
HAL Id: hal-03656827
https://hal.science/hal-03656827

Submitted on 2 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

dynSMAUG: A Dynamic Security Management
Framework Driven by Situations

Romain Laborde, Arnaud Oglaza, François Barrère, Abdelmalek Benzekri

To cite this version:
Romain Laborde, Arnaud Oglaza, François Barrère, Abdelmalek Benzekri. dynSMAUG: A Dynamic
Security Management Framework Driven by Situations. 1st Cyber Security in Networking Conference
(CSNet 2017), Oct 2017, Rio de Janeiro, Brazil. pp.1-8. �hal-03656827�

https://hal.science/hal-03656827
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1109/CSNET.2017.8241987

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22014

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Laborde, Romain and Oglaza, Arnaud

and Barrère, François and Benzekri, Abdelmalek dynSMAUG: A

Dynamic Security Management Framework Driven by

Situations. (2017) In: 1st Cyber Security in Networking

Conference (CSNet 2017), 18 October 2017 - 20 October 2017

(Rio de Janeiro, Brazil).

Abstract—We present a dynamic security management frame-
work where security policies are specified according to situa-
tions. A situation allows to logically group dynamic constraints
and make policies closer to business. Situations are specified
and calculated by using complex events processing techniques
and security policies are written in XACMLv3. Finally, the
framework is supported by a modular event based deployment
infrastructure. The whole framework has been implemented and
its performance is evaluated.

I. INTRODUCTION

The mission of IT security teams in organizations that

consisted in Protect to minimize risk has shift to Protect to

enable [1]. Security professionals should stop focusing on

locking down assets advocating that priority is security. This

approach, which constrains employees, is counterproductive to

organizations. Security has to adapt itself to propose solutions

that enable new business activities and new ways of working.

In other words, the ideal security must allow organizations to

grow in a secure way.

New technologies might enhance the employees’ productiv-

ity, accelerate business processes and represent uncharted busi-

ness opportunities. However, new technologies can also bring

new threats and risks requiring additional security measures.

In parallel, new threats and new vulnerabilities are reported

continuously on the media. Consequently, security has to

evolve on an ongoing basis. Thus, the security enforcement

process should be flexible to quickly adapt the organization

security to new usages/technologies and new threats.

To cope with new usages/technologies requirements, secu-

rity management systems have to automate the enforcement

of security measures. Mobility of employees or short term

projects enhance the business agility. However, allowing only

the right people to access the right assets under the right

conditions (temporal, geographical, circumstances, etc) entails

considering dynamic constraints that leads to dynamic security

permissions.

In this article, we present dynSMAUG , our dynamic se-

curity management framework. The specificity of our ap-

proach consists in considering the concept of situation as

the cornerstone of security management and we write poli-

cies herewith “when situation and conditions then security

actions”. On the one hand, situations allow to capture the

dynamic constraints (time, location, etc.) and organize them

into a stable and logical concept. Situation oriented security

policies are simpler and more readable. Also, managing high

level policies, close to business, reduces the gap between

security requirements and the effective security policy exe-

cuted by security devices, and then limits the security policy

translation errors. On the other hand, making security policy

more independent from technical constraints minimizes the

impact of changing security mechanisms and simplifies the

policy life cycle management. Situations are calculated by

applying Complex Event Processing (CEP) techniques. CEP

provides rich operators for describing complex situations that

combines data from multiple sources. Policies are specified

in XACMLv3. This standard implements the Attribute Based

Access Control paradigm which makes the language highly

flexible. In addition, this language supports both authorization

and obligations. Finally, dynSMAUG includes a deployment

infrastructure that dynamically enforces security policies. Its

modular architecture facilitates the integration of new security

mechanisms.

The rest of the article is structured as follows. Section II

describes the problem highlighting the limits of security policy

languages and architectures. In Section III, we present our

proposition. We propose our definition of the word situation

and we detail the specification of situations and situation based

security policies. Section IV shows the deployment architec-

ture and the performance evaluation of its implementation.

Section V summarizes the related works. Finally, Section VI

concludes and provides some perspectives for the future.

II. DESCRIPTION OF THE PROBLEM

In order to clearly state the problem, we first summarize the

different existing approaches for managing security. Then, we

present a scenario showing the limitations of these approaches.

A. Security management approaches

Policy based management (PBM) is a recognized and well

established approach for managing complex systems now. One

of the key motivations of this approach is flexibility and

adaptability to existing infrastructure and change management.

Policies represent an externalized logic that can determine the

behavior of managed systems [2]. The architecture supporting

this approach consists of a policy decision point (PDP) that

interprets the policy and takes decision based on it, and a

policy enforcement point (PEP) that compels the managed

system to execute the decisions of the PDP.

dynSMAUG: A dynamic security management

framework driven by situations

Romain Laborde, Arnaud Oglaza, François Barrère and Abdelmalek Benzekri

University Paul Sabatier

118 Route de Narbonne, F-31062 TOULOUSE CEDEX 9, France

Email: {Romain.Laborde, Arnaud.Oglaza, Francois.Barrere, Abdelmalek.Benzekri}@irit.fr

If these generic concepts are common to all PBM solutions,

two modes of deployments exist [3] which differ in how poli-

cies are specified and how the PEP and the PDP interact (See

figure 1). The outsourcing mode is mainly implemented by

authorization management systems. When a protected resource

is being accessed, the PEP catches this access attempt and

sends a request to the PDP. Based on its policies, the PDP

takes its decision and transmits it to the PEP. The later applies

the decision by granting this requested access or blocking it.

In this deployment mode, interactions between the PEP and

the PDP are synchronous. The PDP always sends a decision

to a PEP as a transaction reply to a specific request. The

policy languages of outsourcing mode systems are of the form

‘condition then permit/deny’. Examples of such systems are

PERMIS [4], XACMLv3 [5].

On the other hand, the provisioning mode is more suitable

for deploying security configurations. In this mode, the PDP

receives an event from any sensor that triggers the decision-

making process. The PDP can then transmit its decision to

any PEP. Here, the interaction is asynchronous since the

PEP can receive a decision from the PDP without having

previously requested it. The policy languages of provisioning

mode systems are of the form ‘On event if condition then

action’. PONDER [6] is an example of such systems.

Fig. 1. Policy-Based management: Outsourcing and Provisionning modes

B. Scenario

We present in this section the scenario used in the rest of

the article. It consists of a company working with sensible

data that wants to prevent them from being compromised. The

Information System Security Policy (ISSP) is the following :

Only owners can use their assigned computer. Whenever the

owner of a device is not behind his/her computer, then the

session shall be locked. The owner of a device is the em-

ployee who has been assigned to this device. Since employees

sometimes forget to lock their session and put sensible data

at risk of being disclosed, the company decided to automate

this task.

The enterprise proposes a solution to improve the policy

by locating both users and computers. Consequently, when

the owner is moving far from his associated device (e.g., the

user exits the room), the session must be automatically locked.

In the next sections, we call this rule REACTIVE-RULE. In

addition, if someone tries to connect to the computer when

the owner is far from his device, the connection must be

refused and a notification message (SMS, email, etc.) must

be sent to the owner. In the rest of the article, this rule is

called DENY-AUTHZ-RULE. Finally, connection is allowed if

the login/password is valid and the owner is in front of his

device (rule PERMIT-AUTHZ-RULE).

In a first implementation, the company decided to locate

every computer based on its GPS chip that regularly sends its

coordinates. After agreeing with the employees upon privacy

issues, the company also chooses to use the GPS system

embedded in their smartphones. Using this tracking solu-

tion, REACTIVE-RULE, DENY-AUTHZ-RULE and PERMIT-

AUTHZ-RULE can be rephrased as following:

REACTIVE-RULEv1

if the distance between the positions of the owner and his

computer becomes greater than X meters then lock the

session

DENY-AUTHZ-RULEv1

if (the connection to a computer is authenticated) and

(the distance between the positions of the computer and

its owner is greater than X meters) then refuse the

connection and send an alert to the owner

PERMIT-AUTHZ-RULEv1

if (the connection to a computer is authenticated) and (the

distance between the positions of the computer and its

owner is less than X meters) then permit the connection

After a testing period, the company realized that the GPS

signal is not correctly received in all its premises. In addition,

the computer can be within X meters of its owner and not

within sight (e.g., there is a wall between the computer and the

user, or they are on different floors). Thus, the first mechanism

poorly implements the ISSP. To improve the security solution,

the company decided to use an indoor positioning system that

combines GPS, Wi-Fi, Bluetooth Low Energy, and motion

sensors. This system is able to determine in which room

computers and users are. Being more precise than the basic

GPS positioning, the indoor positioning system provides the

required accuracy to achieve the ISSP. However, introducing

this new technology impacts the expression of REACTIVE-

RULE, DENY-AUTHZ-RULE and DENY-AUTHZ-RULE that

become:

REACTIVE-RULEv2

if (the owner and his computer are in the same room) and

(the owner or the computer is leaving the room) then lock

the session

DENY-AUTHZ-RULEv2

if (the connection to a computer is authenticated) and (the

owner is not in the same room as that computer) then

refuse the connection and send an alert to the owner

PERMIT-AUTHZ-RULEv2

if (the connection to a computer is authenticated) and (the

owner is in the same room as that computer) then permit

the connection

This example highlights the two following issues:

Issue 1 : We refined each ISSP rule into two different ver-

sions, one version for each position tracking technology.

In other words, the final security rules depend on the

technology. New security rules will be added each time a

new security related-technology is introduced. This will

result in an unmanageable security policy. The security

policy shall not depend on technology.

Issue 2 : Enforcing this ISSP requires a security management

architecture that supports both outsourcing and provision-

ing modes. On the one hand, REACTIVE-RULE requires

the management system to dynamically deploy a new

security measure on the computers (lock the session)

when an external event is received (the owner is moving

far away). On the other hand, the outsouring mode fits

with DENY-AUTHZ-RULE and PERMIT-AUTHZ-RULE.

In the next section, we propose our solution for specifying

in a unified way technology independent security policies.

III. EXPRESSION OF SECURITY POLICIES DRIVEN BY

SITUATIONS

We propose to make security policies independent from se-

curity mechanisms by specifying them according to situations.

Our general idea consists in describing how situations arise on

one side and specifying security policies oriented by situations

on the other side. Both tasks can be performed in parallel.

A. Definition of situation

Although the word situation is commonly employed in

ordinary, legal or even technical domains, clearly defining

it is difficult and many definitions have been published [7].

Especially, situation is often interchanged with the word

context. We present in this section our interpretation of the

concept of situation and its differences with the concept of

context.

Words situation and context are frequently employed in the

domain of pervasive computing when dealing with context-

awareness. Dey [8] has proposed one of the most popular

definitions of context in this community. According to him,

“context is any information that can be used to characterize

the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a

user and an application, including the user and applications

themselves.” This definition highlights some characteristics of

the relation between context and situation: context is used

to determine situation. Hence, situation is something more

abstract than context. Dey has also introduced one definition

of situation as “The situation abstraction is [...] a description

of the states of relevant entities.”.

Situational awareness is another domain that studied the

concept of situation. Endsley [9] defines situational awareness

as the perception of the elements in the environment within a

volume of time and space, the comprehension of their meaning,

and the projection of their status in the near future. This

definition stresses two other points: situation is related to

multiple entities and understanding situation means being able

to project in the future.

Finally, Barwise and Perry [10] wrote on situation: The

world consists not just of objects, or of objects, properties

and relations, but of objects having properties and standing

in relations to one another. And there are parts of the world,

clearly recognized [...]. These parts of the world are called

situations.

As a consequence, from a security management point of

view, context is any instantaneous, detectable, and relevant in-

formation of the managed environment. The managed system

is the world as defined in [10] and the context is all perceived

information representing this world. More concretely, context

is any data collected by sensors such as monitoring sys-

tems, intrusion detection systems, configuration management

databases, etc. Situation is the result of computing relation-

ships between parts of the managed entities included in the

known context. The created relationships focus on one or all of

the classic questions: who, when, where, why, what and how.

We call the managed entities of interest as the target of the

situation. In addition, situations convey meaning and provide

abstraction of the context. They allow decision-making entities

to understand what is happening and what could happen in the

future. Thus, situations facilitates the decision making.

Our scenario in section II-B incorporates two situations:

the user is close to his/her computer and (s)he is far from

it. These two situations characterize a geographical relation

between a user and his computer (Figure 2). In addition, these

situations are closely related to each other forming a directed

graph. We say both situations are in the same situation class.

We propose the concept situation class to group situations

logically. All situations of the same class must have the same

situation target that constitutes the focus of the situation class.

The other entities, which don’t appear in all situations, are part

of the context of the situation target and may change between

situations of the same class.

In addition, describing the dynamics of the context as graph

of situations facilitates the specification of security policies.

For instance, the scenario ISSP is directly translated to:

• When the situation is close, the user can connect to his

computer (PERMIT-AUTHZ-RULE);

• When the situation is far, nobody can connect to the

computer and if someone tries to log in, the owner should

be notified (DENY-AUTHZ-RULE);

• When the situation is moving from close to far, the

session of the computer should be locked automatically

(REACTIVE-RULE).

How situations close and far are calculated depends on the

sensors and data available for computing the context.

B. Specification of situations

A situation is a particular time frame of interest that has

a beginning, a life span and an end [11]. The beginning and

the end of a situation are determined by combining multiple

events coming from multiple sensors and occurring at different

moments. Indeed, a situation involves multiple entities and

situation 'close'

The owner is
close to his
computer

situation 'far'

The owner is far
from his

computer

the owner and the
computer are not in

the same room
OR

The distance between
the owner and the

computer is greater
than X meters

the owner and the
computer are in the

same room
OR

The distance between
the owner and the

computer is less than
X meters

Context events:

 new GPS coordinates of the computer
 new GPS coordinates of the owner
 owner leaves room X, owner enters room X
 computer leaves room X, computer enters room X

Situation class - physical distance between a computer and its owner

startFar/endClose

startClose/endFar

Fig. 2. Situations in our scenario

multiple conditions. The beginning and the end of a situa-

tion cannot be simple events captured by a unique sensor.

In addition, events being instantaneous, combining multiple

events requires complex temporal operators (event ordering,

event existence/absence, time windows, etc.) to specify the

beginning and end of situations.

In our scenario, the beginning and the end of situations close

(referring to ‘the user is close to his/her computer’) and far

(referring to ‘the user is far from his/her computer’) should

be computed based on events related to both the user and the

computer (see Figure 2). In addition, different combinations of

events can determine the beginning and the end of the same

situation. For instance, situation far starts when two events

GPS position of the user and GPS position of the computer

indicate that the distance between both protagonists is greater

than X meters. Situation far also starts when applying a

function on the events signalling that entities are entering or

leaving rooms results in determining that the computer and its

owner are located in two different rooms.

We follow the Complex Event Processing (CEP) approach

for computing the beginning and the end of situations. CEP

is “a defined set of tools and techniques for analyzing and

controlling the complex series of interrelated events that drive

modern distributed information systems” [12]. CEP solutions

allow to specify complex events through complex event pat-

terns that match incoming event notifications on the basis of

their content as well as some ordering relationships on them.

Cugola and Margara [13] have published an extended survey

of CEP solutions.

We choose the open source event processing implementation

called Esper, which is maintained by Espertech1. For speci-

fying complex event patterns, Esper offers a stream-oriented

language called Event Processing Language (EPL) that is an

1http://www.espertech.com/esper/

extension of SQL for processing events. EPL includes all

the classical operators of SQL, as well as new features for

windows definition and interaction, for timed-data arithmetic

definition, and for complex event output generation.

In our scenario, situation close begins when situation far

ends (Figure 2). Since complex events startFar and startClose

are respectively similar to endClose and endFar, identifying

situations close and far consists in expressing in EPL the two

complex events startFar/endClose and startClose/endFar.

1 startFar = select * from

2 Phone-GPS_Event.win:time(6 sec)

3 as phone,

4 Laptop_GPS_Event.win:time(6 sec)

5 as laptop,

6 Active_Situation.std:lastevent()

7 as current-situation

8 where

9 phone.owner = laptop.owner and

10 gpsDistance(

11 phone.long, phone.lat,

12 laptop.long, laptop.lat) > 10 and

13 current-situation.situation-class =

14 "distance-between-laptop-and-owner" and

15 current-situation.situation-target =

16 laptop.owner and

17 not current-situation.value = "far"

Fig. 3. Situation ”far” using GPS

The specification of the beginning and the end of situations

depends on the input events and the characteristics of the

sensors. Figure 3 is the EPL description of startFar of the

first implementation of the ISSP, i.e. when the location of users

and computers is determined by their GPS positions only. In

our example, GPS sensors send the GPS position every 10

seconds. This EPL rule states that 1) in the last time window

of 6 seconds, there is an event representing the GPS position

of a smartphone (lines 2-3) and another for the position of a

computer (lines 4-5) such that they belong to the same owner

(line 9) and the distance is greater than 10 meters (lines 10-

12) while the last current situation is not far (lines 13-17).

Since GPS sends coordinates every 10 seconds, we are sure

to receive the coordinates of both the user and the computer

within 6 seconds and then we can limit the time window for

comparing GPS coordinates to this period.

In the second implementation, which consists in the indoor

positioning system, indoor position sensors trigger events

when smartphones or computers are entering in a new room.

This changes the way that complex event startFar is cal-

culated to either the user or the computer has moved to

another room while both were initially in the same room.

The indoor positioning system provided by PoleStar used in

project Box@PME takes between 0 to 10 seconds to calculate

the position of a device2. Therefore, there may be a delay

of 10 seconds between the time a device actually moves

to another room (the world has changed) and the time the

event reporting this change is actually received (the context

is actually updated). Thus, situation far starts when there is

2this constraint of 10 seconds is specific to our lab experimentation

event computer enters room X (or smartphone enters room X)

while the current situation is close, and no event smartphone

enters room X (or computer enters room X) is triggered

within 10 seconds. To translate this statement in EPL, we

specify event startFar in two steps (see Figure 4). First,

we compute two complex events: i) MayBeFarEvent states

either the smartphone (lines 4-5) or the computer (lines 6-

7) of the same owner (line 11) moves to another room (line

12) while the current situation is close (lines 13-17), and

ii) MayBeCloseEvent when the smartphone (lines 22-23) or

the computer (lines 24-25) moves to a room such that both

devices are then in the same room (line 30) and while the

current situation is far (lines 31-35). These complex events

are not the beginning or end of a situation. They will be re-

injected in the CEP system. The beginning of situation far

can be computed when an event MayBeFarEvent has been

triggered (line 38) and after waiting 10 seconds (line 39) no

event MayBeCloseEvent appears for the same owner (line 40).

1 maybeFarEvent = insert into MayBeFarEvent

2 select phone.owner as owner, phone, laptop

3 from

4 Phone_Geofencing_Event.std:unique(owner)

5 as phone,

6 Laptop_Geofencing_Event.std:unique(owner)

7 as laptop,

8 Active_Situation.std:lastevent()

9 as current-situation

10 where

11 laptop.owner = phone.owner and

12 not phone.location = laptop.location and

13 current-situation.situation-class =

14 "distance-between-laptop-and-owner" and

15 current-situation.situation-target =

16 laptop.owner and

17 current-situation.value = "close"

18

19 maybeCloseEvent = insert into MayBeCloseEvent

20 select phone.owner as owner, phone, laptop

21 from

22 Phone_Geofencing_Event.std:unique(owner)

23 as phone,

24 Laptop_Geofencing_Event.std:unique(owner)

25 as laptop,

26 Active_Situation.std:lastevent()

27 as current-situation

28 where

29 laptop.owner = phone.owner and

30 phone.location = laptop.location and

31 current-situation.situation-class =

32 "distance-between-laptop-and-owner" and

33 current-situation.situation-target =

34 laptop.owner and

35 current-situation.value = "far"

36

37 startFar = select * from pattern [

38 every(mayBeFarEvent=MayBeFarEvent ->

39 timer:interval(10sec) and

40 not MayBeCloseEvent(owner=mayBeFarEvent.owner))]

Fig. 4. Situation ”far” using indoor positioning

C. Specification of situation-Based security policies

In our approach, situations are specified outside the security

policy. Therefore, the security policy can refer to them only

without requiring to describe them. As a result, we represent

security policies in a generic way as : when situation and some

condition then authorization decision and/or obligation(s). As

highlighted in section II-B, the security policy language shall

allow the security administrator to specify both reactive and

authorization rules. These two kinds of rules can be easily

written following these patterns:

reactive rules : when situation and situation begins [and

some condition] then obligation(s)

authorization rules : when situation and some condition

about the requested access [and some other condition]

then authorization decision and/or obligation(s)

We propose to express our security policies in XACMLv3

[5], which is standardized by the OASIS. First, it follows

the Attribute Based Access Control (ABAC) approach [14]

where policies describe general access control requirements

in term of constraints on security attributes; attributes being

any characteristics of entities. Hence, “the rules or policies

that can be implemented in an ABAC model are limited

only to the degree imposed by the computational language”

[14]. Initially, XACML policy only considered attributes of

the subject, the resource, the action and the environment.

However, OASIS resolved this issue since version 3 and it

is now possible to consider any managed entities thanks to

the concept of categories. In addition, the XACMLv3 policy

language includes obligations. Thus, XACMLv3 is not limited

to PERMIT/DENY decisions only and can also describe com-

plex decisions involving the modification of managed entities.

Finally, the XACMLv3 language is extensible [15], [16].

However, XACML is a verbose XML language which

makes difficult to write or read security policies [17]. Abbrevi-

ated Language for Authorization (ALFA) [18] has overcome

this issue. ALFA provides the means to present XACMLv3

policies in compact forms. It does not increase nor reduce

the semantics of XACMLv3 but provides human-readable

policies. The translation between ALFA and XACMLv3 must

be explicitly defined in mapping files.

Figure 5 shows the three security rules of our example in

ALFA. It is worth to notice that this policy in ALFA is close

to the original ISSP stated in section II-B, which limits the

errors when translating a high level security policy into a target

security policy language. The rule called reactive rule means:

when the value of situation class Situation laptop owner is

far (line 4) and the situation begins (line 5) then obligation:

lock the session of the related user (lines 7-10). Attribute

recipient in the obligation (line 8) indicates where to enforce

the obligation. If attribute recipient is not filled, the obligation

is returned to the management entity that requested a decision.

The second rule deny authz rule involves three entities: a

situation, a resource and an action. It states: when the value of

situation class Situation laptop owner is far (line 17) and an

authenticated connection on the resource has been performed

(line 18) then the authorization decision is deny (line 15) and

obligation: send a notification on the smartphone of the owner

(line 19-23). Finally, the last rule allows access (line 28) when

the value of situation class Situation laptop owner is close

(line 30) and the connection is authenticated (line 31).

1 rule reactive_rule {

2 permit

3 target clause

4 Situation_laptop_owner.value == "far"

5 and Situation_laptop_owner.state=="begin"

6 on permit{

7 obligation Obligations.lockSession {

8 Attribute.recipient=

9 Situation_laptop_owner.situation-target

10 Attribute.device="laptop"}

11 }

12 }

13

14 rule deny_authz_rule {

15 deny

16 target clause

17 Situation_laptop_owner.value == "far"

18 and Action.name=="authenticated-connection"

19 on deny{

20 obligation Obligations.notifyUser {

21 Attribute.recipient=

22 Situation_laptop_owner.situation-target

23 Attribute.device="smartphone" }

24 }

25 }

26

27 rule permit_authz_rule {

28 permit

29 target clause

30 Situation_laptop_owner.value == "close"

31 and Action.name == "authenticated-connection"

32 }

Fig. 5. Our example ISSP Policy in ALFA

IV. ENFORCEMENT OF SECURITY POLICIES DRIVEN BY

SITUATIONS

Now, we present the deployment architecture of

dynSMAUG and its performance evaluation.

A. The deployment infrastructure

The architecture of dynSMAUG aims at allowing the dep-

loyment of security policies in both outsourcing and provi-

sioning modes (Figure 6). In that way, we first split the PEP

entity into its two basic functionalities: the sensor role that

captures events in the managed system and the actuator role

that enforces policy decisions. The PEP in the outsourcing

mode (Figure 1) plays both roles: it is a sensor when it sends

a decision request to the PDP and an actuator when it enforces

the returned decision. In the provisioning mode, it only plays

the role of actuator while the management entity that detected

the event played the role sensor. Secondly, we consider every

messages as events to unify the interactions between the

sensors/actuators and the PDP. Hence, the protocol in the

outsourcing mode consists in two events (one for the request

and the other for the decision) while the protocol in the

provisioning mode is a unique event (i.e., the decision).

The actors of our deployment architecture are shown in

Figure 6:

• The broker is the distribution middleware that transmits

all the events between the actors following the publish-

subscribe pattern. The broker divides events into three

BROKER

d

d
c

c

s
c,s

c: context events

s: situation events

d: decision events

Security
Policy

Situation
SpeciÞcation

PDP

decision
Proxy

d
c

Outsourcing PEP

Fig. 6. Architecture of dynSMAUG

topics: the context events, the situation events and the

decision events.

• The sensors produce data events of the context (noted c

in Figure 6). A context event can be the GPS coordinates,

the user exiting a room, or an attempt to access a

protected resource. An event is defined in XACMLv3 by

a set of attributes of the form <identifier, type, value>.

This solution has an advantage: it is possible to develop

sensors in any programming language.

• The situation manager contains a complex event pro-

cessing engine that calculates situations according to a

situations specification as explained in section III-B. It

consumes context events and produces situation events

(noted s in Figure 6). Situation events have the same for-

mat as context events and are also carried in XACMLv3

requests. Each time a new situation is calculated, the

situation manager creates two situations events: the first

event informs the beginning of the new situation and the

second one notifies the end of the last active situation.

• The command center is the brain of our security manage-

ment framework. It consumes both context and situation

events and produces decision events (noted d in Figure 6).

As explained in section III-C, we specify security policies

in XACMLv3. However, the XACML PDP only imple-

ments the outsourcing mode. Therefore, the command

center includes an XACMLv3 PDP and a decision proxy.

The main objective of the decision proxy is to allow

the command center to operate both outsourcing and

provisioning modes. The context and situation events are

received by the decision proxy. Then, the decision proxy

transmits the events to the PDP and wait for the decision.

The PDP acts in compliance with XACMLv3. When

the decision proxy receives the decision from the PDP,

it determines the actuators to which the decision shall

be distributed based on its configuration management

database.

• The actuators only consume decision events. An actuator

checks if it is the recipient of decisions and enforces them

if so. Like sensors, it is possible to develop actuators in

any programming language.

B. Implementation and Tests

This section covers the implementation of the system and

the results obtained after running tests on the scenario des-

cribed in Section II-B. We implemented our scenario using the

indoor positioning system in our laboratory where we installed

a set of PoleStar3 indoor positioning beacons. Due to size limit

we cannot describe it in the article, however, a video showing

our experimentation in our lab is available for watching4.

The message broker is an Apache ActiveMQ server. We

use Esper from EsperTech to develop the situation manager.

The command center is built based on Balana, an XACMLv3

engine provided by WSO2. The policy editor is the eclipse

plug-in that Axiomatics have developed to write ALFA poli-

cies. We also use the Balana API in all the components for

generating/parsing XACMLv3 request and decision messages.

Finally, we employed the java ActiveMQ SSL connector on

Linux to allow each component to communicate with the

broker; all components (Command center, Situation manager,

Sensors and Actuators) are authenticated on the broker by an

SSL certificate.

We have tested the first implementation of our scenario

where laptops and smartphones send their GPS coordinates.

In order to evaluate the performance of the broker, the sit-

uation manager, and the command center, we installed all

the components on the same machine, which is a MacBook

Pro with a 2.8GHz Intel Core i7 processor, 8Go 1600MHz

DDR3 memory and a 256Go SSD drive. In this simulation

environment, one java thread simulates the GPS sensors of the

laptop and the smartphone for one user and a java thread plays

the role of the actuators in laptops. Each simulation compels

dynSMAUG to execute the complete process from context

events sent by sensors to the reception of the decision by an

actuator, i.e., reception of the GPS coordinates from laptop and

smartphone, calculus of the situation, reception of the situation

event by the command center, decision making process and

reception of the decision by the actuator. We simulate 100

users. Each sensor sends a GPS coordinates update event

every 10 seconds. Each simulation lasts 50 executions of the

complete process for each user. Thus, we obtained the time of

5000 executions of the process.

The results obtained by the simulation show that the whole

process took between 5ms and 91ms. 99% of all process

executions were achieved in less than 19ms. The distribution

3http://www.polestar.eu/
4https://drive.google.com/file/d/0B-PPoWO4n0-XZWRsa21IWEVKNE0

Fig. 7. Distribution of process execution times (total 5000 executions)

in Figure 7 shows a spike corresponding to 1674 process

executions completed in 8ms. It represents around 30% of all

the process executions. The other distinctive spike in the graph

is at 17ms with 186 process executions. This test partially

validates the viability of our system. However, these values

should be weighted because of the small number of EPL and

XACML rules.

V. RELATED WORKS

Different research works have proposed to introduce the

concept of context to allow dynamic permissions. For instance,

Shebaro et al. [19] have included the context in the Android

permissions management to support dynamic privileges. Here,

context is a time interval and a physical location. The physical

location is an abstract context information calculated based on

GPS, cells and WIFI signals. This approach can not be easily

extended to include more context information and policies

are complex since they include all the technical details about

what a physical location is. Bonati et al. [20] have extended

the RBAC model to support reactive policies. Roles (and

then permissions) can be activated/deactivated according to

three context information: location, time and event that is

“the description of other relevant measurable features of the

context”. This approach is limited to three context information

and doesn’t structure the dynamics of the world, contrary to

the concept of situation. Finally, Son et al. [21] have analyzed

deeper the notion of context and propose to express access

control policies according to six axes of context: who, when,

where, why, what and how. If this work seems close to what

we call situation, they don’t separate context from the policy

and the dynamics is not structured.

As far as we know, only few researchers introduced the

concept of situation in the security management process ex-

plicitly. Kim and Lim [22] have proposed Situation-Aware-

RBAC, an extension of RBAC (Role Based Access Control)

which dynamically grants roles to users thanks to a situation-

aware matrix. This work mixes different context information

for building a situation. However, the situation aware matrix is

limited and only supports the specification of basic situations.

Yau et al. [23] have presented a situation-aware access control

approach that integrates situation-awareness capability and

RBAC. They propose a dedicated language for specifying

situations. However, this language is limited comparing to

Complex Event Processing languages and the specification

of the situation is included inside the policy. Kayes et al.

[24] have described an ontological framework for situation-

aware access control. They proposed to formalize the concept

of situation and context in an ontology. However, they have

a different perspective about what a situation is. Unlike us,

their approach focuses mainly on the purpose of access only.

Finally, we presented a preliminary work in [25] that advocates

the necessity of a situation manager. We applied our idea for

implementing the Break-the-Glass mechanism [26]. However,

our work was limited to authorization management and the

deployment architecture was in a nascent state.

VI. CONCLUSION

We presented in this article, dynSMAUG, a framework

that aims at making management of security more flexible

and adaptive. The specificity of our approach consists in

considering the concept of situation as the cornerstone of the

security management. Situations allow to capture the dynamic

constraints (time, location, workflows, etc.) and organize them

into a stable and logical concept. We created a situation man-

ager by applying Complex Event Processing (CEP) techniques.

Since situation are calculated by the situation manager, the

command center can consider them in its decision making

process. We propose to specify situation oriented security

policies in ALFA that simplifies XACMLv3 while keeping

its expressiveness. Finally, we presented an infrastructure

that supports both outsourcing and provisioning deployment

modes. We performed different tests to evaluate our solution.

We plan to improve our calculus of situation by including

the assessment of the situation assurance. Situations are de-

duced based on the context. However, the context information

is intrinsically inaccurate and doesn’t represent correctly the

managed world. E.g, the accuracy of GPS coordinates is 5

meters, there is a delay up to 10 seconds with the indoor

positioning system, etc. Therefore, we want to integrate the

concept of Quality of Context [27] in the calculus of situations.

ACKNOWLEDGMENT

This work is part of the Box@PME project and has been

funded by BpiFrance and Région Occitanie. Also, we would

like to thank PoleStar for providing us with their indoor

position technology.

REFERENCES

[1] M. Harkins, Managing Risk and Information Security: Protect to Enable.
Apress, 2012.

[2] D. Agrawal, K.-W. Lee, and J. Lobo, “Policy-based management of net-
worked computing systems,” IEEE Communications Magazine, vol. 43,
no. 10, pp. 69–75, 2005.

[3] A. Westerinen, J. Strassner, M. Scherling, B. Quinn, S. Herzog,
A. Huynh, M. Carlson, J. Perry, and S. Waldbusser, “Terminology for
policy-based management, ietf rfc 3198,” 2001.

[4] D. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su, and T. A. Nguyen,
“PERMIS: a modular authorization infrastructure,” Concurrency and

Computation: Practice and Experience, vol. 20, no. 11, pp. 1341–1357,
2008.

[5] OASIS, “eXtensible Access Control Markup Language (XACML)
Version 3.0,” Tech. Rep., 2013. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-en.pdf

[6] L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive policy-based
framework for network services management,” Journal of Network and

systems Management, vol. 11, no. 3, pp. 277–303, 2003.
[7] V. K. Singh and R. Jain, Situation Recognition Using Eventshop.

Springer, 2016.
[8] A. K. Dey, “Understanding and using context,” Personal and ubiquitous

computing, vol. 5, no. 1, pp. 4–7, 2001.
[9] M. R. Endsley, “Design and evaluation for situation awareness enhance-

ment,” in Proceedings of the human factors and ergonomics society

annual meeting, vol. 32, no. 2. SAGE Publications, 1988, pp. 97–101.
[10] J. Barwise and J. Perry, The situation underground. Stanford University

Press, 1980.
[11] A. Adi and O. Etzion, “Amit - the situation manager,” The VLDB

Journal—The International Journal on Very Large Data Bases, vol. 13,
no. 2, pp. 177–203, 2004.

[12] D. Luckham, “The power of events: An introduction to complex event
processing in distributed enterprise systems,” in International Workshop

on Rules and Rule Markup Languages for the Semantic Web. Springer,
2008, pp. 3–3.

[13] G. Cugola and A. Margara, “Processing flows of information: From data
stream to complex event processing,” ACM Computing Surveys (CSUR),
vol. 44, no. 3, p. 15, 2012.

[14] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller,
and K. Scarfone, “Guide to Attribute Based Access COntrol (ABAC)
Definition and Considerations,” NIST, Tech. Rep. SP 800-162, 2016.

[15] R. Laborde, F. Barrère, and A. Benzekri, “Toward authorization as a
service: a study of the xacml standard,” in Proceedings of the 16th

Communications & Networking Symposium. Society for Computer
Simulation International, 2013, p. 9.

[16] R. Laborde, M. Kamel, F. Barrère, and A. Benzekri, “Pep = point to
enhance particularly,” in Policies for Distributed Systems and Networks,

2008. POLICY 2008. IEEE Workshop on. IEEE, 2008, pp. 93–96.
[17] A. Oglaza, R. Laborde, and P. Zaraté, “Authorization policies: Using

decision support system for context-aware protection of user’s private
data,” in Trust, Security and Privacy in Computing and Communications

(TrustCom), 2013 12th IEEE International Conference on. IEEE, 2013,
pp. 1639–1644.

[18] P. Giambiagi, S. K. Nair, and D. Brossard, “Abbreviated Language
for Authorization Version 1.0,” Mar. 2015. [Online]. Avail-
able: https://www.oasis-open.org/committees/download.php/55228/alfa-
for-xacml-v1.0-wd01.doc

[19] B. Shebaro, O. Oluwatimi, and E. Bertino, “Context-based access control
systems for mobile devices,” IEEE Transactions on Dependable and

Secure Computing, vol. 12, no. 2, pp. 150–163, 2015.
[20] P. Bonatti, C. Galdi, and D. Torres, “Event-driven rbac,” Journal of

Computer Security, vol. 23, no. 6, pp. 709–757, 2015.
[21] J. Son, J.-D. Kim, H.-S. Na, and D.-K. Baik, “Cbdac: context-based

dynamic access control model using intuitive 5w1h for ubiquitous sensor
network,” International Journal of Distributed Sensor Networks, 2015.

[22] Y.-G. Kim and J. Lim, “Dynamic activation of role on rbac for
ubiquitous applications,” in Convergence Information Technology, 2007.

International Conference on. IEEE, 2007, pp. 1148–1153.
[23] S. S. Yau, Y. Yao, and V. Banga, “Situation-aware access control

for service-oriented autonomous decentralized systems,” in Autonomous

Decentralized Systems, 2005. ISADS 2005. Proceedings. IEEE, 2005,
pp. 17–24.

[24] A. S. M. Kayes, J. Han, and A. Colman, “An ontological framework
for situation-aware access control of software services,” Information

Systems, vol. 53, pp. 253–277, 2015.
[25] B. Kabbani, R. Laborde, F. Barrere, and A. Benzekri, “Specification

and enforcement of dynamic authorization policies oriented by situa-
tions,” in New Technologies, Mobility and Security (NTMS), 2014 6th

International Conference on. IEEE, 2014, pp. 1–6.
[26] B. Kabbani, R. Laborde, F. Barrère, and A. Benzekri, “Managing Break-

The-Glass using Situation-oriented authorizations,” in 9ème Conférence

sur la Sécurité des Architectures Réseaux et Systèmes d’Information-

SAR-SSI 2014, 2014.
[27] P. Marie, T. Desprats, S. Chabridon, M. Sibilla, and C. Taconet, “From

ambient sensing to iot-based context computing: An open framework for
end to end qoc management,” Sensors, vol. 15, no. 6, pp. 14 180–14 206,
2015.

