
HAL Id: hal-03656613
https://hal.science/hal-03656613

Submitted on 2 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Path in the Jungle of Logics for Multi-Agent Systems:
on the Relation between General Game-Playing Logics

and Seeing-To-It-That Logics
Emiliano Lorini, François Schwarzentruber

To cite this version:
Emiliano Lorini, François Schwarzentruber. A Path in the Jungle of Logics for Multi-Agent Systems:
on the Relation between General Game-Playing Logics and Seeing-To-It-That Logics. 16th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2017), May 2017,
Sao Paulo, Brazil. pp.687-695. �hal-03656613�

https://hal.science/hal-03656613
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/24689

To cite this version:

Lorini, Emiliano and Schwarzentruber, François A Path in the
Jungle of Logics for Multi-Agent Systems: on the Relation between
General Game-Playing Logics and Seeing-To-It-That Logics. (2017)
In: 16th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2017), 8 May 2017 - 12 May 2017
(Sao Paulo, Brazil).

Open Archive Toulouse Archive Ouverte

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/24689

A Path in the Jungle of Logics for Multi-agent System:
On the Relation between General Game-playing Logics

and Seeing-to-it-that Logics

Emiliano Lorini
IRIT-CNRS, Toulouse University, France

Emiliano.Lorini@irit.fr

François Schwarzentruber
ENS Rennes, France

francois.schwarzentruber@ens-rennes.fr

ABSTRACT
In the recent years, several concurrent logical systems for reason-
ing about agency and social interaction and for representing game
properties have been proposed. The aim of the present paper is to
put some order in this ‘jungle’ of logics by studying the relationship
between the dynamic logic of agency DLA and the game descrip-
tion language GDL. The former has been proposed as a variant of
the logic of agency STIT in which agents’ action are named, while
the latter has been introduced in AI as a formal language for rea-
soning about general game-playing. The paper provides complex-
ity results for the satisfiability problems of both DLA and GDL as
well as a polynomial embedding of GDL into DLA.

Keywords
modal logic, STIT logic, general game playing, dynamic logic

1. INTRODUCTION
Several logics for modelling interaction in the context of multi-

agent systems (MAS) and for the formal representation and speci-
fication of games have been proposed in the AI l iterature. Among
them, we should mention multi-agent variants of propositional dy-
namic logics by [1] and [11], coalition logic by [22], alternating-
time temporal logic by [2], coalition logic of propositional control
by [25] and strategy logic by [21]. These logics aim to formally
represent the concept of capability, that is, the consequences of the
potential action of either an agent or a coalition of agents.1 More
recently, two additional systems have been added to the picture of
logics for MAS: the family of seeing-to-it-that logics, whose most
representative member is STIT by [4], and GDL by [28, 29].

On the one hand, STIT has been introduced in philosophical
logic as a formal system for reasoning about (i) what an agent or a
coalition does as a result of her/its individual/collective choice (ac-
tuality), and (ii) what an agent or a coalition can do as a result of
her/its individual/collective choice (potentiality). It has been shown
to be a valuable formal language for modelling socio-cognitive con-
cepts such as emotion [18], responsibility [17] and intention [6].
One central feature of Belnap et al.’s STIT is that agents’ actions
are not named. Thus, this logic allows to represent the result of an
agent’s choice but does not allow to represent the chosen action that

1Cf. [9] for a recent survey of existing logics for MAS.

produces the result. For example, in this logic one can represent the
fact that an agent 1 kills another agent 2 (agent 1 sees to it that agent
2 is dead) but one cannot represent the fact that agent 1 kills agent
2 by deciding to shoot. To overcome this limitation, DLA has been
introduced by [10], as a variant of STIT in which agents’ choices
are explicitly named. A deterministic variant of DLA called DDLA
has been proposed by [15]. While DDLA assumes that the outcome
of the collective choice of all agents is uniquely determined, DLA
drops this assumption.

On the other hand, GDL has been introduced in AI as a minimal
formal system for representing game properties and strategies in the
context of general game-playing. Similarly to seeing-to-it-that log-
ics, GDL supports reasoning about both actual consequences and
potential consequences of an agent’s action. Moreover, similarly to
DLA, in GDL, actions of agents are explicitly named. Thus, at a
conceptual level, GDL and DLA are closely connected.

In this paper, we (i) explore the connection between DLA and
GDL at a formal level, and (ii) thus solve some open issues about
the computational properties of these two logics (see Table 1). For
instance, we prove that the satisfiability problem of GDL is in NP
by translating a GDL-formula into a DDLA-formula without any
occurrence of the temporal operator “next” (X). This result high-
lights that GDL does not allow to express a property about the
“next” state without mentioning the action leading to it. We also
show that the satisfiability problems for DLA and for the non-
deterministic variant of GDL become PSPACE-hard. Moreover, we
prove that the complexity of the satisfiability problem for DDLA
increases from ‘in NP’ to PSPACE-hard when the temporal opera-
tor “next” is given as a primitive operator in the logical language.

The paper is organized as follows. Section 2 is devoted to DLA
and DDLA We first recall the syntax and the semantics of these
two logics. Then, we investigate the complexity of the satisfiabil-
ity problems of both DLA and DDLA, an issue that has not been
explored up to now. Then, in Section 3, we move to GDL. The
original GDL semantics for actions being deterministic, we present
a new variant of GDL called IGDL, dropping the assumption that
outcome resulting from the execution of an action is unique. We in-
vestigate the complexity of the satisfiability problems of both GDL
and IGDL. Finally, in Section 4, we provide a polynomial embed-
ding of GDL into DDLA and of IGDL into DLA helping proving
upper bound of complexity for the satisfiability problems of GDL
and IGDL. The paper concludes in Section 5 with a discussion of
perspectives of future research.

2. DYNAMIC LOGIC OF AGENCY
We recall the syntax and the two semantics of the dynamic logic

of agency: the non-deterministic one [10] called DLA and the de-
terministic one [15] called DDLA.

NP-complete: DDLA without X-modalities f GDL
PSPACE-complete: DDLA

DLA f IGDL

Table 1: Logics with new complexity results for the satisfiability
problem (symbolsf denote upper bound results obtained via
embedding.)

2.1 Syntax
Let Atm be a countable set of atomic propositions denoted by

p, q, . . ., let Agt be a finite set of agents denoted by 1, . . . , n and let
Act be a finite set of action names denoted by a, b, . . . The set of
joint action names is defined to be JAct = Actn. Elements of JAct
are denoted by δ, δ′, . . . For every δ ∈ JAct, δ(i) denotes the element
in δ corresponding to agent i. The language LDLA(Atm,Agt,Act) of
DLA is defined by the following grammar:

ϕ, ψ ::= p | ¬ϕ | (ϕ ∧ ψ) | �ϕ | [[δ]]ϕ | Xϕ

where p ranges over Atm and δ ranges over JAct.
The formula �ϕ is read “ϕ is true for all histories passing through

the current moment” or, more shortly, “ϕ is necessarily true”. The
formula [[δ]]ϕ is read “if the joint action δ is chosen by the agents,
then ϕ is true afterwards”. The formula Xϕ is read “ϕ holds in the
next moment”. A formula is said to be X-free if it does not contain
any occurrence of the temporal operator “next” X.

We provide the following abbreviations:

^ϕ
def
= ¬�¬ϕ

〈〈δ〉〉ϕ
def
= ¬[[δ]]¬ϕ

〈〈i:a〉〉ϕ def
=

∨
δ∈JAct:δ(i)=a

〈〈δ〉〉ϕ

that read respectively “ϕ is true for at least one history passing
through the current moment”, “the joint action δ is chosen by the
agents and ϕ is true afterwards” and “action a is chosen by agent i
and ϕ is true afterwards”.

2.2 Semantics
The semantics of DLA is based on DLA models. A DLA model

is a structure that provides information about agents’ actual choices
and available choices as well as about the consequences of the
agents’ choices. A DLA model can also be seen as a variant of
a STIT model, as defined by [4], in which time is assumed to be
discrete and agents’ choices are explicitly named.2

Definition 1. A DLA model is a tuple
M = (W,≡, (C)i∈Agt, S ,V) where:

• W is a non-empty set of worlds,

• ≡ is an equivalence relation on W,

• Ci : W −→ Act is the choice function for agent i,

• S : W −→ W is a successor state function,

• V : W −→ 2Atm is a valuation function,

such that for all w, v, u ∈ W and δ ∈ ∆:

(C1) if δ(i) ∈ CSi(w) for all i ∈ Agt then δ ∈ CS(w),
2Belnap et al. call BT+ACs (Branching Time + Agent Choices)
the structures over which the STIT language is interpreted.

a

b

a
b

must be non-empty

a

b

a
b

v u

w z

These
points
must
exist

(C1) (C2)

Figure 1: Illustrations for constraints C1 and C2

(C2) if w ⇒δ v and v ≡ u then there exists z ∈ W such that w ≡ z
and z⇒δ u,

where:

• CSi(w) = {a ∈ Act : ∃v ∈ W | w≡v and Ci(v) = a};

• CS(w) = {δ ∈ JAct : ∃v ∈ W | w≡v and C(v) = δ};

• ⇒δ is the relation {(w, v) : S (w) = v and C(w) = δ};

• C(v) = (Ci(w))i∈Agt.

In Definition 1, a world corresponds to a time point. Equivalence
classes generated by the equivalence relation ≡ are called moments.
At every world w, every agent i chooses exactly one action denoted
by Ci(w). Let ≡ (w) = {v ∈ W : w ≡ v} be the moment includ-
ing world w. Agent i has a set of individual choices available at
this moment denoted by CSi(w). Moreover, the agents have a set
of collective choices available at this moment denoted by CS(w).
Every world w has exactly one successor denoted by S (w): S (w)
is the world resulting from the agents’ collective choice at world
w. Function S can be associated with a serial and deterministic re-
lation ⇒ on W such w ⇒ v iff S (w) = v. Let F be the transitive
closure of⇒. F(w) = {(w, v) : wFv} denotes the history starting in
w, i.e., the sequence of worlds in the future of w.3

Constraint C1 says that if a1 is a possible choice for agent 1,...,
an is a possible choice for agent n then (a1, . . . , an) is a possible
collective choice. More intuitively, this means that agents can never
be deprived of choices due to the choices made by other agents.
Figure 1 illustrates constraint C1 in Definition 1: as it is possible
for agent 1 to play b and for agent 2 to play b, there must be a world
in which both agents play b. This is called independence of choices
according to the STIT terminology. Constraint C2 expresses a basic
relation between action and time: if v is in the future of w and u
and v are in the same moment, then there exists an alternative z in
the collective choice of all agents at w such that u is in the future
of z. Figure 1 illustrates Constraint C2 in Definition 1. This is
called no choice between undivided histories according to the STIT
terminology. It captures the idea that if two histories come together
in some future moment then, in the present, each agent does not
have a choice between these two histories. This implies that if an
agent can choose between two histories at a later stage, then she
does not have a choice between them in the present.
3As shown by [10], one can safely assume that, for all w, v ∈ W, if
wFv then w . v, as this property is not modally characterizable in
DLA. Since ≡ is reflexive, the latter implies that F(w) can be safely
assumed to be a linearly ordered set.

a

b

a
b

u v

p

a

b

a
b

w0

p pp p

q

(a) (b)

Figure 2: Structure of a (a) DLA model and (b) DDLA model

Truth conditions of DLA-formulas are given with respect to a
world of a DLA model.

Definition 2 (Truth conditions). Let M = (W,≡, (C)i∈Agt, S ,V)
be a DLA model and let w ∈ W. Then:

M,w |= p ⇐⇒ p ∈ V(w)
M,w |= ¬ϕ ⇐⇒ M,w 6|= ϕ

M,w |= (ϕ ∧ ψ) ⇐⇒ M,w |= ϕ and M,w |= ψ

M,w |= �ϕ ⇐⇒ ∀v ∈ W : if w ≡ v then M, v |= ϕ

M,w |= [[δ]]ϕ ⇐⇒ if C(w) = δ then M, S (w) |= ϕ

M,w |= Xϕ ⇐⇒ M, S (w) |= ϕ

As usual, a formula ϕ is DLA-valid iff ϕ is true for every DLA
model M and every world w in M. A formula ϕ is DLA-satisfiable
iff ¬ϕ is not DLA valid.

The deterministic variant of DLA (DDLA) has the same lan-
guage as DLA. It is interpreted with respect to deterministic DLA
models that are defined as follows:

Definition 3. A deterministic DLA model (DDLA model) is a
DLA model such that for all w, v ∈ W:

(C3) if w ≡ v and C(w) = C(v) then S (w) ≡ S (v).

Constraint C3 says that the collective choice of all agents leads
to a unique next moment. Notions of validity and satisfiability for
DDLA with respect to DDLA models are defined in the usual way.

Let us illustrate the DLA and DDLA-semantics.

Example 1. The left side of Figure 2 represents a DLA model
that illustrates non-determinism: the collective choice (b, a) leads
to two moments, the collective choice (a, a) leads to four moments,
etc. The right side represents a DDLA model: for instance the
collective choice (b, a) leads to a unique moment. Let us consider
world w0 in the model on the right. We have C(w0) = (b, b). For-
mula �(〈〈(a, a)〉〉> → Xp) holds at w0. Indeed, at moment ≡(w0), if
the joint action (a, a) is chosen (for instance at the unique q-world
of the moment ≡(w0) but also at the three other worlds where (a, a)
is chosen), then p will be necessarily true in the next world.

Example 2. Formula Xϕ→ [[δ]]ϕ is DLA-valid (thus also DDLA-
valid): if ϕ is true in the next state, then, in particular, if δ is actu-
ally played, then ϕ is true in the next state.

Example 3. Formula (〈〈(a, a)〉〉> ∧ X�p) → �[[(a, a)]]p is a
DDLA-valid formula. Indeed, suppose (a, a) is played and p is nec-
essarily true in the next state. Then, necessarily if (a, a) is played,
then p is true in the next state since the model is deterministic. But
the formula is not DLA-valid. Indeed, (〈〈(a, a)〉〉> ∧ X�p) holds in
world u of the DLA-model shown in the left side of Figure 2, but
�[[(a, a)]]p is false ([[(a, a)]]p does not hold at world v).

2.3 Related work
The interesting aspect of DLA is its connection with STIT, the

logic of “seeing to it that” by [4] and [13] one of the most prominent
logical theories of agency proposed in the recent years.

Specifically, in [10], an embedding of the ‘group STIT’ by [13]
with discrete time and bounded choices into DLA is given.4

“Bounded choices” means that, at every moment in time, an agent
can choose among at most n actions.

STIT logic, as defined by [4] and [13], is non-deterministic, as
the consequence of the joint action of a coalition is not uniquely
determined. This distinguishes STIT from the family of logics of
coalitional power in games of which ATL (Alternating-time Tem-
poral Logic) [2] and CL (Coalition Logic) [22] are the most rep-
resentative ones, CL being the one-step fragment of ATL [7]. The
standard semantics of ATL and CL is based on the concept of con-
current game structure (CGS) according to which, once every agent
has made her choice at a given state, the successor state is uniquely
determined.5 In [15], an embedding of CL into DDLA is given.

The CL language includes the classical boolean constructions
plus modal operators of coalition capability of the form 〈[J]〉, where
〈[J]〉ϕ has to be read “the coalition of agents J can see to it that
ϕ is true in the next state, regardless of what the agents outside J
choose”. The translation tr of the CL operator 〈[J]〉 into the DLA
language proposed by [15] is the following:

tr(〈[J]〉ϕ) =
∨
δ∈JAct

(
^〈〈δJ〉〉> ∧ �(〈〈δJ〉〉> → Xϕ)

)
.

2.4 Complexity of DLA and DDLA: Lower bound
For a given logic L, the satisfiability problem of L is denoted by

L-sat.

Theorem 1. If |Agt| ≥ 2, DDLA-sat is PSPACE-hard.

Proof. We give a polynomial-time reduction from the (PSPACE-
hard) satisfiability problem for modal logic B defined by the class
of infinite binary trees (cf. [5] and the use of this logic to prove
a PSPACE-hardness result in [19]) to the satisfiability problem of
DDLA. We write � for the operator of that logic B. We define
f (�ϕ) = �Xtr(ϕ). We define the formula

twoActions(T) :=
T∧

t=0

�Xt[^〈〈δ〉〉> ∧^〈〈δ′〉〉> ∧ �(〈〈δ〉〉> ∨ 〈〈δ′〉〉>)]

where δ = (a, a, . . . a) and δ′ = (b, a, . . . , a) with a , b. Informally,
twoActions(T) means that until time T , agent 1 has exactly two
actions a and b while the other players only can play action a.

The reduction is tr(ϕ) := f (ϕ) ∧ twoActions(T) where T is the
modal depth of ϕ. Formula ϕ is B-satisfiable iff tr(ϕ) is DDLA-
satisfiable.
4In the literature on STIT logic (cf. [3, 16, 12]), it is common to
distinguish ‘individual STIT’ from ‘group STIT’. The former only
considers the consequences of the choices of individual agents,
while the latter also considers the consequences of the collective
choices of coalitions.
5Alternative semantics for CL and ATL based on the concept of
effectivity function are presented respectively by [22] and [8].

q0, p1 p1p1 p1

Figure 3: Fresh propositions in the flattened version of a DDLA
model

Theorem 2. DDLA-sat restricted to X-free formulas is NP-hard.

Proof. The logic DDLA restricted to X-free formulas is a con-
servative extension of classical propositional logic.

Theorem 3. DLA-sat (even for X-free formulas) is PSPACE-
hard.

Proof. We polynomially reduce the (PSPACE-hard) satisfiabil-
ity problem for modal logic K to it. We write � for the operator
of K. Let δ be a fixed joint action. We define tr(�ϕ) := �[[δ]]tr(ϕ).
Formula ϕ is K-satisfiable iff tr(ϕ) is DLA-satisfiable.

2.5 Complexity of DLA and DDLA: Upper bound
For giving upper bounds for satisfiability problems of DLA and

DDLA, the idea is to flatten DLA models so that histories are rep-
resented by single worlds. As in [24], we introduce fresh proposi-
tions pt saying that “proposition p is true at time t”. Furthermore,
we introduce propositions δt

i meaning that “δi is played at time t”
and we write δt for

∧n
i=1 δ

t
i, meaning that the joint action δ is played

at time t. These notations are used in the proofs of the following
Theorems 4 and 5.

Theorem 4. DDLA-sat restricted to X-free formulas is in NP.

Proof. We polynomially reduce the satisfiability problem
of DDLA restricted to X-free formulas to the satisfiability prob-
lem of S5, which is the modal logic where the accessibility relation
is an equivalence relation. We recall that the satisfiability problem
of S5 is in NP. The modal operator of S5 is denote by �. The idea
is that S5 models are flattened versions of DDLA models and we
use modality � to simulate the modality � and to guard the quan-
tification to the current moment.

In the sequel, we will define a reduction tr. The idea of the
translation tr(ϕ) of ϕ is to simulate the semantics of DDLA in S5-
models that look like the model shown in Figure 3.

In the world on the bottom left of the picture, q0 and p1 holds.
That world corresponds to a history where q holds at time 0 and p
holds at time 1. The big rectangle corresponds to the moment at
time 0 and we use modality � to quantify over all worlds in that
moment at time 0. The sub-rectangles corresponds to moment at
time t > 0 (in picture, at time t = 1). Modality � interpreted in
the moment at time 1 after joint action δ at time 0 is simulated by
the guarded construction �(δ0 → ...). Modality � interpreted in the
moment at time 2 after joint action δ at time 0 and δ′ at time 1 is
simulated by the guarded construction �((δ0 ∧ δ′1)→ ...).

More generally, a moment at time t is actually identified with a
sequence L of joint actions. That is why, we first define mappings
trL from the language LDLA(Atm,Agt,Act) into the language of S5-
formulas, indexed by a sequence of joint actions L. In the sequel,
we write L for δ00

∧· · ·∧δt t if L = (δ0, . . . , δt) (δ j j meaning that joint
action δ j is played at time j). We write ε for the empty sequence,

L::δ for the sequence L where we added δ at the end of it, and |L|
for denoting the length of L.

We define a translation function trL by:

• trL(p) = p|L|;

• trL(�ϕ) = �(L→ trL(ϕ));

• trL([[δ]]ϕ) = (δ|L| → trL::δ(ϕ)).

In the clauses trL(p) and trL([[δ]]ϕ), superscripts |L| refer to time
|L|. In the clause trL(�ϕ), the guard L → ... ensures that we are in
the current moment, uniquely determined by sequence L because
the determinism of DDLA.

Example 4. Let ϕ := �(p→ [[δ]]�q). We have trε(ϕ) = �(p0 →

(δ0 → �(δ0 → q1))).

Let S(ϕ) be the set of sequences L such that L = (δ0, . . . , δt)
and [δ0], . . . , [δt] is a list of nested modalities in that order in ϕ, of
formulas. Note that the cardinality of S(ϕ) is polynomial in |ϕ|.

We define C1(ϕ) to be the formula∧
L∈S(ϕ)

∧
δ∈JAct

 n∧
i=1

¬�¬(L ∧ δ|L|i)

→ ¬�¬(L ∧ δ|L|)

Intuitively, C1(ϕ) expresses that the Constraint C1 of Definition
1 is true in all moments that the evaluation ϕ can reach, that is,
in all moments reachable from a sequence L in S(ϕ). The guard
L∧... ensures that we impose Constraint C1 in the moment uniquely
determined by sequence L. We define actions(T) to be the formula:

T∧
t=0

�[(
∨
δ∈JAct

δt) ∧ (
∧

δ,δ′∈JActδ,δ′
δt → ¬δt)]

Intuitively, formula actions(T) expresses that there exists a unique
joint action δ that is performed at each time t up to depth T .

The reduction is tr(ϕ) = trε(ϕ) ∧ C1(ϕ) ∧ actions(T) where ε
denotes the empty sequence and T the [δ]-modal depth of ϕ. tr(ϕ)
can be computed in polynomial time in the size of ϕ. We have ϕ is
DDLA-satisfiable iff tr(ϕ) is S5-satisfiable.

The rest of the section is devoted to prove:

Theorem 5. Both DLA-sat and DDLA-sat are in PSPACE.

For both DLA and DDLA, we adapt a polynomial-space non-
deterministic algorithm given in [24].6 Thus, by Savitch’s theorem
(NPSPACE = PSPACE) [23], Theorem 5 is proven. Let us define
the multi-modal language, called L′, whose modality are [t] for all
integer t denoting the time t. A construction [t]ϕmeans that ϕ holds
for all histories passing through the moment at time t.

We first translate a DLA-formula ϕ into aL′-formula tr0(ϕ) where
trt, for any integer t, is defined by:

• trt(p) = pt;

• trt(�ϕ) = [t]trt(ϕ);

• trt([[δ]]ϕ) = (δt→trt+1(ϕ));

• trt(Xϕ) = trt+1ϕ.

Whereas trL(ϕ) in the proof of Theorem 4 is written with a single
type of modality, trt(ϕ) contains several types of modality [t] for
each time t.

Example 5. Let ϕ := �(p → [[δ]](�q ∧ Xr)). We have tr0(ϕ) =

[0](p0 → (δ0 → ([1]q1 ∧ r2))).

function satL′(t, φ, Σ : set of Hintikka sets)
if there is a [t′] modality with t′ ≥ t in φ then

Guess W a t-witness set of φ such that Σ ⊆ W
and |W | ≤ max(nt(Σ) + |Σ|, |JAct|)

Fail if the guess was not possible.
for C : cells in W

satL′(t + 1, φ, C)

Figure 4: Non-deterministic subroutine satL′ used for the sat-
isfiability problem of DDLA

(a) (b)

Figure 5: Flattened version of DLA models and DDLA models

We claim that a formula ϕ is DLA-satisfiable iff tr0(ϕ) is satisfi-
able in a Kripke structure where:

K1 [t]-modality is interpreted by an equivalence relation Rt;

K2 Rt+1 is finer than Rt;

K3 all points in an Rt+1-equivalence class satisfy the same joint
action δt;

K4 an adaptation of Constraint C1 of Definition 1 holds in each
Rt-equivalence class with respect to propositions δt.

Such a Kripke structure can be depicted as in Figure 5(a). The
big rectangle is the moment at time 0 (an R0-equivalence class),
sub-rectangles are sets of worlds where players choose the same
joint actions at time 0, sub-sub-rectangles in the picture above are
moment at time 1 (R1-equivalence classes), etc. Contrary to the
proof of Theorem 4 where we quantified over worlds in a moment
at time t by guarded constructions, here we quantify over worlds in
a moment at time t with modality [t].

We moreover claim that a formula ϕ is DDLA-satisfiable iff tr0(ϕ)
is satisfiable in a Kripke structure satisfying K1-K4 and:

K5 an Rt+1-equivalence class consists exactly of those points
where the same joint action δt is played.

Such a Kripke structure can be depicted as in Figure 5(b). The
big rectangle is again the moment at time 0 (an R0-equivalence
class). But now, thanks to constraint K5, sub-rectangles and sub-
sub rectangles coincide. Sets of worlds where agents choose the
same joint actions at time 0 are exactly moments at time 1.

Let φ := tr0(ϕ). The set cl(φ) is the smallest set containing φ,
closed under subformulas, negations and such that if [t]ψ ∈ cl(φ)
then [t′]ψ ∈ cl(φ) for t < t′ and t′ smaller than any t′′ in ϕ. The size
of cl(φ) is polynomial in |ϕ|, where |ϕ| is the length of ϕ.

Now, we concentrate on the satisfiability problem of DDLA. We
will now explain step by step the pseudo-code given in Figure 4.
The algorithm takes as an input a time t, the formula φ := tr0(ϕ)
and a finite set Σ of Hintikka sets of φ defined as follows.
6It is the algorithm for the satisfiability problem of atemporal STIT
for coalitions of the form {1, . . . , i}.

Definition 4. A Hintikka set H of φ is a subset of cl(φ) such
that:

• if (ψ1 ∧ ψ2) ∈ H then ψ1 ∈ H and ψ2 ∈ H;

• if ¬(ψ1 ∧ ψ2) ∈ H then ¬ψ1 ∈ H and ¬ψ2 ∈ H;

• if ¬¬ψ ∈ H, then ψ ∈ H;

• ψ < H or ¬ψ < H;

• for all t, there exists δ such that δt ∈ H;

• for all t, for all δ , δ′, δt < H or δ′t < H;

• if [t]ψ ∈ H then ψ ∈ H and [t′]ψ ∈ H if t′ > t.

Intuitively, such a Hintikka set represents a world in a Kripke
structure, that is, a history in a DDLA model.

The base case in the algorithm is when there is no [t′]-modality
with t′ ≥ t in ψ: it means that we have considered enough steps
in time. Otherwise, in the inductive case, we guess a t-witness set
containing Σ. The role of a t-witness set is to represent the current
moment at time t, that is, an Rt-equivalence class. Formally:

Definition 5. A t-witness set W of φ is a set of Hintikka sets
such that

• if for all i ∈ {1, . . . , n}, there exists Hi ∈ W such that δt
i ∈ Hi,

then there exists H ∈ W such that for all i ∈ {1, . . . , n}, δt
i ∈

H;

• if [t]ψ ∈ H ∈ W then for all H′ ∈ W, [t]ψ ∈ H′ ;

• if ¬[t]ψ ∈ H ∈ W then there exists H′ ∈ W, ¬ψ ∈ H′ ;

• for all t′ < t, for all δ if δt′ ∈ H ∈ W, then for all H′ ∈ W,
δt′ ∈ H′.

The first item in Definition 5 is a reformulation of Constraint
C1 of Definition 1. The second and third items correspond to the
semantics of the [t]-operators. The last item means that previous
joint actions (at time t′ < t) are the same in all Hintikka sets. We
impose such a t-witness to contain at most max(nt(Σ) + |Σ|, |JAct|)
Hintikka sets where nt(Σ) is the number of [t]-modalities in Σ. The
bound |JAct| guarantees that we have a sufficient number of worlds
for Constraint C1 of Definition 1. The bound nt(Σ) + |Σ| is imposed
because we do not need to create more worlds than the number of
subformulas of the form [t]ψ in φ that should be false.

We then perform all the recursive calls to explore consistency of
next moments. Given a t-witness set W, a cell in W is the subset of
Hintikka sets in W that all contain the same δt for a given δ. The
fact that recursive calls of satL′ are performed on cells corresponds
to the constraint of determinism (C3) of Definition 3.

Proposition 1. The two following statements are equivalent:

• H(t, φ,Σ): there exists a Kripke structure M satisfying
(K1−5) and a mapping f from Σ into a Rt-equivalence class
such that for all H ∈ Σ, all formulas that do not contain any
[t′]-modality with t′ < t in H are true inM at point f (Σ);

• satL′(t, φ,Σ) does not fail.

Proof. By induction on t. The base case corresponds to t such
that there is no [t′]-modality with t′ ≥ t in φ. The result is true since
we only consider Boolean formulas in Hintikka sets of Σ.

Inductive case. (⇓) LetM be as in the first statement. We con-
sider the execution of satL′(t, φ,Σ) that guesses a t-witness set W

that is satisfied in M, that is such that the mapping f can be nat-
urally extended from W into the Rt-equivalence class such that for
all H ∈ W, all formulas that do not contain any [t′]-modality with
t′ < t in W are true. Such a W exists since:

• all ¬[t]ψ formulas that are true implies the existence of a
world in the Rt-equivalence class such that ¬ψ holds;

• and the number of such ¬[t]ψ is bounded by nt(φ). inM at
point f (Σ).

Hence, for all cells C in W, we have H(t +1, φ,C). By induction,
we have that all calls satL′(t + 1, φ,C) do not fail. Hence, call
satL′(t, φ,Σ) does not fail.

(⇑) Conversely, suppose that satL′(t, φ,Σ) does not fail. Let
W be the t-witness set. We have that for all cells C in W, calls
satL′(t + 1, ϕ,C) do not fail. By induction, H(t + 1, φ,C): there are
MC models corresponding to each cell C. We construct a modelM
by gluing models MC and assigning the corresponding values to
propositions pt and δt: modelsMC corresponds to ‘sub-rectangles’
at time t + 1 and we juxtapose them to obtain a ‘rectangle’ at
time t. We prove that we obtain a Kripke structure M satisfying
(K1 − 5) and such that there exists a mapping f from W into the
Rt-equivalence class as required in H(t, φ,Σ). In particular, the re-
striction of f to Σ makes H(t, φ,Σ) true.

Proposition 2. Let H0 be a Hintikka set containing φ. The call
satL′(0, φ, {H0}) requires a polynomial amount of memory in the
size of φ.

Proof. The number of nested recursive calls is clearly bounded
by O(|φ|). We only require to store at most O(|φ|) parameters Σ and
local variables. It suffices to convince ourselves that |Σ| is polyno-
mial in |φ|. Let nk be the maximal size of a set Σ at depth k in the
tree of computation of satL′(0, φ, {H0}). We have n0 = 1. We have
nk ≤ max(nt(Σ) + nk−1, |JAct|) ≤ max(|φ| + nk−1, |JAct|). So nk is
polynomial in |φ| for all k.

The algorithm for the DDLA-sat is: compute φ := tr0(ϕ), guess a
Hintikka set H0, call satL′(0, φ, {H0}). The algorithm for DLA-sat
is similar except that ‘for C : cell in M’ is replaced by
‘for C : singleton {H} such that H ∈ W’ in the algorithm satL′

given in Figure 4. In other words, the Constraint C3 is dropped.

3. GAME DESCRIPTION LANGUAGE
In this section we shortly present the syntax and the semantics of

a modal variant of GDL recently introduced in the AI community
by [28, 29] as a general logic for reasoning about strategies in gen-
eral game playing. We abstract away from Zhangh and Thielscher
(Z&T)’s modality oα o. At the end of the paper, we will introduce
this modality when presenting perspectives of our future research.

GDL as defined by Z&T is deterministic. We also define a non-
deterministic variant of GDL (IGDL) that relates with DLA.

3.1 Syntax
In GDL it is assumed that each agent i in the finite set of agents

Agt is associated with a finite set of actions Ai defining i’s action
repertoire and that if i , j then Ai ∩ A j = ∅. The set A =

⋃
i∈Agt Ai

defines the set of all actions. The language LGDL(Prop,Agt, A) of
GDL is defined by:

ϕ, ψ ::= p | ¬ϕ | (ϕ ∧ ψ) | initial | terminal |
does(a) | legal(a) | [a]ϕ |�a�ϕ

where p ranges over the set of atomic propositions Atm and a ranges
over A.

Intuitively, formula [a]ϕ means that “if action a is executed at
the current state, ϕ is going to be true in the next state”. Formula
� a � ϕ means that “if action a were chosen (but not yet executed),
then ϕ would be true”.

Constants initial, terminal, does(a) and legal(a) denote, respec-
tively, the fact that the current state is an initial state, that the current
state is a terminal state, that action a is executed and that action a
is legal.

3.2 Semantics
The semantics of GDL is based on state transition models.

Definition 6. A state transition model is a tuple
M = (X, I,T,U, L,V) such that:

• X is a non-empty set of worlds or states,7

• I ⊆ X is the initial states,

• T ⊆ X is the terminal states,

• U : X × A −→ X \ I is an update function,

• L ⊆ X × A is a legality relation, and

• V : X −→ 2Atm is a valuation function.

Truth conditions of GDL formulas are given in the following
definition.

Definition 7 (Truth conditions). Let M = (X, I,T,U, L,V) be
a state transition model and let (x, a) ∈ X × A. Then:

M, (x, a) |= p ⇐⇒ p ∈ V(x)
M, (x, a) |= ¬ϕ ⇐⇒ M, (x, a) 6|= ϕ

M, (x, a) |= (ϕ ∧ ψ) ⇐⇒ M, (x, a) |= ϕ and M, (x, a) |= ψ

M, (x, a) |= initial ⇐⇒ x ∈ I

M, (x, a) |= terminal ⇐⇒ x ∈ T

M, (x, a) |= does(b) ⇐⇒ a = b

M, (x, a) |= legal(b) ⇐⇒ (x, b) ∈ L

M, (x, a) |= [b]ϕ ⇐⇒ ∀c ∈ A : M, (U(x, b), c) |= ϕ

M, (x, a) |=�b�ϕ ⇐⇒ M, (x, b) |= ϕ

As usual, a formula ϕ is GDL valid iff ϕ is true for all state transi-
tion models M = (X, I,T,U, L,V) and all (x, a) ∈ X × A. A formula
ϕ is GDL satisfiable iff ¬ϕ is not GDL valid.

We here define a new non-deterministic variant of GDL (IGDL)
that has the same language as GDL and that is interpreted with
respect to non-deterministic state transition models.

Definition 8. A non-deterministic state transition model is a tu-
ple M = (X, I,T,U, L,V) where X, I,T, L,V are as in the definition
of state transition model and:

• U : X × A −→ 2X\I is a non-deterministic state transition
function.

The only difference about the interpretation of formulas between
GDL and IGDL is relative to the modality [b] that in IGDL is in-
terpreted as follows:
7Z&T use the symbol W to denote the set of states. We use the
symbol X to avoid confusion with the set of worlds in the semantics
of DLA.

Definition 9 (Truth conditions (cont.)).
Let M = (X, I,T,U, L,V) be a non-deterministic state transition

model and let (x, a) ∈ X × A. Then:

M, (x, a) |= [b]ϕ ⇔∀c ∈ A and ∀y ∈ U(x, b) : M, (y, c) |= ϕ

Notions of validity and satisfiability for IGDL with respect to
non-deterministic state transition models are defined in the expected
way.

4. RELATIONSHIP BETWEEN GDL AND DLA
In this section we provide a polynomial translation of the GDL

language into the DLA language and we show that our translation
preserves validity.

4.1 Embedding of GDL into DLA
Let us suppose that the cardinality of JAct (the set of joint actions

in DLA) is equal to or bigger than the cardinality of A (the set of all
actions in GDL). Hence there exists an injective function f from A
to JAct: f (a) , f (b) implies a , b. Moreover, let

Atm+ = Atm ∪ {initial, terminal, legal}.

Then, our translation is a function:

tr : LGDL(Atm,Agt, A) −→ LDLA(Atm+,Agt,Act)

such that for all α ∈ Atm ∪ {initial, terminal} and a ∈ A:

tr(α) = α

tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)

tr(does(b)) = 〈〈 f (b)〉〉>
tr(legal(b)) = �(〈〈 f (b)〉〉> → legal)

tr([b]ϕ) = �[[f (b)]]�tr(ϕ)
tr(�b�ϕ) = �(〈〈 f (b)〉〉> → ϕ)

Before proving that the previous translation preserves satisfiabil-
ity, let us introduce the following concept of ϕ-theory expressed in
terms of the DLA language. Let ϕ be a GDL formula. Moreover, let
Atm(ϕ) denote the set of atoms occurring in formula ϕ, let depth(ϕ)
denote the modal depth of ϕ and let |ϕ| denote the length of ϕ. We
define:

Σϕ = {�α ∨ �¬α : α ∈ Atm(ϕ) ∪ {initial, terminal}} ∪

{�legal(δ) ∨ �¬legal(δ) : δ ∈ JAct} ∪

{�[[δ]]¬initial : δ ∈ JAct} ∪

{^〈〈δ〉〉> : δ ∈ JAct}

where legal(δ) def
= (〈〈δ〉〉> ∧ legal). The ϕ-theory could have been

defined by

τ(ϕ) :=
∧

0≤i≤k

�Xk
∧
χ∈Σϕ

χ

where k = depth(ϕ). But we can actually avoid using X-modalities
by taking τ(ϕ) to be:

τ(ϕ) =
∧

~b∈S eq(ϕ)

�[~b]
∧
χ∈Σϕ

χ

where ~b denotes a sequence b1, . . . , b`, [~b] is [b1][b2] . . . [b`] and
Seq(ϕ) is the set of sequences of actions as they appear in ϕ in the
nesting order. Note that Seq(ϕ) is polynomial in |ϕ| therefore |τ(ϕ)|
is polynomial in |ϕ|. The new definition τ(ϕ) clearly shows that

we can express properties about the future by mentioning explic-
itly actions in the language without any occurrence of the temporal
operator X.

Example 6. If ϕ = [a][b]p∧[c]q then S eq(ϕ) = {ε, (a), (a, b), (c)}.

The two following theorems highlight that the previous trans-
lation provides both an embedding of GDL into DDLA and an
embedding of IGDL into DLA. They are proven by transforming
a GDL model (IGDL model) into a corresponding DDLA model
(DLA model) and vice versa.

Theorem 6. Let ϕ be in LGDL(Atm,Agt, A). Then, ϕ is GDL-
satisfiable iff τ(ϕ)∧tr(ϕ) is DDLA-satisfiable.

Proof. (⇒) Let M = (X, I,T,U, L,V) be a state transition model,
let x ∈ X and let a ∈ A such that M, (x, a) |= ϕ.

For every world x ∈ X, let Hx denote the set of histories starting
in state x, a history being an infinite sequence of state-action pairs
ordered by the update function. That is:

Hx = {x0, a0, x1, a1, . . . : x0 = x and
∀k ≥ 0 : U(xk, ak) = xk+1}

H =
⋃

x∈X Hx denotes the set of all histories. Histories are denoted
by symbols h, h′, . . . For every h ∈ H and for every k ≥ 0, hstate(k)
denotes the state in the k-th position in h, while haction(k) denotes
the action in the k-th position in h.

For every history h = x0, a0, x1, a1, . . ., h≥1 = x1, a1, . . . denotes
the longest proper suffix of h.

We build a corresponding structure M′ = (W,≡, (Ci)i∈Agt, S ,V ′)
as follows:

• W = H,

• for every h, h′ ∈ W, h ≡ h′ iff hstate(0) = h′state(0),

• for every i ∈ Agt and for every h ∈ W, Ci(h) = f (haction(0)),

• for every h ∈ W, S (h) = h≥1,

• every p ∈ Atm and for every h ∈ W, p ∈ V ′(h) iff p ∈
V(h′state(0)).

It is routine to check that M′ is a DLA model.
We have that there exists h ∈ H such that hstate(0) = x and

haction(0) = a. Moreover, by induction on the structure of ϕ, we
can prove that M′, h |= τ(ϕ) ∧ tr(ϕ) for every h ∈ H such that
hstate(0) = x and haction(0) = a.

(⇐) Let M = (W,≡, (C)i∈Agt, S ,V) be a DLA model and let w ∈
W such that M,w |= tr(ϕ).

We call the quotient set W/ ≡ the set of moments and denote it
by Mom. Elements of Mom are denoted by m,m′, . . .

We build a corresponding structure M′ = (X, I,T,U, L,V ′) as
follows:

• X = Mom,

• I = {m ∈ X : ∃w ∈ m such that M,w |= initial},

• T = {m ∈ X : ∃w ∈ m such that M,w |= terminal},

• for every m ∈ Mom and for every a ∈ A, U(m, a) = m′ iff
∃w ∈ m such that C(w) = f (a) and S (w) ∈ m′,

• L = {(m, a) ∈ X × A : ∃w ∈ m such that M,w |= legal(a)},

• for every p ∈ Atm and for every m ∈ X, p ∈ V ′(m) iff ∃w ∈ m
such that p ∈ V(w).

It is routine to check that M′ is a well-defined GDL model.
Moreover, by induction on the structure of ϕ, we can prove that

M′, (m, f −(C(w))) |= ϕ where f − is the inverse function of f and
w ∈ m.

Theorem 7. Let ϕ be in LGDL(Atm,Agt, A). Then, ϕ is IGDL-
satisfiable iff τ(ϕ)∧tr(ϕ) is DLA-satisfiable.

Proof. The proof is similar to proof of Theorem 6. As for the
⇒-direction, we only need to change the definition of Hx as fol-
lows:

Hx = {x0, a0, x1, a1, . . . : x0 = x and
∀k ≥ 0 : xk+1 ∈ U(xk, ak)}

As for the ⇐-direction, we only need to change the definition of
the function U as follows: for every m ∈ Mom and for every a ∈ A,
m′ ∈ U(m, a) iff ∃w ∈ m such that C(w) = f (a) and S (w) ∈ m′.

4.2 Complexities of GDL and IGDL
Although a sound and complete axiomatization for GDL has

been given by [28], the complexity of its satisfiability problem re-
mains an open problem.

Theorem 8. GDL-sat is NP-complete.

Proof. The NP-hardness comes from the fact that GDL is a
conservative extension of classical propositional logic. The NP-
membership comes from Theorem 4 and the polynomial-time re-
duction given in Theorem 6.

Theorem 9. IGDL-sat is PSPACE-complete.

Proof. The PSPACE-hardness is proven by providing the fol-
lowing polynomial reduction tr of the satisfiability problem of modal
logic K into the satisfiability problem of IGDL: tr(p) = p, tr(�ϕ) :=
[a]tr(ϕ). The PSPACE membership comes from Theorem 5 and
the polynomial-time reduction given in Theorem 7.

Note that Theorem 8 strongly relies on the fact that τ(ϕ) ∧ tr(ϕ)
does not contain any temporal operator X. The definition of the
modal variant proposed by [28, 29] does not have this temporal
operator in the language. Note that if we extend the language of
GDL by the temporal operator X, and we call GDLX the obtained
language, we could reduce the satisfiability of GDLX into DDLA
and obtain a PSPACE-upper bound. As for DDLA, the satisfiability
problem of GDLX would have been PSPACE-hard.

Concerning Theorem 9, using a reduction involving the
temporal operator X τ(ϕ) :=

∧
0≤i≤k �Xk ∧

χ∈Σϕ χ would also have
given an PSPACE-upper bound since Theorem 5 does not impose
a restriction to X-free formulas.

5. PERSPECTIVES
The variant of GDL presented in [28] is equipped with an addi-

tional modal operator oψ othat we have not considered so far. It is
a model-update operator in the sense of dynamic epistemic logic
[27]. Formula oψ oϕ is read “ϕ holds, after the declaration that only
the states in which ψ is true are legal”. It is interpreted as follows:

M, (x, a) |= oψ oϕ ⇐⇒ Mψ, (x, a) |= ϕ

where the state transition model Mψ is the same as M except for
replacing the legality relation L by the following relation: Lψ =

{(x, a) ∈ X × A : M, (x, a) |= ψ}. Z&T provide reduction prin-
ciples [28, Axioms D1-D8] that guarantee the existence of a re-
duction procedure such that, for every GDL formula ϕ, it returns

an equivalent GDL formula ϕ′ with no occurrence of the dynamic
operators oψ o. It is routine to verify that the reduction principles
given by Z&T are also valid in the context of IGDL. Let us denote
by dynGDL (dynIGDL) the GDL (IGDL) logic extended with oψ o-
modalities. Thus, because of Theorems 8 and 9, both dynGDL-sat
and dynIGDL-sat are decidable.

Actually, in order to simulate oψ oϕ-modality in DLA, we extend
DLA (and DDLA) with modal-update operators of type [(p, ψ)],
where the event (p, ψ) corresponds to a propositional assignment
in the sense of [26]. The extensions are respectively denoted by
dynDLA and dynDDLA. Formula [(p, ψ)]ϕ is read “ϕ holds, after
the declaration that atom p should be true only in the worlds in
which ψ holds”. It is interpreted relative to a DLA (or DDLA)
model M and world w in M as follows:

M,w |= [(p, ψ)]ϕ ⇐⇒ M(p,ψ),w |= ϕ

where M(p,ψ) is the same as M except for replacing the valuation
function V by the following function V (p,ψ):

V (p,ψ)(w) = V(w) ∪ {p} if M,w |= ψ

V (p,ψ)(w) = V(w) \ {p} if M,w |= ¬ψ

It is routine to verify that the following formulas are both dynDLA
valid and dynDDLA valid:

[(p, ψ)]p↔ ψ (1)
[(p, ψ)]q↔ q if p , q (2)

[(p, ψ)]¬ϕ↔ ¬[(p, ψ)]ϕ (3)
[(p, ψ)](ϕ1 ∧ ϕ2)↔ ([(p, ψ)]ϕ1 ∧ [(p, ψ)]ϕ1) (4)

[(p, ψ)]�ϕ↔ �[(p, ψ)]ϕ (5)

with � ∈ {�, [[δ]],X}. Since the rule of replacement of equivalents
preserves both dynDLA and dynDDLA validity:

ψ1 ↔ ψ2

ϕ↔ ϕ[ψ1/ψ2]
(6)

by the preceding validities (1)-(5), we can find a reduction proce-
dure such that, for every formula ϕ of the language
LDLA(Atm,Agt,Act) extended by the formulas [(p, ψ)]ϕ, it returns
an equivalent formula ϕ′ without any dynamic operator [(p, ψ)].
Because of Theorem 5, this reduction guarantees that dynDLA-sat
and dynDDLA-sat are decidable.

Finally, dynGDL oψ o-constructions are translated in dynDLA as
follows: tr(oψ oϕ) = [(legal, tr(ψ))]tr(ϕ). Theorems 6 and 7 general-
ize straightforwardly to this new case.

An interesting perspective of future research is to study the com-
plexity of of dynGDL-sat, dynIGDL-sat, dynDLA-sat and
dynDDLA-sat. To this aim, we plan to adapt the technique pro-
posed by [20] to study the complexity of public announcement
logic (PAL).

Another perspective is to go beyond games with perfect infor-
mation and to study the relation between the epistemic extension of
DLA given in [10] and the epistemic extension of GDL proposed
by [14].

We also plan to consider a variant of GDL in which actions of
agents are executed in parallel and with modal operators of type
[δ], where [δ]ϕ has to be read “if the joint action δ is executed at the
current state, ϕ is going to be true in the next state”. We believe that
this better corresponds to the way actions are represented in game
theory. We plan to study its relationship with DLA and DDLA.

Finally, we plan to show how DLA and DDLA can be concretely
used to model scenarios of general game playing and to highlight
their advantages compared to IGDL and GDL.

REFERENCES
[1] T. Ågotnes and N. Alechina. Reasoning about joint action

and coalitional ability in K n with intersection. In
Proceedings of 12th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA XII),
volume 6814 of LNCS, pages 139–156. Springer-Verlag,
2011.

[2] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[3] P. Balbiani, A. Herzig, and N. Troquard. Alternative
axiomatics and complexity of deliberative STIT theories.
Journal of Philosophical Logic, 37(4):387–406, 2008.

[4] N. Belnap, M. Perloff, and M. Xu. Facing the future: agents
and choices in our indeterminist world. Oxford University
Press, New York, 2001.

[5] P. Blackburn, M. de Rijke, and Y. Venema. Modal logic,
volume 53 of. Cambridge Tracts in Theoretical Computer
Science, page 29, 2001.

[6] J. Broersen. Making a start with the stit logic analysis of
intentional action. Journal of Philosophical Logic,
40(4):499–530, 2011.

[7] V. Goranko. Coalition games and alternating temporal logics.
In Proceedings of the 8th Conference on Theoretical Aspects
of Rationality and Knowledge (TARK VIII), pages 259–272.
Morgan Kaufmann, 2001.

[8] V. Goranko and W. Jamroga. State and path coalition
effectivity models of concurrent multi-player games.
Autonomous Agents and Multi-Agent Systems,
30(3):446–485, 2016.

[9] A. Herzig. Logics of knowledge and action: critical analysis
and challenges. Autonomous Agents and Multi-Agent
Systems, 29(5):719–753, 2015.

[10] A. Herzig and E. Lorini. A dynamic logic of agency I: STIT,
abilities and powers. Journal of Logic, Language and
Information, 19(1):89–121, 2010.

[11] A. Herzig, E. Lorini, F. Moisan, and N. Troquard. A dynamic
logic of normative systems. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence
(IJCAI 2011), pages 228–233. AAAI Press, 2011.

[12] A. Herzig and F. Schwarzentruber. Properties of logics of
individual and group agency. In Proceedings of the Seventh
conference on Advances in Modal Logic (AIML 2008), pages
133–149. College Publications, 2008.

[13] J. F. Horty. Agency and Deontic Logic. Oxford Univ. Press,
Oxford, 2001.

[14] G. Jiang, D. Zhang, L. Perrussel, and H. Zhang. Epistemic
GDL: A logic for representing and reasoning about imperfect
information games. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence
(IJCAI 2016), pages 1138–1144. AAAI press, 2016.

[15] E. Lorini. A dynamic logic of agency II: deterministic DLA,
Coalition Logic, and game theory. Journal of Logic,
Language and Information, 19(3):327–351, 2010.

[16] E. Lorini. Temporal STIT logic and its application to
normative reasoning. Journal of Applied Non-Classical
Logics, 23(4):372–399, 2013.

[17] E. Lorini, D. Longin, and E. Mayor. A logical analysis of
responsibility attribution: emotions, individuals and
collectives. Journal of Logic and Computation,
24(6):1313–1339, 2014.

[18] E. Lorini and F. Schwarzentruber. A logic for reasoning
about counterfactual emotions. Artificial Intelligence,
175(3-4):814–847, 2011.

[19] E. Lorini, F. Schwarzentruber, and A. Herzig. Epistemic
games in modal logic: Joint actions, knowledge and
preferences all together. In Proceedings of the Second
International Workshop on Logic, Rationality, and
Interaction (LORI 2009), volume 5834 of LNCS, pages
212–226. Springer-Verlag, 2009.

[20] C. Lutz. Complexity and succinctness of public
announcement logic. In Proceedings of the 5th International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), pages 137–143. ACM, 2006.

[21] F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about
strategies. In Proceedings of the Annual Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2010), volume 8 of LIPIcs,
pages 133–144, 2010.

[22] M. Pauly. A modal logic for coalitional power in games.
Journal of Logic and Computation, 12(1):149–166, 2002.

[23] W. J. Savitch. Relationships between nondeterministic and
deterministic tape complexities. Journal of Computer and
System Sciences, 4(2):177–192, 1970.

[24] F. Schwarzentruber. Complexity results of STIT fragments.
Studia Logica, 100(5):1001–1045, 2012.

[25] W. van der Hoek and M. Wooldridge. On the logic of
cooperation and propositional control. Artificial Intelligence,
164(1-2):81–119, 2005.

[26] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic
epistemic logic with assignment. In Proceedings of the 4th
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), pages 141–148. ACM,
2005.

[27] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic
Epistemic Logic. Springer, 2008.

[28] D. Zhang and M. Thielscher. A logic for reasoning about
game strategies. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI 2015), pages 1671–1677. AAAI
Press, 2015.

[29] D. Zhang and M. Thielscher. Representing and reasoning
about game strategies. Journal of Philosophical Logic,
44(2):203–236, 2015.

