Upscaling mass transfer in brain capillary networks

Vincent Doyeux, Yohan Davit, Michel Quintard, Sylvie Lorthois

To cite this version:

Vincent Doyeux, Yohan Davit, Michel Quintard, Sylvie Lorthois. Upscaling mass transfer in brain capillary networks. ECCM-ECFD 2018 (6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) and the 7th European Conference on Computational Fluid Dynamics (ECFD 7), Jun 2018, Glasgow, United Kingdom. pp.0. hal-03656518

HAL Id: hal-03656518

https://hal.science/hal-03656518

Submitted on 2 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This presentation is published in: http://oatao.univ-toulouse.fr/20439

To cite this version:

Doyeux, Vincent and Davit, Yohan and Quintard, Michel and Lorthois, Sylvie. Upscaling mass transfer in brain capillary networks. (2018) In: ECCM-ECFD 2018 (6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) and the 7th European
Conference on Computational Fluid Dynamics (ECFD 7), 1115 June 2018 (Glasgow, United Kingdom). (Unpublished)

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

Upscaling mass transfer in brain capillary networks

Vincent Doyeux, Yohan Davit, Michel Quintard, Sylvie Lorthois

Fluid Mechanics Institute of Toulouse (IMFT) - France

Hybrid continuous/network models for large scale simulation

Simulating Mass Transfer in the brain: a multi-scale problem

- Multi-scale problem (arterio-venous, capillary, parenchyma)
- Continuous representation of Parenchyma (Nicholson 2001, Kojic 2017, Holter 2017)
- Still need to explicitely resolve the vessels
- Upscale the capillary bed, including vessels and parenchyma
- Coupling with explicit arterio-venous tree is different for the capillaries and parenchyma. Two concentrations necessary.

Macroscopic scale

Microscopic scale

Sub-Microscopic scale
(1) Homogenization - Equations
(2) Fictitious Domain Framework
(3) Verification

Mass transfer model at capillary scale

Hypotheses

- Parenchyma and endothelium are purely diffusive domains
- Parenchyma + endothelium $=$ tissue, $\Omega_{p} \cup \Omega_{e}=\Omega_{t}$
- D_{t} spacially varying (small in Ω_{e})
- Red blood cells are neglected

Two-phase capillary bed model

$$
\begin{array}{rll}
\partial_{\tau} c_{\beta}+\boldsymbol{u} \cdot \boldsymbol{\nabla} c_{\beta} & -D_{v} \Delta c_{\beta}=0 \quad \text { in } \Omega_{\beta} \\
\partial_{\tau} c_{t} & -D_{t} \Delta c_{t}=0 \quad \text { in } \Omega_{t} \\
c_{\beta} & = & c_{t} \\
D_{v} \boldsymbol{\nabla} c_{\beta} \cdot \boldsymbol{n} & =D_{t} \boldsymbol{\nabla} c_{t} \cdot \boldsymbol{n} \quad \text { on } \partial \Omega_{\beta t} \\
\text { on } \partial \Omega_{\beta t}
\end{array}
$$

Upscaled representation of the capillary domain

Upscaled model for the two concentrations

$$
\begin{aligned}
\varepsilon_{\beta} \partial_{\tau}\left\langle c_{\beta}\right\rangle^{\beta} & +\left(\varepsilon_{\beta}\langle\boldsymbol{u}\rangle^{\beta}-\boldsymbol{u}_{\beta \beta}\right) \cdot \boldsymbol{\nabla}\left\langle c_{\beta}\right\rangle^{\beta}-\boldsymbol{u}_{\beta t} \cdot \boldsymbol{\nabla}\left\langle c_{t}\right\rangle^{t}+\tau_{m}\left(\left\langle c_{\beta}\right\rangle^{\beta}-\left\langle c_{t}\right\rangle^{t}\right) \\
& =\nabla \cdot\left(\boldsymbol{K}_{\beta \beta} \boldsymbol{\nabla}\left\langle c_{\beta}\right\rangle^{\beta}\right)+\nabla \cdot\left(\boldsymbol{K}_{\beta t} \boldsymbol{\nabla}\left\langle c_{t}\right\rangle^{t}\right) \\
\varepsilon_{t} \partial_{\tau}\left\langle c_{t}\right\rangle^{t} & -\boldsymbol{u}_{t t} \cdot \boldsymbol{\nabla}\left\langle c_{t}\right\rangle^{t}-\boldsymbol{u}_{t \beta} \cdot \boldsymbol{\nabla}\left\langle c_{\beta}\right\rangle^{\beta}+\tau_{m}\left(\left\langle c_{t}\right\rangle^{t}-\left\langle c_{\beta}\right\rangle^{\beta}\right) \\
& =\nabla \cdot\left(\boldsymbol{K}_{t t} \boldsymbol{\nabla}\left\langle c_{t}\right\rangle^{t}\right)+\nabla \cdot\left(\boldsymbol{K}_{t \beta} \boldsymbol{\nabla}\left\langle c_{\beta}\right\rangle^{\beta}\right)
\end{aligned}
$$

- Equations solved on a domain without explicit representation of vessels
- Presence of capillary network taken into account through effective coefficients

Volume averaging
Averaging equations

$$
\begin{array}{lll}
\left\langle\partial_{\tau} c_{\beta}+\boldsymbol{u} \cdot \nabla c_{\beta}\right. & \left.-D_{v} \Delta c_{\beta}\right\rangle=0 & \text { in } \Omega_{\beta} \\
\left\langle\partial_{\tau} c_{t}\right. & \left.-D_{t} \Delta c_{t}\right\rangle=0 & \text { in } \Omega_{t}
\end{array}
$$

Decomposition in averaged and deviation

$$
\begin{array}{ll}
c_{\beta}=\left\langle c_{\beta}\right\rangle^{\beta}+\widetilde{c_{\beta}} & \left\langle\widetilde{c_{\beta}}\right\rangle=0 \\
c_{t}=\left\langle c_{t}\right\rangle^{t}+\widetilde{c_{t}} & \left\langle\widetilde{c_{t}}\right\rangle=0
\end{array}
$$

- We obtain equations on $\left\langle c_{\beta}\right\rangle^{\beta}$ and $\left\langle c_{t}\right\rangle^{t}$
- Equations depend on deviation terms $\widetilde{c_{\beta}}$ and $\widetilde{c_{t}}$
- Need closure equations on $\widetilde{c_{\beta}}$ and $\widetilde{c_{t}}$.
- Subtracting equations on the mean to microscopic equations leads to equations on $\widetilde{c_{\beta}}$ and $\widetilde{c_{t}}$.

Deviation terms as linear combination of averaged values and their gradients

$$
\begin{aligned}
\widetilde{c_{\beta}} & =\boldsymbol{b}_{\beta \beta} \cdot \boldsymbol{\nabla}\left\langle c_{\beta}\right\rangle^{\beta}+\boldsymbol{b}_{\beta t} \cdot \boldsymbol{\nabla}\left\langle c_{t}\right\rangle^{t}-s_{\beta}\left(\left\langle c_{\beta}\right\rangle^{\beta}-\left\langle c_{t}\right\rangle^{t}\right) \\
\widetilde{c_{t}} & =\boldsymbol{b}_{\boldsymbol{t} \beta} \cdot \boldsymbol{\nabla}\left\langle c_{\beta}\right\rangle^{\beta}+\boldsymbol{b}_{t t} \cdot \boldsymbol{\nabla}\left\langle c_{t}\right\rangle^{t}-s_{t}\left(\left\langle c_{\beta}\right\rangle^{\beta}-\left\langle c_{t}\right\rangle^{t}\right)
\end{aligned}
$$

Volume averaging

Decomposition of deviation terms

$$
\begin{aligned}
& \widetilde{c_{\beta}}=\boldsymbol{b}_{\beta \beta} \cdot \boldsymbol{\nabla}\left\langle c_{\beta}\right\rangle^{\beta}+\boldsymbol{b}_{\beta t} \cdot \boldsymbol{\nabla}\left\langle c_{t}\right\rangle^{t}-s_{\beta}\left(\left\langle c_{\beta}\right\rangle^{\beta}-\left\langle c_{t}\right\rangle^{t}\right) \\
& \widetilde{c_{t}} \quad=\boldsymbol{b}_{t \beta} \cdot \boldsymbol{\nabla}\left\langle c_{\beta}\right\rangle^{\beta}+\boldsymbol{b}_{t t} \cdot \boldsymbol{\nabla}\left\langle c_{t}\right\rangle^{t}-s_{t}\left(\left\langle c_{\beta}\right\rangle^{\beta}-\left\langle c_{t}\right\rangle^{t}\right)
\end{aligned}
$$

Effective coefficients associated

$$
\begin{aligned}
\boldsymbol{u}_{\beta \beta} & =\left\langle\tilde{\boldsymbol{u}} s_{\beta}\right\rangle-\frac{D_{\beta}}{V} \int_{\partial \Omega_{\beta t}} \boldsymbol{n}_{\beta t} s_{\beta} d A \\
\tau_{m} & =\frac{1}{V} \int_{\partial \Omega_{\beta t}} \boldsymbol{n}_{\beta t} \cdot D_{\beta} \boldsymbol{\nabla} s_{\beta} d A
\end{aligned}
$$

Closure problem on s_{β} and s_{t} coefficients:

$$
\begin{array}{rll}
-\nabla \cdot\left(D_{\beta} \boldsymbol{\nabla} s_{\beta}\right)-\varepsilon_{\beta} \tau_{m}+\boldsymbol{u} \cdot \boldsymbol{\nabla} s_{\beta} & =0 & \text { on } \Omega_{\beta} \\
-D_{t} \Delta s_{t}-\varepsilon_{t} \tau_{m} & =0 & \text { on } \Omega_{t} \\
\tau_{m}-\frac{1}{V} \int_{\partial \Omega_{\beta t}}\left(\boldsymbol{n} \cdot D_{\beta} \boldsymbol{\nabla} s_{\beta}\right) d V & =0 & \\
s_{\beta}-s_{t} & =1 & \text { on } \partial \Omega_{\beta t} \\
\boldsymbol{n} \cdot D_{\beta} \boldsymbol{\nabla} s_{\beta}-\boldsymbol{n} \cdot D_{t} \boldsymbol{\nabla} s_{t} & =0 & \text { on } \partial \Omega_{\beta t} \\
\left\langle s_{\beta}\right\rangle^{\beta} & =0 & \\
\left\langle s_{t}\right\rangle^{t} & =0 &
\end{array}
$$

Take-home idea
Obtaining the effective coefficients necessitates to solve PDEs on a Representative Elementary Volume of the micro-structure

Computational Framework

Solution proposed:

- C++/Parallel Finite element library ${ }^{1}$ Feel++
- Use a distance function field to capture the domain geometries
- Mesh adaptation from distance function
- Sub-domain localization to solve Stokes problem
- Fictitious domain to solve advection/diffusion problem
${ }^{1}$ Prud'homme et. al. (2016), feelpp.org

(1) Homogenization - Equations

(2) Fictitious Domain Framework

Network geometries

$(300 \mu \mathrm{~m})^{3}$ network.
Ross (2005), Tsai (2009), Kleinfeld (2011), Kaufhold 2012, Blinder (2013)

- Segment networks extracted from biological images (center-line detection)
- Need to mesh inner and outer domains (vessels and tissue)
- Difficult to mesh automatically with CAD software (design of bifurcations)
- Geometry representation needs to be robust and automated
- Solution: use a fictitious domain method

Levelset field

Defining ϕ_{i}, the distance field to centerline S_{i} of a vessel of radius r_{i} The distance field to the closest vessel boundary of the network is:

$$
\phi(\boldsymbol{x})=\min _{i=0}^{\text {Nb Vessels }} \operatorname{dist}\left(\boldsymbol{x}, S_{i}\right)-r_{i}
$$

Properties of ϕ :

- $\phi(\boldsymbol{x})<0$ if $\boldsymbol{x} \in \Omega_{\beta}$
- $\phi(\boldsymbol{x})>0$ if $\boldsymbol{x} \in \Omega_{t}$
- $\phi(\boldsymbol{x})=0$ if $\boldsymbol{x} \in \partial \Omega_{\beta t}$

Mesh adaptation from distance function

Target mesh size field calculated from levelset field

$$
h(\boldsymbol{x})=\left\{\begin{array}{cc}
h_{\min }, & |\phi(\boldsymbol{x})| \leq R_{1} \\
\alpha|\phi(\boldsymbol{x})|+\beta, & R_{1} \leq|\phi(\boldsymbol{x})| \leq R_{2} \\
h_{\max }, & |\phi(\boldsymbol{x})| \geq R_{2}
\end{array}\right.
$$

Transport equations

Two domain problem

$$
\begin{array}{rll}
\partial_{\tau} c_{\beta}+\boldsymbol{u} \cdot \nabla c_{\beta} & -D_{v} \Delta c_{\beta}=0 & \text { in } \Omega_{v} \\
\partial_{\tau} c_{t} & -D_{t} \Delta c_{t}=0 & \text { in } \Omega_{t} \\
c_{\beta}= & c_{t} & \text { on } \partial \Omega_{\beta t} \\
D_{\beta} \nabla c_{\beta} \cdot \boldsymbol{n}= & D_{t} \nabla c_{t} \cdot \boldsymbol{n} & \text { on } \partial \Omega_{\beta t}
\end{array} \begin{aligned}
\text { Prescribed B.Cs for } c_{\beta} & \text { on } \partial \Omega_{\beta} \backslash \partial \Omega_{\beta t} \\
\text { Prescribed B.Cs for } c_{t} & \text { on } \partial \Omega_{t} \backslash \partial \Omega_{\beta t}
\end{aligned}
$$

One domain problem with spacialized coefficients

$$
\partial_{\tau} c+\boldsymbol{u} \cdot \nabla c-D(\phi) \Delta c=0 \quad \text { in } \Omega
$$

Prescribed B.Cs for c on $\partial \Omega$

- Velocity \boldsymbol{u} is obtained by solving Stokes equation on the vessel domain only.
- Diffusion coefficient spatialized to take into account
 the BBB .

PDEs solved by our framework

The frameworks of fictitious network allows to solve:
The microscopic problem (DNS)

Closure equations to get the effective coefficients

Upscaled model

- Monolitic solver used for the upscaled model
- Mesh is a simple box

(1) Homogenization - Equations

(2) Fictitious Domain Framework
(3) Verification

Test Case, order 3 network.

Representative Elementary Volume, size $(2 \times 2 \times 2)$

Geometry and mesh.

Velocity field.

Closure variable

Comparison DNS - Homogenized model

Direct Numerical Simulation (DNS)

DNS

- Number of elements (tetrahedrons): 8.5×10^{6}
- Computational Cost: 1h on 100 cores

Darcy Scale

Darcy Scale

- Number of elements (tetrahedrons): 3×10^{4}
- Computational Cost: 10 min on 20 cores

Simulation Visualization

Simulation Visualization

$\frac{8}{9}$

Simulation Visualization

Quantitative comparison

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

Quantitative comparison

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

Anatomical Network

Anatomical Network

Anatomical Network

Anatomical Network

Quantitative comparison

$$
P_{e}^{\mathrm{REV}}=1, K_{m}=3 \times 10^{-2}
$$

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

Conclusion and perspective

Conclusion

- Two-phase representation of the capillaries and tissue
- Sucessful upscaling of the capillary bed
- Framework using fictitious domain for DNS and Closure equations

In the future...

- Coupling with arterio-venous tree (1D-3D) or (3D-3D)
- Include the RBCs
- Include non linear consumption in tissue (Michaelis-Menten like)

Thank you!

Use of the distance function

Distance function used to:

- define a sub-domain:

$$
\Omega_{v_{h}} \subset \Omega_{h}, \Omega_{v_{h}}=\bigcup_{i}\left(\Omega_{e_{i}} \mid \pi_{\Omega_{e_{i}}}^{P_{d h}^{0}}(\phi)<0\right)
$$

An example of projection function on a elements is given by:

$$
\pi_{\Omega_{e_{i}}}^{P_{d h}^{0}}=\left\{\begin{array}{cc}
-1, & \text { if } \phi<0 \text { on at least one dof of } \Omega_{e_{i}} \\
1 & \text { else }
\end{array}\right.
$$

- define continuously quantities having a different value in the domains thanks to a smoothed Heaviside function (level set method):

$$
H_{\varepsilon}(\phi)=\left\{\begin{array}{cc}
0, & \phi \leq-\varepsilon \\
\text { smooth variations, } & -\varepsilon \leq \phi \leq \varepsilon \\
1, & \phi \geq \varepsilon
\end{array}\right.
$$

All results, order 3

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

All results, order 3

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

All results, order 3

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

All results, order 3

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

All results, order 3

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

All results, order 3

Adimentional coefficients

- Péclet number $P_{e}^{\mathrm{REV}}=\frac{\langle\boldsymbol{u}\rangle_{z}^{\beta} L^{\mathrm{REV}}}{D_{v}}$
- Membrane Permeability $K_{m}^{*}=\frac{D_{e}}{D_{v}} \frac{r}{e}$

