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Numerical modeling of salt and gypsum dissolution: Test case and comparison

This paper deals with the dissolution of certain soluble rocks such as salt and gypsum, and the geomechanical consequences like subsidence, sinkholes, underground collapses. It focuses on salt and gypsum, although the developed method can be used for any soluble rock. In this paper, a large-scale Diffuse Interface Model (DIM) is used to describe the evolution of a salt cavity formed by dissolution. The method is based upon the assumption of a pseudo-component dissolving with a thermodynamic equilibrium boundary condition. The purpose of this article is to provide a review the method we have developed corresponding to salt cavity dissolution. Comparison between in-situ experiment data and is also studied in which salt is replaced by gypsum to show the applicability of the proposed methodology to analyze rocks with different solubility.

Introduction

sinkholes, soil or rock collapses are the consequences of the dissolution of underground evaporite such as gypsum. Rock dissolution creates underground cavities of different shapes and sizes, with a potential risk of collapse as illustrated in Figure 1. Thus, in many applications, modeling such liquid/solid dissolution problems is therefore of paramount importance.

to predict the occurrence of critical subsidence or sinkhole onset, it is necessary to have a better knowledge of the dissolution process. Indeed, even if we know the critical sizes of a cavity leading to the appearance of a sinkhole, one rarely knows the time needed to reach it. A transient analysis of the dissolution answers this question. Using dissolution modeling also enables the optimization of the industrial dissolution process.

etc. Rock dissolution is undoubtedly a multi-scale and multiphysics problem raising several questions. One concerns an accurate description of solid-liquid interface recession at the macro-scale level. In order to reach this goal, it is essential to have a precise mathematical formalization of physicochemical and transport mechanisms at the micro scale level. The second concerns the applicability to large spatial scale. Finally, strong coupling with other physical processes, in particular geomechanical behavior, must be considered.

In practice, local dissolution rate models are often assumed at the macroscopic level. Empirical models, averaged models, based on laboratory tests or in-situ observations are often used to describe dissolution in an average sense. Accurate solving of real dissolution problems has shown that entrance and heterogeneity effects, or natural convection, and that these simple averaged models are not suitable. This paper, discusses these different questions, based on theoretical and numerical analysis of several examples.

Our analysis starts at the scale of the dissolving surface and the choice of the surface dissolution kinetics. This has been the subject of many studies for various dissolving materials.

Most generally, the surface reaction rate, R , which appears in the boundary condition for the micro-scale dissolution problem for limestone, calcite, gypsum, or salt follows a general form expressed as (Jeschke et al. 2001;[START_REF] Jeschke | Dissolution rates of minerals and their relation to gypsum in aqueous solutions exhibit nonlinear dissolution kinetics[END_REF]:

1 n eq C R k C
Where k C is the mass concentration of the dissolved species at the surface, and eq C the equilibrium concentration (solubility). If at the surface Damköhler number is very large, for instance through a very large value of k , this boundary condition tends to the classical equilibrium condition expressed by eq C C at the solid surface. This latter condition is often used for salt dissolution, for instance. Assuming such an approximation is valid, we restrict our discussion to two different ways for modeling the an ALE (Arbitrary Lagrangian-Eulerian) method (Donea et al. 1982), (ii) the use of a Diffuse Interface Model (DIM) to smooth the interface with continuous quantities (Anderson et al. 1998[START_REF] Collins | Diffuse interface model of diffusion-limited crystal growth[END_REF][START_REF] Jeschke | Dissolution rates of minerals and their relation to gypsum in aqueous solutions exhibit nonlinear dissolution kinetics[END_REF], like the liquid phase volume fraction, species mass fractions, etc.

Given this presentation of the research background about dissolution models, the objective of this paper is set as a discussion about the development of large-scale (e.g. tenths of meters) dissolution models representative of situations encountered in geotechnical or geomechanical 4 •2H 2 O) are considered.

Concerning carbonate rocks, which spread the most widely worldwide, the methodology may be extended easily while the quantitative conclusions presented in this paper are of course case, the methodology may be reproduced for gypsum, limestone, or carbonate dissolution base of the two dissolution models. In this section, the diffuse interface model is deduced with the help of a volume averaging theory. We formulate the dissolution problem at the pore scale and then deduce the macroscopic effective parameters by using an upscaling technique. The approach is depicted in Figure 2. problem. Therefore, it can be used as a diffuse interface model to simulate dissolution problems instead of explicit tracking of the dissolution interface (such as in ALE frameworks) which

For most transient problems, we may have very high concentration gradients and, therefore, neglecting strong density gradients may bring inaccuracy to the prediction of dissolution and g/l in comparison with that of gypsum which is about 2.6 g/l. Consequently, the density gradient should be considered in general for an accurate analysis, and, in this paper, the Darcy-scale boundary value problems involving the same boundary conditions, is performed using salt or gypsum as soluble rocks. Results show that not only the size of the cavity changes but also

Dissolution models

Two types of dissolution models are considered. The original dissolution problem corresponding mathematically by a surface at which the liquid concentration is equal to an equilibrium concentration. If we introduce a scalar phase indicator, such as porosity (volume fraction Solving such a dissolution mathematical problem requires a special front tracking numerical technique, which is often computationally time consuming. Alternative models do not require an explicit treatment of the moving interface. Instead, partial differential equations are written for continuous variables, such as and the mass fraction A (mass fraction of species below the two formulations.

right).

The original solid/liquid dissolution problem can be described by classical convective-diffusive we start from these original solid/liquid equations to generate averaged or Darcy-scale upscaling method leading to the "Darcy-scale" equations which are used as the basis for the DIM formulation.

The original multiphase model

easily integrated. The general formulation integrates gravity and thus density gradients into the corresponding equations. In Figure 4 (right), , , v v ,w n to the interface, respectively. In the following, bold letters indicate either vector or tensor at the interface level.
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where v p g A , the chemical potentials for each species should be equal for the distinct phases. In this case and for the special binary case under investigation, we have the following equality at a given pressure p and temperature T:
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where A is equal to 1. It must be emphasized that in the complete binary case, i.e., when

A is not equal to 1, there is also a relation similar to the above equation for the other components.

This results in the classical equilibrium condition, i.e., at

A eq A (6)
where eq is the equilibrium concentration for species A.

We deduce from the mass balances for species A and B the following relations at the interface:
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where w represents the velocity of the interface with n the interface normal vector. One of these equations can be alternatively replaced by the sum, or total mass balance requirement at the interface
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From the above equations and using a theory of diffusion (Taylor
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The mass balance for species A, can then be expressed as follows:

A A A A D t v (11)
provided that the overall surrounding boundary conditions are also given. After some equation transformations, we have the two following expressions:
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where A D to compute the interface movement in ALE. The dissolution problem is completed with the set

The simulation of the dissolution process has been implemented using ALE in COMSOL®.

Because of the complex movement of the interface, frequent re-gridding is required and the circumvented by using a Diffuse Interface Method. Contrary to "sharp methods", a diffuse interface method considers the interface as a smooth transition layer where the quantities vary continuously. The whole domain constituted by the two phases is considered to be a continuous diffuse interface model. It corresponds to a porous medium non-equilibrium dissolution model . It has the ability to be very close, with a proper choice of the exchange term (i.e., ) to the local equilibrium solution, which is equivalent to the original dissolution problem. incorporate the effect of density variation [START_REF] Jeschke | Dissolution rates of minerals and their relation to gypsum in aqueous solutions exhibit nonlinear dissolution kinetics[END_REF][START_REF] Jeschke | Dissolution rates of minerals and their relation to gypsum in aqueous solutions exhibit nonlinear dissolution kinetics[END_REF]. The volume averaging theory (Quintard andWhitaker 1994, Whittaker 1999) will be used to average of the mass fraction as

Darcy non-equilibrium model
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where V U v

The averaged form of balance equation of species A can be expressed as:
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The above equation can then be transformed as:
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where

* A D is the macroscopic diffusion/dispersion coefficient, * is such that * A A =
and is the exchange term between the two phases. The macroscopic problems" provided by the theory over different types of unit cells representative of the porous medium, as illustrated Figure 6.

Closure problems correspond to an approximate solution of the coupled problem: averaged variables/deviations. The approximate solution takes often the form of a mapping such

A A eq A s b ( 21 
)
where A is the concentration deviation and b and s are the two closure Solving two boundary value closure problems for b and s allows us to express the macroscopic effective values according to the characteristics at the microscopic scale (pore scale). In other words, the physical properties at the macroscopic level are not "phenomenological" values

In our case, we obtain the effective macroscopic diffusion tensor * A D , the macroscopic and the effective density * such as:
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comes into the equation as a source term for the phase .We observed that when the saturation at a material point is reached then:

0 eq A
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In the case of DIM use, i.e., not a real porous medium problem application, the choice of expression as a function of porosity is more arbitrary. It must, however, be observed a null condition when the material point is considered strictly in the . We must underline that, in the DIM model, there is no "pure liquid phase" (Figure 7) since momentum balance equations

* 1 0 A A P V g K V (25)
where the permeability tensor K is a function of . The Darcy-Brinkman equation will approach Stokes equation when K K is equations may be used. The resulting DIM equations may be solved with various numerical techniques but in this paper, we will use a COMSOL ® implementation. Results are presented and discussed in the next section.

Numerical modelling

play a key role in mass and heat transports, through the mechanism of natural convection.

In our case, the dissolution of the salt walls results in higher concentrations around the interface to mass and momentum diffusivities as We observe that the shape on the top of the channel loses its regularity and the onset of a wavy shape (roughness) is due to the coupling between dissolution and physical Rayleigh saturated) goes downward and increases the dissolution upward. The potential occurrence modeling the dissolution of cavities, as will be illustrated below.

max max g K L Ra D (26)

Axisymmetric cavity

This section is devoted to the numerical modeling of an experimental "large scale" dissolution geometry singularities and natural convection effects. This concession belongs to Solvay which put its expertise and its operating logistics at the service of this experiment. The goal of this experiment is to obtain continuous in situ data on the formation process of dissolution cavities and to serve the numerical modeling testing and calibration.

The salt layer 6 m thick, is located at about 280 meters deep. It is limited in lower and upper parts by clay layers. A concentric leaching well (Figure 9) was drilled. The tubing is constituted of two concentric tubes.

Then fresh water was injected through the central tube during 12 days (Charmoille et al. 2012). This method is known as direct leaching process /h during 4 days followed by 1.5 m /h during 8 days.

(obtained by sonar).

We show Figures 11-15 some numerical results. Figure 10 shows the axisymmetric mesh and model. The imposed inlet velocity is 8 cm/s during 4 days and then 4 cm/s during 8 days.

From the axisymmetric shape of the cavity the computed dissolved volume is around 12 m , which is very close to the measured in-situ value around 11 m . and the measured in-situ is around 40 m . Again a very good agreement given the fact that the formation was considered as homogeneous, which is seldom the case in natural media, and that the various the diffuse at several times (1 to 12 days). time steps, illustrating the effect of natural convection. The numerical method was extended to a three-phases (gas-liquid-solid) problems (Luo et al. 2014) and to other dissolving matter.

limestone, but at only about one thousandth the rate of halite. Figures 16 show the shape of the cavity in a gypsum medium, using the same initial and boundary conditions of the salt problem dissolution. We observe the very low dissolution rate for gypsum material and a very different cavity shape due to the absence of natural convection because of the gypsum low solubility. Concentration in the case of salt dissolution is less monotonous due to the effect of mixed convection. After a given time, the dissolution or mass transfer from rock to salt is mainly driven by density gradients. While for gypsum, due to its small solubility, there is no natural convection and the rate of dissolution decreases smoothly as the front solid-liquid evolve with time.

Concluding remarks

For simulations of the solid-liquid dissolution process, one can use either explicit treatment methods (ALE for instance) or the presented diffuse interface methods (a local non-equilibrium DIM). The ALE is not suitable for simulating the problems with complex interfaces, e.g., sharp angles, porous media, as it relies strongly on the mesh shape. To the contrary, DIM is more practical to simulate dissolution problems, as the whole domain is used for solving through based on a porous medium theory is extended to study dissolution problems with density variations taken into account.

As DIM considers the density variations, simulation with gravity becomes available. For a Raleigh-Bénard physical instability can be aroused under this situation.

dissolution rate thus creating various interface structures with different shapes. These hydrodynamic instabilities are not only controlled by the Ra number but are also affected by forced convection and the Pe number [START_REF] Jeschke | Dissolution rates of minerals and their relation to gypsum in aqueous solutions exhibit nonlinear dissolution kinetics[END_REF]. Forced convection may affect the complexity, as illustrated in the space Ra-Pe for a particular problem as discussed by [START_REF] Jeschke | Dissolution rates of minerals and their relation to gypsum in aqueous solutions exhibit nonlinear dissolution kinetics[END_REF]. Such couplings between hydrodynamic instability and dissolution must be studied for each new initial boundary-value problem treated. Further, the potential advantage of using which can greatly improve the calculation speed.

behavior of the cavity structure. The deformation induced by the cavity formation will be taken into account. The coupling between pure dissolution processes and solid mechanics is motion due to the dissolution kinetics is several orders greater that those induced by salt creep, rock stress, etc., which should allow for a sequential approach to this problem.
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 1 Figure 1: Land Subsidence (sinkhole) in Central Kansas related to Salt dissolution.

Figure 2 :

 2 Figure 2: From micro-scale (pore scale level) to large-scale levels (caverns scale). Macro scale level is the Darcy-scale level (classical sample scale)

Figure 4 :

 4 Figure 4: Large-scale (left) and near interface scale(right).

  third phase may be insoluble species for instance) (right).

  (a), (b), (c) and (d) express:(a) accumulation, (b)convection, (c) diffusion, and (d) the phase exchange terms, respectively. After several assumptions and some mathematical treatment of the different equations we have the following control equations for the diffuse interface model (DIM) (Luo et al. 2012):
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 8 Figure 8: Examples of concentration plumes for a 2D simulation with gravity at time 100 s and 1000 s and salt block size 8 mm (top) and 16 mm (bottom), (After Luo et al. 2015).
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 9 Figure 9: Illustration of the experimental salt rock dissolution process (right) and shape of the cavity after 12 days (right) (after Charmoille et al. 2012).
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 10 Figure 10: Geometry and boundary condition for the cavity dissolution model.
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 12 Figure 12: Isovalue of the porosity after 12 days (void for unity).
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 16 Figure 16: Isovalue of the porosity in gypsum after 10 years (void in red)
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