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ABSTRACT: This paper deals with the dissolution of certain soluble rocks such as salt and
gypsum, and the geomechanical consequences like subsidence, sinkholes, underground
collapses. It focuses on salt and gypsum, although the developed method can be used
for any soluble rock. In this paper, a large-scale Diffuse Interface Model (DIM) is used to
describe the evolution of a salt cavity formed by dissolution. The method is based upon the
assumption of a pseudo-component dissolving with a thermodynamic equilibrium boundary
condition. The purpose of this article is to provide a review the method we have developed
and more specifically to present its possibilities. The problems considered are isothermal
even if the temperature field could be easily integrated into the global physical problem. The
potential of the proposed methodology is illustrated on one meso-scale (in-situ) configuration
corresponding to salt cavity dissolution. Comparison between in-situ experiment data and
numerical modeling shows the method is a good prediction tool. A final boundary value problem
is also studied in which salt is replaced by gypsum to show the applicability of the proposed
methodology to analyze rocks with different solubility.

1 Introduction

Dissolution of porous media or solids is a major concern in many industrial fields. Many
sinkholes, soil or rock collapses are the consequences of the dissolution of underground
evaporite such as gypsum. Rock dissolution creates underground cavities of different shapes
and sizes, with a potential risk of collapse as illustrated in Figure 1. Thus, in many applications,
modeling such liquid/solid dissolution problems is therefore of paramount importance.

Cavity dissolution is a mechanism of great significance in the onset of sinkholes. To be able
to predict the occurrence of critical subsidence or sinkhole onset, it is necessary to have a
better knowledge of the dissolution process. Indeed, even if we know the critical sizes of a
cavity leading to the appearance of a sinkhole, one rarely knows the time needed to reach
it. A transient analysis of the dissolution answers this question.



Figure 1: Land Subsidence (sinkhole) in Central Kansas related to Salt dissolution.

Using dissolution modeling also enables the optimization of the industrial dissolution process.
This optimization can relate, for example, to the intensity of the input flow, the temperature of
the injected fluid, the degree of saturation of the inlet fluid, the location of the injection wells,
etc. Rock dissolution is undoubtedly a multi-scale and multiphysics problem raising several
questions. One concerns an accurate description of solid-liquid interface recession at the
macro-scale level. In order to reach this goal, it is essential to have a precise mathematical
formalization of physicochemical and transport mechanisms at the micro scale level. The
second concerns the applicability to large spatial scale. Finally, strong coupling with other
physical processes, in particular geomechanical behavior, must be considered.

In practice, local dissolution rate models are often assumed at the macroscopic level. Empirical
models, averaged models, based on laboratory tests or in-situ observations are often used to
describe dissolution in an average sense. Accurate solving of real dissolution problems has
shown that entrance and heterogeneity effects, or natural convection, and that these simple
averaged models are not suitable. This paper, discusses these different questions, based on
theoretical and numerical analysis of several examples.

Our analysis starts at the scale of the dissolving surface and the choice of the surface
dissolution kinetics. This has been the subject of many studies for various dissolving materials.
Most generally, the surface reaction rate, R , which appears in the boundary condition for the
micro-scale dissolution problem for limestone, calcite, gypsum, or salt follows a general form
expressed as (Jeschke et al. 2001; Jeschke and Dreybrodt, 2002):

n

R=k|1-=
C

eq



Where £ is the surface reaction rate coefficient, C is the mass concentration of the dissolved
species at the surface, and Ceq the equilibrium concentration (solubility). If at the surface
Damkoéhler number is very large, for instance through a very large value of &, this boundary
condition tends to the classical equilibrium condition expressed by C = Ceq at the solid
surface. This latter condition is often used for salt dissolution, for instance. Assuming such
an approximation is valid, we restrict our discussion to two different ways for modeling the
dissolution problem: (i) a direct treatment of the evolution of the fluid-solid interface using
an ALE (Arbitrary Lagrangian-Eulerian) method (Donea et al. 1982), (ii) the use of a Diffuse
Interface Model (DIM) to smooth the interface with continuous quantities (Anderson et al.
1998, Collins et al. 1985, Luo et al. 2012), like the liquid phase volume fraction, species mass
fractions, etc.

Given this presentation of the research background about dissolution models, the objective of
this paper is set as a discussion about the development of large-scale (e.g. tenths of meters)
dissolution models representative of situations encountered in geotechnical or geomechanical
fields. In terms of soluble bedrock, salt (NaCl) and gypsum (CaSO,-2H,0) are considered.
Concerning carbonate rocks, which spread the most widely worldwide, the methodology may
be extended easily while the quantitative conclusions presented in this paper are of course
specific to the cases under consideration (i.e., salt and gypsum).

While the quantitative conclusions presented in this paper are of course specific to the salt
case, the methodology may be reproduced for gypsum, limestone, or carbonate dissolution
problems. The main objective of Section 2 is to present briefly the physical and mathematical
base of the two dissolution models. In this section, the diffuse interface model is deduced with
the help of a volume averaging theory. We formulate the dissolution problem at the pore scale
and then deduce the macroscopic effective parameters by using an upscaling technique. The
approach is depicted in Figure 2.
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Figure 2: From micro-scale (pore scale level) to large-scale levels (caverns scale). Macro scale level
is the Darcy-scale level (classical sample scale)



Next, we show that our model can capture the instability pattern such as roughness onset
during the dissolution of a porous medium, which is known to be a very difficult numerical
problem. Therefore, it can be used as a diffuse interface model to simulate dissolution problems
instead of explicit tracking of the dissolution interface (such as in ALE frameworks) which
faces in this case huge numerical difficulties.

For most transient problems, we may have very high concentration gradients and, therefore,
neglecting strong density gradients may bring inaccuracy to the prediction of dissolution and
fluid flow. This may be the case with salt formations since the solubility of salt is around 360 g/l
in comparison with that of gypsum which is about 2.6 g/l. Consequently, the density gradient
should be considered in general for an accurate analysis, and, in this paper, the Darcy-scale
diffuse interface model (DIM) includes density driven flows is deduced from the original liquid/
solid dissolution in the case of a binary other systems (following Golfier et al. (2002), Guo et al.
(2015)). The model is applied to several cases and a final comparison of the same dissolution
boundary value problems involving the same boundary conditions, is performed using salt or
gypsum as soluble rocks. Results show that not only the size of the cavity changes but also
the shape. We finally conclude by a discussion concerning the dissolution rate.

2 Dissolution models

Two types of dissolution models are considered. The original dissolution problem corresponding
to a sharp liquid/solid interface is illustrated in Figure 3. The solid/liquid interface is described
mathematically by a surface at which the liquid concentration is equal to an equilibrium
concentration. If we introduce a scalar phase indicator, such as porosity Eg (volume fraction
of the B-phase in this case), it has a value of 1 in the liquid and zero elsewhere, with a jump
at the interface as illustrated in Figure 3.

Solving such a dissolution mathematical problem requires a special front tracking numerical
technique, which is often computationally time consuming. Alternative models do not require
an explicit treatment of the moving interface. Instead, partial differential equations are written
for continuous variables, such as ¢, and the mass fraction @,, (mass fraction of species
Ain the B-phase), which lead to a diffuse interface as illustrated in Figure 3. We will present
below the two formulations.



Figure 3: Original dissolution model (sharp interface on the left) and Diffuse Interface Model (on the
right).

The original solid/liquid dissolution problem can be described by classical convective-diffusive
mass balance and Navier-Stokes (momentum) equations, etc. To express the DIM model,
we start from these original solid/liquid equations to generate averaged or Darcy-scale
equations involving effective coefficients (Luo, et al. 2012, Guo et al. 2015), and taking into
account the density as a function of concentration. In the first subsection, the original model
for the dissolution problem is introduced. In the second subsection, we briefly introduce the
upscaling method leading to the “Darcy-scale” equations which are used as the basis for the
DIM formulation.

2.1 The original multiphase model

Let us consider a binary liquid phase 3 containing chemical species Aand B, and a solid phase
o containing only chemical species A. We neglect the effect of temperature, even if it can be
easily integrated. The general formulation integrates gravity and thus density gradients into
the corresponding equations.

Figure 4: Large-scale (left) and near interface scale(right).



In Figure 4 (right), VsV Wp, oM, represent the velocity of the fluid far away from the
interface, the velocity of the phase B near the interface, the recession rate, and the normal
to the interface, respectively. In the following, bold letters indicate either vector or tensor
variables. The four equations bellows are formulated inside the fluid domain, while the others
at the interface level.

The total mass balance equation for the B-phase is

op
—L4+V-(py,)=0 (1)
ot
The mass balance equations for any species A in the B-phase is written as,
o(py)
BTTAB
= +V-(pﬁa)AﬁvAﬁ)=0 (2)

The general mass balance equation for a moving o-phase is written as

0

L V-(p,v,)=0 )
ot

In the case of the fluid, we will use the Navier-Stokes equations for the momentum balance,

considering gravity fields and fluid pressure., i.e.,

ov, 5
Pp E+vﬁ-Vvﬂ =Pp 8—VDy+ 1, Vv, 4)
where Vg represents the velocity of the B-phase, Vpﬂ the pressure gradient in the B-phase,
Mg the dynamic viscosity of the B-phase and g the gravity vector. At the B-o interface Aﬂd ,
the chemical potentialsyy for each species should be equal for the distinct phases. In this
case and for the special binary case under investigation, we have the following equality at a
given pressure p and temperature T:

Y ap (a)AﬁapaT):l//Ao(a)AaapaT) at Ay, (5)

where @, is equal to 1. It must be emphasized that in the complete binary case, i.e., when
w,. is not equal to 1, there is also a relation similar to the above equation for the other
components.

This results in the classical equilibrium condition, i.e.,
@, =@ at Aﬁa (6)

eq

where @, is the equilibrium concentration for species A.



We deduce from the mass balances for species A and B the following relations at the f—o
interface:

pﬂwAﬁ (vA,b' _w)'nﬁa = paa)AO' (vAO' _w)'nﬁrf at Aﬂo‘

(7)

PsWpp (vBﬂ - w) Mo = PoWps (Voo =) ng, atdg,

where w represents the velocity of the interface with n o the interface normal vector. One of
these equations can be alternatively replaced by the sum, or total mass balance requirement
atthe f—o interface

pﬂ(vﬁ—w)-nﬂa=p0(va—w)-nﬂ6 at Ay, (8)

with the definition v_ =v ,_. From the above equations and using a theory of diffusion (Taylor
and Krishna, 1993), we have

Pp@agVap = Pp@ug¥y = PpDagV @y ©)
Then,

Pp@,p (vAﬂ - "’) Mg = (10)

ng, -(pﬁa)Aﬂ (v,,), —w)—pﬂDAﬁVa)Aﬂ) atAﬂG

The mass balance for species A, can then be expressed as follows:

a(pﬁ'wA/)’)
ot

The whole balance equations presented above are sufficient to solve the physical problem,
provided that the overall surrounding boundary conditions are also given. After some equation
transformations, we have the two following expressions:

+V-(pﬂa)Aﬂvﬂ):V-(pﬁDAﬂVa)Aﬂ) (11)

(%Dv jA (12
g p

Pp
n, w=n, -|\v. +——D Vo, |at4, (13)
’ ﬁ{ p(1-a,,) " A"] ’

where DAﬁ represents the diffusion coefficient.

This last equation relates explicitly the recession velocity to the transport flux and can be used
to compute the interface movement in ALE. The dissolution problem is completed with the set
of equations to describe the boundary and initial conditions of the fluid domain.



The simulation of the dissolution process has been implemented using ALE in COMSOL®.
Because of the complex movement of the interface, frequent re-gridding is required and the
resolution near the interface cannot be very fine or else creates rapid unacceptable distortion
of the mesh. Some of the numerical difficulties associated with very sharp fronts can be
circumvented by using a Diffuse Interface Method. Contrary to “sharp methods”, a diffuse
interface method considers the interface as a smooth transition layer where the quantities vary
continuously. The whole domain constituted by the two phases is considered to be a continuous
medium without any singularities nor a strict distinction of solid or liquid (see Figure 3).

Neglecting the density variation, Golfier et al. (2002) studied one example of dissolution
diffuse interface model. It corresponds to a porous medium non-equilibrium dissolution model
involving a mass exchange coefficient . It has the ability to be very close, with a proper
choice of the exchange term (i.e., & ) to the local equilibrium solution, which is equivalent to
the original dissolution problem.

Golfier et al. (2002) work may be extended, as summarized in the following subsection, to
incorporate the effect of density variation (Luo et al. 2012, Luo et al. 2015).

2.2 Darcy non-equilibrium model

In the following analysis, the o-phase is supposed immobile, i.e.,v_ = 0.

volume averaging space

Figure 5: Averaging volume at pore scale level and material point position vector (left) and 3-phases
model (the third phase may be insoluble species for instance) (right).

The volume averaging theory (Quintard and Whitaker 1994, Whittaker 1999) will be used to
upscale the balance equations formulated at the pore scale (Figure 5). We define the intrinsic
average of the mass fraction as

QAﬂ:<a)Aﬂ>ﬁ:gﬁ1<wAﬁ>=Viijﬂ(r)dV (14)
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and the superficial average of the velocity as

Vﬁ:<vﬂ>:8ﬂ<vﬂ>ﬂ:%.|'vﬁ(r)dlf (15)

Vg
B
where Vﬂ is the filtration velocity and Uﬁ = <vﬂ> is the B-phase intrinsic average velocity.
The averaged form of balance equation of species A can be expressed as:

8<pﬂa)/,ﬂ>
ot

+V~<pﬂa)AﬁvAﬁ> Inﬁg pﬂa)Aﬁ(vAﬁ w) (16)

Aﬂa

The above equation can then be transformed as:
O{ Py,
%+V-<pﬂa)fwvﬂ>:v <pﬂDAﬂVa)Aﬂ j Ry Pp®p (vAﬁ w)dA (17)

A
o b) © i

(d)

The different terms (a), (b), (c) and (d) express:(a) accumulation, (b)convection, (c) diffusion,
and (d) the phase exchange terms, respectively. After several assumptions and some
mathematical treatment of the different equations we have the following control equations
for the diffuse interface model (DIM) (Luo et al. 2012):

. 0Q

EpPp——" 5, +,05V VQ ., = (ﬂpﬁD VQAﬁ)+ p;a(l—QAﬁ)(a)eq—QAﬁ) (18)
og,p, . .
$+V'<pﬁVﬂ):pﬂ“(‘%q_Qm) (19)
and

886 agﬁ * (20)
_pO' 81‘ :paﬁzpﬁa(a)eq_QAﬁ)

where D* is the macroscopic diffusion/dispersion coefficient, p; is such that
<pﬁ Aﬁ> ﬂpﬂQ and o is the exchange term between the two phases. The macroscopic

diffusion/dispersion coefficient and the exchange term are obtained by solving “closure
problems” provided by the theory over different types of unit cells representative of the porous
medium, as illustrated Figure 6.
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Figure 6: Examples of 1D, 2D and 3D unit cells (after Courtelieris and Delgado 2012).

Closure problems correspond to an approximate solution of the coupled problem: averaged
variables/deviations. The approximate solution takes often the form of a mapping such

@y =byVQ,, +5,(0,-Q,) (21)

where cT)A,,), is the concentration deviation and b,ands , are the two closure variables. Solving
two boundary value closure problems for bﬂ and Sp allows us to express the macroscopic
effective values according to the characteristics at the microscopic scale (pore scale). In other
words, the physical properties at the macroscopic level are not “phenomenological” values
but built on the basis of physical properties observed-defined at the microscopic scale.

In our case, we obtain the effective macroscopic diffusion tensorDA the macroscopic
effective exchange coefficient & and the effective density pﬂ such as:

D,,=D, 1+g;% [ (ngoby)da |-z, (b,5,) (22)
Aps
L P .
a—VA_L (l—a)eq)DAﬂ(nﬁa Vsﬁ)dA (23)
,0; :#<pﬂa)/lﬂ> (24)



Based on microscopic considerations and some assumptions described above, we finally get
the macroscopic transport equation. The term involving the exchange coefficient & comes
into the equation as a source term for the phase /3 .We observed that when the saturation at
a material point is reached then:

a)eq:QAﬁ
63ﬂ
:>—:O<:>gﬂ=Cte
ot

In the case of DIM use, i.e., not a real porous medium problem application, the choice of
the exchange coefficient & expression as a function of porosity is more arbitrary. It must,
however, be observed a null condition when the material point is considered strictly in the
fluid phase or strictly in the solid phase. This is illustrated in Figure 7.
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Figure 7: Porous domains: “fluid’-interface-solid and expression of volume fraction & .

We must underline that, in the DIM model, there is no “pure liquid phase” (Figure 7) since
Ep is used continuously to represent the fluid as well as the solid regions. Therefore, the
Navier-Stokes equations are no longer suitable for this situation. Instead, we can adopt a
Darcy-Brinkman model (Brinkman 1947) to take the place of Navier-Stokes equations for the
momentum balance equations

1y (Q45)

&p

AV, ~(VP, = p,8) 11, (Qs ) K™V, =0 (25)

where the permeability tensor K is a function of &y - The Darcy-Brinkman equation will
approach Stokes equation when K is very large and will simplifies to Darcy’s law when K is
very small. If inertia terms are not negligible, a similar Darcy penalization of Navier-Stokes
equations may be used. The resulting DIM equations may be solved with various numerical
techniques but in this paper, we will use a COMSOL® implementation. Results are presented
and discussed in the next section.
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3 Numerical modelling

Whenever density variation is present in the fluid phases, the gravity (buoyancy force) can
play a key role in mass and heat transports, through the mechanism of natural convection.

In our case, the dissolution of the salt walls results in higher concentrations around the interface
than in other fluid regions. Therefore, it makes sense to study the influence of gravity effects
upon the dissolution and fluid flow. To characterize the gravity effects for dissolution problem,
one can refer to the Rayleigh number, Ra, which is defined as the ratio of buoyancy forces
to mass and momentum diffusivities as

AP |8 K L

Ra (26)

HsDyp
This natural convection phenomenon, often called salt fingering, is well illustrated by Figure 8
(Luo et al. 2015) (flow from left to right).

Qui
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Figure 8: Examples of concentration plumes for a 2D simulation with gravity at time 100 s and 1000 s
and salt block size 8 mm (top) and 16 mm (bottom), (After Luo et al. 2015).

We observe that the shape on the top of the channel loses its regularity and the onset of a
wavy shape (roughness) is due to the coupling between dissolution and physical Rayleigh
convective instability which induces a vortex motion of fluid particles. The heavy fluid (more
saturated) goes downward and increases the dissolution upward. The potential occurrence
of a coupling between dissolution and convective pattern may have a major influence when
modeling the dissolution of cavities, as will be illustrated below.



3.1 Axisymmetric cavity

This section is devoted to the numerical modeling of an experimental “large scale” dissolution
process. The goal is to show the ability of the DIM method to tackle difficult problems with
geometry singularities and natural convection effects.

]
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Figure 9: lllustration of the experimental salt rock dissolution process (right) and shape of the cavity
after 12 days (right) (after Charmoille et al. 2012).

This test case is based on data coming from the Cerville pilot (Charmoille et al. 2012). We
benefited from the availability of one of the salt exploitation surveys of the Cerville-Buissoncourt
concession to carry out a dissolution experiment.

This concession belongs to Solvay which put its expertise and its operating logistics at the
service of this experiment. The goal of this experiment is to obtain continuous in situ data
on the formation process of dissolution cavities and to serve the numerical modeling testing
and calibration.

The salt layer 6 m thick, is located at about 280 meters deep. It is limited in lower and upper
parts by clay layers. A concentric leaching well (Figure 9) was drilled. The tubing is constituted
of two concentric tubes.

Then fresh water was injected through the central tube during 12 days (Charmoille et al.
2012). This method is known as direct leaching process. The inlet flow is 3 m3/h during 4 days
followed by 1.5 m3/h during 8 days.



The Figure 9 depicts the experimental setting and the final shape and size of the cavity
(obtained by sonar).

We show Figures 11-15 some numerical results. Figure 10 shows the axisymmetric mesh
and model.
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Figure 10: Geometry and boundary condition for the cavity dissolution model.

The imposed inlet velocity is 8 cm/s during 4 days and then 4 cm/s during 8 days.
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Figure 11: Isovalue of the porosity after 4 days. (void or pure fluid domain for unity).



From the axisymmetric shape of the cavity the computed dissolved volume is around 12 m?,
which is very close to the measured in-situ value around 11 m3.
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Figure 12: Isovalue of the porosity after 12 days (void for unity).

At 12 days (Figure 12), the computed dissolved volume is around 38 m® and the measured
in-situ is around 40 m3. Again a very good agreement given the fact that the formation was
considered as homogeneous, which is seldom the case in natural media, and that the various
uncertainties were not included in the model. Figure 13 represents the time evolution of the

diffuse fluid-salt interfaces at various times (for a line located at the middle of the layer).
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Figure 13: Examples of the distribution of the porosity at a line located at the middle of the model and
at several times (1 to 12 days).



Figure 15: Streamlines and vectors field after 8 days

Figures 14 and 15 give illustrations of the complex streamlines and fluid velocity field at two
time steps, illustrating the effect of natural convection. The numerical method was extended
to a three-phases (gas-liquid-solid) problems (Luo et al. 2014) and to other dissolving matter.
Gypsum, for instance, dissolves in flowing water about one hundred times more rapidly than
limestone, but at only about one thousandth the rate of halite. Figures 16 show the shape
of the cavity in a gypsum medium, using the same initial and boundary conditions of the salt
problem dissolution.



15

6.5

55

4.5

3.5

2.5

1.5

0.5

05 o 0.5 1 15 2 25

Figure 16: Isovalue of the porosity in gypsum after 10 years (void in red)

We observe the very low dissolution rate for gypsum material and a very different cavity shape
due to the absence of natural convection because of the gypsum low solubility. Concentration
in the case of salt dissolution is less monotonous due to the effect of mixed convection. After
a given time, the dissolution or mass transfer from rock to salt is mainly driven by density
gradients. While for gypsum, due to its small solubility, there is no natural convection and the
rate of dissolution decreases smoothly as the front solid-liquid evolve with time.

4 Concluding remarks

For simulations of the solid-liquid dissolution process, one can use either explicit treatment
methods (ALE for instance) or the presented diffuse interface methods (a local non-equilibrium
DIM). The ALE is not suitable for simulating the problems with complex interfaces, e.g., sharp
angles, porous media, as it relies strongly on the mesh shape. To the contrary, DIM is more
practical to simulate dissolution problems, as the whole domain is used for solving through
the introduction of a phase field (volume fraction of liquid phase in this paper). In this paper,
following the idea from Golfier et al. (2002), a local non-equilibrium diffuse interface model
based on a porous medium theory is extended to study dissolution problems with density
variations taken into account.

As DIM considers the density variations, simulation with gravity becomes available. For a
dissolution problem with high density gradients, for example, NaCl dissolved into water,
Raleigh-Bénard physical instability can be aroused under this situation.

Instable flows, salt fingers, and interface wavelets are observed and impact locally the
dissolution rate thus creating various interface structures with different shapes. These
hydrodynamic instabilities are not only controlled by the Ra number but are also affected by
forced convection and the Pe number (Luo et al. 2012). Forced convection may affect the
concentration gradient as well as the dynamic of the salt fingering, which may be flushed out
of the domain, thus changing the dissolution dynamics. This brings a strong source of flow
complexity, as illustrated in the space Ra-Pe for a particular problem as discussed by Luo et



al. 2012. Such couplings between hydrodynamic instability and dissolution must be studied
for each new initial boundary-value problem treated. Further, the potential advantage of using
the diffuse interface model is that, since very fine meshes are required near the interface, it
enables us to introduce automatic mesh refining algorithms, such as AMR (Luo et al. 2015)
which can greatly improve the calculation speed.

Further works done in the field of cavity dissolution modeling will concern the mechanical
behavior of the cavity structure. The deformation induced by the cavity formation will be
taken into account. The coupling between pure dissolution processes and solid mechanics is
necessary since the solid deformation will also influence the fluid flow. Although the interface
motion due to the dissolution kinetics is several orders greater that those induced by salt
creep, rock stress, etc., which should allow for a sequential approach to this problem.
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