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Abstract

The aim of this study was to characterise the mechanical behaviour of Cooper’s ligaments. Such
ligaments are collagenous breast tissue that create a three-dimensional structure over the entire
breast volume. Ten ligaments were extracted from a human cadaver, from which 28 samples
were cut and used to perform uniaxial tensile tests.

Histological analysis showed that the main direction of the fibres visible to the naked eye
corresponds to the orientation of the fibres on a microscopic scale. The specimens were cut
according to this orientation, which allowed the sample to be stretched in the main fibre direction.
From these experimental stretch/stress curves, an original anisotropic hyperelastic constitutive
law is proposed to model the behaviour of Cooper’s ligaments and the material parameter validity
is discussed.

1 Introduction

Numerous studies propose biomechanical modelling of human breast tissues with different goals
such as the localisation of breast tumours during surgery (Del Palomar et al., 2008; Samani
et al., 2007), the prediction of breast behaviour after the implantation of a prosthesis (Lapuebla-
Ferri et al., 2011), surgical training for biopsy (Azar et al., 2001) or computer assisted medical
interventions (Carter, 2009; Han et al., 2011; Ruiter et al., 2006). Most studies use Finite
Element (FE) modelling. The expected results are numerous and various, such as the prediction
of the shape of the breast, the pain experienced by a patient during a mammogram (Chung
et al., 2008), or the deformation of tissue due to a biopsy needle (Azar et al., 2000).

Different approaches of modelling are provided in the literature. Samani et al. (2001) pro-
posed to use a global model of the breast that did not include the various constituents of breast
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tissues such as skin, muscles, ligaments, fascia, fat or glandular tissue. Mı̂ra et al. (2018) high-
lighted in FE simulations the importance of suspensory ligaments as well as superficial and deep
fasciae. The models proposed by Azar et al. (2000, 2001) tried to consider the mechanical influ-
ence of the Cooper’s ligaments by using a global parameter to represent both fat and ligaments
or glandular tissue and ligaments.

All these FE simulations face difficulties in estimating the mechanical properties of each
constituent of breast tissue. If some constitutive laws were proposed in the literature to model
skin, muscle and fat tissues, very little data is available concerning breast ligaments and fasciae.

Among all the structures of the breast, the suspensory ligaments, and in particular the
Cooper ligaments, have a specific role. These ligaments form a kind of 3D mesh, which includes
fat lobules and mammary lobules. To our knowledge, there is no FE model that includes
the Cooper’s ligaments as such or uses the intrinsic mechanical properties of these ligaments.
This may be due to the fact that no experimental data is available to estimate the mechanical
properties of these ligaments.

In a preliminary study presented during the 25th Conference of the French Biomechanical
Society (Briot et al., 2020), an ex vivo experiment of the mechanical behaviour of Cooper’s
ligaments under uniaxial tensile test was performed (based on a cadaver dissection) in order to
propose a constitutive model for these ligaments. This paper aims at completing this preliminary
study, with a detailed analysis of the 28 uniaxial tensile tests and with the proposal of an
original anisotropic hyperelastic constitutive law to model the mechanical behaviour of Cooper’s
ligaments.

In the following, the ‘Material and Methods’ section introduces Cooper’s ligaments and
describes the uniaxial tensile tests. These tests are then analysed in the ‘Results and discussion’
section, with the proposal of an original anisotropic, hyperelastic constitutive law. The paper
ends with a conclusion and some perspectives.

2 Material and Methods

Firstly, details are given about the anatomy of the breast while secondly, the preparation of the
specimens and the mechanical tests are described.

2.1 Cooper’s ligaments

2.1.1 Anatomical description of the breast

The breast is a passive organ presenting a complex structure (Gaskin et al., 2020). Breast
anatomy can be described as a set of layers of various tissues as presented in Figure 1. The
organ originates in its upper part at the level of the clavicle and ends in its lower part at the
level of the sixth rib. Laterally, the breast is located between the sternum and the lateral part
of the rib cage starting from the axillary hollow.

From a superficial point of view, the breast is covered with skin, like the whole body. This
skin is mainly composed of three layers: the epidermis, the dermis and the hypodermis. In the
centre of the skin’s superficial layer is the nipple surrounded by the areola. Internally, the entire
breast rests on the pectoralis muscles, which are attached to the ribs.

Right in the middle of the breast volume is the mammary gland. This gland is made up of
lobules which are themselves responsible for the production of milk. These mammary lobules
group together to form the galactophoric ducts which join the nipple to convey the milk. The
mammary gland is itself surrounded by adipose tissue that forms the main volume of the breast.

2



Figure 1: Breast anatomical description

There are several conjunctive tissues composed of collagen throughout the entire breast
volume. The first type of collagenous tissue is fascia: the deep fascia located between the
pectoral muscles and the breast volume (gland + adipose tissue) and the superficial fascia
located between the skin and the breast volume. The second type of collagenous tissue are the
posterior and anterior lamellae that encompass the entire mammary gland. These two types
of collagenous tissue (fascia and lamellae) meet at the level of the clavicle and at the level of
the inframammary fold (located at the lower limit of the breast). The third type of collagenous
tissue are Cooper’s ligaments. Their anatomical description varies from one article to another.
Gefen and Dilmoney (2007) describe Cooper’s ligaments as the tentacles extending from the
mammary gland while Gaskin et al. (2020) describe them as a three-dimensional mesh forming
pockets of adipose tissue. This description of Cooper’s ligaments from Gaskin et al. (2020) is
adopted here since it corresponds to what was observed during our experimental dissections as
illustrated in Figure 2.

Figure 2: Dissection picture of the three-dimensional mesh of Cooper’s ligaments forming pockets
of adipose tissue
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2.1.2 Sample extraction

In accordance with French regulations on postmortem testing, a breast anatomical dissection was
performed at the Anatomy Laboratory, Grenoble Faculty of Medicine, on a female cadaver (100
years old, 164 cm tall and 70 kg). Because of the COVID-19 pandemic situation, fresh cadavers
were not available for dissection. The cadaver was embalmed using a formalin solution, injected
in the carotid artery and drained from the jugular vein and then preserved in a refrigerated
room. The dissection occurred 12 days after the death.

To access Cooper’s ligaments the following dissection technique was used. A lateral incision
was made, subclavicular then medioaxillary, to expose the chest wall and lay the breast inside
out on the sternum. The posterior part of the breast was thus exposed, which facilitates the
extraction of the cooperating ligaments. Dissection of the breast was then performed from the
posterior to the anterior plane. The corresponding cutting diagram is shown in Figure 3. The
advantage of this method is that it provides clear anatomical landmarks (the pectoralis muscles
are easily identifiable), which allows to better discern and locate the samples. Ten extractions
(from the two breasts of our single corpse) were carried out, from which 28 samples were cut.

As illustrated in Figure 2, Cooper’s ligaments form a 3D mesh structure that creates pock-
ets containing adipose tissue. This adipose tissue had to be removed to extract the Cooper’s
ligaments.

Figure 3: Dissection method

2.1.3 Histological analysis

By eye, the ligament gives the impression of having a structure with unidirectional fibres that
are aligned in the direction of the ligament. To confirm this visual inspection and to analyse
the tissue in detail, a histological analysis was performed.

Samples were conserved in formaldehyde, fixed first in formalin 10% for 24 hours at 4°C
and then embedded in parafin according to the usual protocol (Canene-Adams, 2013). Sections
of 3 µm were then realised with a microtome Leica RM 2245 (Wetzlar, Germany). The slices
were then stained with Hematoxylin Eosin Saffron (HES) to see nucleic acids and connective
tissue (amongst other collagen), or with Orcein staining to highlight elastin fibres. Slices were
then examined qualitatively by light microscopy focusing particularly on the elastin and collagen
fibres’ orientation. Pictures were acquired by a digital camera (Leica Microsystems) connected
to an optical microscope (Leica Microsystems) and are presented in Figure 4.
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Figure 4: Histology scan of a longitudinal section of a Cooper’s ligament-HES (hematoxylin
eosin saffron)-zoom x10, x20 and x300

Elastin and collagen fibres have a predominant orientation in the longitudinal direction of
the Cooper’s ligament which corresponds to the direction visible to the naked eye. With the
HES staining technique, elastin fibres appear purple on the histological scan and collagen fibres
appear golden yellow.

The images confirm that the tissue fibres are oriented in one main direction. The material
can thus be considered as a unidirectional composite material with the direction of reinforcement
corresponding to the main direction of the ligament.

2.2 Description of uniaxial tensile tests

The histological study showed that the material has a fibrous direction. So, in principle, tests
along two directions are needed to perfectly characterize the tissue, namely the fibre direction
and the orthogonal one. Nevertheless, given the geometry of the ligaments (Figure 2), it was not
possible to cut specimens along the orthogonal direction; so the study was limited to uniaxial
tensile tests in the direction of the fibres.

The tensile tests were carried out using a MTS machine model C42 503, equipped with
a +/-25N load cell. This tensile machine was equipped with a watertight tank (Masri et al.,
2017). To get as close as possible to the physiological conditions of stress, the tank was filled
with a physiological saline maintained at a temperature of 37°C. Each uniaxial tensile test was
carried out in the watertight tank by using immersed grips, an illustration at which is presented
in Figure 5. These grips have the specific feature of being able to prevent the samples from
slipping. The tests were conducted at a speed of 1%/s. A small pre-load in the range of 0.1N
was applied to the samples to ensure their initial shape and avoid possible buckling.

The force and displacements were measured for each test, allowing for the evaluation of the
stretch and the stress in the ligament. The uniaxial Cauchy stress is defined by:

σ =
F

A
(1)

where F is the force applied to the sample and A the current cross-section area of the sample
(evaluated from the initial section with the incompressibility hypothesis). The stretch is defined
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Figure 5: Cooper’s ligament sample in grips without the watertight tank for photography needs

by:

λ =
l

L0
(2)

where l is the current grip-to-grip length of the sample and L0 is the initial grip to grip length
of the sample.

3 Results and discussion

3.1 Specimen analysis

The geometry of Cooper’s ligaments is different depending on their location in the breast, and
their width and thickness can vary significantly. This explains why samples of different shapes
were extracted from the dissection: sample lengths vary between 13.9 mm and 15.1 mm, while
their widthes and thicknesses were measured between 1.4 mm and 4.9 mm and between 0.04
mm and 0.3 mm, respectively.

Normally, a tensile test requires that the sample height/width ratio is sufficient to remain
within the uniaxial reaction assumptions. Figure 6 shows the distribution of this ratio for all
28 specimens. Specimens with a ratio of less than 5 are supposed to be under the limit of
the uniaxial stress assumptions. But it should be remembered that the shape and size of the
specimens are mainly related to the morphological conditions and to the location where the
samples were taken.

Cooper’s ligament samples have a fluctuating proportion of fat which strongly influences the
thickness of the samples. Although the outer fat was removed as carefully as possible, it was
very difficult and sometimes impossible to remove the central fat from the thicker specimens.
Thus, when the samples were the thickest, this meant that adipose tissue could be present in
the specimen. Conversely, when the specimens were thinner, this encouraged the appearance of
holes in the specimen. In both cases, this could distort the homogeneity.

Because of this high variability in terms of sample thickness, it was decided to define three
groups gathering (1) the ‘too thin’ samples with thicknesses below 0.063 mm, (2) the ‘too thick’
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Figure 6: Histogram of height to width ratio for the different specimens

samples with thicknesses above 0.21 mm and (3) the other samples with thicknesses that range
between 0.063 and 0.21 mm which correspond to a standard deviation thickness around the
average value.

3.2 Experimental results

A typical stress/stretch curve is presented in Figure 7. The beginning of the curve (λ < 1.01)
has a relatively low slope and then presents a hardening until tearing starts to occur (λ = 1.045).
The curve then presents different angular points corresponding to the progressive rupture of the
ligament. Several breaks can be observed before the measured stress starts to decrease. In this
study, the beginning of the tearing is assumed as the rupture of the specimen. Therefore, only
the first part of the curve, the black dotted line, in Figure 7, is considered here. In the remaining
paper, the curves will be only presented until the first crack apparition. This will be considered
as the rupture point.

The 28 performed uniaxial tensile tests were divided into five groups according to the criteria
(height/width ratios and thicknesses) discussed in the previous Section (Section 3.1):

� Group 1: all tests with a height/width ratio of less than 5

� Group 2: all tests with a height/width ratio higher than 5

� Group 3: all tests with a thickness of less than 0.063mm

� Group 4: all tests with a thickness ranging between 0.063 and 0.21mm

� Group 5: all tests with a thickness higher than 0.21mm

Two other subdivisions of the tests were also proposed:

� Standard (Stand): which includes tests that satisfy the normative criteria (ratio>5 and
0.063mm<thickness<0.21mm).

� Non-standard (NStand): all tests that do not respect the classical standard in terms of
ratio and thickness.
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Figure 7: Typical stress/stretch curve of a Cooper’s ligament uniaxial tensile test

These two subdivisions are plotted in Figure 8, thus summarizing the 28 performed uniaxial
tensile tests (each presented until the first break). It is to note that a wide dispersion in the
results can be observed despite the samples coming from the same person. However, the overall
shape of the curves between the starting point and the first tissue break is similar for all the
tests. The curves follow a highly non-linear form, which is classical for human soft tissues.

The first rupture point of each curve is measured and the results are summarised in Table 1.

3.3 Modelling

The ligaments have a clear non-linear elastic behaviour. It is assumed, in a first approximation,
to represent them with a hyperelastic constitutive equation. If the ligaments would have been
considered as one-dimension structures, an isotropic constitutive law could have been adopted
(Briot et al., 2020). The method was effective in describing the stress-strain curve in the fibre
direction but it is clear that the response in the orthogonal direction is not representative.
However, following our histological observations (Figure 4), such Cooper’s ligaments present a
clear composition of fibres and extracellular matrix. Therefore, even if only one loading direction
has been tested, it is decided to use an anisotropic constitutive equation. There exist many
constitutive equations (and the corresponding strain energy density W ) for such anisotropic
materials (Chagnon et al., 2015). Most equations are composed of two parts, one isotropic part
representing the matrix (Wmatrix) and an anisotropic part representing the fibres (Wfibres) so
that W = Wmatrix +Wfibres. This approach will be used here. Due to the limitation of loading
cases (it is impossible to perform biaxial or planar tensions test on Cooper’s ligaments), it is
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Figure 8: Results of uniaxial tensile tests for all the Cooper’s ligament samples

Group
Nb of tests
in a group

Average Min Max
Stand.
Dev.

Rupture Stretch in %

1 16 7.7 3.0 15 3.6

2 12 9.8 3.4 16 4.0

3 3 7.8 4.3 15 6.0

4 20 9.1 3.0 16 3.9

5 5 8.5 3.4 13 3.4

Stand 8 7.4 3.0 11 3.0

NStand 20 9.1 3.4 16 4.1

All tests 28 8.9 3.0 76 3.9

First Rupture Stress in MPa

1 16 2.6 0.24 13 3.7

2 12 1.5 0.28 3.2 0.92

3 3 4.9 0.33 13 7.2

4 20 1.7 0.24 6.1 1.3

5 5 1.3 0.28 2.8 0.92

Stand 8 1.9 0.24 6.1 1.9

NStand 20 1.4 0.28 3.2 0.88

All tests 28 2.0 0.24 13 2.5

Table 1: First rupture values estimated from the 28 experimental tests

decided to focus on representative constitutive equations with a limited number of parameters
to avoid non-physical fitting.

The isotropic part of the model is assumed as:

� Neo-Hookean modelling (Treloar, 1943):

Wmatrix = C1(I1 − 3) (3)

For the anisotropic part, two models of the literature with a limited number of parameters
will be evaluated, namely a polynomial form and an exponential one:
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� Triantafyllidis and Abeyaratne (1983) modelling:

Wfibres = C2(I4 − 1)2 (4)

� Holzapfel et al. (2000) modelling:

Wfibres =
k1
2k2

(
ek2(I4−1)2 − 1

)
(5)

Where C1, C2, k1 and k2 are material parameters, I1 represents the first invariant of the

right Cauchy Green strain tensor C and I4 the fourth invariant defined by trace (C · −→a0 ⊗ −→a0),
where −→a0 is the initial orientation of the fibres in the ligament (in our case it corresponds to the
tensile direction). The uniaxial Cauchy stress, projected along the stress axis, is defined in the
incompressible framework for each model by:

σ = 2

(
λ2 − 1

λ

)
∂W

∂I1
+ 2λ2

∂W

∂I4
(6)

The Triantafyllidis and Abeyaratne model has two parameters. The first parameter is related
to the Neo-Hookean model which models the behaviour of the extracellular matrix, C1. The
second parameter is linked to the behaviour of the fibres, C2. The Holzapfel model also has the
C1 parameter for the matrix but has two other parameters k1 and k2 for the fibres’ behaviour.

Each experimental curve is fitted independently for the 28 tests. The results of the material
parameter optimization are presented in Table 2. In this table, for each model, the calculated
error is the average of the point-by-point errors in the least squares sense. It appears that for both
models C1 was obtained null in 28 cases out of 28. This would mean that the contribution of the
extracellular matrix (Laurent, 2018) is zero although it is present in the material. This underlines
that the results of a global identification disagree with the experimental observations. This result
is due to the fact that the two equations of both models link the material parameters to describe
the initial slope of the material. This initial slope can be approximated by a linearisation of
equation 6 where we get what some might call the Young’s modulus E of the material.

� Triantafyllidis modelling:

E = 6C1 + 8C2 (7)

� Holzapfel modelling:

E = 6C1 + 4k1 (8)

The limits of both modelling are reached here with a small number of test conditions and a
global identification of the behaviour of the material. To overcome this problem, it is proposed
to introduce a hyperelastic strain energy density where the fibre parameters are only involved in
large strain. The objective is to fit the isotropic and anisotropic parameters in different strain
zones in order to ensure the uniqueness of the material parameters. It is often considered in
literature that the tissue should endure some percents of deformation before being stretched.
Jemio lo and Telega (2001) proposed a series development depending of four invariants, isotropic
and anisotropic ones:

Wjemiolo =
∑
klmn

cklmn(I1 − 3)ak(I2 − 3)bl(I4 − 3)cm(I5 − 3)dn (9)
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In a first approach it is decided to limit the number of parameters and keep only two terms:

Wfibres = C1(I1 − 3) + b1(I4 − 1)b2 (10)

b1 and b2 being material parameters describing the strain hardening. The initial slope is
calculated by a linearisation of the strain/stress curve, all the details are given in the appendix:

E = 6C1 (11)

If b2 = 2, the initial slope is given by:

E = 6C1 + 8b1 (12)

In the first case, the slope is only depending on the isotropic parameter which is what is
required. In the other case (b2 = 2), E is not only dependent on C1, but finding b2 strictly equal
to 2 is very rare and nearly impossible in a fitting procedure. As a consequence, the fitting
process can be decomposed into two steps, C1 is first fitted at the beginning of the experimental
stretch/stress curves and the two other parameters b1 and b2 are fitted to describe the rest of
the curves.

The values of the parameters estimated for each test are presented in Table 2. First, to
note, no C1 parameter was fitted to 0. As an example, for test N°5, Figure 9 superimposes the
analytical stretch/stress curves computed for all the three models. Those three models were run
for all samples. Error bars plotted in this figure correspond to uncertainties in the measurements
due to uncertainties in the estimation of the ligament section (width and thickness). If one
looks at the curves globally, the three models seem to give results that are consistent with the
experimental errors. However, if one zooms in on the initial part of the curve, it can be observed
that the power law model is the only one which is able to correctly describe the initial slope.
Out of all 28 tests, the Triantafyllidis modelling is within the model validity area (represented
by the error bars) in 36% of the cases. The Holzapfel modelling is within the model’s area of
validity in 57% of the cases. The power modelling is within the validity range of the model in
93% of the cases.

Since all samples come from the same body, the effects of dispersion do not involve variations
from one individual to another. Dispersion can therefore only be explained by the fact that
the samples are different and because of classical experimental errors and errors arising from
difficulties in characterising biological tissue.

Considering the non-linearity of the results obtained, two parameters are interesting to deal
with: the slope at the origin and the stiffening (slope at a strain of 5%). The experimental results
present a non neglectible dispersion, the standard deviation is 5 MPa for Young’s modulus and
20MPa for tangent modulus.

Further to this, a study of the dispersion of the Young’s modulus was carried out in order
to deduce the range of variation of the Young’s modulus of the Cooper’s ligaments.

Table 3 shows for each test the Young’s modulus deduced from the C1 parameter of the new
model with the following law:

E = 6C1 (13)

Figure 10 shows the overall distribution of the Young’s moduli obtained. A distribution law
can then be set up to best represent the distribution established.

Frechet’s law was chosen for such a distribution because it is generally used to represent the
frequency of occurrence of singular phenomena. Its distribution law is defined as follows:
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Figure 9: Comparaison of all models for specimen number 5

P (X ≤ x) =

{
e−(x

s
)α if x > 0

0 else
(14)

Where α > 0 is a shape parameter and s > 0 a scale parameter.

As plotted in Figure 10, the Frechet law that best fits the distribution is obtained with
parameters α = 1.65 and s = 3.99.

The P-value relating the theoretical distribution of Frechet’s law to the current distribution
of Young’s moduli is 0.88. Such a P-value is high, much larger than the decision threshold of
0.05 (commonly used in frequentist statistics to decide whether the probability that the law
correctly represents the data is large or small; here 0.88 is a high probability) thus providing a
very good representation of the Young’s moduli distribution with this Frechet’s law.

With such a law, the main mode is 3.00 MPa (corresponding to the peak value of the law)
and 80% of the Young’s moduli population is ranked between 1MPa and 10MPa with a high
probability around the mode (see Figure 10).

Such a dispersion of Young’s moduli can be considered as high (around one order of magni-
tude). However, it should be compared with the dispersion of Young’s modulus values found in
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Test Triantafyllidis Holzapfel New model
C1

(MPa)
C2

(MPa)
Error
(MPa)

C1

(MPa)
k1
(MPa)

k2
(MPa)

Error
(MPa)

C1

(MPa)
b1
(MPa)

b2
(MPa)

Error
(MPa)

1 0 1.23 0.158 0 1.75 5.39 0.051 0.751 3.00 3.13 0.018

2 0 0.569 0.028 0 1.05 1.20 0.016 0.453 0.675 2.61 0.010

3 0 0.388 0.013 0 0.710 1.52 0.008 0.377 0.446 2.72 0.005

4 0 1.38 0.016 0 2.48 13.7 0.009 1.59 3.56 3.11 0.008

5 0 1.18 0.126 0 1.50 15.9 0.042 0.554 5.88 3.29 0.016

6 0 0.668 0.147 0 0.706 12.2 0.022 0.345 5.03 3.93 0.004

7 0 5.35 0.533 0 6.72 19.4 0.224 1.59 26.6 3.14 0.096

8 0 3.18 0.284 0 3.66 36.7 0.071 1.62 40.6 3.62 0.022

9 0 0.646 0.018 0 1.05 21.5 0.005 0.657 3.64 3.39 0.003

10 0 7.30 0.741 0 11.0 4.61 0.339 3.05 14.3 2.79 0.137

11 0 1.25 0.227 0 1.27 23.2 0.050 0.260 13.5 3.69 0.008

12 0 2.80 0.136 0 4.37 14.4 0.058 1.87 8.56 2.95 0.029

13 0 2.09 0.023 0 3.41 100 0.006 2.55 301 4.45 0.008

14 0 1.52 0.105 0 2.05 25.7 0.035 0.854 8.94 3.23 0.015

15 0 1.72 0.020 0 3.09 15.1 0.011 2.00 5.16 3.18 0.009

16 0 1.31 0.086 0 2.09 6.85 0.039 0.843 2.87 2.87 0.019

17 0 1.69 0.111 0 2.72 5.30 0.051 1.05 3.31 2.82 0.023

18 0 0.964 0.040 0 1.42 28.9 0.011 0.831 7.52 3.45 0.006

19 0 4.59 0.161 0 6.20 81.4 0.043 3.78 126 3.74 0.027

20 0 1.63 0.244 0 1.96 11.3 0.095 0.426 6.41 3.19 0.037

21 0 0.813 0.018 0 1.19 114 0.005 0.848 55.4 4.07 0.005

22 0 0.930 0.055 0 1.31 24.4 0.013 0.704 6.51 3.42 0.005

23 0 0.662 0.009 0 1.15 42.2 0.005 0.811 16.1 3.96 0.005

24 0 1.04 0.132 0 1.23 19.2 0.030 0.541 8.41 3.61 0.007

25 0 0.882 0.012 0 1.62 18.1 0.010 1.05 2.33 3.11 0.010

26 0 2.56 0.053 0 4.09 49.4 0.018 2.81 63.1 3.91 0.017

27 0 0.946 0.070 0 1.30 19.9 0.018 0.642 5.77 3.38 0.006

28 0 1.06 0.108 0 1.34 19.5 0.029 0.523 6.40 3.35 0.007

Table 2: Material parameters estimated for each fit of the 28 stretch/stress curves

the literature on other human soft tissues. This can be done, for example, thanks to the syn-
thesis work carried out by Gefen and Dilmoney (2007). For leg muscle fascia (to our knowledge,
no estimations were provided for pectoral fascia), the Young’s modulus values vary between 100
MPa and 2000 MPa. For fat tissue, the data varies between 0.5 kPa and 25 kPa. For the gland,
the moduli range from 7.5 kPa to 66 kPa. Finally, the values provided for knee ligaments (taken
as a reference for Cooper’s ligaments in the Gefen and Dilmoney (2007) study) vary between 80
MPa and 400 MPa. These values show, therefore, similar, or even larger, dispersions as the ones
measured for Cooper’s ligaments. Stiffening can be seen by the slope of the curve at the largest

strains, for example at 5%, or by the evolution of the parameters of the hyperelastic constitutive
equation. The stiffening of the material is characterised by the increase of the tangent modulus
with the strain. To evaluate the stiffening, the tangent modulus at 5% can be analysed (5% is
large enough to reach the hardening and few enough to reach the breaking point).

There is a large dispersion of the parameters describing the anisotropic power law. This is
due to the significant differences in the experimental results obtained. It can be seen that there
can be a ratio of more than 10 on the stress levels for a given strain. This result generates
large variations in the parameters of the constitutive equation, due to the curvature of the
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Test
Young’s
Modulus
(MPa)

Tangent
Modulus
(MPa)

1 4.51 11.2

2 2.72 6.05

3 2.26 4.20

4 9.54 14.9

5 3.32 14.8

6 2.07 5.19

7 9.54 78.3

8 9.72 53.6

9 3.94 8.98

10 18.3 74.9

11 1.56 15.1

12 11.2 36.6

13 15.3 NaN

14 5.12 23.4

15 12.0 18.6

16 5.06 15.7

17 6.30 18.3

18 4.99 15.0

19 22.7 NaN

20 2.56 17.0

21 5.09 NaN

22 4.22 13.8

23 4.87 NaN

24 3.25 12.5

25 6.30 NaN

26 16.9 NaN

27 3.85 13.0

28 3.14 14.2

Table 3: Young’s modulus deduced form C1 (New modelling) and Tangent modulus (at a strain
of 5%) for each tests

experimental results. Depending on the curvature of the stiffening, it can be more described by
the multiplicative parameter b1 or the power parameter b2, so there is a compensation between
the two parameters, which is the limit of the model with respect to the experimental dispersion
at the stiffening.

4 Conclusion

For the first time in the literature, this paper has characterised the behaviour of breast Cooper’s
ligaments through uniaxial tensile tests. A new anisotropic, hyperelastic constitutive model had
to be introduced in order to fit the experimental stretch/stress curves measured on 28 specimens
in this particular case where data is limited.

By looking at the curves for small strains, it was interesting to estimate an order of magnitude
of the Young’s modulus (E = 6C1 (11) for our proposed constitutive model) for each specimen,
despite the dispersion observed. Our results show a distribution of the Young’s modulus values
that ranges between 1 MPa and 10 MPa, with a mode at 3.00 MPa.
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Figure 10: Histogram representing the distribution density of the 28-Young’s moduli obtained
from tests

Such results are very different from the Young’s modulus values of the Cooper’s ligaments
which can be found in Gefen and Dilmoney (2007) and that vary between 80 MPa and 400 MPa.
However, these values are questionable since they have been deduced from other collagenous
tissues such as the knee ligaments. It is also interesting to note that the 1 MPa – 10 MPa
ranging values obtained from our work show that Cooper’s ligaments are two to three order of
magnitude stiffer than the other constituents of breast tissue (fat, gland and muscle).

Finally, we must acknowledge that our results were obtained from a single cadaver, namely
the body of a 100-year-old embalmed woman. This is a strong limitation and our conclusion will
have to be verified with a much larger cohort of bodies, including fresh cadavers. Nevertheless,
the results of the analysis are not disturbed by variations from one individual to another. And
it remains, to our knowledge, the first study with quantitative proposals for the constitutive
behaviour of Cooper’s ligaments that can be now used in Finite Element models of the human
breast (Mı̂ra et al., 2018).
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Appendix - Calculation of the initial modulus

An uniaxial tension in ~e1 direction with fibres oriented along ~e1 is considered.

1 General equations

Stress-Strain relation for a hyperelastic energy density depending of I1 and I4 is defined as in a
general way and can be written in uniaxial extension:

¯̄σ = −p ¯̄I + 2
∂W

∂I1
¯̄B + 2

∂W

∂I4
¯̄F ~a0 ⊗ ~a0

¯̄F Tσ 0 0
0 0 0
0 0 0

 = −p

1 0 0
0 1 0
0 0 1

+ 2
∂W

∂I1

λ2 0 0
0 1

λ 0
0 0 1

λ

+ 2
∂W

∂I4

λ2 0 0
0 0 0
0 0 0

 (1)

Let’s consider λ = 1 + ε where ε is the nominal strain. In the following, ε is considered small
for linearisation.

2 Neo-Hookean and Triantafillidis model

W = C1(I1 − 3) + C2(I4 − 1)2

∂W

∂I1
= C1

∂W

∂I4
= 2C2(I4 − 1)

σ = − 2C1

1 + ε
+ 2C1(1 + ε)2 + 4C2

(
(1 + ε)2 − 1

)
(1 + ε)2

σ = (6C1 + 8C2)ε+ o(ε)

E = 6C1 + 8C2

(2)

The Young Modulus can be identified by 6C1 + 8C2.

3 Neo-Hookean and Holzapfel model

W = C1(I1 − 3) +
k1
2k2

(
ek2(I4−1)2 − 1

)
∂W

∂I1
= C1

∂W

∂I4
= k1(I4 − 1)ek2(I4−1)2

σ = − 2C1

1 + ε
+ 2C1(1 + ε)2 + 2

(
k1
(
(1 + ε)2 − 1

)
ek2((1+ε)

2−1)
2)

(1 + ε)2

σ = (6C1 + 4k1)ε+ o(ε)

E = 6C1 + 4k1

(3)

1



The Young Modulus can be identified by 6C1 + 4k1.

4 Neo-Hookean and New Model

W = C1(I1 − 3) + b1(I4 − 1)b2

∂W

∂I1
= C1

∂W

∂I4
= b1b2(I4 − 1)b2−1

σ = − 2C1

1 + ε
+ 2C1(1 + ε)2 + 2b1b2

(
(1 + ε)2 − 1

)b2−1
(1 + ε)2

σ = −2C1 (1 − ε+ o(ε)) + 2C1 (1 + 2ε+ o(ε)) + 2b1b2
(
2ε+ ε2

)b2−1
(1 + 2ε+ o(ε))

σ = 6C1ε+ 2b1b2(2ε)
b2−1 (1 + 2ε) + o(ε)

(4)

For b2 = 2:

σ = 6C1ε+ 8b1ε (1 + 2ε) + o(ε)

σ = (6C1 + 8b1)ε+ o(ε)

E = 6C1 + 8b1

(5)

The Young Modulus can be identified by 6C1 + 8b1.

For b2 > 2:

σ = 6C1ε+ 2b1b2(2ε)
b2−1 (1 + 2ε) + o(ε)

σ = 6C1ε+ o(ε)

E = 6C1

(6)

The Young Modulus can be identified by 6C1.
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