed[END_REF], and more importantly, Lou & Therkildsen show that appropriate bioinformatic procedures are key to control and correct for the impact of multiple factors. Most of those mitigation methods include more stringent filtering that may reduce the fraction of genome actually analyzed or the number of polymorphic markers. This strategy remains nevertheless viable considering that whole genome sequencing produce amounts of data far superior to what is needed for many population genomics applications.

Beyond warning and practical recommendations to deal with heterogeneous sequencing datasets, Lou & Therkildsen (2022) also foster good practices for both designing and analyzing next-generation sequencing studies.

The step-by-step approach leads to a collection of tests and tools that molecular ecologists can adapt to the peculiarities of their own datasets in a modular way. Moreover, even though the list of studied technical artefacts is inevitably incomplete, the approach undertaken by Lou & Therkildsen provides an inspiring example of how to explore and deal with future problems. For example, testing the effects of different levels of filtering on key statistics and using simulations to validate some methods appears as a sensible framework applicable to other datasets. Altogether, this paves the way towards a more accurate use of different kind of genomic datasets and draws a promising picture of future research taking advantage of the incredible amount of sequence data already available. This will encourage ambitious research in molecular ecology based on larger datasets, more temporal or geographical replicates, and more non-model species.

Last but not least, it should be noted that [START_REF] Lou | Batch effects in population genomic studies with low-coverage whole genome sequencing data : Causes, detection, and mitigation[END_REF] clearly reported a problem in their data, describing not only what did work but also what didn't, and which steps of analyses and filtering succeeded or failed. In an academic world heavily focused on high-impact positive results, there is a tendency to shorten methods section in peer-reviewed papers. We believe that method-orientated work is equally important and highlights the relevance of methodological robustness in genomics.

Identifying and mitigating batch effects in whole genome sequencing data. BMC bioinformatics, 18(1), 1-12. 

  ecology has gone through over the last decade. With the positive trend towards more open science, most sequencing datasets are now available on public databases, which holds amazing potential, but also risks of introducing batch effects in studies combining datasets. In this issue of Molecular Ecology Resources, Lou & Therkildsen (2022) offer a timely discussion on the matter by analyzing an imperfect low-coverage Whole Genome Sequencing dataset, in which they test the effects of differences in sequencing choices, DNA degradation, and read depth on routine population genomics analyses. Through a series of diagnostic tools, they uncover multiple factors producing technical artefacts that can bias estimates of genetic diversity, inference of population structure, and selection scans. For each confounding factor, they demonstrate the effectiveness of mitigation approaches and suggest other avenues to deal with the issue. In this perspective, we highlight considerations regarding (1) effects that arise from differences between batches of sequencing, (2) unavoidable heterogeneity within datasets, and (3) more general concerns around the use of next-generation sequencing in population genomics. Altogether, by exploring what may have appeared at first glimpse as a "failed" sequencing project, Lou & Therkildsen (2022) end up setting a standard of best practices to make the most of heterogeneous whole-genome sequences, opening a promising avenue towards efficient reuse of published datasets.

Figure 1 :

 1 Figure 1: Schematic overview of the technical artefacts explored and discussed in Lou & Therkildsen (2022).