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Projection deconvolution for proton CT using the
spatially variant path uncertainty

Feriel Khellaf, Nils Krah, Jean Michel Létang and Simon Rit

Abstract—Proton computed tomography (pCT) suffers from
a lower spatial resolution compared to X-ray CT due to the
stochastic non-linear proton paths. The most likely path (MLP)
formalism provides an estimate for the proton path as well as the
uncertainty around this estimate. Using the MLP estimate for the
image reconstruction instead of straight integration lines has been
shown to improve the spatial resolution of pCT images. In this
work, the aim is to further increase the spatial resolution by also
including the path uncertainty in the reconstruction algorithm.
We proposed a projection-based deconvolution method, applied
within the framework of a direct reconstruction algorithm
based on distance-driven binning. We used an MLP formalism
accounting for tracker resolution in addition to multiple Coulomb
scattering. We investigated deconvolution artifacts and proposed
a method to mitigate them via spatial regularisation.

Our method was tested on Monte Carlo simulated data, using
a water cylinder with aluminium inserts and two slices of an
anthropomorphic phantom. Our results showed an improvement
of spatial resolution in all cases (up to 29% or 60% for
the cylindrical phantom, depending on whether deconvolution
artifacts were corrected for or not). Overshoot artifacts were
observed in the case of the cylindrical phantom but were less
prominent in the case of the anthropomorphic phantom. In
conclusion, we have shown that including the path uncertainty
in the reconstruction can notably improve the spatial resolution.

Index Terms—deconvolution, deblurring, spatial resolution,
proton CT, direct reconstruction

I. INTRODUCTION

Proton computed tomography (pCT) has been investigated
to complement or replace X-ray CT for proton treatment
planning. While it offers a superior relative stopping power
(RSP) accuracy compared to X-ray CT, it suffers from a
lower spatial resolution. The spatial resolution of pCT is
mainly impacted by multiple Coulomb scattering (MCS) of
the protons and by the tracker resolution [1]. In list-mode
pCT systems, front and rear trackers measure the position
and direction of each proton upstream and downstream from
the patient [2]. The most likely path (MLP) for each proton
inside the patient, which can be computed using a compact
formalism [3], is obtained from these measurements and has
been shown to improve pCT reconstruction [4].
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The MLP itself has been included in both direct [5] and
iterative reconstruction algorithms [6] to improve spatial res-
olution of pCT images. However, the uncertainty envelope
around the MLP, which can also be calculated by the MLP for-
malism, has not yet been successfully used for reconstruction.
Using the path uncertainty to improve spatial resolution has
been mentioned in some works [3], [7]. Wang et al. [8] have
tried to include this uncertainty in their projection matrix and
performed reconstruction using an algebraic reconstruction
technique (ART). However, their results did not show an
improvement of spatial resolution compared to images recon-
structed without using the path uncertainty. Unlike the method
used in the aforementioned study, we propose to deconvolve
pCT projections as an additional step in a direct reconstruction
method, the distance-driven binning algorithm of Rit et al. [9].
The objective is to include the path uncertainty in the recon-
struction to improve spatial resolution without compromising
RSP accuracy. To estimate the path uncertainty in “realistic”
conditions, we used an extended MLP formalism that takes
into account the tracker’s spatial and angular resolution (due
to the strip pitch, scattering inside the tracker, etc.) [10].

Including the path uncertainty in the reconstruction is sim-
ilar to resolution modeling in positron emission tomography
(PET) imaging [11] where the resolution model is typically
included in the system matrix and which has been shown to
improve spatial resolution and contrast. It is known, however,
that resolution modeling in PET may also lead to deconvo-
lution artifacts, i.e. overshoots and ringing near edges [12]–
[14], which can cause quantification errors [15]. Therefore, we
investigated deconvolution artifacts in the context of pCT and
proposed methods to control them.

Our deconvolution method was validated via Monte Carlo
simulations in two phantoms: a water cylinder with aluminium
inserts and an anthropomorphic phantom.

II. MATERIALS AND METHODS
A. Distance-driven projection binning

The measured quantity in pCT is the proton’s water equiv-
alent path length (WEPL) which is the integral of the RSP
along the proton path. In order to reconstruct pCT images, we
first start by binning this list-mode data into projections. We
apply the distance-driven binning procedure of Rit et al. [9]
to take into account the non-linearity of the proton paths. The
main idea is to bin the measured data along several virtual
planes k ∈ {1, ...,K} situated between the entrance and exit
detectors according to the estimated MLP (Figure 1).

The coordinate system (u, v, w) is such that (u, v) define the
detector plane, and w is taken along the main beam direction.
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Fig. 1. Drawing of the coordinate system used for the distance-driven binning,
for details see text.

The steps to compute the distance-driven projections are (i)
to compute each proton’s MLP and (ii) assign each proton’s
WEPL in the corresponding bin. More specifically, the MLP
of the i-th proton is sampled at given distances wk, with k ∈
{1, ...,K}, to have ui,k and vi,k, the most likely position of
the i-th proton in the k-th plane (Figure 1). The binned value
in the j-th pixel of the k-th plane of the projection acquired
with the p-th source position is

gj,k,p =

∑
i∈Ip ζj(ui,k, vi,k, wk)WEPLi∑

i∈Ip ζj(ui,k, vi,k, wk)
(1)

with Ip the subset of protons with source position p, ζj the
indicator function for pixel j, and WEPLi the water equivalent
path length of proton i. The distance-driven projection can be
interpreted as the backprojection of a single view p of the
measured WEPL along the MLP. The rest of the reconstruction
consists in filtering the sinogram with the usual ramp filter and
doing a backprojection [9].

B. Path uncertainty

The proton path and the associated uncertainty can be com-
puted using the MLP formalism [3]. The derivation assumes
perfectly known entrance and exit positions and angles per
proton yin = (uin, θin) and yout = (uout, θout), measured at
distances win and wout (Figure 1). In practice, the spatial and
angular resolution of the trackers will induce an uncertainty
on the measured parameters. Krah et al. [10] have included
the impact of detector resolution in the MLP formalism. We
briefly recall their formalism and give the formulas used to
compute the uncertainty envelope.

First, the joint probability that a proton passes through y1,
an intermediary vector inside the object, and ỹout given ỹin

(tilde distinguishes measured from true vectors) is redefined
as

L(y1, ỹout|ỹin) =

∫
Lscat(y1|yin)Lmeas(ỹin|yin) dyin

×
∫
Lscat(yout|y1)Lmeas(ỹout|yout) dyout (2)

where Lscat(y1|yin) and Lscat(yout|y1) represent the likeli-
hoods that a proton is scattered from yin to y1, and from y1 to
yout, respectively; and Lmeas(ỹin|yin) and Lmeas(ỹout|yout)
represent the likelihoods of the measured values ỹin and ỹout

to be the true parameters yin and yout, respectively. The
probabilities Lmeas are modeled with a Gaussian distribution
as it describes well the statistical error in experiments. Solving
the integrals in Equation 2 and reshaping into Gaussian
functions gives an expression for the MLP and an uncertainty
matrix that takes into account measurement uncertainties. The
corresponding error matrix is given by [10]

ΣMLP(w) = C1(C1 + C2)
−1C2 (3)

with

C1 = R0SinΣinSTinRT
0 + Σ1 (4)

C2 = R−11 S−1outΣout(S
−1
out)

T (R−11 )T + R−11 Σ2(R
−1
1 )T .

(5)

The uncertainty on the path position relative to the MLP
σMLP(w) = ΣMLP(w)1,1 is given by the element in the first
row and first column of ΣMLP. The expressions for rotation
matrices R0,R1 and scattering matrices Σ1,Σ2 are the ones
used in the usual MLP formalism [3]. The matrices Sin and
Sout propagate the measured positions from the detector to
the object surface

Sin =

(
1 dentry
0 1

)
, Sout =

(
1 dexit
0 1

)
, (6)

with dentry the distance from the front tracker to the entrance
position and dexit the distance from the rear tracker to the exit
position. The matrices Σin and Σout describe uncertainties
due to the trackers’ finite spatial and angular resolution. They
are given by the sum of the uncertainty due to the spatial
resolution of the trackers σt and the error due to scattering
inside the trackers

Σin = σ2
tTinTT

in + Σsc,in (7)

Σout = σ2
tToutT

T
out + Σsc,out (8)

where Tin and Tout are the matrices relating the positions
measured by the two detectors in each pair to the posi-
tion/direction parameters:

Tin =

(
0 1

−1/dT 1/dT

)
,Tout =

(
1 0

−1/dT 1/dT

)
, (9)

with dT the distance between the trackers. Finally, the matrices
Σsc,in and Σsc,out represent the impact of the scattering inside
the trackers on the angular uncertainty

Σsc,in =

(
0 0
0 σ2

sc,in

)
,Σsc,out =

(
0 0
0 σ2

sc,out

)
, (10)
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with

σ2
sc,in =

E2
0

p2(Ein)v2(Ein)

x

X0

(
1 + 0.038 ln

x

X0

)2
, (11)

σ2
sc,out =

E2
0

p2(Eout)v2(Eout)

x

X0

(
1 + 0.038 ln

x

X0

)2
, (12)

where E0 = 13.6 MeV and 0.038 are empirical constants,
x/X0 represents the material budget, i.e. the ratio between the
tracker thickness and the radiation length of the tracker ma-
terial (silicon), and the term 1/p2(E)v2(E) is approximated
using a 5th-degree polynomial [3].

Equation 3 computes the path uncertainty envelope for
each proton. In order to use this information to deblur the
binned distance-driven projections, we perform a distance-
driven binning of the path uncertainty similarly to Equation 1:

σj,k,p =

√√√√∑i∈Ip ζj(ui,k, vi,k, wk)σ
2
MLP,i(wk)∑

i∈Ip ζj(ui,k, vi,k, wk)
(13)

with σ2
MLP,i(wk) the variance of the path of proton i relative to

its MLP at distance wk. The value σj,k,p represents the average
standard deviation of the paths of protons emitted from the p-
th source position passing in the j-th pixel and the k-th plane
relative to their MLPs.

C. Spatially variant blurring model

As the blur occurs in the (u, v) plane of the binned
projections gj,k,p, we consider each plane k of the distance-
driven projections individually. Although the blur in a real pCT
projection is the result of vertical and lateral components, we
do not consider the blur in the v-direction in our approach. We
work with one-line projections of a 3D image, which limits
our problem to a set of 1D deconvolutions as modeled below,
and leave 2D deconvolution of 2D projections to future work.

If the blur were spatially invariant, the measured projection
would be the result of the convolution of an ideal projection
g∗j,k,p with a shift-invariant convolution kernel. As the blur
depends on the position u, which is referred to by the 1D
pixel index j, we model the measured projection as the result
of a shift-variant operation

gj,k,p =
∑
m

hj−m,m,k,pg
∗
m,k,p (14)

where hj−m,m,k,p is computed from a Gaussian function due
to the Gaussian model used for the path uncertainty

hj−m,m,k,p =
1√

2πσm,k,p
exp

(
− (j −m)2τ2

2σ2
m,k,p

)
, (15)

with τ the projection spacing and σm,k,p the path uncertainty,
both in millimeters. In matrix notation, Equation 14 becomes

gk,p = Hk,pg
∗
k,p (16)

where gk,p is a vector containing one line of the distance-
driven projection, Hk,p is the shift-variant system matrix, and
g∗k,p is a vector containing one line of the projection without
blurring.

Fig. 2. Setup of the five simulations with a bone insert in water. Only one
insert was modeled per simulation. The position of the insert for simulations
1 to 5 is shown. The inserts and the water shell have the same curvature.

The formalism presented in Section II-B provides an esti-
mate of the path uncertainty due to multiple Coulomb scatter-
ing and tracker resolution. Using a phantom with three inserts
at different depths, it has been shown that the best resolution
for each insert is obtained at the distance corresponding to the
depth of the insert [9]. At other distances, the non-linearity of
the proton paths causes further blurring. In the final image, the
distances contributing to reconstructing the inserts are those
corresponding to their depths. Therefore, we neglect this effect
and consider that modeling the blurring in the projections
using the path uncertainty is sufficient. This assumption will
be verified using a phantom with inserts at different depths.

D. Deconvolution method

In practice, due to the presence of noise, the true solution
of an inverse problem such as the one in Equation 16, even
if well-posed, cannot be found exactly. Approximate solutions
can be obtained using, for example, a least squares estimate

ĝk,p = argmin
g∗
k,p

||Hk,pg
∗
k,p − gk,p||22. (17)

However, the unregularized deconvolution problem does
not necessarily have a unique solution [14]. In practice, this
means it is impossible to recover high frequency components
that could not be measured by the system due to its spatial
resolution. Any values assigned to these high frequency com-
ponents produce a different possible solution. Specifically, the
overshoot artifacts usually observed in deconvolution problems
correspond to the sharp frequency cut-off between the restored
frequencies and the high frequencies set to zero. A regular-
ization term is therefore necessary to constrain the problem,
which becomes

ĝk,p = argmin
g∗
k,p

||Hk,pg
∗
k,p − gk,p||22 + α2||∇g∗k,p||22 (18)

with α the regularization parameter. Regularization helps to
attenuate overshoot artifacts by imposing a smoother cut-off
between low and high frequencies, but it does not completely
suppress them, as our results will confirm.
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These artifacts causing overshoots near edges have been
observed in resolution modeling for emission reconstruc-
tion [12]–[14]. Note that they persist even with perfect knowl-
edge of the system matrix. A relationship between the ampli-
tude of those artifacts and the imaging matrix which maps the
object to the projection space has been established [12]. As
the point spread function (PSF) gets wider, the matrix rank
gets lower (i.e. the problem is more underdetermined) and
its condition number higher, which produces worse artifacts.
Different methods have been proposed to deal with this
problem in the context of PET imaging, e.g. post-smoothing
the image or using different regularization procedures. But
they are not all directly applicable to our problem since the
resolution model is included in the system matrix in PSF-based
PET reconstruction, which is not the case in our framework.
We have selected one method, tested in different papers [12],
[13], which consists in underestimating the PSF. As the
artifacts appear with high uncertainty values, underestimating
those values will reduce the overshoots observed on deblurred
images, although this will limit the improvement of the spatial
resolution. In practice, this uncertainty underestimation can be
interpreted as the reconstruction of an image acquired with
better detectors and lower MCS rather than ideal detectors
and no MCS. We denote our underestimated system matrix
by Hβ

k,p corresponding to the following kernel

hj−m,m,k,p =
1√

2πβσm,k,p
exp

(
− (j −m)2τ2

2β2σ2
m,k,p

)
(19)

where β ∈ (0, 1] represents the uncertainty underestimation
factor. Setting β to 1 corresponds to the use of the exact
path uncertainty. Using the scaled system matrix, we take the
regularized least squares solution

ĝk,p = argmin
g∗
k,p

||Hβ
k,pg

∗
k,p − gk,p||22 + α2||∇g∗k,p||22. (20)

This problem was solved using a conjugate gradient method,
for all planes k and all projections p before reconstruction. The
scaling and regularization parameters α and β were chosen to
have a good trade-off between spatial resolution and overshoot
as described in the next section.

E. Simulations

The first simulations, performed using GATE [16] version
9.0 with the QGSP BIC physics list, were used to validate
our blurring model. The simulations are similar to the one
performed by Rit et al. [9]. In each simulation, we acquired
a single projection of a 20 cm wide shell of water with a
5 mm wide bone insert (Figure 2). Five different simulations
were acquired for five positions of the insert (one insert
per simulation). Since a fan beam was used, we made the
water shell and the inserts truncated hollow spheres with the
same origin as the beam, such that the ideal projection (if
no MCS was involved) would be a rectangular function. The
internal and external radii were 100±10 cm for the water shell,
and 92±0.25, 96±0.25, 100±0.25, 104±0.25, and 108±0.25
for the inserts. The inserts were truncated using an angular

Fig. 3. Reference RSP maps of the reconstructed slices. The dotted yellow
lines represent the hulls used to compute the MLP.

span of 2 degrees. The beam energy was 200 MeV and the
fluence at the isocenter was about 2 × 105 protons·mm−2.
The spatial resolution in the projection, as a function of
depth, was compared to the predicted resolution using the path
uncertainty. The spatial resolution was measured by fitting an
error function to the edges of the projection of the inserts,
similarly to [5]. More specifically, for each insert, and for
each distance w in the projection of the insert, the following
function

A

2

(
1 + erf

(x− µ
σ
√
2

))
+B (21)

was fitted to the projection data as illustrated in Figure 5a.
The fitted parameter σ was used as a measure for the spatial
resolution.

Other simulations were made to evaluate the capability
of the proposed deconvolution method to improve spatial
resolution. We used the same simulation for the spiral phan-
tom as the one described in a previous study [9], except
that the radius of the aluminium beads was increased from
5 to 10 mm. A 200 MeV fan beam with a fluence of
225 protons·mm−2·projection−1 at the isocenter was sim-
ulated. The spiral phantom was also used to choose the
scaling and regularization parameters α and β. In addition, we
simulated an acquisition using the ICRP female phantom [17].
A uniform 250 MeV beam energy was used to traverse the
phantom volume everywhere (note that a variable energy could
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have been used depending on the scanned slice), with a flux
of 190 protons·mm−2·projection−1. In all our simulations, a
high number of protons was simulated in order to have low
noise and thus a good measure of spatial resolution. A total
of 720 projections over 360° were simulated. Two slices, one
through the posterior fossa and the other through the heart,
were reconstructed (Figure 3). To compute the MLP and the
path uncertainty, the convex hull of the spiral phantom was
known and that of the head and lung slices of the ICRP
phantom was approximated by an ellipse for fast detection of
the intersection between the patient and the proton path before
and after the patient. The sampling for the distance-driven
projections was 0.625 × 0.625 mm2 for all phantoms. The
spiral phantom was reconstructed on a grid of 0.5× 0.5 mm2

pixels, and the ICRP phantoms on a grid of 1.775×1.775 mm2

pixels – the same sampling as the reference phantoms.
The GATE simulation was performed using an idealized

setup, i.e. with error-less position and angle measurements.
Tracker uncertainties were included by postprocessing the out-
put of the simulation. Specifically, for each proton, a Gaussian
error with a covariance given by Equations 7 and 8 is added to
the ideal entrance/exit parameters. To compute the covariance
matrices, we used a spatial resolution of σt = 0.066 mm
corresponding to a strip pitch of 228 µm, a material budget
of x/X0 = 5 × 10−3 and a distance dT = 10 cm between
the trackers in each pair. These values meet or exceed the
minimum specifications for pCT scanner prototypes as detailed
in [18]. The closest trackers of each pair were placed at
a distance of 40 cm from the isocenter, which corresponds
to distances used in commercial X-ray CT scanners [10].
Images were reconstructed from data without and with tracker
uncertainties using the standard MLP formalism [3] and the
extended one [10], respectively, to compute the proton path
and the uncertainty maps. Spatial resolution was calculated in
the spiral phantom corresponding to an MTF value of 10%
using the approximate method described in [5] based on [19].
The function given in Equation 21 was fitted to each bead’s
radial profile (see Figure 4 for an example of a radial profile),
and the MTF10% was derived as

MTF10% =

√
ln 10

2

1

πσ
. (22)

In order to choose the scaling and regularization parameters,
the spiral phantom was reconstructed using values of β ranging
from 0.5 to 1 at intervals of 0.1, and values of α ranging
from 0.05 to 0.9 at intervals of 0.05. The average spatial
resolution and average overshoot over all beads were measured
for each reconstruction, and the pair of parameters giving the
best resolution/overshoot trade-off was chosen and applied to
the anthropomorphic phantoms. The overshoot in each bead
was measured by taking the radial profile (as for the spatial
resolution), and computing the relative difference between
the maximum value and the true RSP value of the beads
(RSP = 2.1), after post-smoothing the profile with a Gaussian
kernel of standard deviation 0.1 mm and width 8 mm (equal
to the size of the profile) to reduce noise (Figure 4). Negative
overshoot values occurred when there were no oscillations and
the edges remained blurred due to loss of spatial resolution.

Fig. 4. Example profiles of inserts in the spiral phantom used to measure
the overshoot. The top profile is from a deblurred image without underesti-
mation, and the bottom one from a non-deblurred image, hence the negative
“overshoot”.

III. RESULTS

A. Resolution modeling and uncertainty maps

Figure 5b shows the spatial resolution measured in the
five distance-driven projections of the inserts positioned as
depicted in Figure 2, acquired using either ideal or realistic
trackers. The spatial resolution was measured as explained in
Section II-E, i.e. by fitting Equation 21 to the edge spread
function of each insert and for each distance w. The theoretical
path uncertainty shows a good agreement with the spatial reso-
lution measured in the projections at the depths corresponding
to the insert positions. At other depths, the path uncertainty
does not reflect the spatial resolution due to the non-linearity
of the proton path, as discussed in Section II-C. The dashed
line shows the effect of pixel size (0.5 mm) on the overall
uncertainty. The added uncertainty was taken into account by
computing the quadratic sum σ2

total = σ2
MLP + σ2

pixel, with
σpixel = 0.5/

√
12 and σMLP as defined in Equation 3. It is

overall non negligible close to the entrance and exit of the
phantom in the case of ideal trackers, while it is negligible
in the case of realistic trackers because the path uncertainty
dominates the loss of spatial resolution.

Figure 6 shows path uncertainty maps for the spiral phan-
tom, with and without tracker uncertainties. For the case
without tracker uncertainty, there is no variability as a function
of the projection angle due to the fact that the object is
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(a)

(b)
Fig. 5. (a) Distance-driven projection for insert position 3 (see Figure 2). One
line of the projection (indicated by the blue vertical line) is plotted against the
absolute position |u|, and the erf fit is used to compute the spatial resolution
σ. The fit parameters of Equation 21 are given in the text box. (b) Spatial
resolution as a function of depth measured on the projections corresponding
to each insert position, compared with the path uncertainty, for ideal trackers
(top) and realistic trackers (bottom). The vertical bars indicate the depth of
the insert in colors corresponding to the curves.

circular. The uncertainty due to MCS reaches a maximum of
about 0.5 mm approximately at the center of the object. The
maximum is not exactly at the central depth due to the energy
loss term in the computation of the scattering matrices Σ1,Σ2.
It is slightly shifted towards the exit of the proton path. Adding
tracker uncertainties increases the maximum uncertainty value
to about 1.4 mm and shifts it towards the exit. We further
observe high uncertainty streaks near the exit of the path of
the protons, corresponding to protons traversing aluminium
inserts and losing more energy than those traversing fewer or
no inserts. Those lower energy protons scatter more in the
rear tracker (see energy term in Equation 12), hence a higher
uncertainty.

Figure 7 shows uncertainty maps for the lung and head
phantoms for two different source positions, with and with-
out tracker resolution. There is a larger variability of the
uncertainty values between different projections compared to
the maps of the spiral phantom. This is due to the elliptical
shapes of the convex hulls used to approximate the phantom
surface. This inter-projection variability is more pronounced
for the lung phantom, with a maximum path uncertainty
in the first projection (traversing the left-right axis of the
patient) of 1.7/1.8 mm with/without tracker resolution, and
a maximum for the second projection (traversing the antero-
posterior axis of the patient) of 0.8/1 mm. Spatial variability
due to RSP heterogeneities is visible in both phantoms when
using realistic trackers. For example, in the lung phantom,
trajectories traversing the lung tissues are associated with a
lower uncertainty (visible near the exit of the phantom).

B. Spiral phantom and choice of scaling and regularization
parameters

Figure 8 shows the quantification of the overshoot (see
Section II-E) as a function of spatial resolution for different
scaling and regularization parameters. Each data point repre-
sents the average overshoot and spatial resolution (averaged
over all inserts) in the spiral phantom reconstructed with a
different pair of (α, β) parameters. The goal was to find
the pair (α, β) which yields about zero overshoot and the
highest possible resolution. In terms of the figures, we seek
the rightmost data point on the dotted line corresponding to
an overshoot of zero. With ideal trackers, such a point can
be found with β = 1, i.e. without underestimation of the
uncertainty. With realistic trackers, setting β = 0.7 gave the
highest resolution for an overshoot very close to zero (given
the tested β values, the actual optimal parameter is somewhere
between 0.7 and 0.8).

Representative reconstructions of the spiral phantom, used
to plot Figure 8, are shown in Figure 9. The deblurred
results with (β = 0.7) and without (β = 1) uncertainty
underestimation are shown for a regularization of α = 0.2.
Overshoots appear as ring-like structures, as in the lower
central panel. The reconstructions are consistent with the mea-
sured overshoots in Figure 8: no artifact is visible in the images
acquired with ideal trackers, while the reconstruction from
realistic trackers without underestimation shows an overshoot
which is corrected when using β = 0.7. The corresponding
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Fig. 6. Uncertainty maps of the spiral phantom introduced by an ideal tracker (top) or a realistic tracker (bottom) for two different source positions (the beam
directions are indicated by red arrows). The phantom geometry is depicted with low opacity in a different color map for better visualization.

spatial resolutions are plotted in Figure 10 as a function of
distance from the phantom center. For ideal trackers, there
is an improvement of the spatial resolution for the central
beads, up to 28% without overshoot correction and up to
11% with overshoot correction. For beads that are far away
from the center, the spatial resolution is reduced due to the
regularization. For realistic trackers, the spatial resolution is
improved for all beads. The gain of resolution is up to 29%
with overshoot correction and up to 60% without correction.

C. Anthropomorphic phantoms

The reconstructions for the head and lung phantoms using
realistic trackers are shown in Figure 11. The difference
maps indicate the improvement in spatial resolution along
anatomical edges. Overall, the deblurred reconstructions show
a better spatial resolution. For the head phantom, the error
is more reduced without underestimation of the uncertainty
(β = 1); while for the lung phantom, the error near anatomical

edges is smaller with a scaling factor β = 0.7. This is reflected
by the root mean square error (RMSE) measured inside the
zoomed regions-of-interest. For reconstructions using ideal
trackers, no improvement was seen.

IV. DISCUSSION
The purpose of this work was to investigate the use of

the path uncertainty to improve spatial resolution in proton
CT images. First, we verified that the path uncertainty is an
accurate measure for the spatial resolution in the projections
at the distance corresponding to the position of the edge in
the object (Figure 5). Second, we generated distance-driven
uncertainty maps corresponding to the pCT projections. As
the estimated path uncertainty depends on the shape of the
object to be imaged and on the heterogeneities inside the
object (in the case of realistic trackers), the values in the
maps vary as a function of the projection angle, the depth
and the transverse position. Specifically, the less circular the
object, the more the uncertainty values vary between different
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(a) Lung

(b) Head
Fig. 7. Uncertainty maps without tracker resolution (first and third rows) and with tracker resolution (second and fourth rows) for two different source
positions (the beams directions are indicated by red arrows). The ellipse used to approximate the phantom surface is shown with a yellow dashed line.
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(a) Ideal trackers

(b) Realistic trackers
Fig. 8. Overshoot vs spatial resolution in the spiral phantom for ideal trackers
(top) and realistic trackers (bottom). Each curve is computed for a different
β parameter. The regularization parameter α, corresponding to the different
data points for each curve, ranges between 0.05 and 0.9 in steps of 0.05
(low values of α lead to high resolution and vice versa as shown by the two
circled data points). The arrows point to the tested (α, β) parameters giving
the highest spatial resolution for an overshoot close to zero.

projections. For example, there was about a factor 2 between
the maximum uncertainty for protons traversing the large and
short axes of the lung phantom (Figure 7). Including tracker
resolution in the MLP model increased the path uncertainty
compared with ideal trackers, where only MCS in the object
is relevant. Although both the standard and the extended MLP
formalism assume a homogeneous medium, the impact of
heterogeneities inside the phantom on the path uncertainty
was partially taken into account through the energy term used
for the computation of the scattering inside the rear detector
(p2(Eout)v

2(Eout) term in Equation 12). For example, protons
that traversed aluminium inserts in the spiral phantom had
lower exit energies and scattered more in the rear tracker than
protons that traversed no inserts, and therefore led to higher
MLP uncertainties along projection lines crossing the inserts
(Figure 6). Conversely, protons that traversed air in the lung
phantom led to lower MLP uncertainties.

Using the computed uncertainty maps to deconvolve the
pCT projections, we observed overshoots near edges in the
deblurred reconstructions. Those are common side effects to
deconvolution [12]–[14]. The RSP accuracy of the deblurred
image can be compromised by such artifacts: in order to limit
this effect to an acceptable level, stringent requirements must
be set (our objective is to have an average overshoot close to
zero). We studied the effect of overshoots in the spiral phantom
(Figure 8). In the ideal case, as the uncertainty values are
smaller, the average overshoot was small (maximum measured
average overshoot of less than 0.5% in the spiral phantom).
However, with realistic trackers, the average overshoot could
exceed 3% and was not effectively suppressed by the regular-
ization term alone. Indeed, using either the regularization or
the β parameter alone was not sufficient to reduce the average
overshoot to zero: in Figure 8, the line corresponding to β = 1
is well above the zero average overshoot line regardless of the
regularization; similarly, very small regularizations (α = 0.05)
led to high average overshoots regardless of the β parameter.
In addition, using both strategies allows for a better trade-
off between overshoot and spatial resolution. Increasing the
regularization factor α alone managed to reduce the average
overshoot, but at the cost of a considerable loss of spatial
resolution: for example, without underestimation, reducing the
average overshoot below 2% required a regularization of at
least α = 0.7 which led to a resolution of 0.37 lp/mm. In
contrast, underestimating the uncertainty by 10% (β = 0.9)
managed to reduce the average overshoot well below 2% with
α = 0.1 and a resolution of 0.58 lp/mm. Therefore, combining
both methods was necessary to produce an overshoot-free
image with a high spatial resolution. In this work, we chose
the β value which corresponded to an average overshoot of
zero and a high resolution, as our objective was to improve
spatial resolution without compromising the image quality
by introducing overshoot artifacts. However, depending on
the specific application, if a certain amount of artifacts is
acceptable in the image, further improvement of the spatial
resolution is possible by using a larger β parameter. Indeed,
overshoots are object dependent: regularly shaped objects such
as cylinders lead to characteristic artifacts, e.g. rings; while
in less regularly structured objects, overshoot artifacts might
appear more like noise.

The reconstructed images of the spiral phantom using real-
istic trackers showed an increase of spatial resolution between
22% and 29% when an underestimation of the uncertainty was
included and between 49% and 60% without underestimation
(Figure 10). The gain of spatial resolution was largest at the
center of the object where spatial resolution is the lowest. The
results with ideal trackers for the spiral phantom showed an
improvement of spatial resolution only at the center of the
object. At the surface, the resolution was not enhanced as
the path uncertainty was already close to zero. In fact, the
spatial resolution was even slightly reduced, depending on
the value of the regularization parameter α. In this work, α
was empirically chosen based on average measurements over
different locations in the phantom. In principle, α could be
spatially variant as less regularization is needed at the surface.
In practice, i.e. with realistic trackers, path uncertainty within
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(a) Ideal trackers

(b) Realistic trackers
Fig. 9. pCT reconstruction of the spiral phantom: without deconvolution (left), with deconvolution without uncertainty underestimation (middle), and with
underestimation (right), for ideal trackers (top) and realistic trackers (bottom). The zoomed inset represents the central bead. The range of the grayscale of
the image is [0− 2.2], and that of the inset is [0.9− 2.2].

the object is more homogeneous than with ideal trackers, and
we deem global parameters sufficient in that case.

For the anthropomorphic phantoms, differences between the
reconstructions and the reference were observed mainly along
edges (Figure 11), and were caused by a lack of resolution or
the presence of overshoot artifacts. For a rising edge, we have
an overestimation followed by an underestimation if the spatial
resolution is not optimal, and the opposite (underestimation
followed by an overestimation) in the case of an overshoot
due to deconvolution (Figure 4). A small RMSE represents an
adequate trade-off between spatial resolution and overshoot.

The reconstructions of the ICRP phantom took into account
tracker resolution to provide a realistic scenario. Our results
showed a visible improvement of spatial resolution, with a
reduced RMSE near the edges in all cases. In the case of the
lung phantom, when no underestimation of the uncertainty was
applied, the gain in spatial resolution was countered by an error
due to overshoot artifacts (e.g. near the spine in Figure 11).
With the underestimated convolution kernel, no overshoot was

visible and the error due to spatial resolution was reduced
everywhere. In the case of the head phantom, the RMSE was
reduced for both deconvolutions, i.e. with β = 1 and β = 0.7,
compared to the non-deblurred image, but the results were
better for the case without underestimation (β = 1). We note
that the scaling parameter β was chosen based on the results
for the spiral phantom and applied to both anthropomorphic
phantoms. Given that the path uncertainty values in the head
were smaller than in the spiral phantom (maximum uncertainty
of 0.8 mm in the head against 1.5 mm in the spiral), and
that overshoot artifacts appear for high uncertainty values, it
is likely that indeed no overshoot correction was needed for
the head phantom. The maximum uncertainty for the lung
phantom was 1.8 mm, which is closer to that of the spiral
phantom. On the other hand, given that the path uncertainty
was computed assuming homogeneous water, and that protons
traversed a certain amount of air in the lung phantom, the
uncertainty in the lung might be overestimated. In this case,
underestimating the deconvolution kernel might correct for
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(a) Ideal trackers

(b) Realistic trackers
Fig. 10. Spatial resolution in the spiral phantom as a function of the distance
from the center. The results without overshoot correction correspond to β = 1
and α = 0.2, and those with overshoot correction to β = 0.7 and α = 0.2.

this overestimation, and explain why the results for the lung
phantom with β = 0.7 were better. A different MLP formalism
taking into account heterogeneities would help to compute
more accurate uncertainty maps. The methods proposed to
compute a heterogeneous MLP [20], [21] require knowledge
about the tissue composition which can be obtained by it-
eratively updating the tissue composition from the current
image in the case of an iterative reconstruction method.
Alternatively, using an energy-adaptive parametrization of the
MLP [22] might improve the path uncertainty estimation by
providing a better estimate of the 1/p2(E)v2(E) term, which
is currently approximated with a polynomial fitted to energy
loss simulations in water. Still, in both slices and for all tested
pairs (α, β), the measured RMSE indicates that the potential
bias induced by deconvolution is still below the error due to
low spatial resolution. As mentioned earlier, overshoot artifacts
are object-dependent. Ultimately, in human-like geometries,
they are expected to be less structured and therefore more
benign than in the spiral phantom, as our results seem to
indicate.

In this work, we have chosen to perform the deconvolution
in the projection space to minutely take into account the spatial
variation of the path uncertainty. However, it could be possible
to do the deconvolution in the image space after reconstruction,
especially in the case of realistic trackers for which the spatial
variation of the uncertainty values is not as high as for ideal
trackers. In an image domain deconvolution, we would need to
approximate the uncertainty value in each pixel of the recon-
structed image via a backprojection of the uncertainty maps,
and then solve the same type of system as in Equation 20,
only in two dimensions for a single slice. For one reconstructed
image slice, one would perform one two-dimensional deconvo-
lution as opposed to separate one-dimensional deconvolutions
per projection, as in the current work. We expect that, in
objects with little variation of the path uncertainty among
projections, image-based deconvolution might provide similar
results as projection-based deconvolution.

This work was conducted using a distance-driven projec-
tion binning algorithm, however, it can also be used with
other direct methods [23]–[26] by deconvolving projections
or partial backprojections. While other factors such as the
reconstruction algorithm might affect spatial resolution, their
impact is limited compared to MCS and tracker resolution [5].
Direct application of our deconvolution method to iterative
reconstruction methods is not straightforward because it is
projection-based. The authors of a previous study [8] included
path uncertainty in their projection model to iteratively re-
construct a pCT image. Surprisingly, their results did not
show any improvement of spatial resolution. The projection
deconvolution method described in this work could also be
used to reconstruct a better starting iterate for an iterative
reconstruction algorithm including path uncertainty. Alterna-
tively, an image-based deconvolution as discussed above could
be done independently of the reconstruction method.

V. CONCLUSION

The purpose of this work was to investigate whether in-
cluding path uncertainty in a deconvolution framework might
improve spatial resolution in direct pCT reconstruction. It was
shown that including path uncertainty to perform deconvo-
lution of blurred distance-driven projections can significantly
increase spatial resolution of pCT images when using realistic
trackers. Particularly, the resolution in a water cylinder of 20
cm diameter with aluminium inserts was increased by up to
29% without introducing overshoot artifacts. Reconstructions
of anthropomorphic phantoms also showed an enhancement
of spatial resolution when tracker resolution was included in
the MLP model. Deconvolution artifacts were less prominent
for anthropomorphic images, and our results indicate that their
impact on RSP accuracy might be lower than that of a poor
spatial resolution.
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