
HAL Id: hal-03656662
https://hal.science/hal-03656662

Submitted on 2 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Precondition Calculus for Correct-by-Construction
Graph Transformations

Amani Makhlouf, Christian Percebois, Hanh Nhi Tran

To cite this version:
Amani Makhlouf, Christian Percebois, Hanh Nhi Tran. A Precondition Calculus for Correct-by-
Construction Graph Transformations. Twelfth International Conference on Software Engineering Ad-
vances (ICSEA 2017), Oct 2017, Athens, Greece. pp.172-177. �hal-03656662�

https://hal.science/hal-03656662
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22310

To cite this version:

Makhlouf, Amani and Percebois, Christian and Tran, Hanh Nhi A
Precondition Calculus for Correct-by-Construction Graph
Transformations. (2017) In: Twelfth International Conference on
Software Engineering Advances (ICSEA 2017), 8 October 2017 - 12
October 2017 (Athens, Greece).

Open Archive Toulouse Archive Ouverte

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22310

A Precondition Calculus for
Correct-by-Construction Graph Transformations

Amani Makhlouf, Christian Percebois, Hanh Nhi Tran

IRIT, University of Toulouse
Toulouse, France

Email: {Amani.Makhlouf | Christian.Percebois | Hanh-Nhi.Tran}@irit.fr

the rule is proved by a dedicated tableau reasoning, which is
sound, complete and which results in a counter-example when
a failure occurs.

Since writing complete and correct specifications may not
be easy for novice developers, we aim to assist them in
achieving provably correct transformations [8]. In this context,
we propose a static analysis of the weakest precondition based
on an alias calculus in order to suggest precondition formulae
that are easier to understand but still ensuring the correctness
of the Hoare-triple. The result is presented to developers in
a disjunctive normal form. Each conjunction of positive and
negative literals specifies a potential matching of the source
graph. By letting developers choose a conjunction as a premise
that reflects the rule’s intention, our approach can filter and
reduce some combinatorial issues.

In this paper, Section II first defines logic-based formulae to
annotate pre- and postconditions of a transformation rule. This
choice yields manageable proof obligations in a Hoare’s style
for rules’correctness. Then, we introduce in Section III Small-
tALC atomic statements that manipulate graph structures. Each
statement is characterized by a weakest precondition with re-
spect to a given postcondition. On the basis of an alias calculus
that is presented in Section IV, we show in Section V how to
reduce some combinatorial issues while ensuring the program
correctness by finely analyzing the weakest precondition. An
illustrative example is presented in Section VI. We finally give
some discussions on related work in Section VII and wrap
up the paper with a conclusion and possible improvements in
Section VIII.

II. LOGIC-BASED CONDITIONS

Slightly diverged from the standard approach, we choose
a set-theoretic approach for our transformation system [9].
The basic idea is to specify sets of nodes and edges of
a subgraph using a fragment of first-order logic. It turns
out that replacing graph patterns by graph formulae yields
manageable proof obligations for rules’correctness in a Hoare
style {P}S{Q} [6]. A precondition formula P designates
a subgraph matching a substructure that should exist in the
source graph. The postcondition Q requires the existence of
the subgraph represented by Q in the target graph. For instance,
consider a rule requiring that: (1) x must be a node (individual)
not connected by the relation (role) R to a node y; (2) y
is of class (concept) C; (3) x is linked to at most three
successors (qualified number of restrictions) of class C via

Abstract—We aim at assisting developers to write, in a Hoare
style, provably correct graph transformations expressed in the
ALCQ Description Logic. Given a postcondition and a transfor-
mation rule, we compute the weakest precondition for developers.
However, the size and quality of this formula may be complex
and hard to grasp. We seek to reduce the weakest precondition’s
complexness by a static analysis based on an alias calculus. The
refined p recondition i s p resented t o t he d eveloper i n t erms of
alternative formulae, each one specifying a potential matching
of the source graph. The developer chooses then the formulae
that correspond to his intention to obtain finally a correct-by-
construction Hoare triple.

Keywords–Graph transformation; Description Logics; weakest
precondition calculus; static analysis; alias calculus.

I. INTRODUCTION

All approaches applying production rules to a graph require
to implement a binary relation between a source graph and a
target graph. In the theory of algebraic graph transformations,
Habel and Pennemann [1] defined nested graph conditions as a
graphical and logical formalism to specify graph constraints by
explicitly making use of graphs and graph morphisms. Nested
conditions have the same expressive power as Courcelle’s
first-order g raph l ogic [1][2][3]. H owever, t hey n eed t o be
derived into specific i nference r ules i n o rder t o b e proved
in a specific t heorem-prover t hat suits t hem [4][5]. Moreover,
this transformation requires the proof of a sound and complete
proof system for reasoning in the proposed logic.

Another way to express and reason about graph properties
is to directly encode graphs in terms of some existing logic
[6]. This solution leads to consider connections between graph
constraints and first-order g raph f ormulae. A dopting t his ap-
proach, we define graphs axiomatically by ALCQ Description
Logic (DL) predicates [7] and manipulate them with specific
statements. In this way, we designed a non-standard imperative
programming language named Small-tALC dedicated to trans-
form labeled directed graphs. Note that ALC is prototypical
for DLs.

Despite the above differences from algebraic graph trans-
formations, we point out the common idea to use satisfiability
solvers to prove rules’correctness. This technique requires to
assign a predicate transformer to a rule in order to compute
the rule’s weakest precondition. The setup is rather traditional:
given a Hoare triple {P }S{Q}, we compute the weakest
(liberal) precondition wp(S, Q) of the rule transformation
statements S with respect to the postcondition Q, and then
verify the implication P ⇒ wp(S, Q). The correctness of

R. This precondition can be expressed by the logic formula
x ¬R y ∧ y : C ∧ x : (≤ 3 R C).

At this point, readers familiar with Description Logics
(DLs) may recognize a DL formula. Labeled directed graphs
can be directly modeled by entities of DLs, a family of logics
for modeling and reasoning about relationships in a domain
of interest [10]. Most DLs are decidable fragments of first-
order logic. They are organized around three kinds of entities:
individuals, roles and concepts. Individuals are constants in
the domain, roles are binary relations between individuals
and concepts are sets of individuals. Applied to our graphs,
individuals are nodes labeled with concepts and roles are
edges. Accordingly, pre- and post-assertions are interpreted
as graphs by using unary predicates for nodes and binary
predicates for edges. The correctness of a graph transformation
rule is checked by assigning to each of its statements a
predicate transformer in order to compute the corresponding
weakest precondition.

To design our own experimental graph transformation
language, we chose the ALCQ logic, an extension of the
standard DL Attributive Language with Complements (ALC)
[11], which allows qualifying number restrictions on concepts
(Q). ALCQ is based on a three-tier framework: concepts, facts
and formulae. The concept level enables to determine classes
of individuals (Ø, C,¬C,C1 ∪ C2 and C1 ∩ C2). The fact
level makes assertions about individuals owned by a concept
(i : C, i : ¬C, i : (≤ n R C) and i : (≥ n R C)), or
involved in a role (i R j and i ¬R j). The third level is about
formulae defined by a Boolean combination of ALCQ facts
(f,¬f, f1 ∧ f2 and f1 ∨ f2).

Figure 1 depicts a model (graph) satisfying the previous
precondition x ¬R y ∧ y : C ∧ x : (≤ 3 R C). In this
graph, the white circles designate the nodes variables x and
y manipulated by the formula. Nodes variables refer (by a
dotted edge) to real nodes represented by black circles. The
« » node outlines a concept labeled with C. Note that the
subgraph having two anonymous nodes each one outfitted with
an incoming edge from x and an outgoing edge to the concept
C is a model which checks the fact x : (≤ 3 R C).

used in atomic transformation actions on nodes (individuals)
and edges (roles), as well as in traditional control-flow con-
structs as loops (while) and conditions (if...then...else...). In
the transformation code, statements manipulate node variables
which are bound to the host graph’s nodes during the trans-
formation’s execution.

We have defined five atomic Small-tALC statements ac-
cording to the following grammar where i and j are node
variables, C is a concept name, R is a role name, F is an
ALCQ formula and v is a list of node variables:

atomic_statement ::=
add(i : C) (node labeling)
| delete(i : C) (node unlabeling)
| add(i R j) (edge labeling)
| delete(i R j) (edge unlabeling)
| select v with F (assignment)

The first four statements modify the graph structure by
changing the labeling of nodes and edges. Note that since we
consider a set-theoretic approach, the statements add(i : C)
and add(i R j) have no effects if i belongs to the set C
and (i, j) to R respectively. Hence, no parallel edges with the
same label are allowed. An original construct is the select
statement that non-deterministically binds node variables to
nodes in the subgraph that satisfies a logic formula. This
assignment is used to handle the selection of specific nodes
where the transformations are requested to occur. For instance,
select i with i : C selects a node labeled with C. If the
selection is satisfied the execution continues normally with the
value of the node variable i. Otherwise, the execution meets
an error situation.

A Small-tALC program consists of a sequence of trans-
formation rules. A rule is structured into three parts: a pre-
condition, the transformation code (a sequence of statements)
and a postcondition. We illustrate in Figure 2 an example of
a transformation rule written in Small-tALC. The rule first
selects a node n of concept A that is R-linked to a. Then, it
deletes this link and removes a from the concept A.

pre: (a : A) ∧ a : (≥ 3 R A);
select n with (a R n) ∧ (n : A)
delete(a R n);
delete(a : A);
post: (a : ¬A) ∧ a : (≥ 2 R A);

Figure 2. Example of a Small-tALC rule

We aim at using a Hoare-like calculus to prove that Small-
tALC graph programs are correct. This verification process
is based on a weakest (liberal) precondition (wp) calculus
[12]. Each Small-tALC statement S is assigned to a predicate
transformer yielding an ALCQ formula wp(S,Q) assuming
the postcondition Q. The correctness of a program prg with
respect to Q is established by proving that the given precon-
dition P implies the weakest precondition: every model that
satisfies P also satisfies wp(prg,Q). Weakest preconditions of
Small-tALC statements are given in Figure 3.

The weakest precondition calculus computes predicates
which are not closed under substitutions with respect to

Figure 1. Model satisfying the precondition
x ¬R y ∧ y : C ∧ x : (≤ 3 R C)

Our formulae contain free variables that assign references
to nodes in a graph. Equality and inequality assertions can be
used to define constraints on the value of these variables. If x
and y are node variables, x = y means that x and y refer to
the same node and x 6= y means that x and y are distinct. The
inequality relationship enforces injective graph morphisms.

III. THE SMALL-TALC LANGUAGE

The ALCQ formulae presented in the previous section have
been plugged into our Small-tALC imperative language and

wp(add (i : C), Q) = Q[C + i/C]
wp(delete (i : C), Q) = Q[C − i/C]
wp(add (i R j), Q) = Q[R+ (i, j)/R]
wp(delete (i R j), Q) = Q[R− (i, j)/R]
wp(select v with F,Q) = ∀v(F ⇒ Q)

Figure 3. Small-tALC weakest preconditions

ALCQ. To resolve this situation, substitutions are consid-
ered as constructors and should be eliminated. For instance,
wp(add(i : C), x : C) = x : C [C + i/C] = x : (C + i) = x :
C ∨ x = i.

The conventional precondition calculus presented above
does not take into account particular situations of a transforma-
tion program and thus may result in a complex precondition.
In the following sections, we look at how the precondition’s
formula can be improved to be more specific and simple on
the basis of an alias calculus.

IV. ALIAS CALCULUS

The principle of alias calculus was proposed by Bertrand
Meyer in order to decide whether two reference expressions
appearing in a program might, during some execution, have the
same value, meaning that the associated references are attached
to the same object [13].

Since our rewriting system allows non-injective mor-
phisms, two or more node variables may reference to the same
node in a graph. On the other hand, a node variable can be
assigned to a random node of the graph. This is one reason why
a Small-tALC formula can be represented by several graph
patterns. For example, Figure 4 shows two potential models
satisfying the formula x : C ∧ i R j. In Figure 4a, i and j
refer to the same node. In 4b, i and j are different but i and
x are combined.

(a) i = j, i 6= x (b) i 6= j, i = x

Figure 4. Example of models satisfying the formula x : C ∧ i R j

In this regard, for a transformation program, we apply an
alias calculus to determine the node variables that can never
refer to the same node. Discerning such specific circumstances
helps to discard later unsatisfied subformulae of the weakest
precondition. Thus, our method consists in assigning to each
node variable x, a set of other node variables that may reference
to the same node in the graph as x. We identify four atomic
conditions in which two individuals x and y can never refer to
the same node in the graph:

• x 6= y

• ∃C /x : C ∧ y : ¬C
• ∃R.∃z /x R z ∧ y ¬R z

• ∃R.∃z /z R x ∧ z ¬R y

The first case (x 6= y) states that x and y are naturally
distinct so they can never be assigned to the same node. The
second one asserts that x and y belong to two complement
subsets C and ¬C. The same applies to the last two cases
where the nodes connected by R and ¬R refer to two disjoint
subsets R and ¬R.

For each of the above four conditions, x and y are said
to be non-possibly equivalent nodes. We note this relation by
x 6' y. As a result we assert that x 6' y ⇒ x 6= y. However, no
conclusion can be drawn from the possibly equivalent relation
x ' y.

Consider, as a simple example, the following formula that
is presented in the disjunctive normal form: (x = y∧x R y)∨
(x : C ∧ x ¬R y), and suppose that a static analysis deduces
from the code that x and y are non-possibly equivalent, which
means that x 6= y. As a result, the initial formula can be
reduced to x : C∧x ¬R y because the first conjunction x = y∧
x R y can never be true in this case. In the section that follows,
we show how this calculus helps in reducing the complexness
of the weakest precondition.

V. PRECONDITION EXTRACTION

To formally verify the correctness of a Small-tALC graph
transformation, besides the code, the program’s pre- and post-
conditions must be properly specified. This task may not be
easy for novice developers, so a suggestion of a valid precon-
dition that corresponds to a given code and a postcondition
would be useful to them.

Since the computed weakest precondition is often very
complex and hard to comprehend, we propose a finer static
analysis on the basis of the alias calculus of the program to
achieve a simpler precondition. The resulting precondition P
is presented in a disjunctive normal form (DNF) where each
conjunction of P can be considered as a valid precondition
on its own. The analysis consists first in converting the
postcondition Q to DNF i.e., Q = ∨Qi where Qi = ∧qj is a
conjunction of facts, then calculating for each statement and
for each conjunction Qi the weakest precondition. This process
maintains correctness because wp(S,Q1) ∨ wp(S,Q2) ⇒
wp(S,Q1 ∨ Q2). In each and every step, the formula of the
wp(S,Qi) may be filtered by discarding subformulae accord-
ing to the identified non-possibly equivalent node variables. A
precondition P is obtained such that P ⇒ wp(prg,Q), which
makes the transformation program prg correct. This process
is applied to add and delete statements as detailed in Section
V-1. Regarding the select statement, wp is reduced differently
as presented later in Section V-2.

1) add and delete statements:
Let us consider first the add(i : C) statement. Its weakest
precondition with respect to the postcondition x : C is x :
C ∨x = i, which means that either the node x was already of
concept C before adding i to C, or x and i are equal. Knowing
that x and i are non-possibly equivalent, it can be stated that
x 6= i, and so the weakest precondition can be reduced to the
first subformula x : C of the disjunction.

A more glaring example is reducing the weakest pre-
condition of the add(i R j) statement with respect to the
postcondition Q = x : (≤ n R C) which indicates that
there are at most n edges labeled R outgoing from the node
x to nodes of concept C. Adding an R-edge between i and

TABLE I. WEAKEST PRECONDITION’S FILTERING FOR THE add(i : C) STATEMENT

Statement Identified fact wp Condition Precondition

add(i : C)

x : C x : C ∨ x = i x 6' i x : C

x : ¬C x : ¬C ∧ x 6= i x 6' i x : ¬C

x : (≤ n R C)

(x R i ∧ i : ¬C ∧ x : (≤ (n− 1) R C))

∨ (x ¬R i ∧ x : (≤ n R C))

∨ (i : C ∧ x : (≤ n R C))

∨ (x : (≤ (n− 1) R C))

x ¬R i x : (≤ n R C)

TABLE II. WEAKEST PRECONDITION’S FILTERING FOR THE add(i R j) STATEMENT

Statement Identified fact wp Condition Precondition

add(i R j)

x R y (x = i ∧ y = j) ∨ x R y x 6' i ∨ y 6' j x R y

x ¬R y (x 6= i ∨ y 6= j) ∧ (x ¬R y) x 6' i ∨ y 6' j x ¬R y

x : (≤ n R C)

(x = i ∧ j : C ∧ i ¬R j ∧ x : (≤ (n− 1) R C))

∨ (x 6= i ∧ x : (≤ n R C))

∨ (j : ¬C ∧ x : (≤ n R C))

∨ (i R j ∧ x : (≤ n R C))

∨ (x : (≤ (n− 1) R C))

x 6' i ∨ j : ¬C x : (≤ n R C)

j may have a direct impact on Q regarding the concept of j,
the existence of a relation between i and j and the equality
between i and x. Hence, wp(add(i R j), x : (≤ n R C)) =

(x = i ∧ j : C ∧ i ¬R j ∧ x : (≤ (n− 1) R C))

∨ (x 6= i ∧ x : (≤ n R C))

∨ (j : ¬C ∧ x : (≤ n R C))

∨ (i R j ∧ x : (≤ n R C))

∨ (x : (≤ (n− 1) R C))

Consider the first row of the Table II. If a fact x R y
is identified within the postcondition during calculation, we
look for simplifying wp(add(i R j), x R y) = (x = i ∧ y =
j)∨x R y. If the alias calculus asserts that at least one of the
conditions x 6' i or y 6' j is true, wp is reduced to x R y.

As observed in Tables I and II, many complex disjunctions
in the wp can be reduced to only one conjunction on the basis
of a condition calculated by the alias calculus or a condition
given explicitly in the postcondition. Note that the results of
the delete(i : C) and delete(i R j) statements are similar to the
add statements.

2) The select statement:
So far, the static analysis transforms the predicate Q into a new
predicate P regarding statements already presented. However,
it operates differently when it comes to the select statement
where wp(select v with F,Q) = ∀v (F ⇒ Q). The weakest
precondition here involves two formulae that may be complex:
F given by the select, and the postcondition Q. Consequently,
the implication F ⇒ Q makes the wp more obscure for the
developer. In this case, the static analyzer simplifies the wp by
eliminating this implication as further detailed below.

For each conjunction Qi of the postcondition Q, the
static analysis isolates first the facts that manipulate the node
variables v of the select statement. Let Qiv be the conjunctive
formula of these identified facts, and Qiv′ the conjunctive
formula of the others facts, so that Qi = Qiv ∧ Qiv′ . For
example, given a formula Q1 = x R y∧y : C and the statement
select x with x : C, we have Q1v = x R y and Q1v′ = y : C.

Then, the static analysis checks, via our logic formula
evaluator, if the implication ∀v (F ⇒ Qiv) holds. If so, the
precondition wp(select v with F,Qi) = ∀v (F ⇒ Qi) is re-
duced to Qi without affecting the validity of the Hoare triple as
Qi ⇒ wp(select v with F,Qi). Conversely, the non-validity
of the implication ∀v (F ⇒ Qiv) results in transforming Qi
to the predicate false (⊥) so that nothing can be concluded

Knowing that x 6' i or j : ¬C, the first c onjunction x =
i ∧ j : C ∧ i ¬R j ∧ x : (≤ (n− 1) R C) can be discarded
as it will never be satisfied in this case. Furthermore, the whole
formula of the wp can be reduced to x : (≤ n R C) according
to the second and third conjunction which indicates that the
number of restrictions remains unchanged in case one of these
two conditions is satisfied.

We illustrated how to reduce the wp with respect to a
postcondition composed of a single fact. In case of a postcon-
dition consisting of a conjunction of facts, only the facts that
manipulate the same concepts and roles given in the statement
parameters are identified a s a fi rst st ep. Fo r ex ample, adding
an instance to a concept (add(i : C) results in considering
in the given postcondition only the facts that manipulate this
concept (x : C, x : ¬C, x : (≤ n R C)).

Tables I and II represent the preconditions calculated by our
static analyzer for the statement add(i : C) and add(i R j)
respectively. For each statement s, we show in the second
column the facts that should be identified in the postcondition
to derive a precondition. The third column shows the standard
weakest precondition wp(s, f) of the statement s with respect
to an identified f act f . To s implify t his f ormula, w e present
in the fourth column the conditions that allow to discard
some conjunctive clauses of the wp. The resulting formula
is presented in the last column.

about the transformation correctness. This situation is meant
to warn the developer that there are inconsistencies in his
transformation between the select statement and the predicate
formula Q. The two presented cases are given in Table III.

TABLE III. REDUCING THE WP OF THE select STATEMENT

Statement Postcondition wp Condition Precondition

select v with F Qi ∀v (F ⇒ Qi)
∀v (F ⇒ Qiv) Qi

∀v (F 6⇒ Qiv) ⊥

We presented how the static analyzer filters the weakest
precondition of a statement with respect to each conjunction
Qi = ∧qj of Q where Q = ∨Qi. Hence, the final result of
the precondition will be presented as a DNF formula too that
expresses different possible alternatives. Each alternative rep-
resents a conjunction of facts, constituting a graph that matches
a subgraph of the source graph on which the transformation
rule is applied.

We filter the weakest precondition by discarding conjunc-
tive clauses that are invalid. This reduction leads to a precon-
dition P stronger than the weakest precondition wp(S,Q). In
particular, when two node variables are non-possibly equiva-
lent, a deductive reasoning is carried out by applying equiv-
alence and implication connectives between P and wp(S,Q).
We adopt a similar deduction for a node variable belonging
to a concept complement and for a role complement. Using
these deductions and the well-behaved wp properties, such as
distributivity of conjunction and disjunction, we construct the
formula P , which satisfies the implication P ⇒ wp(S,Q) so
that the triple {P}S{Q} is always correct-by-construction.

VI. EXAMPLE

Using the static analyzer to suggest a precondition formula
in the disjunctive normal form, the developer can select the
conjunctions that reflect his intention. He can then update his
transformation code or refine his specification by injecting into
them the facts of the chosen conjunctions.

Consider as an example the transformation code and the
postcondition given in Figure 5. The first statement adds a
node y to the concept C. The second one adds an R-edge
between nodes x and y. The postcondition asserts that x has
at most three R-successors to nodes of concept C, and that y
belongs to C.

add(y : C);
add(x R y);
post: x : (≤ 3 R C) ∧ (y : C);

Figure 5. Example of an initial code and postcondition

To achieve the given postcondition, a precondition calculus
is done in two stages: the first to extract a precondition P
with respect to the statement add(x R y) and the given
postcondition, the second to extract a precondition with respect
to the statement add(y : C) and P , as wp(s1; s2, Q) =
wp(s1, wp(s2, Q)). Consequently, the static analyzer extracts
seven possible conjunctions as a precondition:

x : (≤ 1 R C) (1)

y : C ∧ x : (≤ 2 R C) (2)

x R y ∧ x : (≤ 2 R C) (3)

x ¬R y ∧ x : (≤ 2 R C) (4)

x ¬R y ∧ y : C ∧ x : (≤ 2 R C) (5)

x R y ∧ y : ¬C ∧ x : (≤ 2 R C) (6)

x R y ∧ y : C ∧ x : (≤ 3 R C) (7)

Each of these conjunctions is a potential precondition that
yields a correct Hoare triple. The first formula is the weakest
one. It does not take into account neither the concept of y nor
the existence of an R-edge between x and y. On the contrary,
the other conjunctions are stronger formulae specifying the
mentioned properties of x and y. For example, the formula (7)
indicates that there exists an R-edge between x and y and that
y is of concept C. In this case, both of the two statements
of the code have no effects, and so the number of restrictions
remains 3 in the fact x : (≤ 3 R C). The various levels of
formulae’s strength gives the choice to the developer to specify
the constraints of rule’s applicability in the precondition as
much as he wishes to.

Suppose that the developer focuses on the non-existence
of an R-edge between x and y before the transformation as it
is indicated in the formulae (4) and (5). Thus, he decides to
inject the fact x ¬R y into the transformation by adding the
statement select y with x ¬R y at the beginning of his code.
By relaunching the static analyzer, the number of conjunctions
extracted decreases from seven to one conjunction which is
x : (≤ 2 R C). At this point, the developer can choose to put
the resulting formula as a precondition as shown in Figure 6.

pre: x : (≤ 2 R C);
select y with x ¬R y;
add(y : C);
add(x R y);
post: x : (≤ 3 R C) ∧ (y : C);

Figure 6. The final correct-by-construction triple

In this sense, we help developers to update and annotate
their code with specifications based on their intention to
achieve finally a correct-by-construction triple.

As described below, our framework guides developers to
achieve correct transformation programs. Moreover, it verifies
the resulting triple formally using the Small-tALC prover. The
latter is a formal verification tool that verifies a transformation
program with respect to its pre- and postconditions by trans-
lating it into Isabelle/HOL logic and generating verification
conditions. In case of failure, the prover displays a counter-
example which is a model of the precondition that does not
satisfy the postcondition when applying the transformation.

VII. RELATED WORK

Most of the logic-based approaches for graph transforma-
tions focus on the verification question. Thus, they attempt to
encode graph conditions in an appropriate logic that is both
expressive and decidable. Like us, Selim et al. [14] proposed a
direct verification framework for their transformation language
DSLTrans so that no intermediate representation for a specific

proving framework is required. They used symbolic execution
to build a finite set of path conditions representing all trans-
formation executions through a formal abstraction relation and
thus allow formal properties to be exhaustively proved. Their
property language based on graph patterns and propositional
logic proposes a limited expressiveness and the property-
proving algorithm was presented as a proof-of-concept.

The works in [15] and [16] share with ours some ideas
with respect to the assistance in producing a Hoare triple.
Given a modeling language with well-formedness constraints
and a refactoring specification, Becker et al. [15] uses an
invariant checker to detect and report constraint violations via
counter-examples and lets developers modify their refactoring
iteratively. Similarly to us, Clariso et al. [16] used backward
reasoning to automatically synthesize application conditions
for model transformation rules. Application conditions are
derived from the OCL expression representing the rules’s
postconditions and the atomic rewriting actions performed by
the rule. However, OCL expressions are not really suitable for
exploring the graph properties of the underlying model struc-
tures. It is thus rather cumbersome when used for verifying
complex model transformations.

VIII. CONCLUSION AND FUTURE WORK

The distinctive feature of Small-tALC is that it uses the
same logic ALCQ to represent graphs, to code a transforma-
tion and to reason about graph transformations in a Hoare style.
In order to assist users in developing correct transformations,
we propose a fine analysis of the weakest precondition to take
into account special situations of a program on the basis of
an alias calculus. Our approach allows developers to select a
precondition to annotate their code according to their intention.

It would be interesting in our framework to automatically
infer and test invariant candidates for loop constructs gathered
from their corresponding postcondition as proposed in [17].
This attempt is based on the fact that a Small-tALC loop often
iterates on individuals selected from a logic formula in order
to achieve the same property for the transformed elements.

As a complement to a Hoare triple verification, we expect
to focus on effects of rules execution in terms of DL reasoning
services at the specification rule level. A Small-tALC rule
execution updates a knowledge base founded upon a finite set
of ALCQ concept inclusions (TBox) and a finite set of ALCQ
concept and role assertions (ABox). This leads to a reasoning
problem about a knowledge base consistency embodied by a
graph in Small-tALC [18].

ACKNOWLEDGMENT

Part of this research has been supported by the Climt
(Categorical and Logical Methods in Model Transformation)
project (ANR-11-BS02-016).

REFERENCES
[1] A. Habel and K.-H. Pennemann, “Correctness of high-level transforma-

tion systems relative to nested conditions,” Mathematical. Structures in
Comp. Sci., vol. 19, no. 2, Apr. 2009, pp. 245–296.

[2] A. Rensink, “Representing first-order logic using graphs,” in Graph
Transformations: Second International Conference ICGT,. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 319–335.

[3] B. Courcelle, “Handbook of theoretical computer science (vol. b).”
Cambridge, MA, USA: MIT Press, 1990, ch. Graph Rewriting: An
Algebraic and Logic Approach, pp. 193–242.

[4] K.-H. Pennemann, “Resolution-like theorem proving for high-level
conditions,” in Graph Transformations: 4th International Conference,
ICGT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 289–
304.

[5] F. Orejas, H. Ehrig, and U. Prange, “A logic of graph constraints,” in
Fundamental Approaches to Software Engineering: 11th International
Conference, FASE. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 179–198.

[6] M. Strecker, “Modeling and verifying graph transformations in proof
assistants,” Electron. Notes Theor. Comput. Sci., vol. 203, no. 1, Mar.
2008, pp. 135–148.

[7] N. Baklanova, J. H. Brenas, R. Echahed, A. Makhlouf, C. Percebois,
M. Strecker, and H. N. Tran, “Coding, executing and verifying graph
transformations with small-tALCQe,” in 7th Int. Workshop on Graph
Computation Models (GCM), 2016, URL: http://gcm2016.inf.uni-due.
de/ [accessed: 2017-09-25].

[8] A. Makhlouf, H. N. Tran, C. Percebois, and M. Strecker, “Combining
dynamic and static analysis to help develop correct graph transfor-
mations,” in Tests and Proofs: 10th International Conference, TAP.
Switzerland: Springer International Publishing, 2016, pp. 183–190.

[9] M. Nagl, “Set theoretic approaches to graph grammars,” in Proceedings
of the 3rd International Workshop on Graph-Grammars and Their
Application to Computer Science. London, UK, UK: Springer-Verlag,
1987, pp. 41–54.

[10] M. Krötzsch, F. Simancik, and I. Horrocks, “A description logic primer,”
arXiv preprint arXiv:1201.4089, 2012, URL: http://arxiv.org/abs/1201.
4089 [accessed: 2017-09-25].

[11] M. Schmidt-Schauß and G. Smolka, “Attributive concept descriptions
with complements,” Artif. Intell., vol. 48, no. 1, Feb. 1991, pp. 1–26.

[12] E. W. Dijkstra and C. S. Scholten, Predicate Calculus and Program
Semantics. New York, NY, USA: Springer-Verlag New York, Inc.,
1990.

[13] B. Meyer, “Steps towards a theory and calculus of aliasing,” Int. J.
Software and Informatics, vol. 5, no. 1-2, 2011, pp. 77–115.

[14] G. M. Selim, L. Lúcio, J. R. Cordy, J. Dingel, and B. J. Oakes, “Specifi-
cation and verification of graph-based model transformation properties,”
in International Conference on Graph Transformation. Springer, 2014,
pp. 113–129.

[15] B. Becker, L. Lambers, J. Dyck, S. Birth, and H. Giese, “Iterative de-
velopment of consistency-preserving rule-based refactorings,” in Theory
and Practice of Model Transformations: 4th International Conference,
ICMT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 123–
137.

[16] R. Clarisó, J. Cabot, E. Guerra, and J. de Lara, “Backwards reasoning
for model transformations,” J. Syst. Softw., vol. 116, no. C, Jun. 2016,
pp. 113–132.

[17] J. Zhai, H. Wang, and J. Zhao, “Post-condition-directed invariant infer-
ence for loops over data structures,” in Proceedings of the 2014 IEEE
Eighth International Conference on Software Security and Reliability-
Companion, ser. SERE-C ’14. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 204–212.

[18] U. Sattler, “Reasoning in description logics: Basics, extensions, and
relatives,” in Reasoning Web: Third International Summer School.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 154–182.

	Introduction
	Logic-based conditions
	The Small-tALC language
	Alias calculus
	Precondition extraction
	add and delete statements
	The select statement

	Example
	Related work
	Conclusion and future work
	References

