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Hybrid continuous/network models for large scale simulation

Simulating Mass Transfer in the brain: a multi-scale problem

Multi-scale problem (arterio-venous, capillary, parenchyma)

Continuous representation of Parenchyma (Nicholson 2001, Kojic 2017, Holter 2017)

Still need to explicitely resolve the vessels

Upscale the capillary bed, including vessels and parenchyma

Coupling with explicit arterio-venous tree is different for the capillaries and
parenchyma. Two concentrations necessary.
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Homogenization - Equations

1 Homogenization - Equations

2 Fictitious Domain Framework

3 Verification
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Homogenization - Equations Microscopic Problem

Mass transfer model at capillary scale

Hypotheses

Parenchyma and endothelium are purely
diffusive domains

Parenchyma + endothelium = tissue,
Ωp ∪ Ωe = Ωt

Dt spacially varying (small in Ωe)

Red blood cells are neglected

Two-phase capillary bed model

∂τcβ + u ·∇cβ −Dv∆cβ = 0 in Ωβ
∂τct −Dt∆ct = 0 in Ωt

cβ = ct on ∂Ωβt
Dv∇cβ ·n = Dt∇ct ·n on ∂Ωβt
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Homogenization - Equations Volume averaging

Upscaled representation of the capillary domain

Upscaled model for the two concentrations

εβ∂τ 〈cβ〉β + (εβ 〈u〉β − uββ) ·∇ 〈cβ〉β − uβt ·∇ 〈ct〉t + τm(〈cβ〉β − 〈ct〉t)
= ∇ · (Kββ∇ 〈cβ〉β) +∇ · (Kβt∇ 〈ct〉t)

εt∂τ 〈ct〉t − utt ·∇ 〈ct〉t − utβ ·∇ 〈cβ〉β + τm(〈ct〉t − 〈cβ〉β)

= ∇ · (Ktt∇ 〈ct〉t) +∇ · (Ktβ∇ 〈cβ〉β)

Equations solved on a domain without explicit representation of vessels

Presence of capillary network taken into account through effective coefficients
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Homogenization - Equations Volume averaging

Volume averaging

Averaging equations

〈∂τcβ + u ·∇cβ −Dv∆cβ〉 = 0 in Ωβ
〈∂τct −Dt∆ct〉 = 0 in Ωt

Decomposition in averaged and deviation

cβ = 〈cβ〉β + c̃β
ct = 〈ct〉t + c̃t

〈c̃β〉 = 0
〈c̃t〉 = 0

We obtain equations on 〈cβ〉β and 〈ct〉t

Equations depend on deviation terms c̃β and c̃t

Need closure equations on c̃β and c̃t.

Subtracting equations on the mean to microscopic equations leads to equations
on c̃β and c̃t.

Deviation terms as linear combination of averaged values and their gradients

c̃β = bββ ·∇ 〈cβ〉β + bβt ·∇ 〈ct〉t − sβ
(
〈cβ〉β − 〈ct〉t

)
c̃t = btβ ·∇ 〈cβ〉β + btt ·∇ 〈ct〉t − st

(
〈cβ〉β − 〈ct〉t

)
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Homogenization - Equations Volume averaging

Volume averaging

Decomposition of deviation terms

c̃β = bββ ·∇ 〈cβ〉β + bβt ·∇ 〈ct〉t − sβ
(
〈cβ〉β − 〈ct〉t

)
c̃t = btβ ·∇ 〈cβ〉β + btt ·∇ 〈ct〉t − st

(
〈cβ〉β − 〈ct〉t

)

Effective coefficients associated

uββ =
〈
ũsβ

〉
−
Dβ

V

∫
∂Ωβt

nβtsβdA

τm =
1

V

∫
∂Ωβt

nβt ·Dβ∇sβdA

Closure problem on sβ and st coefficients:

−∇ · (Dβ∇sβ)− εβτm + u ·∇sβ = 0 on Ωβ
−Dt∆st − εtτm = 0 on Ωt

τm −
1

V

∫
∂Ωβt

(
n ·Dβ∇sβ

)
dV = 0

sβ − st = 1 on ∂Ωβt
n ·Dβ∇sβ − n ·Dt∇st = 0 on ∂Ωβt〈

sβ
〉β

= 0

〈st〉t = 0

Take-home idea

Obtaining the effective coefficients necessitates to solve PDEs on a
Representative Elementary Volume of the micro-structure
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Homogenization - Equations Volume averaging

Computational Framework

Solution proposed:

C++/Parallel Finite element library 1Feel++

Use a distance function field to capture the domain geometries
I Mesh adaptation from distance function

I Sub-domain localization to solve Stokes problem

I Fictitious domain to solve advection/diffusion problem

1Prud’homme et. al. (2016), feelpp.org
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Fictitious Domain Framework

1 Homogenization - Equations

2 Fictitious Domain Framework

3 Verification

Vincent Doyeux (IMFT) ECCM-ECFD 15 June 2018 8 / 21



Fictitious Domain Framework

Network geometries

(150 µm)3 network.
Secomb (2000)

(300 µm)3 network.
Ross (2005), Tsai (2009), Kleinfeld (2011),

Kaufhold 2012, Blinder (2013)

Segment networks extracted from biological images (center-line detection)

Need to mesh inner and outer domains (vessels and tissue)

Difficult to mesh automatically with CAD software (design of bifurcations)

Geometry representation needs to be robust and automated

Solution: use a fictitious domain method
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Fictitious Domain Framework

Levelset field

Defining φi, the distance field to centerline Si of a vessel of radius ri

The distance field to the closest vessel boundary of the network is:

φ(x) =
Nb Vessels

min
i=0

dist(x, Si)− ri

Properties of φ:

φ(x) < 0 if x ∈ Ωβ

φ(x) > 0 if x ∈ Ωt

φ(x) = 0 if x ∈ ∂Ωβt

Vincent Doyeux (IMFT) ECCM-ECFD 15 June 2018 10 / 21



Fictitious Domain Framework

Mesh adaptation from distance function

Target mesh size field calculated from levelset field

h(x) =


hmin, |φ(x)| ≤ R1,

α|φ(x)|+ β, R1 ≤ |φ(x)| ≤ R2,
hmax, |φ(x)| ≥ R2
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Fictitious Domain Framework

Transport equations

Two domain problem

∂τcβ + u ·∇cβ −Dv∆cβ = 0 in Ωv
∂τct −Dt∆ct = 0 in Ωt

cβ = ct on ∂Ωβt
Dβ∇cβ ·n = Dt∇ct ·n on ∂Ωβt

Prescribed B.Cs for cβ on ∂Ωβ \ ∂Ωβt
Prescribed B.Cs for ct on ∂Ωt \ ∂Ωβt

One domain problem with spacialized coefficients

∂τc+ u ·∇c−D(φ)∆c = 0 in Ω

Prescribed B.Cs for c on ∂Ω

Velocity u is obtained by solving Stokes equation on
the vessel domain only.

Diffusion coefficient spatialized to take into account
the BBB.
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Fictitious Domain Framework

PDEs solved by our framework
The frameworks of fictitious network allows to solve:

The microscopic problem (DNS)

Closure equations to get the effective
coefficients

Upscaled model

Monolitic solver used for the
upscaled model

Mesh is a simple box
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Verification

1 Homogenization - Equations

2 Fictitious Domain Framework

3 Verification
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Verification Periodic Test Case

Test Case, order 3 network.

Representative Elementary Volume, size (2 × 2 × 2)

Geometry and mesh. Velocity field. Closure variable
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Verification Periodic Test Case

Comparison DNS - Homogenized model

Direct Numerical Simulation (DNS)

DNS

Number of elements (tetrahedrons):
8.5× 106

Computational Cost:
1h on 100 cores

Darcy Scale

Darcy Scale

Number of elements (tetrahedrons):
3× 104

Computational Cost:
10 min on 20 cores

Vincent Doyeux (IMFT) ECCM-ECFD 15 June 2018 16 / 21



Verification Periodic Test Case

Simulation Visualization

1
9
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Verification Periodic Test Case

Simulation Visualization
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Verification Periodic Test Case
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Verification Periodic Test Case

Simulation Visualization

9
9

Vincent Doyeux (IMFT) ECCM-ECFD 15 June 2018 17 / 21



Verification Periodic Test Case

Quantitative comparison
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Verification Anatomical network case

Anatomical Network

1
4
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Verification Anatomical network case
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Verification Anatomical network case
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Verification Anatomical network case
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Verification Anatomical network case

Quantitative comparison
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Verification Anatomical network case

Conclusion and perspective

Conclusion

Two-phase representation of the capillaries and tissue

Sucessful upscaling of the capillary bed

Framework using fictitious domain for DNS and Closure equations

In the future...

Coupling with arterio-venous tree (1D-3D) or (3D-3D)

Include the RBCs

Include non linear consumption in tissue (Michaelis-Menten like)
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Thank you!
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Backup slides

Use of the distance function

Distance function used to:

define a sub-domain:

Ωvh ⊂ Ωh, Ωvh =
⋃
i

(
Ωei | π

P0
dh

Ωei
(φ) < 0

)
An example of projection function on a elements is given by:

π
P0
dh

Ωei
=

{
−1, if φ < 0 on at least one dof of Ωei
1 else

define continuously quantities having a different value in the domains thanks to
a smoothed Heaviside function (level set method):

Hε(φ) =


0, φ ≤ −ε,

smooth variations, −ε ≤ φ ≤ ε,
1, φ ≥ ε
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Backup slides

All results, order 3
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