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Outline (emphasis on Outline (emphasis on theoretical theoretical 
aspectsaspects))

 Introduction: background, multiple-scale, averaging
 One-Phase Flows:

– Phenomenology:

• Departure from Darcy’s law

• Weak inertia regimes

• Strong Inertia regimes

• Transitions

• Turbulence: pore-scale or large-scale?

– Upscaling?
 Two-Phase Flows: introduction to several models
 Conclusions
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Examples: Examples: 

Adsorbed Islands

Porous Medium
Packed Bed 
Reactor

Micro Pores

Macro Pores

Structured and Packed bed 
reactors, nuclear safety, 
fractured media, karsts, ...

Financial support 
from Air Liquide, 
IFPen, TOTAL, ….!
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UpscalingUpscaling

()=0

=g(x)

*()=0

=g*(x )

Pore-Scale Local-Scale

 Separation of scales: 
lβ ,lσ ≪ L

 Objectives of a macro-
scale theory?
– Smoothing operator →  

macro-scale equations 
and BCs

– Link between micro- and 
macro-scale

– Effective properties

L

V
β

lβ

lσ

σ
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Upscaling: different point of Upscaling: different point of 
viewsviews

 Heuristic: Darcy's law (1856)!
 Upscaling with closure: homogenization theory (Sanchez-

Palencia, Bensoussans et al.,...), volume averaging (Whitaker, 
… and variants), 

 Stochastic theories (Matheron, Dagan, Gelhar, ...), …
 Mixture theories: volume averaging +  irreversible 

thermodynamics (Marle, Hassanizadeh and Gray, Bowen, …)
 Other point of views...: dual-phase-lagging heat conduction 

(Wang et al., 2008; Vadasz, 2005...); mixed models; 
fractional derivatives (Néel,...); CTRW; ...

to
da

y 
em

ph
as

is

()=0

=g(x)

*()=0

=g*(x )

Pore-Scale Local-Scale
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Macro-scale variables: Example of Macro-scale variables: Example of 
volume averagingvolume averaging

● β-phase Volume Fraction

with = phase indicator function

●                        Intrinsic phase average

β-phase

yβ

x

rβ

𝓥
σ-phase

nβσ

microheterogen.

macroheterogen.
+

non-linearities

l
β

r
0

l
H

Need 
separation of 
scales!
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Upscaling with Upscaling with closureclosure: a schematic : a schematic 
view for diffusion in a heterogeneous view for diffusion in a heterogeneous 
mediummedium

x

x

x

DNS

aver.c
Closure:

Macro

Micro

Macro-scale Equation

b
x

Note: high performance computing → up to 20483 voxels 

● Tomography
● Reconstruction
● Geostatistics
● ...

Effective Properties
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One-Phase Flow: PhenomenolgyOne-Phase Flow: Phenomenolgy

 Pore-scale equation

 Pore-Scale regimes
– Creeping (Re→ 0): leads to Darcy’s law
– Laminar
– Turbulent

Various regimes and transitions

⇒
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Upscaling One-Phase FlowUpscaling One-Phase Flow

 Averaging

Remark: 
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Various Regimes: CreepingVarious Regimes: Creeping
Average Velocity

Pore-Scale Velocity (given point)

Re~0

Linear relationship between average velocity 
and pressure drop!
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Various Regimes: Laminar Various Regimes: Laminar 
InertialInertial

Average Velocity

Pore-Scale Velocity (given point)

Re~90

But non-linear relationship 
between average velocity 
and pressure drop!

Still
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Various Regimes: towards Various Regimes: towards 
turbulenceturbulence

 ⟨v =steady-state⟩=steady-state  Macro-Scale 
Turbulence? (see Jin 
et al., 2015, DNS)
– Localized turbulence 

(nearly periodic over 
N-UC)

– Macro-scale 
turbulence? Ex.: 
entrance regions 
(D’Hueppe et al., ...)

Average Velocity

Pore-Scale Velocity (given point)


Re_1100
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More...More...

 Various types of bifurcations:

 Bifurcations depends on Re and number of UC (Agnaou et al., 2016)...and 
topology! → REV size=f(⟨vβ⟩β)

 Difficult to estimate order of magnitude when fully non-linear → rely on DNS
 RESULT:

 and up to localized turbulence one has

Ex.: array of cylinders – not same 
Re

c
 for flow // or  to axis ⊥ to axis 

Rec

steady

unsteady

supercritical subcritical

am
pl

.

am
pl

.

0 Re Rec0 Re
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Closure: Darcy regime (Stokes Closure: Darcy regime (Stokes 
problem=creeping flow)problem=creeping flow)

 PDEs for deviations

 Closure in the linear case (3 elementary 
solutions for ei)

Re~0
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Closure and Macro-Scale Closure and Macro-Scale 
Equation (Darcy regime)Equation (Darcy regime)

See Sanchez-Palencia (homogenization), Whitaker, ...

K intrinsic permeability
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Other version of closure: Other version of closure: 
permeameter-like problemspermeameter-like problems

=0, Darcy regime

BCs (see Guibert et al., 2016)?
● Periodicity conditions: good for 

anisotropic media, but percolation 
problem if “periodized” media

● Permeameter (various types: classical, 
Bamberger, …)

● Bordering media: fluid or porous 
layer, ...

Note: also suitable for non-linear problems (non-newtonian flows, etc...)
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Non Darcean regimesNon Darcean regimes (Re>1) (Re>1)

 Heuristic: Forchheimer, Ergun, …

 Upscaling?

(passability)
2

1

transition regime

weak 
regime

strong 
regime

quadratic 
regime

F

10 0

10 -1

10 -2

10 -3

10 -4

10 -2 10 -1 10 0 10 1 10 2

Darcy 
regime

Macro-scale 
turbulence

⇓
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Non Darcean regimes (Re>1)Non Darcean regimes (Re>1)

 laminar inertia effects: theory → generalized 
Forchheimer equation

– Re → 0: Darcy, F=0

– Re ~ 0: weak inertia, F.〈vβ  ~ v〉 ~ 〈v 〈 β〉 ~ 〈v3 (Levy, Mei & 
Auriault, Firdaouss, ...)

– Re > 0: strong inertia, F.〈vβ  ~ v〉 ~ 〈v 〈 β〉 ~ 〈v2 (Whitaker,  1996; 
Lasseux et al., 2011;...)
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Weak InertiaWeak Inertia

 Solution following asymptotic 
expansions in Re

 1st correction?
– Periodic media: F∥ ~v2 

– Periodic media+reversibility: 

Wodié et Lévy, 1991; Mei et Auriault, 1991; Firdaouss et al., 1997
….. revisited by Pauthenet et al., 2017
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Strong InertiaStrong Inertia

 Solution for 
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Transition to inertia regimes: Transition to inertia regimes: 
which Re number?which Re number?

 Literature discussion (see polemic in Lage et Antohe, 
2000; etc...)

 ℓ=√K ?
– K=εd2/32 for a bundle of tubes (transition would change 

with porosity! → better  

 Topological problem: array of cylinders →  transition 
depends on the orientation → need a topological 
information!
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Transition to inertia effect: effect Transition to inertia effect: effect 
of topology of topology (Pauthenet et al., 2017)(Pauthenet et al., 2017)

 If Rek
 ReC

(various media, rocks, …: 
Muljadi et al., 2016; etc...)
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Topology effect Topology effect ((Ex.: array of Cylinder)Ex.: array of Cylinder)

from Darcy closure

 Tentative (open question)

0 20 40 60 80 
0 

0.2 
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C
λ
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Example: canopy flowExample: canopy flow
Honami generation         (Pauthenet, 2017)
...need K

app
 for all fiber directions and V

β
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Experimental Evidence: inertia Experimental Evidence: inertia 
regimeregime

Clavier et al., 2014

4×4 mm prisms - Water flow

y = 0.0002x2.3831
y = 0.0064x1.1916

0.1% 
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U
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Weak Inertial

Transition

1 10 100

Non-spherical particle beds - Air flow
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Note the importance of transition regimes!
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Turbulent flows in porous media (Re>>1)Turbulent flows in porous media (Re>>1)

 Turbulence: time and spatial averaging (see book De Lemos, 2006; …)
– Time and spatial averaging commute!

– However: not necessarily the same result if sequential closure!?

– For one-phase flow: scheme “II” seems preferable: contrary to Antohe & Lage 
(1997), Getachew et al. (2000), see discussion in Nakayama & Kuwahara 
(1999), Pedras and de Lemos (2001), etc... 

 Open: Simultaneous closure over  [R3 R✕R t]? More complex sequential 
closures (t → x → t → ...) depending on the hierarchy of scales?

 Open question for multiphase flow?
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Turbulent flows in porous media (continued)Turbulent flows in porous media (continued)

 Localized Turbulence: i.e., nearly periodic (see Jin et al., 2015 for DNS results)

– Slow unsteady flows → generalized Forchheimer for time averaged pressure 
and velocity

– Spatial averaging of RANS models → generalized Forchheimer equation, F not 
necessarily ~ v〈 β〉 ~ 〈v or v〈 β〉 ~ 〈v2 

 Porous media turbulence models (beyond the scope of the lecture)?

– Pedras & De Lemos, Masuoka & Takatsu (1996), Nakayama & Kuwahara (1999), 
...

– note: useful for fluid/porous medium interface (D'Hueppe et al., 2012), deep 
inside the p.m. one may recover Darcy-Forchheimer regimes

Example: structured packings

Soulaine and Quintard, 2014
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Example for Structured PackingsExample for Structured Packings
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Kyy from simulation
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 Averaging of NS; Pasquier et al., 2016

      Averaging of RANS model; Soulaine & Quintard, 2014 ↗
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Two-Phase FlowTwo-Phase Flow

 Pore-scale

lβ

L

β-phase

averaging 

 volume V

l γ

γ-phase

σ-phase
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Note: potentially unsteady flowsNote: potentially unsteady flows

 Front propagation is in general 
time dependent!

 Specific features: Haines jumps, 
snap-off, …

 Boiling, ...

 
 Common practice: quasi-static 

approximation…

Justification: Ergodicity (not 
validated)?

Horgue et al.

Sapin et al., 2016

See paper
Gourbil et al.⇓
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DNSDNS

 VOF, LBM, Cahn-Hilliard, SPH, ….: spurious velocities & 
convergence for high density and viscosity ratios, problems 
with wettability and Capillary number.

 Penalization (work with a phase indicator for the solid phase 
also; Raeni et al., 2012; Horgue et al., 2012): work in progress

 Achieving numerical convergence is very difficult, though 
averages (e.g. effective properties) may be good for statistical 
reasons (one phase flow: Romeu & Noetinger, 1995; may 
contribute to some success stories for kr,Pc estimations)

 Need large computational resources

 Alternative to DNS?
– Macro-scale models (various types)
– PNM (pore network models), dynamic PNM, Hybrid PNM

Horgue et al., 2012
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Upscaling: quasi-static theoryUpscaling: quasi-static theory

 Example: Case of B.C. 4

Whitaker, 1986; Auriault, 1987; Lasseux et al., 1996; ...

+ Re, (We=Re×Ca) numbers 
+ Dynamic Bond number

If ≈0 ⇒

i.e., the classical capillary pressure theory!
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Macro-Scale Models : Quasi-StaticMacro-Scale Models : Quasi-Static

 Heuristic (Muskat): generalized Darcy’s laws

imbibition

w = wetting phase

drainage

Pc

1- Sor 1Swi

Sw
Sw

kr

1- Sor 1Swi

Capillary pressure Relative permeability
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Macro-Scale Models : Quasi-Macro-Scale Models : Quasi-
Static, viscous couplingStatic, viscous coupling

 Model with viscous coupling (upscaling, also 
heuristic models,...)

Phase interaction

Ex. : Two-Phase Poiseuille Flow

z

r

gR
R

v

lv

g

(Ex. : Whitaker, 1986)
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Inertia EffectsInertia Effects

 Ergun (Heuristic): no-phase interaction terms

 Schulenberg and Muler (1987)  (Heuristic and ⛐)

 Upscaling (Lasseux et al., 2008; ...)

Similar to theory for fluidized beds
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Importance of Cross-Terms, and Importance of Cross-Terms, and 
Non-Linear EffectsNon-Linear Effects

from Clavier et al. (2015)

(IRSN: context of nuclear reactor 
severe accident)

See also Taherzadeh & Saidi (2015)

Case V
l
=0
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Importance of Cross-Terms, and Importance of Cross-Terms, and 
Non-Linear EffectsNon-Linear Effects

from Clavier et al. (2015), Chikhi et al. (2016)
see also Taherzadeh & Saidi (2015) using Tutu et al. experiments

Case V
β
=0 :

t → ∞
Models without cross-terms

Case V
l
=0
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Impact of Impact of KK00 on cross-term effect on cross-term effect

Gravity number

(Pasquier et al., 2017)

Ann. flow  β=0.96

0 0.2 0.4 0.6 0.8 1  
0

0.05

0.1 

0.15  

0.2

S i

K
ji

K
0

,
1 r µ

K
ij

K
0

Ann. flow  β=1

Ann. flow  β=0.1

Dullien  Dong

Zarcone  

Lenormand

Kalaydjian
Rothman
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Effect of cross terms on the flow Effect of cross terms on the flow 
dynamicdynamic
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1
N g
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1
N g

=1.1

w

g e x

adapted Buckley-
Leverett theory 
(Pasquier et al., 2017)
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More: Dynamic ModelsMore: Dynamic Models

 impact of ∂S/∂t, Vα, av...:
– Quintard & Whitaker (1990, from large-scale 

heterogeneity effects and multi-zone)
– Hilfer (1998, multi-zone)
– Panfilov & Panfilova (2005, meniscus)

– Hassanizadeh and Gray (Irr. Therm., av as state 
variable, 1993), also Kalaydjian (1987)...

– Phase field, Cahn-Hilliard (Cueto-Felgueroso & 
Juanes, 2009)...
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Examples of dynamic equationsExamples of dynamic equations

 Quintard & Whitaker, 
1990



 Kalaydjian, 
Hassanizadeh & Gray, …

 ...see also Petroleum 
engng literature on 
pseudo-functions!

 Usefulness for highly 
prmeable media?
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PNM (Pore Network Model)PNM (Pore Network Model)

Phase repartition according
to capillary equilibrium

● Quasi-static rules → Percolation theory: vast 
literature and important results about flow 
patterns, etc.

● Used also to estimate k
r
, P

c

● Drawback: structural properties are lost for other 
phases (e.g. solid phase)

(reviews: Dullien, 1992;…; Jockar-Niasar & Hassanizadeh, 2012)
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PNM - DynamicPNM - Dynamic

Pore-scale rules
(analytical: e.g. Poiseuille)

● Time dependent solution, solve for pressure field 
with approximate solutions for describing flow in 
connections

● Used to estimate k
r
, P

c
 and other relations 

(hysteresis)

(See review: Jockar-Niasar & Hassanizadeh, 2012)
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Example: application to the interpretation of Example: application to the interpretation of 
tomographic images in the inertia regimetomographic images in the inertia regime

pressure

velocity

Larachi et 
al., 2014
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Mixed or Hybrid ModelsMixed or Hybrid Models

 Network models → a meso-
scale representation!

 If low Re, Ca, Bo → 
percolation theory

 Otherwise: Coupling 
network model and Dynamic 
rules (which may come from 
local VOF simulations)

Melli & Scriven, 1991; Horgue et al. (PhD 
CIFRE/IFP/IMFT), 2012

Trickle Bed (X-ray, IFP)

Micromodel experiments
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Mixed or Hybrid ModelsMixed or Hybrid Models
1.) Mass and 
momentum 
balance for the 
network
2.) Dynamic rules 
coming from local 
VOF simulations 
(or from 
experiments)

Horgue 
et al., 
2012
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Macro-Scale Models with Phase Macro-Scale Models with Phase 
“Splitting”“Splitting”
 Example: Flow through 

Structured Media

Mahr and Mewes (2007)

Fourati et al. (2012) experiments

MellaPak  (Sulzer Chemtech)
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Macro-Scale Models with Phase Macro-Scale Models with Phase 
“Splitting”“Splitting”


 Comparison with Fourati et al. 
(2012) experiments (Soulaine et al., 
2014) → calibration of exchange 
term on the 1st stack

Model with liquid 
phase splitting, no-

exchange
+ 3 

momentum 
equations
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ConclusionsConclusions
 One-Phase Flow:

– Generalized Forchheimer equations → a practical model for 
laminar inertia regimes or localized turbulence

– Porous Media Turbulence models
 Two-Phase Flow:

– Importance of cross-terms, Experimental determination?

– Extensions to more dynamic flows:

• Extended generalized Darcy’s laws

• Models with phase splitting

• Hybrid models

– Highly transient effects, complex time and space averaging?

 Coupling with other transport mechanisms (dispersion, heat 
transfer, …)?
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