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Trainable Subspaces for Low Rank Tensor
Completion: Model and Analysis

Zhen Long, Ce Zhu, Fellow, IEEE, Jiani Liu, Pierre Comon, Fellow, IEEE, and Yipeng Liu, Senior
Member, IEEE

Abstract—With the help of auxiliary data, tensor completion
may better recover a low rank multidimensional array from
limited observation entries. Most existing methods, including
coupled matrix-tensor factorization and coupled tensor rank
minimization, mainly focus on how to extract and incorporate
subspace or directly use auxiliary data for tensor completion.
They are either sensitive to a given rank or lack of physical
interpretations of subspace information. In addition, the shared
subspace information receives little attention in current tensor
completion methods, especially there is no analysis of its impact
on sample complexity. In this paper, we propose to separately
explore and exploit shared subspaces for tensor completion.
Specifically, dictionary learning takes the subspace from auxiliary
data in the first step. Then a low rank optimization model
for tensor completion is provided to incorporate the trained
subspace by assuming that the recovered tensor is composed
of two low rank components where one shares the subspace
information with auxiliary data and the other is outside the
shared space. Based on this optimization model, we make a
quantitative analysis to illustrate the effect of subspace informa-
tion on sample complexity, and provide theoretical insights into
the usefulness of subspace information. Finally, experiments on
simulated data are conducted to validate the theoretical analysis
on the impact of subspace information. Experiments in two real-
world applications including color image and multispectral image
recovery show that the proposed method outperforms state-of-
the-art ones in terms of prediction accuracy and CPU time.

Index Terms—tensor completion, subspace information, sample
complexity, low rank optimization, coupled tensor decomposition,
dictionary learning

I. INTRODUCTION

TENSOR completion concerns a problem that recovers a
low-rank multidimensional array from a limited number

of observations, which has a great number of applications in-
cluding collaborative filtering [1], [2], [3], image recovery [4],
[5], multi-task learning [6], [7], subspace clustering [8] and
computer network traffic analysis [9].

The recovery performance bound largely depends on the
sample complexity which is the least observed entries required
to successfully recover the missing elements. The sample com-
plexity is related to the low rank structure of data. Specifically,
a matrix X∈RI×I of rank R can be recovered from O(RI ln2 I)
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Fig. 1. An illustration of tensor completion with subspace information for a
3rd-order tensor.

observed entries with a high probability when the observed
entries are uniformly sampled [10]. Based on it, for a Dth-
order tensor X ∈ RI1×I2×···×ID , Huang et al. [11] proposed
a multilinear rank minimization model to exactly recover
missing entries. In this case, tensor completion problem is first
transformed to a linear combination of several matrix comple-
tion problems. Considering matrix incoherence conditions over
each unfolding matrix, at least O(RID−1 ln2 ID−1) observed
entries are needed to recover a tensor with multilinear rank
(R1, · · · ,RD) where R1 = · · · = RD = R and I1 = · · · = ID = I.
Following this way, Huang et al. [12] showed exact tensor
completion based on tensor ring decomposition requires no
less than O(Id

D
2 eR2 ln7(Id

D
2 e)) known entries where R is the

tensor ring rank. Jain et al. [13] proved that exact recovery
of a 3rd-order symmetric tensor X ∈ RI×I×I with canonical
polyadic (CP) rank R at least needs O(I

3
2 R5 ln4(I)) samples

using symmetric tensor incoherence condition with orthogo-
nal decomposition. Zhang et al. [14] proposed a tubal rank
minimization model which can guarantee exact recovery with
high probability when the number of samples is O(RI2 ln I2),
given a tensor X ∈ RI×I×I with tubal rank R.

As mentioned above, the number of known samples required
for recovery is related to the data size ID, no matter which
tensor decomposition is used. A large number of observations
will be in need for recovery when I increases, significantly
limiting its applications on real world data. In particular, if
the number of known entries is smaller than that required to
successfully recover the data, tensor completion would fail.
To address this issue, considering the usefulness of subspace
information in hyperspectral image super-resolution [15], [16],
some works [17], [18], [19] consider employing it into tensor
completion to improve recovery performance when the ob-
servation entries are of inadequate, especially under the cold
start setup [20]. For example, in a recommendation system,
auxiliary data such as film types or user similarity based on
social network data are also valuable in recommending movies
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to some users, in addition to the user’s previous ratings for
films [21]. In this case, the latent shared parts of auxiliary
data and users ratings are known as subspace information.
Fig. 1 shows an example of 3rd-order tensor completion with
subspace information where the red cubes are missing entries
and the three matrices contain auxiliary data.

On the use of subspace information for low rank tensor
completion, three questions naturally arise, namely,
• How to efficiently explore the subspace from the auxiliary

data and the incomplete data?
• What optimization model should we use to better incor-

porate the subspace information for tensor completion?
• How to measure the effect of subspace information on

tensor completion?
Considering the fact that the subspace information can be

fully or partially shared, which means the latent factors of
the auxiliary data and the recovered data are the same or
similar, a series of coupled matrix-tensor factorization methods
[22], [23], [24], [25], [26] are proposed for tensor completion.
They assume the auxiliary data and the incomplete data fully
or partially share the same latent factors and simultaneously
optimize the factors of the auxiliary data and the incomplete
data with predefined ranks. However, this category needs a
predefined rank, which may not be available for real-world
data. When only a few observations are available, a choice
of an inappropriate high rank may lead to overfitting. The
other category algorithm, known as coupled matrix-tensor rank
minimization models [27], [28], [29], attempts to minimize
the ranks of the auxiliary data and the incomplete data. In this
case, tensor ranks can be relaxed into its corresponding nuclear
norms, and the desired data will be updated at each iteration.
However, such attempts fail to give physical interpretation of
the subspace or analysis of how the subspace information helps
to enhance recovery performance.

As shown above, the model-based methods, like advanced
coupled matrix-tensor factorization [25], can explore and
exploit the fully or partially shared subspace information.
However it is easily biased by the prior information, e.g. the
setting of rank bound. To alleviate the problem in the model-
based methods, we propose a trainable subspaces for low
rank tensor completion (TS4LRTC) model by exploring and
incorporating subspace separately, as shown the architecture in
Fig. 2. Specifically, auxiliary and incomplete data are assumed
to share some latent subspaces. In the first step, a data-driven
method is considered on the auxiliary data to explore its
subspace A1, A2, A3. To incorporate trained subspace, we
design a low rank optimization model where the recovered
tensor X is composed of two low rank components, one
sharing the same subspace information with the auxiliary
data while the other outside from the known subspaces. It is
worth noting that we can choose any data-driven methods to
learn subspace information, such as dictionary learning, deep
learning, etc. In this paper, dictionary learning is considered
to learn the subspace information.

In addition, we study two ways to measure the effect of
subspace information on tensor completion. One is on sample
complexity, and the other is the recovery performance. When
the auxiliary data and the unknown data share the partial

subspace information, we can obtain the sample complexity
with O(max(RG logK,RY log I) for a Dth-order tensor with
size I1× I2×·· ·× ID , where RG ,RY represents Tucker rank1

of core tensors G and Y , respectively. I1 = I2 = · · · = ID = I
and K1 = K2 = · · ·= KD = K denote the size of feature spaces.
When the subspace information is fully shared and K� I, the
sample complexity is O(RG logK), showing great advantage
on tensor completion.

Finally, numerical experiments on simulated data are con-
ducted to show that the subspace information enhance the
recovery performance via reducing sample complexity. Be-
sides, in real-world applications including color image and
multispectral image recovery, our proposed method is superior
to state-of-the-art ones in terms of prediction accuracy and
CPU execution time.

A. Contributions

Compared with existing methods, our work mainly makes
contributions in two aspects:

1) We propose a trainable subspaces for low rank tensor
completion model, where the subspace information can
be partially or fully shared for recovered data. Our
model provides a new insight to explore and incorporate
subspace for tensor completion.

2) We examine the relationship of sample complexity and
subspace information, which quantitatively gives guide-
lines on how the subspace information helps to enhance
the recovery performance.

B. Paper organization

The rest of this paper is organized as follows. In Section
II, we give the notations and preliminaries on tensor decom-
position. In Section III, we illustrate how to explore the sub-
space and what optimization model we choose to incorporate
subspace for tensor completion. In addition, the solutions to
optimization model and the effect of subspace information on
sample complexity are also given in the section. In section IV,
the sample complexity bound on synthetic data and numerical
recovery results on real data are demonstrated. The conclusion
is drawn in Section V.

II. NOTATIONS AND PRELIMINARIES

A. Notations

For clarity, we list some frequently used notations in TA-
BLE I.

B. Preliminaries on tensor operations and tensor decomposi-
tions

Definition 1: (Mode-d product) The mode-d product of a
given tensor X ∈ RI1×···×Id×···×ID and a matrix Y ∈ RId×J can
be denoted as

Z = X ×d Y ∈ RI1×···×J×···×ID ,

1Tucker rank is the Duple of ranks (R1, . . . ,RD) of unfolding matrices. It
is also referred to as multilinear rank in the literature.
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Fig. 2. An illustration of the trainable subspaces for low rank tensor completion model .

TABLE I
SUMMARY OF NOTATIONS IN THIS PAPER.

Symbol Description
x, x, X, X scalar, vector, matrix, tensor
D tensor order
Id tensor size along d-th mode
X ∈ RI1×···×ID a D-th tensor with size I1×·· ·× ID
X (i1, · · · , iD) i1, · · · , iD-th entry of X
O index set of observed entries
col(X) column space of X
‖X‖* trace norm (nuclear norm)
⊗ tensor product
� Kronecker product
〈X ,Y〉 tensor inner product
‖X‖F tensor Frobenius norm

where ×d stands for the contraction between the dth tensor
index and the second matrix index.

Definition 2: (Mode-d unfolding). The mode-d unfolding
matrix of X is defined by X(d) ∈ RId×Id+1···IDI1···Id−1 , and its
opposite operation ‘foldd’ is defined as foldd(X(d)) = X .

Definition 3: (Tucker decomposition) [30] For a Dth-order
tensor X ∈ RI1×···×ID , the goal of Tucker decomposition is to
decompose a tensor X into a core tensor multiplied by D factor
matrices along corresponding modes:

X = G×1 A1 · · ·×D AD,

where G ∈ RR1×···×RD is the core tensor and Ad ∈
RId×Rd ,d = 1, · · · ,D are factor matrices. For simplicity, X =
[[G;A1, · · · ,AD]] is also subsequently used to denote this con-
traction. Next, Rd = rank(X(d)),d = 1, · · · ,D, are Tucker ranks
– also called mode ranks or multilinear rank – where X(d) is
the mode-d matrix of X .

When the core tensor G is cubical diagonal and contains
only ones, G can be omitted, which leads to the notation
X = [[A1, · · · ,AD]]. In such a case, we face the so-called CP
decomposition. CP stands either for “Canonical Polyadic” or
for “Candecomp/Parafac” [31]. This decomposition is also
sometimes called Kruskal decomposition or rank-revealing

decomposition.
Definition 4: (tensor trace norm) [32] The trace norm of

tensor X ∈ RI1×···×ID is defined as:

‖X‖∗ =
D

∑
d=1

αd‖X(d)‖∗, (1)

where αd ,d = 1, · · · ,D are constants,αd ≥ 0 and ∑
D
d=1 αd =

1, the trace norm (nuclear norm) of matrix X(d) ∈ RId×I6=d is
denoted as ‖X(d)‖∗ = ∑

Rd
rd=1 σr(X(d)), where Rd is the rank

of X(d), σr(X(d)) is the r-th singular value of matrix X(d),
and i 6=d = id+1 · · · iDi1 · · · id−1. In practice, we often set αd =

wd
∑

D
d=1 wd

,wd = min(size(X(d))) or αd = 1
D ,d = 1, · · · ,D..

According to the fact ‖X(d)‖∗ ≤
√

Rd‖X(d)‖F and ‖X‖F =
‖X(d)‖F,d = 1, · · · ,D, we have :

‖X‖∗ ≤
D

∑
d=1

αd
√

Rd‖X(d)‖F =
D

∑
d=1

αd
√

Rd‖X‖F. (2)

Letting R = max(Rd),d = 1, · · · ,D and if ‖X‖F is bounded by
X , then we obtain ‖X‖∗ ≤

√
RX .

Theorem 1: Let X = [[G;A1, · · · ,AD]], where X ∈
RI1×···×ID , Ad ,d = 1, · · · ,D are of size Id × Kd . If Ad are
orthonormal matrices and col(X(d)) ⊆ col(Ad),d = 1, · · · ,D,
then ‖X‖∗ = ‖G‖∗.

Proof 1: See Appendix A.

C. Related works

Recently, incorporating subspace information into matrix
completion has attracted much attention [33], [34], [35], [36].
As a generalization of matrix completion, tensor completion
with subspace information has been a topic of interest in
the fields of community detection [37], collaborative filter-
ing [38] and linked prediction [39]. Current tensor completion
with subspace information methods can be divided into two
groups. The first completion model is based on matrix-tensor
factorization, and the second is based on coupled tensor rank
minimization.

1) Coupled matrix-tensor factorization completion model:
Assuming a Dth-order tensor T ∈ RI1×I2×···×ID and a matrix
M ∈RI1×J coupled in the first mode of each, Acar et al. [23]
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first proposed a CP based coupled matrix-tensor factorization
model, as follows

min
A1,··· ,AD,W

1
2
‖PO(T − [[A1, · · · ,AD]])‖2

F+
1
2
‖M−A1W‖2

F, (3)

where A1 ∈ RI1×R is the shared latent factor, R is the CP
rank, and PO denotes the random sampling operator, which is
defined by

PO(T ) =
{
T (i1, · · · , iD) , i1, · · · , iD ∈O
0 , i1, · · · , iD /∈O

. (4)

All factors can be updated by a gradient descent optimization.
Based on it, Chen [40] proposed a collective robust tensor
completion model with multiple heterogeneous side informa-
tion, which is formulated as:

min
L,{Ad}Dd=1,{U}Dd=1,E

1
2
‖L− [[A1, · · · ,AD]])‖2

F +β‖E‖0

+
D

∑
d=1

λd(‖Md−UdU
T

d‖2
F +‖Ad−UdSd‖2

F),

s. t. X = L+S,XO = TO, (5)

where β and λd ,d = 1, · · · ,D are weights, which control
the sparsity of E and the impact of side information, re-
spectively. Sd is a scale matrix of Ud , which is defined as
Sd = diag(∑i Ud(i,1),∑i Ud(i,2), · · · ,∑i Ud(i,R)). In parallel,
Yilmaz et al. [41] proposed a Tucker based generalized cou-
pled tensor factorization to tackle the missing data problem.
The optimization model can be formulated as

min
G,A1,··· ,AD,W

1
2
‖PO(T − [[G;A1, · · · ,AD]])‖2

F +
1
2
‖M−A1W‖2

F,

(6)
where the shared latent factor A1 is also called shared sub-
space information. Moreover, some flexible frameworks are
proposed to more accurately model the coupled data [42],
[22], [25], [26]. For example, Acar et al. [25] proposed a
constrained optimization problem which assumes the auxiliary
and the incomplete data share partial subspace information as
follows.

min
A1,··· ,AD,λλλ ,Σ,V

1
2
‖PO(T − [[λλλ ;A1, · · · ,AD]])‖2

F

+
1
2
‖M−A1ΣV

T‖2
F, s. t. ‖Ad(:,r)‖2 = 1,

‖V(:,r)‖2 = 1,
R

∑
r=1

λr ≤ β ,
R

∑
r=1

σr ≤ β ,σr ≥ 0,λr ≥ 0,

d = 1, · · · ,D,r = 1, · · · ,R, (7)

where β > 0 is a user-defined parameter, λr and σr are weights
of rank-one components. In this case, shared/unshared factors
can be revealed by constraining weight sparsity, e.g. ∑

R
r=1 λr ≤

β and ∑
R
r=1 σr ≤ β and Σ= diag([σ1, · · · ,σR]). In (7), columns

of V are not orthogonal, but additional constraints could be
appended to impose a minimal angular separation between
columns, as introduced in [43], [44], and used in [25].

However, this group of methods is non-convex and can
converge to a local optimum. Besides, the ranks of the matrix
and the tensor are assumed known in advance, but may not be

available in some applications. Yet, the choice of a too large
rank may lead to overfitting when only a few observations are
available.

2) Coupled tensor rank minimization model: To alleviate
rank determination problem, some works directly minimize
the rank. For example, in [27], the authors proposed a Tucker
based coupled rank minimization model for tensor completion
as follows

min
X ,M̂

1
2
‖PO(X −T )‖2

F +
1
2
‖M̂−M‖2

F +λ‖X ,M̂‖cn, (8)

where λ ≥ 0 is the regularization parameter, T ∈RI1×I2×···×ID

is the observed tensor, and M∈RI1×J1 is the auxiliary matrix,
which is coupled with the first mode of T . ‖X ,M̂‖cn is the
coupled overlapped Schatten 1-norm, which can be defined as

‖X ,M̂‖cn
def
= ‖[X(1);M̂]‖∗+

D

∑
d=2
‖X(d)‖∗, (9)

where ‖[X(1);M̂]‖∗ represents the trace norm of matrix
[X(1);M̂].

In addition, a CP based coupled rank minimization model
was proposed in [29]. The model can be represented by

min
X
‖X ,M‖ccp s. t. XO = TO, (10)

where ‖X ,M‖ccp is the coupled nuclear norm using CP
decomposition, which is defined as

‖X ,M‖ccp
def
= {‖X‖∗ ≤C1,‖M‖∗ ≤C2|

X =
R

∑
r=1

λrar
1⊗·· ·⊗ar

d ,M =
R

∑
r=1

σrar
1(v

r)
T}, (11)

where C1 and C2 are constants, tensor X and matrix M are
assumed to have the same rank R.

However, this group directly optimizes the recovered tensor
which lacks the physical interpretation about the subspace
information. In addition, for solving coupled nuclear norm in
Tucker decomposition format, it needs to perform SVD at each
iteration, which has high computational complexity for large
size matrices.

In addition to incorporate subspace information from cou-
pled data, exploring structural information from the dataset
with the same properties is also useful to improve recov-
ery performance in tensor completion model. For instance,
Yang [45] proposed a low TT rank and fiber-wise sparsity
based tensor completion model, where a low rank prior is used
to exploit the inter correlations and a sparsity prior with pre-
trained dictionaries is used to exploit intra correlations from
other datasets, as follows

min
X ,αd

D−1

∑
d=1

wd‖X[d]‖∗+ γ

D

∑
d=1
‖αd‖1

s. t. X(d) = Φdαd ,d = 1, · · · ,D, XO = TO, (12)

where wd and γ are weights, which control the low rank-
ness of ‖X[d]‖∗ and the impact of information from other
datasets, respectively. Φd is a pre-trained dictionary and X[d] ∈
R∏

d
l=1 Il×∏

D
l=d+1 Il is a balanced unfolding matrix of X .
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III. PROPOSED METHOD

As shown in Section II-C, most existing methods consider
using the auxiliary data in a coupled way, which simul-
taneously extracts and utilizes the subspace information or
directly uses the auxiliary data for tensor completion. In this
section, we propose a trainable subspaces for low rank tensor
completion model by separating extraction and utilization of
the shared subspace information.

A. Model development

Let T ∈ RI1×···×ID be a Dth-order incomplete tensor with
each mode coupled with an auxiliary matrix Md ∈ RId×Jd . In
the first step, dictionary learning [46] is considered on matrices
Md ∈ RId×Jd ,d = 1, · · · ,D to obtain well-trained subspace
information Ad ∈ RId×Kd ,d = 1, · · · ,D, where Kd is the size
of feature space. To better recover missing data with the
help of subspace information, the recovered low-rank tensor
X ∈ RI1×···×ID is assumed to be composed by two low rank
components Z and Y , where Z is linked to shared information
and Y lies outside feature spaces. A 3rd-order model is shown
in Fig. 2. Then the optimization model can be formulated as:

min
Z,Y ,G

λG rank(Z)+λY rank(Y)
s. t. X = Z+Y,XO = TO, (13)

where Z = G ×1 A1 × ·· · ×D AD. λG and λY are crucial,
since their ratio controls the contributions from Z and Y for
recovering low rank tensor X . For example, when λG = ∞, Z
will have no influence, and model (13) will be degenerated
as a standard tensor completion model [32]. Instead, when
λY = ∞, Y will have no influence. In this case, the incomplete
tensor and auxiliary matrix share full subspace information,
the optimization model (13) will be degenerated as

min
G,Z

λG rank(Z) s. t. X = Z,XO = TO. (14)

with Z = G×1 A1×·· ·×D AD.
Note that the focus is on subspace information and its effect

on tensor completion. Therefore, the tensor ranks of Y,Z can
be of any kinds, e.g. Tucker rank [30], tensor tree rank [47],
tensor train rank [48], tensor ring rank [49] and so on. In our
model, Tucker rank and its convex trace norm are considered.
In this case, model (13) can be relaxed to its convex one, as
follows.

min
Z,Y ,G

λG‖Z‖∗+λY‖Y‖∗
s. t. X = Z+Y,XO = TO, (15)

with Z = G×1 A1×·· ·×D AD. ‖Z‖∗ is the tensor trace norm
in definition (4). According to Theorem 1, ‖Z‖∗ = ‖G‖∗ with
orthogonal Ad ,d = 1, · · · ,D.

Utilizing definition (4), an equivalent optimization model
for model (15) can be formulated as

min
G,Y

λG
D

∑
d=1

αd‖G(d)‖∗+λY
D

∑
d=1

γd‖Y(d)‖∗

s. t. X = G×1 A1×·· ·×D AD +Y,XO = TO, (16)

where αd ,γd ,d = 1, · · · ,D are constants,αd ≥ 0,γd ≥ 0 and
∑

D
d=1 αd = 1,∑D

d=1 γd = 1.
In the following, we give detailed solutions and theoretical

results on the sample complexity for problem (16).

B. Solutions
The objective function in problem (16) can be further

converted into the following optimization model:

min
G,Y ,Λ

λG
D

∑
d=1

αd‖G(d)‖∗+λY
D

∑
d=1

γd‖Y(d)‖∗

+〈Λ,X −G×1 A1×·· ·×D AD−Y〉

+
β

2
‖X −G×1 A1×·· ·×D AD−Y‖2

F, (17)

under the constraint XO = TO, where Λ ∈ RI1×···×ID is the
Lagrange multiplier and β is a positive penalty scalar. Problem
(17) can be split into several simple subproblems within
the alternating direction method of multipliers (ADMM) [50]
framework.

1) Update G: The subproblem with respect to G is

min
G

λG
β

D

∑
d=1

αd‖G(d)‖∗+
1
2
‖G−S‖2

F, (18)

where S = (X −Y+ Λ

β
)×1 AT

1 ×·· ·×D AT
D. It can be further

divided into D subproblems as follows

min
G(d)

τ‖G(d)‖∗+
1
2
‖G(d)−S(d)‖2

F, (19)

where τ =
αdλG

β
. The solution of G(d) can be updated by

G(d) = SVT(S(d),τ), (20)

where SVT(X,τ) = Usthτ(Σ)VT, [U,Σ,V] = SVD(X), sthτ is
the well-known soft thresholding operator as follows

sthτ(x) = sgn(x)max(|x|− τ,0). (21)

2) Update Y: With the other variables fixed, the subprob-
lem on Y is given by

min
Y

λY
β

D

∑
d=1

γd‖Y(d)‖∗+
1
2
‖Y −W‖2

F, (22)

whereW =X −G×1 A1×·· ·×D AD+ Λ

β
. Similarly, this prob-

lem can be divided into D subproblems and each subproblem
can be solved by operator SVT(W(d),τ) with τ =

γdλY
β

.
3) Update X : The subproblem with respect to X is

min
X

〈Λ,X −G×1 A1 · · ·×D AD−Y〉

+
β

2
‖X −G×1 A1 · · ·×D AD−Y‖2

F

s. t. XO = TO. (23)

The objective function is smooth and differentiable, so we can
update X as follows

X (i1, · · · , iD) =
{
D(i1, · · · , iD), i1, · · · , iD /∈O
T (i1, · · · , iD), i1, · · · , iD ∈O.

(24)

with D = G×1 A1 · · ·×D AD +Y − Λ

β
.
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4) Update Λ: According to ADMM, the dual variable can
be updated by

Λ = Λ+β (X −G×1 A1×·· ·×D AD−Y). (25)

To be clearer, we summarize the detailed solutions in
algorithm 1, namely Trainable Subspaces for Low Rank Ten-
sor Completion (TS4LRTC). Noted that all sub-problems in
equation (17) are convex and can be solved with guaranteed
convergence. In fact, according to the convergence conditions
in chapter 3 of ADMM [50], the convergence of the algorithm
1 can be guaranteed. The convergence condition is reached
when the relative error between two successive tensors X is
smaller than a threshold φ .

Algorithm 1: Trainable Subspaces for Low Rank Tensor
Completion

Input: T ∈ RI1×···×ID and index set O,
Md ∈ RId×Jd ,d = 1, · · · ,D

Initialization maxiter =100, φ = 10−6, XO = TO
For d = 1, · · · ,D do

update Ad via dictionary learning on Md
Orthogonalize Ad

End for
For iter = 1, · · · ,maxiter do
X̃ = X
update G via (18)
update Y via (22)
update X via (24)
update Λ via (25)
If ‖X −X̃‖2

F/‖X̃ ‖2
F < φ

break
End if

End for
Output: recovered tensor X .

C. Computational complexity analysis
The main computational complexity of the TS4LRTC algo-

rithm lies in the update of G and Y . For each updated tensor,
an SVD of the D unfolding matrices is needed. Assuming
that Kd = K and Id = I for d = 1, · · · ,D, the size of G(d)
is K × KD−1 and that of Y(d) is I × ID−1. Consequently,
the computational complexities of updating G and Y are
O(DKD+1) and O(DID+1), respectively. Therefore, the overall
complexity is O(max(PDKD+1,PDID+1)), where P is the
number of iterations. Especially, with fully shared subspace
information, the computation on Y is not needed, and the
computational complexity is dominated by the update of G,
resulting in O(PDKD+1). In this case, the complexity of the
proposed algorithm becomes very attractive when K� I.

D. Effect of subspace information on sample complexity
In this section, we analyze how subspace information im-

pacts the sample complexity of tensor completion from a
theoretical perspective. The idea is to bound the generaliza-
tion fitting error of observations with the help of subspace
information.

Assuming ‖G‖F ≤ G,‖Y‖F ≤ Y , according to equation (2),
problem (16) is relaxed to the following form:

min
G,Y ∑

i1,··· ,iD∈O

1
2
‖X (i1, · · · , iD)

−G×1 A1(i1)×·· ·×D AD(iD)−Y(i1, · · · , iD)‖2
F

s. t. ‖G‖∗ ≤
√

RGG,‖Y‖∗ ≤
√

RYY, (26)

where RG and RY are the maximal Tucker rank
of G and Y , respectively. For simplicity, we use
L(FQ(i1, · · · , iD),X (i1, · · · , iD)) to represent the loss function.

Let FQ(i1, · · · , iD) = G ×1 A1(i1) × ·· · ×D AD(iD) +
Y(i1, · · · , iD) be the estimation function for X (i1, · · · , iD)
parameterized by Q, Q∈Q= {(G,Y)|‖G‖∗ ≤

√
RGG,‖Y‖∗ ≤√

RYY} and FQ = {FQ|Q ∈ Q} be the set of feasible
functions. Before giving the analysis results, we are interested
in two L-risk quantities:

Expected L-risk:

RiskL(FQ) = Ei1,··· ,iD [L(FQ(i1, · · · , iD),X (i1, · · · , iD))]. (27)

Empirical L-risk:

R̂iskL(FQ) =
1
|O| ∑

i1,··· ,iD
L(FQ(i1, · · · , iD),X (i1, · · · , iD)),

(28)
where i1, · · · , iD ∈O is the observed entries.

Next, we provide a bound on the expected L-risk:
Lemma 1: (Bound on expected L-risk [51]) Let L be a loss

function with Lipschitz constant δL and bounded by B, that is

sup
FQ∈FQ

L(FQ(i1, · · · , iD),X (i1, · · · , iD))≤ B, (29)

Let ℜ(FQ) be the Rademacher model complexity of the
function class FQ, defined as

ℜ(FQ) = EH[ sup
FQ∈FQ

1
|O| ∑

i1,··· ,iD∈O
H(i1, · · · , iD)L(FQ(i1, · · · , iD),X (i1, · · · , iD))], (30)

where the entries of H take values {+1,−1} with equal
probability. Then for any constant C where 0 < C < 1, with
probability at least 1−C, for all FQ ∈ FQ, we have

RiskL(FQ)≤ R̂iskL(FQ)+2EO[ℜ(FQ)]+B

√
log 1

C
2|O| . (31)

Next, we need to bound R̂iskL(FQ) and EO[ℜ(FQ)] to
guarantee that RiskL(FQ) is small enough. To show that
the upper bound of EO[ℜ(FQ)] is related to the subspace
information, the lemma below is needed.

Lemma 2: Let Kd =K, Id = I,d = 1, · · · ,D, the upper bound
of EO[ℜ(FQ)] is obtained by

EO[ℜ(FQ)]≤ δLCGG

√
DRG logK
|O| +δLCYY

√
DRY log I
|O|

(32)
where δL is Lipschitz constant , CG and CY are constants and
‖G‖F ≤G,‖Y‖F ≤Y . Finally, the upper bound on EO[ℜ(FQ)]
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is obtained thanks to the lower bound:

|O| ≥max(G2DRG logK,Y 2DRY log I). (33)

Proof 2: See Appendix B.
In this case, the sample complexity of our method is
O(max(RG logK,RY log I)) with ‖G‖F ≤ G,‖Y‖F ≤ Y . It is
noted that the sample complexity will reduce to O(RG logK)
with fully shared subspace information, which will greatly
improve recovery performance when a few observations are
available.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed method, we conduct several groups
of experiments on synthetic and real data. The experiments on
synthetic data are conducted to validate the effect of subspace
information on sample complexity. In addition, two experi-
ments on Multispectral image (MSI) and color image recovery
are conducted to further evaluate the recovery performance of
the proposed method.

In order to compare tensor completion performance, we
select the nine state-of-the-art algorithms listed below:
• HaLRTC [32]: a low rank method based on Tucker rank

minimization model.
• LRTF [52]: a low rank method based on t-SVD rank

minimization model by using tensor logarithmic norm to
induce a sparsity-driven surrogate for rank.

• GDC [53]: a geometry-inspired approach via assuming
that the recovered tensor can be approximated by a
conical hull of sub-tensors in the observation space.

• TR-VBI [54]: a Bayesian low rank tensor ring method by
automatically learning the low-rank structure of tensor.

• CTMNM [27]: a coupled low rank tensor completion
method based on Tucker rank minimization model.

• ACMTF [25]: a coupled low rank tensor completion
method based on CP factorization.

• TenHet [40]: a coupled low rank tensor completion based
on CP factorization with multi-view subspace informa-
tion.

• CCPNM [29]: a coupled low rank tensor completion
method based on CP rank minimization.

• TranSpa [45]: a low rank and fiber-wise sparsity based
method by TT rank minimization model and sparsity
representation.

Among them, HaLRTC, LRTF, GDC, and TR-VBI are without
auxiliary information. In addition, to evaluate the performance
qualitatively, three metrics are used to evaluate the recovery
performance in tensor completion task, including relative
standard error (RSE), tensor completion score (TCS) [9] and
CPU time. The details are as follows

RSE =
‖X −T ‖F

‖T ‖F
, (34)

TCS =
‖(1−O)∗ (X −T )‖F

‖(1−O)∗T ‖F
, (35)

where O is the indication tensor of the observations, ∗
represents element-wise product, X is the recovered tensor,
and T is the real tensor.

The sampling ratio (SR) of the testing data is

SR =
|O|

∏
D
d=1 Id

. (36)

A. Experiments on synthetic data

In this section, we conduct experiments on 3rd-order syn-
thetic data T ∈ RI1×I2×I3 to verify the effect of subspace
information on the sample complexity. Considering that there
are four different subspace information conditions including
fully shared, partially shared, both fully and partially shared,
and no shared subspace information, we design four cases to
generate the synthetic data.
• Case 1: partially shared subspace information

The synthetic data T is generated by two low rank tensors
Z and Y , e.g. T = Z+Y , where Z shares the subspace
information with auxiliary data Md ∈RId×Jd ,d = 1, · · · ,3.
The trainable subspace information matrix Ad ∈ RId×Kd

can be obtained by applying dictionary learning on Md ,
where we assume all Kd =K, RG1 = RG2 = RG3 = RG and
K > RG . To create tensor Z with Tucker rank [RG1, RG2,
RG3], we need to generate a core tensor B ∈RRG×RG×RG ,
with its elements randomly sampled from a Gaussian
distribution, and three matrices Ud ∈RKd×RG , where each
column of Ud is sampled from Ad without repetition.
In this case, we can generate tensors Z = B×1 U1×2
U2×3 U3. Following the way to generate Z , we can create
tensor Y with Tucker rank [RY ,RY ,RY ], where entries of
factor matrices are randomly sampled from a Gaussian
distribution.

• Case 2: both fully and partially shared subspace informa-
tion
In this case, we assume the synthetic data T and auxiliary
data Md ∈RId×Jd ,d = 1, · · · ,3 share fully subspace infor-
mation along mode-1 and mode-2 and partially subspace
information along mode-3. Different from case 1, the
core tensor of Y is S ∈ RRG×RG×RY with its elements
randomly sampled from a Gaussian distribution, and the
first two factor matrices of Y are the same with that of
Z .

• Case 3: fully shared subspace information
In this case, the latent factors of synthetic data T and
auxiliary data Md are the same, and T = Z where the
way to generate Z is same with that in case 1.

• Case 4: no shared subspace information
Without subspace information, the synthetic data T is
generated only by Y , e.g. T = Y , where the details of
generating Y can follow case 1.

For each case, we repeat experiments 10 times. The results
are as follows.

1) Partially shared subspace information: To study the
relationship between partial subspace information and sample
complexity, the parameters in Lemma 2 are set with one
changed and others fixed as follows.
• K is selected in {10, 15, 20, 25, 30};
• RG is selected in {2, 4, 6, 8, 10, 12, 14};
• RY is selected in {2, 4, 6, 8, 10, 12, 14};
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Fig. 3. The results for the effect of partially shared subspace information on sample complexity.
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Fig. 4. The results for the effect of both partially and fully shared subspace information on sample complexity.
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Fig. 5. The results for the effect of fully shared subspace information on
sample complexity.
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Fig. 6. The results for the effect of no shared subspace information on sample
complexity.

• I is selected in {20, 25, 30, 35, 40}.
When we conduct this group of experiments, other parameters
are set to be: K = 20;RG = 5;RY = 5; I = 40. Besides, when
I is fixed, we set SR changing from 0.1 to 0.7 and when I
is changing, the number of observed samples are chosen in
{2700, 5400, 8100, 10800, 13500, 16200, 18900}.

Fig. 3 shows the RSE on four different conditions, in which

the color of each cell reflects the recovery rate ranging from
0 to 1. A white cell means a success (RSE< 10−3 ) in all
experiments and a black cell means a failure. From Fig. 3
(a)-(b), we can observe when K and SR keep unchanged,
the change of sample complexity is mainly depended on RY .
Meanwhile, with the number of samples fixed, the recovery
performance will decrease with I keeping increased. This is
because the bound of sample complexity mainly depends on
O(RY log I) with partially shared subspace information, where
the bound will grow with I or RY increasing. This phenomenon
is consistent with the conclusion of Lemma 2.

2) Both fully and partially shared subspace information: In
this case, the parameter settings are the same in case 1. From
Fig. 4 (a)-(b), we can observe the smaller RG and RY are, the
smaller the RSE is. Compared with Fig. 3 (a)-(b), the influence
of RG on the change of sample complexity becomes larger,
with both fully and partially shared subspace information. In
this case, the bound of sample complexity depends on the
change of RG ,RY and I.

3) Fully shared subspace information: For fully shared
subspace information, the recovered tensor can be represented
as X =Z . In this case, the sample complexity can be rewritten
as O(RG logK). We can see the smaller the K or RG is,
the bound of sample complexity will be lower. To verify
its reliability, we design two experiments with the values of
parameters K and RG as follows.
• K is selected in {10, 15, 20, 25, 30};
• RG is selected in {7, 9, 11, 13, 15, 17, 19}.
When we conduct this group of experiments, other param-

eters are set to be: K = 20; RG = 10; RY = 0; I = 40. Fig. 5
illustrates the RSE on two different conditions with SR ranging
from 0.1 to 0.7. From Fig. 5, it can be seen the value of RSE
becomes larger with K increasing when SR = 0.1. And for
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Fig. 7. Comparison results on three different cases with few samples.

(a) RGB-IR (b) RGB-Depth

Fig. 8. Testing color images with different types.

(a) Toy (b) Flowers

Fig. 9. Testing multispectral Images.

other SRs, the values of RSE are very small. This phenomenon
is similar with RG varied. Overally, fully shared subspace
information has shown a great effect on sample complexity
via the feature space size K.

4) No shared subspace information: Without the help of
subspace information, the recovered tensor can be represented
as X = Y . The key of recovering entries is based on its low-
rank characteristics. In this case, the bound of sample com-
plexity is O(RY log I). Similarly, to explore the relationship
between the rank and the data size, we set the parameters as
follows.
• RY is selected in {7, 9, 11, 13, 15, 17, 19};
• I is selected in {20, 25, 30, 35, 40}.
When we conduct this group of experiments, other parame-

ters are set to be: K = 20;RG = 5;RY = 5; I = 40. Besides,
when I is changing, the number of observed samples are
chosen in {2700, 5400, 8100, 10800, 13500, 16200, 18900},
and when I is fixed, we set SR changing from 0.1 to 0.7.

Fig. 6 demonstrates the change of RSE with different
number of samples on different conditions. It can be seen that
with number of samples fixed, RSE gets larger with the data
size enlarged in Fig. 6(a). Fig. 6(b) shows that the smaller
RY , the easier the recovery of missing entries. In addition,
comparing the results in Fig. 6(b) with that in Fig. 5(b), we

 band= 1  band= 2  band= 3  band= 4  band= 5

 band= 6  band= 7  band= 8  band= 9  band= 10

(a) Auxiliary data

 band= 26  band= 27  band= 28  band= 29  band= 30

(b) Observed data

Fig. 10. An example of sample images with b=5 and p=10.

can observe that for tensors with the same size and rank, the
required number of samples to successfully recover missing
entries has been greatly reduced with the help of fully shared
subspace information.

In addition, Fig. 7 shows the comparison results on case 1,
case 2 and case 4 with fixed number of samples to illustrate
the effect of subspace information. From it, we can find the
more the subspace information shares, the smaller the RSE.

To conclude, the sample complexity of our algorithm is
related to the data size I, the real rank of data R and the size
of feature spaces K for partially shared subspace information.
Interestingly, for fully shared subspace information, the sample
complexity only relies on the real rank of data R and the size of
feature spaces K. When R < K� I, the subspace information
has shown a great advantage on sample complexity.

B. Experiments on real data

In this part, we use color images and MSIs as our testing
data to show the effect of subspace information on tensor
completion and the effect of our algorithm. All experiments
are repeatedly carried 10 times.

Two types of images are chosen for testing the recovery
performance of our algorithm. One is from the color remap-
ping Gecko imagery [55], which is in Fig. 8 (a), where the
RGB image T ∈R365×488×3 as our observed data and the near-
infrared image M ∈ R365×488 as auxiliary data. The other is
from NYU Depth Dataset [56], which comprises pairs of RGB
and depth frame, where the RGB image 480× 640× 3 and
depth image 480×640 are as our observed data and auxiliary
data, respectively, as it shows in Fig. 8 (b).

In the MSI completion task, we choose two MSIs from
multispectral Image Database [57]. For each MSI, the spatial
resolution is 512× 512 and the number of spectral bands is
30, resulting in a 3rd order tensor 512×512×30. The RGB
representations of MSIs is shown in Fig. 9.
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Fig. 11. Comparison of different methods on color image recovery with different SRs from 0.05 to 0.3.

SR=0.05 HaLRTC CTMNM ACMTF CCPNM TenHet GDC LRTF TRVBI TS4LRTC TranSpa

SR=0.5 HaLRTC CTMNM ACMTF CCPNM TenHet GDC LRTF TRVBI TS4LRTC TranSpa

SR=0.05 HaLRTC CTMNM ACMTF CCPNM TenHet GDC LRTF TRVBI TS4LRTC TranSpa

SR=0.5 HaLRTC CTMNM ACMTF CCPNM TenHet GDC LRTF TRVBI TS4LRTC TranSpa

Fig. 12. Examples on image recovery with different methods when SR=0.05 and SR=0.5.

In this task, we choose the last b bands from the datasets
as observed data and p bands from the rest as auxiliary data,
where b is the number of observed bands and is chosen from
the set {5,10,15}. p is the number of auxiliary bands and
is chosen from the set {5,· · · ,30-b}. An example of b=5 and
p=10 can be seen in Fig.10.

1) Color image recovery: For each observed data, we
randomly choose the SR ranging from 0.05 to 0.5. And with
the known auxiliary data, we can obtain its corresponding
trainable subspaces. The parameter β in our algorithm is set
as 0.5/‖TO‖F and others are chosen according to section

IV-C1. For HaLRTC, we set the weight w = a/‖a‖1 with
a= [1;1;1×10−3] as in [32]. As suggested in [27], the param-
eters of CTMNM are set as w = a/‖a‖1 with a = [365;488;3]
for “RGB-IR” images and a = [480;640;3] for “RGB-Depth”
images. The CP rank for ACMTF are set as R = 20 by tuning
for the recovery performance. Following [27], the bound for
CCPNM is set to 800. Followed by [40], we set the parameters
in TenHet as β = 0.001;γ = 0.01;λ = 0.01. In addition, the
rank settings for GDC and LRTF are chosen from the set
{5:5:100} with different missing ratios. The initial rank for
TR-VBI is set as 30. The γ in TranSpa is set to 0.01.
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Fig. 13. The convergence performance for color image.

Fig. 11 shows the recovery performance of different meth-
ods with SR ranging from 0.05 to 0.3 in terms of RSE, TCS
and CPU time. It can be observed our method outperforms
state-of-the-art ones when SR = 0.05 for “RGB-IR” images.
When SR = 0.1, the recovery performance of TR-VBI per-
forms best in terms of RSE and TCS, but its computational
complexity is larger than the others. As SR increases, the
recovery performance of CTMNM becomes superior to others
in terms of RSE and TCS, and our method performs the
second-best. For “RGB-Depth” images, the performance of
the TS4LRTC and CTMNM are almost the same and better
than that of the others.

Fig. 12 presents the comparison of recovery performance
using HaLRTC, CTMNM, ACMTF, CCPNM, TS4LRTC Ten-
Het, GDC, LRTF and TR-VBI when SR = 0.05 and SR = 0.5,
respectively. We can see for “RGB-IR” images, most meth-
ods with subspace information including CTMNM, ACMTF,
CCPNM,TR-VBI, TranSpa, and TS4LRTC can recover image
with SR = 0.05. Among them, our method provides a more
detailed information, e.g., the framework of house. For “RGB-
Depth” images, only CTMNM, TR-VBI and TS4LRTC can
recover the destroyed image. It may imply that the auxiliary
data of “RGB-IR” images provides more subspace information
than that of “RGB-Depth” images and tensor ring rank has a
good ability to exploit the low rank information in an image.

Fig.13 shows the convergence performance of the method
we propose on color images with random SRs from 0.05 to
0.5. The relative error (RE) is used to measure the convergence
condition, where RE=X q−X q−1

X q−1 and X q is the recovered image
in q-th iteration. From Fig.13 , we could observe all cases
converge to 0 at last. Especially, the larger the SR is, the faster
our method converges.

2) MSI recovery: Similar to color image recovery, we set
the SR varying from 0.02 to 0.5 and obtain the trainable
subspaces via applying dictionary learning on the auxiliary
data. We set the parameter β = 0.05/‖TO‖F. λG and λY
are set according to section IV-C1. The parameters of other
algorithms are chosen by following the image recovery exper-
iments.

Fig. 14 shows the performance of our method and some
other state-of-the-art algorithms in terms of RSE, TCS and
CPU time with b fixed and p varied when SR = 0.02, e.g. when
b = 5 for the HSI Flowers, p varies from {5,10,15,20,25}. For
these methods without auxiliary information, p is set to 0. It

shows that the RSE of theses methods including CCPNM,
CTMNM, TS4LRTC, TenHet and TranSpa changes along p,
e.g. the larger p, the better the recovery results. It may imply
that a higher reconstruction accuracy will be obtained with
more auxiliary information provided. Among them, TS4LRTC
performs best in terms of TCS and RSE. In addition, the
recovery performance of TS4LRTC and CCPNM with p = 5
and p = 10 is better than that of other number of bands when
b = 5 and b = 10, respectively. This is because the observed
data and the auxiliary data are coupled in each mode when
b = p. It may imply that the more information is shared in
the subspace, the better the performance for TS4LRTC and
CCPNM. Moreover, we can see TR-VBI performs well in
terms of RSE and TCS, but the CPU time is very large,
especially for b = 10. This may infer that low rank tensor
ring factorization can explore more latent information from
the observed data than traditional tensor decomposition.

To clearly observe the recovery details, we presented the
recovered MSI with different algorithms when SR = 0.02
and SR = 0.3 in Fig. 15. From this figure, we could find
ACMTF, CCPNM, TenHet, TR-VBI, TranSpa and TS4LRTC
can recover the outline of flowers and the shape of toy
when SR = 0.02. Among these methods, the one we propose
performs the best, which provides more details about the
recovered data. For example, the shape of petals and the
background of toy can be clearly observed. With large SR,
all methods can successfully recover the missing entries.

Fig.16 shows the convergence results for “Flowers” and
“Toy” with SR from 0.02 to 0.4. From it, we could observe
all cases converge 0 at 100-th iteration. In addition, when
SR= 0.4, our proposed one converges at 50-th iteration. It
may imply our proposed one converges fast for large observed
entries.

In conclusion, with the help of subspace information, the
tensor recovery performance can be enhanced, especially when
a few observations are available. Besides, compared color
image recovery with MSI recovery, we could observe, the
more information the auxiliary data provides, the better the
recovery performance. Among all methods, the proposed one
performs best with small SR, which may imply that the our
proposed one provides a better way to explore and incorporate
the subspace information.

C. Discussions

1) Discussions on λG and λY : In real-world experiments,
we choose parameters from the {10t}2

t=−3 via brute force
search and report the best recovery one. Fig.17 shows the
change of RSE as a function of λG and λY when SR=0.05. We
could observe when λG ∈ [0.13,0.59] and λY ∈ [0.76,27.82],
the recovery performance on color images shows well. And
for MSI with b =15 and p=15, it can be seen when λG ∈
[0.001,0.59] and λY ∈ [0.05,100], the recovery results are
satisfied. In addition, compared with Fig.17(a), we could
observe the larger value λY and the smaller value λG , the better
the performance. It may imply the auxiliary data of MSI shares
more subspace information than that of color image, which is
consistent with the results we obtained experimentally.
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Fig. 14. Comparison of different methods on MSI recovery with b fixed and p varied..
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Fig. 15. Examples on MSI recovery using different methods with b=15 when SR=0.02 and SR=0.3.
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2) Discussions on scalable method for TS4LRTC : The
proposed method contains the Singular Value Thresholding
(SVT) operator, which could be intractable with large scale
data. To deal with it, Lanczos techniques [58], [59], [60],
which allow to compute approximations of a restricted subset
of singular triplets in a fast way, can be used for acceleration.
More precisely, L dominant left singular vectors of a M×N
matrix can be computed rather accurately within O(2LMN)
flops.

For better illustration, we have conducted a group of ex-
periments on large size image completion, where these large
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(a) RSE vs. λG and λY

(b) RSE vs. λG and λY

Fig. 17. The change of recovery performance with different parameters.

scale images with size 3024×4032×3 are taken by iPhone,
as shown in Fig. 18. Here the SVT operator is replaced
by the fast randomized one [60]. In addition, comparison
experiments on sub-sampled images of various sizes are also
considered. Fig.19 and Fig. 20 show the recovery performance
on images of different sizes in terms of RSE and CPU time
when SR=0.05 and SR=0.1, respectively. Each experiment is
repeated 10 times. We can observe from the results that the
accelerated TS4LRTC performs slightly worse than TS4LRTC
with an explicit improvement in CPU time consumption,
especially with large scale data.

(a) observed data (b) auxiliary data

Fig. 18. Large size testing images.

V. CONCLUSIONS

In this paper, we propose a trainable subspaces for low
rank tensor completion model. Different from current tensor
completion model with subspace information, the proposed
one firstly considers a data-driven way to learn the subspace
information and provides a new perspective to incorporate
subspace in the tensor completion task. This idea may also
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Fig. 19. Recovery performance on different size when SR=0.05.

[164,252,3] [328,504,3] [756,1008,3] [1512,2016,3] [3024,4032,3]

size

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

R
S

E

SR=0.1

TS4LRTC

Accelerated TS4LRTC

(a) RSE vs. size

[164,252,3] [328,504,3] [756,1008,3] [1512,2016,3] [3024,4032,3]

size

0

500

1000

1500

2000

2500

3000

C
P

U
 T

im
e
 (

se
c
o

n
d

)

SR=0.1

TS4LRTC

Accelerated TS4LRTC

[164,252,3] [328,504,3] [756,1008,3] [1512,2016,3]
0

100

200

300

400

(b) CPU Time vs. size

Fig. 20. Recovery performance on different size when SR=0.1.

be helpful for other tensor processing tools, such as tensor
classification, tensor robust PCA and tensor regression. In
addition, the sample complexity of our method is provided
to give a theoretical insight into the usefulness of subspace
information. Experiments on synthetic data present that the
subspace information can reduce the sample complexity for
tensor completion, especially with fully shared subspace in-
formation. Besides, experiments on real world data show
our algorithm is superior to state-of-the-art ones in terms of
prediction accuracy and CPU time.

APPENDIX A
PROOF OF THEOREM 1

Assuming X = [[G;A1, · · · ,AD]], where X ∈ RI1×···×ID and
col(X(d))⊆ col(Ad), Ad ,d = 1, · · · ,D be Id×Kd orthonormal
matrices, G ∈RK1×···×KD and Rd ≤Kd ≤ Id ,d = 1, · · · ,D, Rd is
the rank of X(d), each unfolding matrix X(d) can be equivalent
to

X(d) = AdG(d)(Ad
�)

T, (37)

where Ad
� = Ad+1� · · ·�AD�A1� · · ·�Ad−1 ∈

RI6=d×K6=d with I6=d = Id+1 · · · IDI1 · · · Id−1 and
K6=d = Kd+1 · · ·KDK1 · · ·Kd−1.

According to definition 4, the tensor trace norm of X is:

‖X‖∗ =
D

∑
d=1

αd‖X(d)‖∗, (38)

Then
G(d) = AT

d X(d)Ad
�, (39)

Applying SVD operator on X(d), we can obtain

X(d) = USVT . (40)
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Then the equation (39) can be rewritten as:

G(d) = AT
d USVT Ad

�, (41)

According to [61], Ad
� is also an orthonormal matrix, then

AT
d U and VT Ad

� are semi-orthogonal matrices. And equation
(41) can be regarded as the SVD of G(d). In this case, the
values of S keep the same. Therefore, ‖G(d)‖∗ = ‖X(d)‖∗.

It can be easily obtained that ‖X‖∗ = ‖G‖∗, where X =
[[G;A1, · · · ,AD]] with orthonormal matrices Ad ,d = 1, · · · ,D.

APPENDIX B
PROOF OF LEMMA 2

Now, we will give the bound of ℜ(FQ) as follows.

ℜ(FQ) = EH[ sup
FQ∈FQ

1
|O| ∑

i1,··· ,iD∈O
H(i1, · · · , iD)L(FQ(i1, · · · , iD),X (i1, · · · , iD))]

=
1
|O|EH[ sup

‖G‖∗≤
√

RGG,‖Y‖∗≤
√

RYY
∑

i1,··· ,iD∈O

H(i1, · · · , iD)L(FQ(i1, · · · , iD),X (i1, · · · , iD))]

≤ δL

|O|EH[ sup
‖G‖∗≤

√
RGG,‖Y‖∗≤

√
RYY

∑
i1,··· ,iD∈O

H(i1, · · · , iD)FQ(i1, · · · , iD)] (42)

=
δL

|O|EH[ sup
‖G‖∗≤

√
RGG

∑
i1,··· ,iD∈O

H(i1, · · · , iD)(G×1 A1(i1)×·· ·×D AD(iD))]

+
δL

|O|EH[ sup
‖Y‖∗≤

√
RYY

∑
i1,··· ,iD∈O

H(i1, · · · , iD)Y(i1, · · · , iD)]

=
δL

|O|EH[ sup
‖G‖∗≤

√
RGG

∑
i1,··· ,iD∈O

1
D

D

∑
d=1

H(d)(id , i 6=d)Ad(id)G(d)Ad
�(i 6=d)]

+
δL

|O|EH[ sup
‖Y‖∗≤

√
RYY

∑
i1,··· ,iD∈O

1
D

D

∑
d=1

H(d)(id , i 6=d)eid Y(d)ei 6=d ]

≤ δL sup
‖G‖∗≤

√
RGG

1
D

D

∑
d=1
‖G(d)‖∗

max
i1,··· ,iD∈O

‖Ad
�(i 6=d)Ad(id)‖

√
2log2KdK6=d

|O|

+ δL sup
‖Y‖∗≤

√
RYY

1
D

D

∑
d=1
‖Y(d)‖∗

max
i1,··· ,iD∈O

‖ei6=d eid‖
√

2log2IdI6=d

|O| (43)

where δL is the Lipschitz constant of loss function
L, and i 6=d = id+1 · · · iDi1 · · · id−1, Ad

�(i 6=d) =
Ad+1(id+1)�AD(iD)�A1(i1)�Ad−1(id−1) and
G(d),H(d),Y(d),d = 1, · · · ,D are the mode-n unfolding

matrices of G,H,Y , respectively. eid is the vector with its
id-th entry equal to 1 while all others equal to 0. The first
inequality is derived by Rademacher contraction and the
second one is derived from Lemma 3.

Lemma 3: [62] Let W = {W ∈ RI1×I2 |‖W‖∗ ≤ W}and
A = maxp ‖Ap‖ where Ap ∈ RI2×I1 , p = 1, · · · ,P, then

Eδ [ sup
W∈W

1
P

P

∑
p=1

δp trace(WAp)]≤WA

√
2log(2I1I2)

P
. (44)

Let maxid ‖Ad(id)‖= A,d = 1, · · ·D, then

max
i 6=d
‖Ad

�(i6=d)‖= AD−1, (45)

Therefore, let Kd =K,d = 1, · · · ,D and Id =K,d = 1, · · · ,D,
the upper bound of EO[ℜ(FQ)] is obtained as follows.

EO[ℜ(FQ)]≤ δLCGG

√
DRG logK
|O| +δLCYY

√
DRY log I
|O|

(46)
where CG and CY are the constants.

|O| ≥max(G2DRG logK,Y 2DRY log I). (47)

with ‖G‖F ≤ G,‖Y‖F ≤ Y .
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