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Abstract—This paper introduces a 2D optical flow estimation
method for cardiac ultrasound imaging based on a sparse
representation. The optical flow problem is regularized using
a classical gradient-based smoothness term combined with a
sparsity inducing regularization that uses a learned cardiac flow
dictionary. A particular emphasis is put on the influence of the
spatial and sparse regularizations on the optical flow estimation
problem. A comparison with state-of-the-art methods using realis-
tic simulations shows the competitiveness of the proposed method
for cardiac motion estimation in ultrasound images.

Keywords—Optical flow, sparse representations, cardiac ultra-
sound, motion estimation, dictionary learning.

I. INTRODUCTION

Optical flow (OF) aims at estimating the pixel motion or
flow between a pair of consecutive images. The differential
OF methods, also known as gradient-based OF, assume that
the intensity of a particular pixel is constant across consecutive
frames [1], [2] and estimate the flow using the spatial and tem-
poral image intensity variations. OF methods have been used
successfully in a large variety of applications ranging from
computer vision [3] to more specific ones such as atmospheric
motion estimation in meteorology [4]. These methods have
also been investigated for various medical imaging modalities
(including ultrasound imaging [2], [5], [6], magnetic resonance
imaging (MRI) [7] and computed tomography (CT) [8]) and
for different clinical applications requiring cardiac motion
estimation [2], [5].

Because OF problems are ill-posed, the constant inten-
sity assumption also known as brightness constancy requires
additional constraints to provide a unique solution. These
constraints are generally expressed as global [1] or local
[2] regularizations. Global OF regularization schemes aim at
estimating a dense flow, while local methods use windowing
to constraint the flow in smaller regions. However, both
approaches typically assume spatial smoothness of the flow
field. Spatial regularization can be introduced by means of
parametric models of the flow, e.g., based on affine motions
[2], [9] or B-splines [2].

Sparse representations have been shown to be powerful
tools for regularization in various problems. They have gained
a lot of attention, especially for image denoising [10], but
also for other image processing problems such as inpainting

Part of this work has been supported by the thematic trimester on image
processing of the CIMI Labex, Toulouse,France, under grant ANR-11-LABX-
0040-CIMI within the program ANR-11-IDEX-0002-02.

or demosaicing [11]. Sparse representations assume that an
image (or an image patch) can be sparsely represented in a
suitable predefined or learned dictionary. It has been shown
that the dictionaries learned from the data using algorithms
such as K-SVD [12] and online dictionary learning (ODL) [13]
can outperform the predefined dictionaries based on wavelets,
curvelets, ... [13].

In the context of cardiac ultrasound imaging, sparse rep-
resentations have been successfully combined with spatial
smoothness constraints to regularize cardiac motion estimation
[14], [15]. However, these works have never been formulated
within a general OF framework. Instead, they have been
investigated using specific assumptions about the ultrasound
image distribution in order to construct the motion estimation
problem. Motivated by the success of the sparsity-based prior
for cardiac ultrasound (US), the objective of this work is to
propose a cardiac flow estimation method within a general
OF framework combining regularizations based on the sparsity
of the flow field in an appropriate dictionary and its spatial
smoothness.

The paper is organized as follows. Section II formulates the
general OF estimation problem with spatial regularization. The
proposed OF method with sparse and spatial regularizations is
introduced in Section III. Experimental results are presented
and discussed in Section IV whereas concluding remarks are
reported in Section V.

II. BACKGROUND ON OPTICAL FLOW

Differential OF methods rely on the brightness constancy
and temporal consistence assumptions. Based on these assump-
tions, the spatial and temporal image intensity variations are
linked to the flow field, leading to the so-called optical flow
constraint (OFC) equations

∂tI +∇ITU = 0 (1)

where N is the number of image pixels, U = (uT ,vT )T ∈
R

2N is the 2D flow field with u ∈ R
N and v ∈ R

N the
vectorized horizontal and vertical velocities. I ∈ R

N contains
the vectorized image intensities, ∇I = (Ix, Iy)

T ∈ R
2N is

the spatial intensity gradient in both directions and ∂tI is the
temporal derivative at time t. Note that according to (1), the
flow field U only depends on ∂tI and ∇I .

A standard approach used to overcome the ill-posed nature
of the OF estimation problem (1) consists in introducing
assumptions about the spatial behavior of the flow [1]. One
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way of explicitly incorporating these spatial constraints in the
flow estimation problem is through the minimization of an
appropriate energy function defined as

E(U , I) = ED(U , I) + λSES(U) (2)

where ED results from (1) and is called the data fidelity
term and ES stands for the spatial constraint promoting the
smoothness of the flow (also known as spatial coherence)
and controlled by the regularization parameter λS ∈ R

+. In
this work, we start from the well-known energy minimization
formulation proposed by Horn and Schunck [1], which mini-
mizes the quadratic error of the OF-based data fidelity and the
gradient-based spatial regularization, leading to the following
problem

min
U

{

‖∂tI +∇ITU‖22 + λS‖∇U‖22

}

(3)

where ∇U = (Ux,Uy)
T ∈ R

4N , with Ux and Uy the
horizontal and vertical spatial gradients of the horizontal and
vertical flows. The Horn-Schunck (HS) method related to the
problem (3) has been proved to be a simple and efficient flow
estimation method [16]. However, the reliance on a global
(piece-wise) and purely geometrical prior, which does not hold
in many cases, such as motion boundaries, makes it inadequate
for the estimation of complex or multiple motions. In the next
section, a sparsity-based regularization strategy is introduced
in order to bypass these shortcomings.

III. PROPOSED OPTICAL FLOW WITH SPARSE AND

SPATIAL REGULARIZATIONS

A. Sparse regularization

Recent advances have made possible to simulate realistic
cardiac US image sequences with ground-truth [17], enabling
the use of learning-based methods for cardiac flow estimation.
In this context, we propose to use a learned flow dictionary
that captures typical patterns of cardiac motion. Typically, the
dictionary D is overcomplete, leading to a sparse representa-
tion of the flow when decomposed on D. A way of exploiting
the sparse properties of the flow is to extract overlapping flow
patches from the global flow field. Each flow patch is then
expressed as a weighted linear combination of a few elements
of the dictionary D. This patch-wise approach is motivated by
the fact that it allows meaningful local cardiac motion patterns
to be captured. The resulting problem is called the sparse
coding problem and can be performed jointly or separately
for the horizontal and vertical flow components. In this work,
the sparse coding is performed separately for u and v. We
also use separate dictionaries Du ∈ R

n×q and Dv ∈ R
n×q

associated with the horizontal and vertical flow components u
and v [14], [18], where n is the patch size and q is the number
of elements in the dictionaries Du and Dv . For example, the
sparse coding problem for the horizontal flow component u is

min
αu,i

‖αu,i‖0 subject to ‖P iu−Duαu,i‖
2
2 < ǫ (4)

where i = 1, ..., Np with Np the total number of patches, ‖.‖0
is the l0 pseudo-norm (which counts the number of non-zero
elements of a vector), P i ∈ R

n×N is an operator that extracts
the ith patch from u, αu,i ∈ R

q is the corresponding sparse
vector with q > n the number of atoms in the dictionary Du

and ǫ is an a priori fixed constant. Note that the sparse coding
of the vertical flow field v is performed similarly, using the

dictionary Dv . More details about how to solve the problem
(4) will be provided in Section III-B.

In addition to the classical spatial smoothness constraint
employed for the OF problem (3), we propose to introduce a
patch-wise sparse regularization term EP defined as

EP(U ,α) =

Np
∑

i=1

‖QiU −Dαi‖
2
2 (5)

where Qi ∈ R
2n×2N is an operator that extracts the ith patches

in the horizontal and vertical directions from U 1, D ∈ R
2n×2q

is a block diagonal matrix whose blocks are Du and Dv , i.e.,

D =

[

Du 0

0 Dv

]

and α ∈ R
2q×2Np is a matrix whose columns are αi =

(αT
u,i,α

T
v,i)

T . The sparse regularization term (5) constrains
each flow patch QiU to be sparsely represented in the learned
dictionary D of typical flow patterns. In contrast with the
purely geometrical assumptions used for the regularization
term ES, the learned flow patterns encode more complex
and general behaviors of the cardiac flow (including motion
discontinuities inside the myocardium), leading to a spatially
more flexible and cardiac motion-specific prior. Note that the
use of overlapping patches in (5) introduces an implicit inter-
patch regularization in accordance with the expected patch log-
likelihood framework [19]. This regularization is due to the fact
that a single pixel is counted multiple times.

Finally, after combining the data fidelity term and the
spatial constraint in (3) with the prior (5), the global energy
function is

E(U , I,α) = ED(U , I) + λSES(U) + λPEP(U ,α) (6)

where λP ∈ R
+ controls the importance of the sparse regular-

ization term and ES corresponds to the spatial regularization in
(3). Note that the interest of introducing a sparsity-based prior
for the flow estimation has been previously shown in [18],
[20] on the Middlebury dataset [21]. Note also that it has been
successfully employed for cardiac US motion estimation in
[14], [15]. However, in these studies, the sparse regularization
was used with a specific data fidelity term (based on a Rayleigh
noise model) different from the one investigated in this paper.
In this work, we seek to highlight the benefits of using a
combination of spatial and sparse regularizations for cardiac
flow estimation within a more general OF-based framework.

B. Estimation

1) Dictionary learning: The proposed method requires a
training step during which the dictionaries Du and Dv are
learnt using a set of ground-truth cardiac motion fileds. The
dictionary learning was performed offline using the ODL
algorithm [13], which iterates between a sparse coding step
(Du and Dv fixed) and a dictionary update step (αu,i and αv,i

fixed). Details about the parameter choices for the dictionary
learning are provided in Section IV-C. Note that the horizontal
and vertical dictionaries were learnt separately (see Section
III-A). Note also that the dictionaries Du and Dv could be
updated in an adaptive way [14] during the flow estimation
step (see Section III-B2). However, we have not observed

1Q
i

is a block diagonal matrix whose blocks are P i, i.e., Q
i
= P i ⊗ I2,

with I2 the 2× 2 identity matrix and ⊗ the Kronecker product.



significant improvements with this adaptive scheme for cardiac
flow estimation in ultrasound imaging.

2) Flow estimation: Once the dictionaries Du and Dv

have been learned using a set of training flow fields, the
OF estimation problem reduces to the following optimization
problem with respect to U and αi

min
αi,U







ED(U , I) + λS‖∇U‖22 + λP

Np
∑

i=1

‖QiU −Dαi‖
2
2







subject to ∀i = 1, ..., NP, ‖αu,i‖0 ≤ K and ‖αv,i‖0 ≤ K.
(7)

Since (7) is hard to solve directly, we use an optimization
strategy that alternates optimizations with respect to αi and
U . This process is repeated during a few iterations for fixed
values of λS and λP (typically 4 iterations, as in [22]), after
which the sparsity parameter λP is increased. The optimization
with respect to αi is a sparse coding problem, which is known
to be NP-hard. However, good approximate solutions can be
achieved using greedy algorithms (such as the orthogonal
matching pursuit (OMP) [23]) or convex relaxation methods
(such as LASSO). The optimization with respect to U can be
solved by setting the gradient to zero. These two steps are
detailed below.

• Sparse coding: the sparse coding problem is addressed
using OMP and is performed separately for the horizontal
and vertical directions. The minimization problem with
respect to αu,i for the horizontal flow field is

min
αu,i

Np
∑

i=1

‖P iu−Duαu,i‖
2
2 subject to ∀i, ‖αu,i‖0 ≤ K

(8)
where K is the maximum number of non-zero coefficients.
The same approach is used for the vertical flow compo-
nent.

• Flow estimation: after determining the sparse coefficients
αi, the optimization is conducted with respect to the flow
field U . The corresponding minimization problem is

min
U







ED(U , I) + λS‖∇U‖22 + λP

Np
∑

i=1

‖QiU −Dαi‖
2
2







(9)
Since the cost function in (9) is differentiable, its solution
can be found by equating the gradient to zero and using
the optimization approach studied in [24].

IV. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed
method using realistic simulated sequences with available
ground-truth. In the following section we analyze the effect of
the spatial and sparse regularizations when used separately and
combined as in (6). The performance of the proposed method
is then compared to two state-of-the-art OF algorithms. The
first method uses the standard HS formulation (3), whereas
the second approach considers a phase-based data term (based
on the monogenic signal used in [9]) and a patch-wise affine
motion parameterization.

A. Realistic Simulations

The synthetic evaluation dataset provided in [17] contains
simulated US sequences, which are to our knowledge among
the most realistic in the recent US literature. The ground-truth
flow fields provide the possibility of training the flow dictionar-
ies as well as evaluating the OF estimation accuracy. In this
work, we choose to use the LADdist sequence for learning
the dictionaries Du and Dv and the LADprox sequence for
evaluating the estimation performance. In both sequences, the
image size is 224×208, with a pixel size of 0.7×0.6 mm2, and
a frame rate of 22 Hz. The sequences represent a full cardiac
cycle of 34 consecutive frames (see Fig. 1 for an example).
Finally, note that all the sequences presented in this section
simulate cardiac pathologies2.

In order to evaluate the performance using these re-
alistic datasets, we use the endpoint error described in
[9]. For each pixel k, this error is computed as e(k) =
√

[u(k)− û(k)]2 + [v(k)− v̂(k)]2, where u(k),v(k) and
û(k), v̂(k) are the true and estimated horizontal and vertical
flow fields at pixel k.

B. Sparse and spatial regularizations

In this section, we analyze the effects of the spatial and
sparse regularization terms when used separately and com-
bined as in (6). In order to have a visual interpretation of the

Fig. 1: The estimated flow fields (left) and the corresponding
error maps (right) for the 20th frame of the LADprox sequence
with separated and combined sparse and spatial regularizations.

2More details about these pathologies and the data generation process can
be found at https://team.inria.fr/asclepios/data/straus/.



influence of each regularization term on the estimation process,
the estimated flow fields between a pair of consecutive diastolic
frames (20th and 21st frames) of the LADprox sequence
as well as the corresponding error maps are illustrated in
Fig. 1. The error maps correspond to the endpoint error for
the displacements of each pixel in the 20th frame. It is clear
from the error maps (right) that the combined use of the
spatial and sparse regularizations provides the smallest error
for this frame. The estimated motion fields (left) show that the
flow estimated with the spatial term alone is over-smoothed
and lacks structure, while the flow resulting from the sparse
regularization alone lacks smoothness. This is for example the
case for some patch borders that create nonexistent motion
boundaries.

These conclusions are confirmed in terms of flow esti-
mation accuracy for the entire sequence, detailed in Fig. 2
and Table I. Fig. 2 shows that the combination of the sparse
and spatial regularizations provides the smallest mean endpoint
errors for almost all the frames of the cardiac cycle. Table I
confirms that the combination of the two regularization terms
provides the best performance in terms of average mean and
standard deviation (std) for the 34 frames of the sequence.
Details about the parameter choices for the proposed OF
estimation method are given in Section IV-C.

Fig. 2: Mean endpoint error for the LADprox sequence with
separated and combined sparse and spatial regularizations.

Error Both Spatial Sparse

Mean 0.15 0.46 0.24
± Std 0.10 0.40 0.14

TABLE I: Average error means and stds for the LADprox
sequence using spatial, sparse and both regularizations.

C. Comparison with state-of-the-art methods

The parameters used for the OF estimation of the LADprox
sequence were selected by cross-validation. The size of the
dictionaries Du and Dv was 256 × 384 (corresponding to
patches of size 16 × 16 pixels for each direction) and the
maximum number of non-zero sparse coefficients was set to
K = 5. Generally, the parameter K is much smaller than the
number of atoms q in the dictionary.

As seen in Section III-B, the sparse regularization param-
eter λP of the proposed method was logarithmically increased
from 10−3 to 102 in 6 outer iterations. The spatial parameter
was adjusted to λS = 0.1. In the same way, the parameters
giving the best performance for the state-of-the-art algorithms
were selected. Those parameters were 0.75 for the spatial

regularization of the HS method (3) and 0.25 for the initial
wavelength of the monogenic signal algorithm.

Table II shows the average means and stds of the end-
point error for the 34 frames of the LADprox sequence. The
proposed method provides smaller average endpoint errors and
competitive estimation stds, resulting in a better performance
for the considered sequence. These results are confirmed for

Error Proposed HS Monogenic

Mean 0.15 0.22 0.30
±Std 0.10 0.08 0.18

TABLE II: Average endpoint error for the simulation sequence
LADprox.

the entire cardiac cycle as shown in Fig 3. The plots in Fig 3
show that the proposed method provides smaller errors for
the majority of the frames of the entire cardiac cycle. Less
differences can be observed at the end of the sequence (the end
of the cardiac cycle), where the displacements are relatively
small. Note that contrary to the proposed method, both the
HS and the monogenic signal methods use a coarse-to-fine
estimation scheme to cope with large displacements. Note also
that this coarse-to-fine implementation is the main difference
between the HS method used in this section and the proposed
approach with λP = 0 (i.e., proposed flow estimation method
with spatial regularization alone) studied in Section 1.

Fig. 3: Mean endpoint error for the LADprox sequence.

V. CONCLUSIONS

This paper introduced a new method for optical flow
estimation based on a classical spatial smoothness prior and a
sparsity-based regularization term incorporated into a standard
variational optical flow problem. The results obtained in this
paper showed the effectiveness of the combined spatial and
sparse regularizations, with competitive results when compared
to state-of-the-art algorithms in cardiac ultrasound imaging.

For future work, it would be interesting to conduct more
experiments, particularly for in vivo data. Since the proposed
approach considers a standard optical flow-based data fidelity
term, it could be applied to other imaging modalities (e.g.,
MRI) or could be used to learn dictionaries for different flow
types in the context of other clinical applications. Furthermore,
the temporal aspect could be incorporated in the optical flow
problem by exploiting more than a pair of images. Also, it
would be interesting to consider a fully robust approach in
order to handle potential data outliers and violations of the
smoothness assumption across myocardium borders.
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