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The community of the diverse microorganisms residing in the gastrointestinal tract,
known as the gut microbiota, is exceedingly being studied for its impact on health
and disease. This community plays a major role in nutrient metabolism, maintenance
of the intestinal epithelial barrier but also in local and systemic immunomodulation.
A dysbiosis of the gut microbiota, characterized by an unbalanced microbial ecology,
often leads to a loss of essential functions that may be associated with proinflammatory
conditions. Specifically, some key microbes that are depleted in dysbiotic ecosystems,
called keystone species, carry unique functions that are essential for the balance of
the microbiota. In this review, we discuss current understanding of reported keystone
species and their proposed functions in health. We also elaborate on current and future
bioinformatics tools needed to identify missing functions in the gut carried by keystone
species. We propose that the identification of such keystone species functions is a
major step for the understanding of microbiome dynamics in disease and toward the
development of microbiome-based therapeutics.
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INTRODUCTION

Animals are superorganisms composed of eukaryotic and prokaryotic cells in a similar proportion
along an even larger number of viruses (Sender et al., 2016). The reason for this intricate mixture
of organisms spanning all kingdoms of life is that every living animal is the result of a long co-
evolution between all of these organisms. Hence, within every gut lies a complex community of
microorganisms composed of trillions of prokaryotic and eukaryotic microbial cells, including
bacteria, fungi and archaea along a multitude of viruses (Hillman et al., 2017; Moissl-Eichinger
et al., 2018). As a result, we humans carry within our microbiomes an immense reservoir of genes
that perform numerous functions for our own benefit, many of which are still unknown.

There is currently no consensus about the definition of a healthy gut microbiome because of
high inter-individual variability, which is influenced by numerous external factors (Rinninella et al.,
2019). Nevertheless, it is generally considered that a healthy gut microbiome is a rich and diverse
ecosystem acting in symbiosis with its host (van de Guchte et al., 2018). Even if there is a lack
of evidence to identify a robust universal set of core healthy microbial taxa, there is a remarkable
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stability of microbial functions that maintain symbiosis with
the host (Human Microbiome Project Consortium, 2012).
Conversely, we have learned over the past 20 years that some
chronic disorders are consistently associated with a shift in
microbial patterns, often referred to as “dysbiosis” (Hooks
and O’Malley, 2017). For example, obesity has been reported
to be associated with a low Bacteroidetes/Firmicutes ratio
(Turnbaugh et al., 2009). Even if the Firmicutes phylum regroups
a large number of potentially beneficial bacteria, this ratio
has progressively been established as a hallmark of the obese
dysbiotic gut microbiome (Crovesy et al., 2020). Another feature
of obesity-associated dysbiosis is a reduced microbiome diversity,
as illustrated by the high proportion of fecal samples from
obese individuals that fall within the “low gene count” category
(Le Chatelier et al., 2013). Similarly, several chronic diseases
have been associated with reduced gut microbiome diversity,
such as Crohn’s disease (Manichanh et al., 2006), hypertension
(Li et al., 2017) and non-alcoholic steatohepatitis (NASH)
(Astbury et al., 2020).

THE KEYSTONE SPECIES CONCEPT AS
A DRIVER OF MICROBIAL DIVERSITY

An important ecological concept is that every complex ecosystem
is structured by a few important species dubbed “keystones.”
This term was coined in 1966 by the American ecologist Paine
(1966) who identified specific sea stars as important predators
that regulate the biodiversity of seashores. Since, this term has
been used in various ways and with different meanings. For the
purpose of this review, we adopt the definition of keystone taxa
proposed by Banerjee et al. (2018): where “microbial keystone taxa
are highly connected taxa that individually or in a guild exert a
considerable influence on microbiome structure and functioning
irrespective of their abundance across space and time. These taxa
have a unique and crucial role in microbial communities, and
their removal can cause a dramatic shift in microbiome structure
and functioning” (Banerjee et al., 2018). This is a crucial concept
as it shapes our understanding of the regulation of complex
ecosystems, how they establish, how they remain stable over long
periods of time and how they adapt to environmental changes.

Translated to the gut environment, we must first appreciate
that mammals harbor not just one gut ecosystem, but a variety
of ecosystems, each roughly corresponding to a different section
of the gastrointestinal tract from the mouth to the rectum. Each
ecosystem is regulated by a set of environmental factors such
as pH, bile acid concentration and peristalsis, which have long
been thought of as a barrier that segregates ecosystems from
one another. However, this view has been recently challenged,
as it is now proposed that oral bacteria act as a reservoir
of microorganisms that pass through the gut to replenish the
downstream ecosystems (Schmidt et al., 2019). Within each
ecosystem, microbes interact with each other through numerous
mechanisms, such as secretion of quorum sensing molecules,
cross-feeding and synthesis of antimicrobial compounds. Of
particular interest, quorum sensing is a cell-cell interaction
mechanism used by bacteria to regulate their own population.

Usually in biofilms, some bacterial cells stimulate their own
growth and those of their neighboring kin, through secretion
of autoinducer molecules (Mukherjee and Bassler, 2019). In
the gut microbiota, it has been shown that Firmicutes use
this strategy to maintain their population level (Thompson
et al., 2015). Interestingly, there is emerging evidence that
host cells can interfere with these bacterial signals to shape
the microbial community (Mukherjee and Bassler, 2019). Yet,
most of our knowledge of quorum sensing is derived from the
study of pathogens and there remains numerous gaps in our
understanding of its use by commensal bacteria. Inter-species
syntrophy or cross-feeding occurs when a species depends on the
availability of nutrients (e.g., sugars, amino acids, and vitamins)
that are produced by other species. For instance, this typically
involves degradation of complex molecules such as carbohydrates
by specialized species that release monosaccharides in the
environment. The latter are then taken up by non-degrading
species for their own benefit. These mechanisms have been
recently thoroughly reviewed by D’Souza et al. (2018). Inter-
species cross-feeding interactions within an ecosystem cause
reliance on specific microbes that carry essential functions for
other species. Hence many keystone species have been described
based on the identification of enzymes involved in cross-feeding
interactions (Centanni et al., 2018; Table 1). These are only a few
examples of the diversity of possible microbial interaction routes.
For a thoughtful review of the topic, we refer the reader to the
review by Pacheco and Segrè (2019).

Together, these mechanisms depict a high level of inter-
dependencies between bacterial species within an ecosystem.
These interactions lead the ecosystem to structure around clusters
of microbes that co-develop into a guild of co-abundant species.
This concept was well illustrated in a recent study aimed
at identifying gut bacterial species involved in post-antibiotic
recovery in human cohorts. In a metagenome-wide association
study, Chng et al. (2020) demonstrated that a succession of
primary colonizers set the stage for late dominant species, which
feed on the breakdown products of the pioneer species (Gibbons,
2020). This study identified 7 bacterial species acting as primary
colonizers, with a metabolic capacity to extract carbon and energy
from mucin and complex dietary carbohydrates, thus acting at
the bottom of the food chain. Even if in this example most
of the identified primary colonizers were abundant species, low
abundance bacteria (<0.1% relative abundance) should not be
neglected as they may carry essential functions that support
growth of other dominant species. This concept has been very
well illustrated in a study of “Candidatus Desulfosporosinus
infrequens,” a sulfate-reducing organism found in wetlands
(Hausmann et al., 2019). Although it remained in a seemingly
dormant state at zero-growth over more than 7 weeks, it was
reported to be in fact highly metabolically active, contributing to
regulate methane production and therefore to sustain a diverse
ecosystem (Hausmann et al., 2019).

In view of the intricate interplay between the gut microbiome
function and its host metabolism, it is now established that
loosing part of these functions is associated with a number
of modern non-communicable diseases. As a consequence,
techniques designed to manipulate gut dwelling microbiomes
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TABLE 1 | Non-exhaustive list of prominent keystone taxa of the human gut microbiome.

Keystone species (in
alphabetical order)

Function Method of identification Example of reported disease association in
humans

Akkermansia muciniphila Mucin degrader Empirical (Belzer et al., 2017) Intestinal inflammation, obesity and metabolic
diseases (Yassour et al., 2016)

Bacteroides
thetaiotaomicron

Degradation of complex
carbohydrates (arabinogalactan);
selective BSH activity (Yao et al.,
2018)

Empirical (Cartmell et al., 2018) Unclear – Controversial association with IBD
(Sitkin and Pokrotnieks, 2019)

Bifidobacterium longum Degradation of complex
carbohydrates, particularly Human
Milk Oligosaccharides; BSH activity
(Tanaka et al., 2000)

Empirical (Yu et al., 2013;
Gotoh et al., 2019)

Highly prevalent in healthy newborns (Favier
et al., 2003)

Bifidobacterium
pseudolongum

Degradation of complex
carbohydrates

Empirical (Centanni et al., 2018) Highly prevalent human breast milk (Lugli et al.,
2020)

Christensenella minuta Stimulate ecosystem diversity (Mazier
et al., 2021); acetate producer
(Morotomi et al., 2012); BSH activity
(Déjean et al., 2021)

Co-occurrence networks
(Goodrich et al., 2014;

Kumpitsch et al., 2020 ahead
of publication)

Empirical (Ruaud et al., 2020;
Mazier et al., 2021)

Obesity and metabolic diseases (Goodrich
et al., 2014); Crohn’s disease (Pascal et al.,
2017)

Faecalibacterium prausnitzii Butyrate producer Presence/absence (Leylabadlo
et al., 2020)

Crohn’s disease (Sokol et al., 2008), Ulcerative
Colitis (Varela et al., 2013)

Methanobrevibacter smithii Produces methane from H2 and
acetate

Empirical and co-occurrence
networks (Goodrich et al.,

2014; Kumpitsch et al., 2020
ahead of publication)

Obesity (Goodrich et al., 2014), Crohn’s disease
(Pascal et al., 2017)

Ruminococcus bromii Resistant starch degrader; Butyrate
producer

Empirical (Ze et al., 2012) Highly prevalent microbe in healthy individuals
(Beghini et al., 2021)

are gaining increasing attention, and several microbiome-based
biotherapies are currently in development (Doré et al., 2017;
Valencia et al., 2017). Hence, a deep understanding of gut
microbiome ecology and how it can be durably restored is crucial
for effective clinical translation. In this regard, a recent study
evaluated bacterial dispersal strategies of human gut-associated
microbes and classified them in five categories that may provide
a guide for appropriate restoration strategies: (i) “tenacious”
strains that are highly persistent among human communities, (ii)
“spatiopersistent” strains that tend to be associated with specific
geographical locations but colonize at a later developmental stage
(i.e., not in infants), (iii) “heredipersistent” strains that tend to
persist within closely related individuals such as within families
and have broad geographical presence, (iv) average persistent
strains, and (v) non-persistent strains (Hildebrand et al.,
2021). Interestingly, the authors propose that fecal microbial
transplantation may be most efficient to target tenacious and
spatiopersistent taxa while heredipersistent taxa may require
regular reinfections, which may therefore be best targeted
through chronic single strain exposure.

IMPORTANT METABOLIC PATHWAYS
UNDER THE GUT MICROBIOME
INFLUENCE

Beyond microbiota classification, insights on the functional
impact of the microbiome are emerging from metagenomic

analyses, integration with omics data sets, particularly
metabolomics and in vivo validation studies. In this section,
we review recent studies highlighting the key contribution of
microbial metabolites and associated pathways in controlling
host physiology. Among the multitude of metabolic activities
harbored by human gut microbiomes, we focus on the roles of
short chain fatty acids (SCFA), tryptophan- and cholesterol-
derived metabolites, and their crosstalk with host factors, e.g.,
histone modifying enzymes, G proteins-coupled receptors, aryl
hydrocarbon receptor (AhR), indoleamine 2,3-dioxygenase
1 (IDO1) and tryptophan hydroxylase 1 (TpH1) in barrier
maintenance, immune regulation, and the gut-brain axis.

SCFAs
Short chain fatty acids are the primary end products of bacterial
fermentation of dietary fibers (but can also be derived from
proteins and peptides in a lesser extent) and are important
regulators of gut microbial ecology as well as host physiology. The
main SCFAs are acetate, propionate, and butyrate (Cummings
et al., 1987). Fiber-derived monosaccharides, such as hexoses,
deoxyhexoses, and pentoses are converted by several bacterial
metabolic enzymes to pyruvate which is then further metabolized
to acetyl-CoA, succinate or lactate that primarily feed SCFA
production. Acetate is derived from acetyl-CoA generated from
pyruvate directly or through the Wood-Ljungdahl pathway.
Butyrate is also produced from acetyl-CoA, but through the
condensation of two acetyl-CoA molecules into acetoacetyl-CoA
that is metabolized to butyryl-CoA and then butyrate. Some gut
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bacteria can also convert lactate to butyrate. Propionate is derived
from lactate or succinate in the acrylate and succinate pathways,
respectively. It can also be produced by the propanediol
pathway that converts deoxyhexoses to proprionyl-CoA. The
concentration of SCFAs is highest in the proximal colon reaching
∼130 mmol/kg of luminal content (Cummings et al., 1987).
However, the effective concentration reaching the intestinal cells
is presumably lower due to the thick mucus layer and intestinal
peristalsis. Among the SCFAs, butyrate constitutes an important
energy source for colonocytes and is mostly consumed in the
colon. Propionate and acetate are further metabolized in the liver,
but taken the high concentration of acetate in the gut, it is the
main SCFA that remains in the systemic circulation. Nonetheless,
butyrate and propionate can also impact host systemic physiology
indirectly through hormonal and nervous system signals. SCFAs
can enter the cells though diffusion or via the transporter SLC5A8
and exert their effects through three reported mechanisms: (a)
epigenetic control of gene expression via inhibition of histone
deacetylases (HDAC), e.g., in intestinal epithelial cells (IECs)
and immune cells, (b) by acting as ligands of G-protein coupled
receptors (GPCRs), primarily GPR43 and GPR41, also called
free fatty acid receptors 2 (FFAR2) and FFAR3, respectively, and
GPR109A, also known as niacin receptor 1 or Hydroxycarboxylic
Acid Receptor 2 (HCA2), and/or (c) by acting as an AhR agonist,
as has been shown for butyrate in IECs (Marinelli et al., 2019).

Because of the energetic reliance of colonocytes on butyrate,
it is not surprising that this SCFA is a critical regulator of
intestinal barrier integrity and mucosal immune homeostasis.
Butyrate confers a protective role in experimental mouse models
of colitis [e.g., with dextran sodium sulfate (DSS)], Il10−/−

mice (Wang et al., 2016) or Clostridium difficile infection (Fachi
et al., 2019). These effects were also noted in ulcerative colitis
patients, as shown early on by Scheppach et al. (1992). Butyrate
also protects against colitis-associated colorectal cancer (CRC)
as has been reported using the APCmin/+ mice (Singh et al.,
2014) or with the azoxymethane (AOM)-DSS model (Singh
et al., 2014). In contrast, in the APCmin/+MSH2−/− mouse
model with stem-like CRC characteristics, butyrate was shown
to promote tumorigenesis (Belcheva et al., 2014), presumably
through enhancing stem cell regeneration. Mechanistically,
butyrate signals through GPR43 and GPR109A on IECs to
stimulate inflammasome-dependent IL-18 production (Macia
et al., 2015), which is required for intestinal epithelial integrity
(Dupaul-Chicoine et al., 2010; Figure 1). It also protects from
colonic inflammation through HDAC inhibition that blunts
lamina propria macrophages inflammatory signaling (Chang
et al., 2014) and dendritic cells differentiation (Millard et al., 2002;
Wang et al., 2008; Singh et al., 2010), and promotes regulatory
T cells (Treg) generation (Arpaia et al., 2013; Furusawa et al.,
2013), through acetylation of the FoxP3 locus (Figure 1). More
recently, butyrate, in addition to propionate and acetate, was
shown to induce IL-22 expression in CD4+ T cells and innate
lymphoid cells (ILC) through GPR41 and HDAC inhibition;
the latter enabling enhanced binding of HIF1α to the Il22
gene promoter (Yang et al., 2020). In cancer cells, which
favor glucose metabolism (Warburg effect), butyrate was shown
to accumulate in the nuclei leading to effective inhibitory

concentrations of HDACs (Donohoe et al., 2012). As a result,
butyrate can epigenetically deregulate the expression of key genes
involved in cell proliferation, cell death and differentiation in
cancer cells but not normal colonocytes (Donohoe et al., 2012).
Propionate, but not acetate, similarly promotes these processes
through HDAC inhibition. A metagenomic-based approach
was able to identify the main butyrate producers of the gut
microbiome as Eubacterium rectale, Faecalibacterium prausnitzii,
and Anaerostipes coli S22/1 (Louis et al., 2010; Muñoz-Tamayo
et al., 2011). Yet, only F. prausnitzii was formally identified
as a keystone species (Table 1). Interestingly, E. rectale was
identified in another study using metagenomic time series as
a bacterium benefiting from the presence of putative keystone
species such as Bacteroides fragilis and Bacteroides stercosis
(Fisher and Mehta, 2014).

In metabolism, dietary fibers and SCFAs are generally
associated with lean weight and improved glycemic index.
For example, an improvement in insulin sensitivity was
reported in a trial in which individuals were given a diet
supplemented with a resistant starch for 4 weeks (Robertson
et al., 2005). This beneficial effect can be attributed to SCFA.
In a randomized controlled trial, administration of an inulin-
propionate ester to overweight adult humans over 24 weeks
reduced body weight gain, abdominal adiposity and hepatic lipid
accumulation compared to the inulin-control group (Chambers
et al., 2015). Similarly, colonic infusion of SCFA mixtures in
overweight/obese men, at concentrations comparable to those
reached after dietary fibers intake, increased fat oxidation and
energy expenditure (Canfora et al., 2017). Mechanistically, SCFAs
may act by stimulating the production of the anorexigenic
gut hormones peptide YY (PYY) and glucagon-like peptide-
1 (GLP-1) (Figure 1), as has been shown in humans with
acetate (Freeland and Wolever, 2010) and propionate (Venter
et al., 1990) or through intestinal gluconeogenesis (IGN), where
both propionate and butyrate were shown to enhance IEC
de novo synthesis of glucose, stimulating increased insulin
sensitivity through gut-brain communication (De Vadder et al.,
2015). GPR41 mediates improved energy metabolism through
its expression on neurons of the enteric nervous system (ENS)
and on sympathetic neurons that promote enhanced energy
expenditure (Figure 1). Consistently, Gpr41−/− mice were
shown to be leaner than wild-type controls (Samuel et al.,
2008). On the other hand, the results with Gpr43−/− mice are
controversial as these mice were described to be obese even
on normal diet in one study (Kimura et al., 2013), but lean
with improved metabolic parameters in another (Bjursell et al.,
2011). Nonetheless, these mouse phenotypes were lost under
germ-free conditions or with antibiotic treatment, demonstrating
microbiota-mediated metabolic effects.

Tryptophan Metabolism
Microbial metabolism of dietary tryptophan (enriched in
cruciferous green leaf vegetables, e.g., parsley, cauliflower, kale,
broccoli, etc.) has recently emerged as an important pathway
by which the microbiota regulates intestinal homeostasis,
particularly through AhR activation. Since its cloning in 1992
(Burbach et al., 1992), AhR has gained much interest for
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FIGURE 1 | Schematic representation of the effects of select microbial metabolites on intestinal homeostasis, mucosal immune regulation, and metabolic health of
the host.

its role as an environmental sensor. Beyond its activation
by xenobiotics, tryptophan-derived ligands catabolized by the
microbiota, including indole, indolo[3,2-b]carbazole, indole
acetic acid (IAA), 3-methylindole and tryptamine, to name a few,
have been demonstrated to act as potent high-affinity AhR ligands
(Zelante et al., 2013; Hubbard et al., 2015). AhR is expressed
in different intestinal cell types, including IECs, immune cells,
particularly intraepithelial lymphocytes (IELs), innate lymphoid
cells (ILC)3 (Gomez de Agüero et al., 2016), more recently ILC2
(Li et al., 2018), Th17 and Treg (Quintana et al., 2008; Veldhoen
et al., 2008), and neurons of the ENS (Obata et al., 2020).
Through this collective expression, AhR exerts physiologically
crucial roles in barrier integrity and intestinal and immune
homeostasis, notably through regulation of IEC tight junctions
(Yu et al., 2018; Singh et al., 2019), generation and survival of IELs
(Cervantes-Barragan et al., 2017), production of IL-22 (Zelante
et al., 2013) and IL-10 (Aoki et al., 2018; Powell et al., 2020),

and regulation of peristalsis and microbiota density (Figure 1).
In IECs, AhR has been recently implicated in the regulation of
goblet cells differentiation, particularly in preventing goblet cell
depletion in the colon during aging (Powell et al., 2020). This
process is mediated by IL-10 and induced by AhR in response
to microbiota-derived indoles. IL-22 or type I IFN, which are
involved in intestinal tissue repair following acute injury, do
not seem to be required in this case (Powell et al., 2020). In
parallel to IECs, AhR activation in CD4 + T cells was shown
to regulate their differentiation into CD4 + CD8αα + double-
positive immunoregulatory IELs. These cells are absent in germ-
free mice but restored with Lactobacillus reuteri, a species
with tryptophan catabolizing capacity (Cervantes-Barragan et al.,
2017). AhR activity is similarly required for the generation and
maintenance of ILC3 (Gomez de Agüero et al., 2016), and
patients with Crohn’s disease exhibit decreased AhR expression
in their inflamed ileum accompanied by a conversion of ILC3
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to ILC1 (Li et al., 2016). Last, AhR expression is elevated in
intestinal Treg and seems to be required for their gut homing
as well as for suppression of Th1 inflammatory gene expression
(Ye et al., 2017). AhR is also expressed in colonic neurons,
in a microbiota-dependent manner, and this neuronal-specific
expression is central in the control of intestinal peristalsis,
positioning AhR as a nexus of intestinal neural circuitry
(Obata et al., 2020). Collectively, AhR protects the epithelial
barrier, promotes intestinal immune tolerance and protects
from intestinal inflammation. Consequently, deregulation of its
activity is associated with inflammatory and metabolic diseases,
and microbiome stimulation of this pathway, particularly
through tryptophan metabolism, has been demonstrated as
an “environmental” mean to counter these pathologies. For
instance, individuals with inflammatory bowel diseases (IBD)
(Lamas et al., 2016), the metabolic syndrome (Natividad et al.,
2018) or celiac disease (Lamas et al., 2020) have decreased
fecal concentrations of AhR ligands and reduced AhR activity.
Interestingly, supplementation of experimental mice modeling
these pathologies with a high-tryptophan diet, AhR ligands
or with bacterial species that metabolize tryptophan such as
L. reuteri, improved the mice health status (Marafini et al., 2019;
Chen et al., 2020). In a randomized controlled clinical trial,
administration of AhR ligands in the form of the traditional
Chinese medicine indigo naturalis to ulcerative colitis patients
for 8 weeks showed clinical benefit, including a decrease in
the Mayo score, mucosal healing and remission in some cases
(Naganuma et al., 2018). Nonetheless, caution is warranted prior
to considering the development of AhR ligands for therapeutics
taken toxicity issues with deregulated AhR responses.

Besides AhR ligands, tryptophan is additionally metabolized
into kynurenine and serotonin (Clarke et al., 2012; Yano
et al., 2015). In the kynurenine pathway (KP), IDO1 is
mainly responsible to convert tryptophan to kynurenine and
downstream end products including niacin, nicotinamide
adenine dinucleotide (NAD), quinolinic acid and kynurenic
acid (Cervenka et al., 2017; Kennedy et al., 2017). The latter
exerts immunoregulatory effects and protects the intestine by
signaling through GPR35, expressed on IECs and immune
cells (Gao et al., 2018). The serotonin pathway converts
tryptophan into the neurotransmitter 5-hydroxytryptamine (5-
HT), i.e., serotonin, via TpH1 expressed in a specialized IEC
type known as enterochromaffin cells in the gut, and TpH2
in the brain. While peripheral 5-HT, which constitutes 90% of
all serotonin produced in the body, does not cross the blood–
brain barrier (BBB), it regulates several intestinal processes
including stimulation of ENS neurons, peristalsis and nutrient
absorption, to name a few (Mawe and Hoffman, 2013). Moreover,
both tryptophan and 5-HT precursor (5-HTP) cross the BBB
impacting central serotonin effects on host physiology. The
commensal microbiota plays important roles in tryptophan
metabolism to kynurenine and serotonin as demonstrated
in GF or antibiotics-treated mice [reviewed in Agus et al.
(2018)]. Several commensal bacteria express enzymes related
to KP enzymes and can thus produce kynurenine metabolites,
e.g., the neurotoxic 3-hydroxyanthranilic acid (O’Farrell and
Harkin, 2017). Further, through SCFA and BA metabolism, the

microbiota can induce TpH1 and stimulate 5-HT biosynthesis
(Reigstad et al., 2015; Yano et al., 2015). Gut-derived kynurenines
and 5-HT are additionally implicated in the pathogenesis of
chronic inflammatory, metabolic and neuropsychiatric diseases.
For instance, IDO1−/− mice are more susceptible to 2,4,6-
trinitrobenzene sulfate-induced colitis (Takamatsu et al., 2013)
whereas TpH1−/− mice show enhanced protection in response
to DSS- or dinitrobenzene sulfonic acid-induced colitis (Ghia
et al., 2009), suggesting that while kynurenine is protective in the
gut, 5-HT might be deleterious. However, more recent findings
indicate that 5-HT could exert pro- or anti-inflammatory effects
in the gut depending on the respective engagement of 5-HT7
versus 5-HT4 receptors (Spohn and Mawe, 2017). Kynurenines
and 5-HT play contrasting roles in obesity and insulin resistance.
The KP is overactivated in obesity and its activity correlates with
BMI and the metabolic syndrome, presumably through the action
of kynurenine derivatives such as xanthurenic acid (Oxenkrug,
2013). In contrast, 5-HT levels are decreased in obese individuals,
which is consistent with the role of 5-HT in promoting satiety
(Voigt and Fink, 2015), lipolysis in white adipose tissue and
hepatic gluconeogenesis (Sumara et al., 2012).

Cholesterol and Lipid Metabolism
Cholesterol and lipid metabolism by the intestinal microbiota
is an additional facet by which the microbiota influences host
physiology. On one hand, microbial components, specifically
Peptostreptococcus anaerobius, have been identified as inducers
of cholesterol biosynthesis in colonocytes, mediated by SREBP2
activation downstream of TLR signaling, which supports
dysplasia and CRC development in a mouse model, and
is consistent with elevated levels of this bacteria in the
stool of CRC patients (Tsoi et al., 2017). On the other
hand, microbial metabolism of cholesterol into coprostanol,
a poorly absorbed sterol, has been recently demonstrated as
a mechanism reducing host serum cholesterol levels (Kenny
et al., 2020). Notably, this function was attributed to a clade of
uncultured bacteria harboring ismA genes encoding cholesterol
dehydrogenases (Kenny et al., 2020). Besides cholesterol, bacterial
metabolism of sphingolipids (SL), lipids with a long-chain amino
alcohol backbone, also contributes to immune homeostasis in
the gut and to the host metabolic health. Bacteria of the
Bacteroidetes phylum, which constitutes∼30–40% of the healthy
human intestinal microbiota, have the capacity to synthesize
sphingolipids (SL), owing to their expression of the enzyme serine
palmitoyltransferase (Heaver et al., 2018). Bacterially derived SL
promote immune homeostasis in the gut, acting early in life to
tame invariant natural killer T (iNKT) cells proliferation (An
et al., 2014). Consistently, in a model of oxazolone-induced
colitis, treatment of mice with B. fragilis SL lessened the colitis
phenotype by reducing iNKT cell numbers (An et al., 2014).
Notably, the stools of IBD patients contain an elevated signature
of host SL including ceramides, but are depleted of bacterially
derived SL which protect the intestine. Indeed, colonization of
germ-free mice with Bacteroides thetaiotaomicron deficient in SL
elicited intestinal inflammation (Brown et al., 2019). To address
how the gut microbiota influence host metabolic pathways and
ceramide levels, a recent study explored this question in a
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model of diet-induced obesity (Johnson et al., 2020). The authors
showed that bacterially derived SL can enter colonocytes and
reach the liver through the portal vein circulation, impacting
metabolic parameters, e.g., insulin resistance, primarily through
liver ceramides (Johnson et al., 2020). Together, these indicate
that cholesterol and lipid metabolism by gut bacteria significantly
influence host metabolism and physiology. However, these
pathways are still poorly understood and require to be fully
investigated before further therapeutic exploitation.

Bile Acid Metabolism
Bile acid metabolism by the gut microbiota has gained
considerable interest in the recent years as they are being
recognized as crucial microbiome-derived metabolites that
regulate multiple important functions involved in health and
disease (Hylemon et al., 2018). Primary bile acids are mostly
synthesized by the liver hepatocytes from cholesterol following
irreversible 7alpha-hydroxylation by the cytochrome P450
CYP7A1 (Chávez-Talavera et al., 2017). In humans, these
are cholic acid (CA) and chenodeoxycholic acid (CDCA),
while in mice, CDCA is further metabolized into beta-
muricholic acid (betaMCA) (Pandak and Kakiyama, 2019). These
hydrophobic primary bile acids are then made amphipathic
through conjugation with glycine and taurine before being
secreted in the gall bladder along phospholipids to make up the
bile that will primarily serve as detergent upon release into the
duodenum during digestion (Chávez-Talavera et al., 2017). In
the small intestine, conjugated bile acids are deconjugated by
microbial bile salt hydrolases (BSH) that release the hydrophobic
moieties that are reabsorbed mostly through passive diffusion
along the epithelium and through active reabsorption in the
terminal ileum. In total, 95% of the initial bile acid pool is
reabsorbed through this enterohepatic cycle. Yet, 5% of bile
acids escape reabsorption and travel down the colon where they
undergo further metabolism by gut bacteria such as 7alpha-
dehydroxylation, which leads to formation of secondary bile acids
such as deoxycholic acid and litocholic acid from the metabolism
of CA and CDCA, respectively, (Ridlon et al., 2016). This is
a brief overview of the complex metabolism of bile acids. For
an exhaustive review of the role of gut microbes on bile acid
metabolism, we refer the reader to the work by Ridlon et al.
(2016). Gut microbial taxa with documented BSH activity include
Lactobacillus spp. (Foley et al., 2021), Bifidobacterium longum
(Tanaka et al., 2000), Enterococcus faecalis (Chand et al., 2018),
B. thetaiotaomicron (Yao et al., 2018), and Christensenella minuta
(Déjean et al., 2021), some of which have been classified as
keystone species (Table 1).

Beyond their role in lipid absorption, bile acids have systemic
functions as they also regulate hepatic energy metabolism,
adipocyte differentiation and dampen immune activation
through their interaction with bile acid receptors Farnesoid X
Receptor (FXR) and Takeda G protein Receptor 5 (TGR-5) (Foley
et al., 2021). Because of these multiple effects, they were recently
suggested to form gut microbiota-derived hormones (Kliewer
and Mangelsdorf, 2015; Hylemon et al., 2018). Both conjugated
and unconjugated bile acids participate in this host-microbiota
crosstalk. Interestingly, new bile acid conjugates specifically

produced in the small intestine, were recently discovered. These
involve bacterial conjugation with phenylalanine, tyrosine, and
leucine, three hydrophobic amino acids, which had never been
described associated with these molecules. Unsurprisingly, we
still ignore the physiological role of these novel microbially
derived compounds (Quinn et al., 2020).

Bile acids have been associated with a number of chronic
disorders including obesity, NASH, IBD (Schirmer et al., 2019),
Primary Biliary Cholangitis (formerly known as Primary Biliary
Cirrhosis) and Primary Sclerosing Cholangitis. Interestingly,
some disorders have been specifically associated with a defect
in gut bacterial metabolism of bile acids such as Clostridioides
difficile infections, which have been shown to be corrected
by restoring gut microbial BSH activity (Mullish et al., 2019).
Indeed, bile acid deconjugation releases free unconjugated bile
salts that are toxic to most bacteria and thus act as a regulator
of the microbial ecosystem. Hence, this is one of the key
functions carried by gut bacteria that impacts significantly on the
composition of the gut microbiome community.

BIOINFORMATIC TOOLS TO IDENTIFY
KEYSTONE SPECIES AND FUNCTIONS
OF THE GUT MICROBIOME

In light of these findings, restoring key metabolic pathways
carried by gut microbiota could open a wide range of therapeutic
perspectives. In particular, the identification of keystone species
carrying these functions in the gut microbiome appears as
an essential step for the development of future biotherapies
targeting the gut microbial ecosystem. Keystone species of the
human microbiome have often been identified using empirical
evidence (Banerjee et al., 2018). Nevertheless, bioinformatics
is increasingly used to identify keystone species and several
methods have been developed to exploit next-generation
sequencing (NGS) data.

“Presence or Absence” Associated With
Health and Disease
One of the most common methods to characterize the human gut
microbiome has been the use of amplification and sequencing
of marker genes in stool samples. The most used marker gene
is the 16S rRNA gene for the detection of bacteria, but other
housekeeping genes are occasionally used to capture bacterial
diversity (Case et al., 2007; Ogier et al., 2019). 16S rRNA can
be used to compare the abundance of microorganisms at the
genus or species level in different states (e.g., healthy versus
diseased, different food sources, etc.) by assigning the reads
to clusters of organisms grouped by taxonomic marker gene
similarity, called Operational Taxonomic Units (OTUs). A widely
used technique to then assess variations between microbial
communities is to use UniFrac beta-diversity metric coupled with
unsupervised multivariate statistics using Principal Component
Analysis (PCA) or its derivatives (Lozupone and Knight, 2005;
Ramette, 2007). However, the main hurdle associated with
the calculation of the UniFrac method is the high computer
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power required, although this has been largely improved in the
latest Striped UniFrac algorithm (McDonald et al., 2018). More
complex probabilistic methods, such as Dirichlet multinomial
mixtures, have been developed to improve the analysis of
metagenomics samples by clustering and classifying microbial
communities based on a probability distribution. This method
especially considers the discrete nature, the sparsity and the
variability of the sequencing depth, and has been applied to the
analysis of samples from obese and lean twins and to IBD patients
(Holmes et al., 2012; Ding and Schloss, 2014).

Even if evaluating the presence or absence of a genus or
species between two states using marker gene sequencing in stool
samples seems promising, a key part of the keystone species
definition is the interspecies interaction (Banerjee et al., 2018).
Hierarchical clustering of bacterial communities correlated with
disease association have been extensively used to attempt
identification of important bacterial taxa (Jackson et al., 2018).
Correlation with taxon presence or absence is often confirmed
using metrics such as Jaccard’s index: between two species, this
index is defined by the ratio between the number of samples
where both species are present out of the number of samples
tested. The values of this index range between 0 and 1, from
no correlation to a strong correlation, respectively, (Mainali
et al., 2017). Nevertheless, an extensive study on microbial
community modeling showed that indexes selected to evaluate
correlations between species should be adapted to the specific
dataset being studied. It is noteworthy that Jaccard index has
been reported to have a relatively low sensitivity compared to
other metrics such as the Pearson index when applied to co-
occurrence networks (Berry and Widder, 2014). Therefore, even
if the use of Jaccard’s index is reliable to identify the correlations
using taxon presence or absence, the use of Pearson or Spearman
indexes should be preferred to assess correlations when using
network-based methods.

To overcome the issues associated with taxon-based
correlation analysis that may lead to conflicting results due
to spurious associations, it is noteworthy that Wu and co-
authors have recently proposed to exploit the concept of
bacterial guild to reduce metagenomic data dimensionality
into ecologically meaningful functional units (Wu et al., 2021).
Although this approach is still limited by the use of relative
abundance data, it proposes an interesting approach to refine
data analysis of 16S-based datasets to identify relevant disease
associations.

Prediction of Interspecies Interactions
by Network-Based Methods
The need to consider interspecies interactions to identify
keystone species in a community led to the development of
new network-based methods. The most common methods are
co-occurrence or co-abundance networks applied to 16S rRNA
gene (or other marker gene) sequencing or metagenomic data.
These networks are often produced by calculating a pairwise
correlation coefficient between each pair of OTUs but other
methods are being developed to build interaction networks
(Berry and Widder, 2014).

Co-occurrence networks have been extensively used to
identify keystone species. An exhaustive study by Berry
and Widder (2014). evaluated the performance of these
networks in interaction with several correlation metrics. They
used generalized Lotka-Volterra modeling (gLVM) to simulate
competitive and cooperative interactions between species (Berry
and Widder, 2014). This study revealed that high mean degree
(the average number of edges a node has in the network),
high closeness centrality (the average distance of a node to any
other node), high transitivity and low betweenness centrality
(the betweenness centrality of the node A is the number of
shortest paths between a pair of nodes B and C passing through
the node A) can predict the keystone nature of species with
85% accuracy (Berry and Widder, 2014). These parameters
produce highly interconnected nodes (i.e., keystone species)
called “hub” patterns corresponding to a number of species
interacting together directly and indirectly (Berry and Widder,
2014; Layeghifard et al., 2017; Banerjee et al., 2018). This enables
identification of the guilds of bacteria that depend on the presence
of keystone species. For example, this method was used by Zhang
et al. (2014) on 454-pyrosequencing 16S rRNA sequencing data
from human intestinal biopsy samples. It allowed to identify
Ruminococcus gnavus, Faecalibacterium prausnitzii, Prevotella
copri, and Anoxybacillus flavithermus as potential keystones of
a healthy human intestinal mucosal microbiota because they
displayed the highest number of linkers (Zhang et al., 2014). As
already mentioned, only F. prausnitzii has been so far empirically
validated as a keystone species for its ability to produce butyrate
(Table 1). Its loss has been associated with the development of
IBD in several studies (Sokol et al., 2008; Varela et al., 2013).

Another study from Fisher and Mehta (2014) used discrete-
time Lotka-Volterra models to simulate the abundance variations
of 10 species for 1000 timesteps and 100 initial conditions.
After demonstrating that correlations in species abundance were
not predictive of interactions between species, they used this
simulated dataset to prove that LIMITS, an algorithm that
uses sparse linear regression corrected by bootstrap aggregation,
can be relevant to identify keystone species in two time-series
samples from the gut microbiome (Fisher and Mehta, 2014).
They concluded that B. stercosis and B. fragilis showed more
interactions than other bacteria and that these interactions were
mainly beneficial, since the growth of these two bacteria has been
correlated with an increased abundance of B. thetaiotaomicron
and E. rectale, the latter being a well-known butyrate producer
(Fisher and Mehta, 2014). These results are coherent with other
studies identifying Bacteroides sp. as key members of the gut
microbiome (Loftus et al., 2021) involved in the degradation
of complex carbohydrates (Cartmell et al., 2018). Nevertheless,
the major drawback of this method is the need of time-series
samples which are difficult and time-consuming to obtain.
Furthermore, only a few abundant species are studied, thus the
identification of low abundant keystone species is fairly unlikely
using this method.

Other network-based methods, such as association rule-
mining, are being applied to microbiome sequencing data in
order to identify keystone species. Briefly, this method allows
to estimate whether the presence of a species is required for
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the presence of other species. In a study by Chng et al. (2020),
using the “efficient_apriori” Python package, they inferred binary
association rules between species on 782 microbiome profiles.
This method allowed to identify “primary” species, which
presence is required for other species to thrive. Furthermore, they
showed that some of these “primary” species, such as Bacillus
uniformis, F. prausnitzii or Ruminococcus torques, were associated
with the recovery of the gut microbiota after antibiotic exposure
and carried specific metabolic functions such as mucin and
carbohydrates degradation (Chng et al., 2020). As mentioned in
Table 1, other members of the Ruminococcus genus have been
identified as resistant-starch degraders (Ze et al., 2012) essential
to maintain a healthy gut microbiome (Beghini et al., 2021).

Co-occurrence networks between members of the microbiota
can also be applied using generalized boosted linear models
(GBLMs), as exemplified in a study where it was implemented
to investigate the Human Microbiome Project cohort (Faust
et al., 2012). More recently, a co-occurrence network using the
Random Matrix Theory (RMT) method was applied to murine
gut microbiome data in order to identify putative keystone
species. In this study, 32 were identified as highly connected
species linked to other OTUs (Liu et al., 2019).

Although these methods are useful to predict putative
keystone species, the identification of the keystone functions
carried by these species is essential to understand the interactions
between the keystone bacteria and its guild. However, the use
of amplicon sequencing does not allow the precise identification
of the strains or the metabolic functions they carry within
the gut microbiome because the assignation of OTUs only
allows the reconstruction of metabolic pathways based on
reference genomes, thus inducing a possible loss of strain-
specific metabolic functions (Frioux et al., 2020). Therefore, a few
recent methods have been developed to overcome these issues
using metagenomic sequencing that reconstruct strain-specific
metabolic pathways.

Reconstruction of Metabolic Pathways
at Ecosystem Level
The recent development of metagenomics has provided a clearer
view of the diversity of the gut microbiota, especially by allowing
access to yet-uncultured bacteria (Almeida et al., 2019). The
reconstruction of genome-scale metabolic networks and models
(GSMNs) using Metagenome-Assembled Genomes (MAGs) or
the inference of functional categories to single genes allows to
precisely predict the metabolic capabilities of the gut microbiome
(Frioux et al., 2020). A good example of such tools is the
Metage2Metabo algorithm developed by Belcour et al. (2019) that
enables the analysis of metabolic pathways at the ecosystem level
using both reference genomes and MAGs. As keystone species
carry essential metabolic functions in the gut ecosystem, this
tool was used to detect putative keystone bacteria. In order to
accurately predict the metabolic capabilities of the communities,
both available nutrients and genome information (from reference
databases or metagenomic samples) are combined to predict
minimal communities of bacteria that can produce target
metabolic compounds. The bacteria encountered in all predicted

minimal communities are considered essential symbionts,
whereas bacteria encountered in at least one of the predicted
minimal communities, but not necessarily all of them, are
considered alternative symbionts (Belcour et al., 2019). This
method has been applied to a set of over 1,500 reference
genomes from the human gut, allowing the identification of
11 essential symbionts, namely Propionibacterium sp. KPL2009,
Paenibacillus polymyxa, Bacillus licheniformis, Lactococcus lactis,
Enterococcus casseliflavus, E. faecalis, Hungatella hathewayi,
Dorea longicatena, R. torques, Burkholderiales bacterium, and
Citrobacter portucalensis, and 194 alternative symbionts (Belcour
et al., 2019). As the reference genomes were assembled from
155 fecal samples, bacterial communities from each individual
were mixed, maybe explaining the large amount of alternative
symbionts (Zou et al., 2019). In addition, the fairly reduced
number of predicted keystone species compared to the input
dataset of genomes could be due to the non-exhaustive list
of initial nutrients and target metabolic compounds that need
to be provided to the software in order to predict minimal
communities. Nonetheless, this tool is the first tool to the
best of our knowledge that is specifically designed to identify
both putative keystone species and their associated metabolic
functions in complex microbial communities.

FINAL CONSIDERATIONS

Modern sequencing technologies enable broad mapping of
virtually any microbial ecosystem. Nevertheless, it is important
to keep in mind that the quality of microbiome data and the
information we derive from them highly rely on the quality of
the original sampling. Indeed, environmental factors strongly
influence bacterial communities that adapt to any variation, being
the time of day, temperature, pH, food supply (i.e., diet for
gut microbiomes), and the age of their host for host-associated
microbiomes. In this regard, the keystone species C. minuta
has been reported to be increased with aging (Waters and Ley,
2019). Hence, repeated sampling can be recommended in order
to account for temporal variations and obtain more accurate
pictures of bacterial ecosystem compositions (Ji et al., 2019).

Another important consideration about sampling is that most
large human studies focus on easily accessible locations with
non-invasive tools, analyzing oral and fecal samples for instance.
As a consequence, the analyzed microbiomes poorly represent
the inner ecosystems located deep within the gut. Typically,
fecal samples reflect the microbiome of the distal colon, largely
dominated by Clostridiales, while it has been shown that the
gut microbiota follows a specific spatial distribution along the
gastrointestinal tract, which is even further complicated by
regional specificities as illustrated by the differences observed
between luminal and mucosa-associated species (Donaldson
et al., 2016). Hence, most studies of human cohorts are
limited to the study of the distal gastrointestinal tract. Despite
this limitation, NGS methods and bioinformatics have been
effectively supporting the search for keystone species in the
gut microbiome. The rapid improvement of NGS techniques
that generates increasingly large datasets allowing for deep
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characterization of the gut microbiome community also calls
for new bioinformatics tools to analyze NGS datasets in a more
effective and complete way.

For metagenomics studies and as summarized in Figure 2, two
methodology decisions drastically influence the results: (i) the
DNA sequencing technology and (ii) the bioinformatic methods
that will be applied to analyze these datasets.

The choice of a DNA sequencing strategy determines the
information retrieved from a sample. Amplicon sequencing,
especially 16S rRNA gene sequencing, allows to have an overview
of the bacterial content of the samples by assigning the obtained
reads to taxonomies. Metabolic networks can then be inferred
using the reference genomes of the species or genus identified
in the samples (Frioux et al., 2020). Although this approach
has some merits, several technological biases can result in
partial taxonomic assignation, thus reducing the completeness
of the analysis. For instance, 16S rRNA gene sequencing is
often partial because it mostly targets a couple of hypervariable
regions, although it is technically possible to target a nearly
complete 16S rRNA sequence, depending on chosen primers and
sequencing technology. Indeed, an extensive study by Johnson
et al., revealed that a full 16S rRNA gene sequencing significantly

improves the taxonomic resolution. Out of all of the partial
sequencing tested, the V4 region performed worst, and the
relative number of OTUs produced using the different sub-
regions was not consistent depending on the identity threshold
(Johnson et al., 2019). It has also been noted that the development
of long-read sequencing platforms enhanced the accuracy of the
sequencing thus improving the detection of single nucleotide
polymorphisms (SNPs) in the complete 16S rRNA gene. Multiple
copies of the 16S rRNA genes carrying unique SNPs can
even be detected using this technique, allowing a strain-level
identification (Johnson et al., 2019).

The thrive of metagenomic sequencing also benefited from
the use of NGS to perform shotgun sequencing. A study by
Ranjan et al. (2016) concluded that the use of shotgun sequencing
compared to 16S sequencing significantly improved the diversity
of bacterial species detected, thus allowing a finer prediction of
the genes carried by a bacterial community. For instance, their
study showed that more than 1,000 species of proteobacteria
were only detected by shotgun sequencing performed on a
stool sample and twice the amount of genes were predicted
on average using one of the shotgun short-reads metagenomic
technologies. The comparison of different short-read sequencing

FIGURE 2 | Diagram of the most used bioinformatic strategies to identify microbiota keystone species using next-generation sequencing. The bacteria shown in red
is a keystone species that disappears from the stool of patients in differential analyses (bottom left), is highly connected to other species through beneficial
interactions (“hub”) (bottom middle), or produces essential metabolites (e.g., SCFAs) that enhance the growth of other bacteria (bottom right).
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technologies, namely MiSeq and HiSeq, showed that the extra
length produced by MiSeq sequencing (150–300 bp compared
to 100 bp) enables a more specific identification of bacterial
species and improves accuracy and completeness of MAGs that
are essential to reliably predict the metabolic potential of the
ecosystem (Ranjan et al., 2016; Frioux et al., 2020). A more
recent study showed that the use of long-read technologies (e.g.,
PacBio) improved drastically the completeness of the MAGs and
associated predicted genes: more than 98% of the genes predicted
from PacBio-assembled MAGs were complete compared to only
40% using HiSeq-assembled MAGs (Xie et al., 2020). Indeed,
the use of long reads enables the detection of repeated elements
often found in ribosomal RNA genes or bacteriophage-related
insertions that are frequently missed with short read sequencing
(Derakhshani et al., 2020).

Once sequencing data have been acquired, the identification
of species in the gut microbiome requires the assignment
of the reads to taxonomies. At this step, not only is the
quality of the reads important, but the accurate assignment
to taxonomies also depends on the reference catalog used.
For the assignment of 16S rRNA genes, two factors strongly
influence results. First, there is high reliance on the diversity
contained in the reference catalog and second, the amplified
regions can skew the identification of OTUs. Indeed, 16S rRNA
gene catalogs are often built from complete 16S sequences
whereas the amplification and sequencing of the 16S rRNA
gene usually targets hypervariable regions (V-regions), leading
to biased performances and challenges when comparing different
studies. To overcome this hurdle, a new tool called OTUX has
been proposed, that combines several custom datasets of OTUs
defined by 16S rRNA V-regions retrieved from full-length 16S
rRNA sequences (Yadav et al., 2019). This new method was
challenged against conventional full-length 16S databases and
revealed an improved assignment of reads for all of the V-regions
targeted, except for the V1–V3 region (Yadav et al., 2019). For
the assignment of shotgun reads, using MAGs could significantly
improve identification accuracy of bacterial species. Recent
research efforts produced a comprehensive catalog containing
more than 200,000 reference genomes from the human gut
microbiome referenced as the UHGG database (Almeida et al.,
2020). This work also revealed that 81% of the species in the
catalog lacked a cultured representative, indicating the huge
potential for discovering new keystone species in the future
(Almeida et al., 2020).

Another critical parameter in the analysis of microbial
communities using NGS is the sequencing depth. Several
keystone species from the human gut microbiome, such as
C. minuta, which presence in stool samples is significantly
associated with BMI, are low abundance microbes that can be
missed when using a reduced sequencing depth (Waters and Ley,
2019). Thus, an increased depth is required to ensure that the
whole diversity of species from the gut microbiome is identified
(Berry and Widder, 2014).

Considering data processing using bioinformatic tools, one
of the main issues regarding the use of sequencing data to
identify correlations between taxa within the gut microbiota
is the compositional nature of these datasets. The analysis

of read counts begins with their normalization by the total
number of sequenced reads. As explained by Friedman and
Alm, the estimation of correlation between parameters (e.g.,
species) is biased by the relationship between the fractions:
because they must sum to 1, they are not independent (Friedman
and Alm, 2012). Thus, a study can be artificially biased by
the disappearance of highly abundant species due to technical
or assignment issues: the relative abundance of low-abundant
species will increase as the variables are dependent even if their
absolute abundance is constant. Quantitative PCR (qPCR) is the
predominant method to quantify biomass using 16S rRNA gene
amplification, however, this method could significantly influence
the models. Li et al. (2019) noticed a high variation between
replicates when quantifying biomass from stool samples. Another
flaw of this technique is due to the variable number of 16S
rRNA gene copies in several microbial phyla such Firmicutes and
Bacteroidetes, which results in an over-representation of such
species. Friedman and Alm (2012) demonstrated that standard
Pearson correlation estimation can falsely predict negative
correlations between one dominant and several low abundant
species because of the dependence between abundances. This
issue has also been pointed by Berry and Widder (2014): they
noted a loss of specificity in the co-occurrence networks when
relative abundances were used. As a consequence, the SparCC
method was developed to estimate the linear Pearson correlation
between transformed variables: the log transformation of the
ratio of abundances between a pair of OTUs because the ratio
between abundances is independent from other OTUs included.
Using SparCC, it was demonstrated that the bias observed in
standard correlation studies that is induced by dominant species,
is greatly reduced in simulated data of varying diversity. Applied
to the HMP dataset, SparCC revealed new positive correlations
between highly abundant and low abundant species, instead of
the spurious negative correlations usually observed when using
standard correlations (Friedman and Alm, 2012).

Recently, another method was developed by Li et al., to
overcome the compositional bias when using generalized Lotka-
Volterra (gLV) models. As explained above, gLV models are
one of the most common approaches for modeling microbial
interactions. These models also suffer from the compositional
bias induced by the relative abundances. Indeed, absolute
biomass values are needed in order to accurately fit the gLV
differential equations model of each organisms’ growth rate to
the data (Li et al., 2019). Therefore, Li et al. (2019) developed
an algorithm called BEEM that estimates biomass in silico before
inferring interactions when total biomass cannot be estimated
experimentally. This algorithm introduces relative abundances in
the equation modeling the growth rate of each species, resulting
in two parameters that can be estimated using longitudinal
datasets. This method was applied to diverse synthetic or
existing datasets and accurately estimated biomass and gLVM
parameters. It also allowed the identification of F. prausnitzii
and B. uniformis as putative keystone species sharing numerous
positive interactions with other bacteria (Li et al., 2019). Yet, this
method is limited by available growth information for common
species. Hence, only common dominant bacteria for which the
information exists, may be accurately predicted.
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Finally, recent developments have proposed to apply
inferential statistics to network-based models in order to gain
confidence in result interpretation. A study by Röttjers et al.
(2021) recently proposed the use of null models to identify
network properties that can be used to compare networks.
They showed that among 20 networks built from time-series
stool samples collected from 20 women, the new tool called
anuran, could identify patterns that were found in 20–25% of
the networks but only 3 associations were found in 10 networks
or more, suggesting that associations between species or taxa may
greatly vary from one individual to another (Röttjers et al., 2021).
Although this is a proof-of-concept work applied to a limited
population, this is an interesting approach to robustly identify
keystone species based on stable interaction networks.

CONCLUSION

In this review, we discussed the role of key gut microbes-derived
metabolites in intestinal homeostasis, metabolic health, immune
regulation, and gut-brain interactions. We next described current
bioinformatic tools used in microbiome studies and highlighted
weaknesses associated with some of these approaches for the
identification of keystone species and their missing functions.
We point for instance that commonly used bioinformatic
tools that provide “presence or absence” information are not
suitable in this regard as they fail to provide a view of
species interactions. Network-based methods that calculate co-
occurrence or co-abundance of species are thus more suited
to predict keystoneness. However, these methods need to be
complemented with approaches that reconstruct species-specific

metabolic pathways, such as the Metage2Metabo algorithm, but
in a system where nutrient, genomic information and metabolites
output are simultaneously analyzed.

Our review has provided a snapshot of recent discoveries
on gut microbiome metabolic activities and the current state
of the field with respect to bioinformatics analysis of the
microbiome. We propose that in the quest for keystone species,
future studies should consider harmonization of sample and
data processing and the integration of additional variables
including age, gender, nutrition, and other environmental cues.
It is also particularly important to provide mechanistic evidence
supporting the functions of keystone species in modulating the
microbiome ecosystem for instance through quorum sensing,
cross-feeding, bacteriocins or through other as of yet unknown
mechanisms. Such studies will set the stage to design microbiota-
based therapeutic interventions to counter chronic diseases,
by restoring keystone species and their beneficial effects on
microbiome balance to support a healthy symbiotic interaction
with their host.
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