Ruimeng Hu

Mathieu Laurière
email: mathieu.lauriere@nyu.edu

Recent Developments in Machine Learning Methods for Stochastic Control and Games

In this paper, we give an overview of recently developed machine learning methods for stochastic control problems and games. The main focus is on deep learning methods that have unlocked the possibility to solve such problems even when the structure is very complex or when the dimension is very high, which is not feasible with traditional numerical methods. Many of these new approaches build on recent breakthrough machine learning methods for partial differential equations or backward stochastic differential equations, or on model-free reinforcement learning for Markov decision processes. This review summarizes state-of-the-art works at the crossroad of artificial intelligence and stochastic control and games. It also discusses connections with real applications and identifies unsolved challenges.

Introduction

In recent years, computational methods for stochastic control and games have seen great progress with the help of machine learning tools, driven by applications to many areas such as finance, social sciences, operations research, and epidemic management problems to cite just a few. In short, stochastic control problems study how an agent optimally controls a stochastic dynamical system. The agent perceives some observations of the system's state and, based on these observations, can decide to influence the evolution of the state. The goal is to optimize an objective function which typically incorporates the cost for controlling the system and the reward for reaching some state. One of the most popular methods to solve such problems is dynamic programming, developed by Richard Bellman in the 1950s [START_REF] Bellman | A markovian decision process[END_REF]. However, this method suffers from what Bellman called the curse of dimensionality, meaning that its complexity increases drastically with the number of possible states. This is a major issue for systems evolving in continuous and high dimensional space since they cannot approximated by a small number of states. In such cases, using exact dynamic programming becomes infeasible from the computational viewpoint. The complexity may also come from the structure of the system's evolution. For example, in some cases the system's evolution or its observation are subject to delay, which is an important feature for realistic applications, e.g., in economics, mechanics, or biology. To model the delay feature, the dynamics of the controlled system will depend not only on the current state but also on the history prior to the current time, which makes the problem path-dependent and, thus, infinite-dimensional.

On the other hand, stochastic differential game theory, initiated by [START_REF] Isaacs | Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization[END_REF], as an offspring of game theory and optimal control, provides a framework for modeling and analyzing the competition between rational agents in the context of a dynamical system. They have been extensively employed across many disciplines, including management science, economics, social science, biology, and military planning. One of the core objectives in differential games is to compute Nash equilibria, i.e., strategy profiles according to which no player has an incentive to deviate unilaterally [START_REF] Nash | Non-cooperative games[END_REF]. However, computing Nash equilibria in N -agent games is a notoriously hard problem, and the direct computation of Nash equilibria is extremely time-consuming and memory demanding [START_REF] Daskalakis | The complexity of computing a nash equilibrium[END_REF] even for moderately large N . The mean-field game (MFG) paradigm has been introduced independently by Lasry and Lions in [START_REF] Lasry | Mean field games[END_REF] and by Huang, Malhamé and Caines in [START_REF] Huang | Large population stochastic dynamic games: closedloop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF] to provide a tractable approximation of games with huge populations. An MFG is a game with a continuum of infinitesimal agents, where any single agent does not influence the rest of the population, which forms the mean field with which each agent interacts in the same way. It provides an efficient way to compute approximate Nash equilibria for symmetric N -agent games. However, challenges remain in terms of computational complexity for games with very large or complex environments, or when common noise affects the population dynamics. Furthermore, in the intermediate regime when N is moderately large, the mean-field theory does not provide a good approximation of the N -player game. In such cases, one may still face a high-dimensional or even infinite-dimensional problem. We further illustrate these challenges by the following examples.

Some examples of applications in high-dimension

Many problems in economics or finance involve multiple interacting agents. For instance, we may consider a group of traders who buy and sell stocks in a financial market such as the S&P 500, which is a free-float weighted measurement stock market index of 500 of the largest companies listed on stock exchanges in the United States. Each trader's portfolio describes the investment in stocks available on the market. To describe the the investments of the whole group of traders, we need to incorporate all the trader's portfolios, and hence this description can be very high dimensional. However, if the traders have similar risk preferences, it is sufficient to study how one representative trader optimizes their payoff to understand the whole group's behavior. Any single agent has only a negligible impact on the stocks' prices. However, the impact of the group might be significant because if everyone wants to buy or sell the same stock, then the price will probably be shifted up or down. The portfolio optimization problem then becomes to find a Nash equilibrium. Each agent can anticipate that every other agent will behave like themselves and can thus predict the impact of the group on the stocks' prices. The mean-field game paradigm provides a rigorous framework in which each agent, taken individually, has no impact at all on the group's dynamics. This simplifies the analysis. In general, the solution can be described by a forward-backward system of partial differential equations (PDEs) composed of a Fokker-Plank (FP) equation for the population distribution and a Hamilton-Jacobi-Bellman (HJB) equation for the value function of an infinitesimal player. However, several difficulties arise. Firstly, even solving the optimal control for the representative agent can be challenging: Given the number of stocks, the problem is in high dimension, and using an exact dynamic programming algorithm is computationally too expensive. Secondly, even if the agent's portfolio state is in a low dimension, the optimal strategy may depend on the average state or control of the group. If the agents are trading the same stocks, then their trading strategies are all subject to the same source of randomness, which implies that the group's average strategy itself is stochastic. In the context of mean-field games, this is formalized through the notion of common noise. In such cases, the PDEs of the forwardbackward system characterizing the solutions are no longer deterministic but stochastic, making the system considerably harder to solve. Another approach characterizes the solution by a forward-backward system of stochastic differential equations (FBSDEs) which involves the conditional distribution of the forward and the backward processes, given the common noise. A third approach consists in describing the solution by a PDE on the space of probability distributions, but here again, this PDE is difficult to solve since it is posed on an infinite-dimensional space. In any case, in this application to optimal trading and as in many others, common shocks lead to the need to approximate functions of high or infinite-dimensional inputs. All together, it makes crucial to develop efficient and accurate deep learning algorithms and theories for computing optimal controls and Nash equilibria in high dimensions.

Our second example arises in infectious disease control of multiple regions. In a classic compartmental epidemiological model, each individual in a geographical region is assigned a label, for instance, Susceptible, Exposed, Infectious, Removed, Vaccinated. The transmission of a virus, being infected or recovered, moves individuals from one compartment to another, and this transition is usually described by stochastic dynamical equations. When a disease outbreak is reported, the region planner needs to take measurements to control its spread. The ongoing COVID-19 includes issuing lockdown or work from home policies, developing vaccines and later expanding equitable vaccine distribution, providing telehealth programs, distributing free testing kits, educating the public on how the virus transits, and focusing on surface disinfection. As a region planner, the decisions are usually made by weighting different costs, including the economic loss due to less productivity during lockdown policy or work from home policy, the economic value of life due to death of infected individuals, and various social-welfare costs due to measurements mentioned above, and many more. Moreover, as the world is more interconnected than ever before, one region's decision will inevitably influence its neighboring regions. For instance, in the US, the decision made by the New York governor will affect the situation in New Jersey as so many people travel daily between the two states. Imagining that both state governors make decisions representing their own benefits but also take into account others' rational decisions, and they may even compete for the scarce resource (frontline workers, personal protective equipment, etc.), these are precisely the features of a non-cooperative game. A Nash equilibrium computed from such a game will definitely provide some qualitative guidance and insights for policymakers on the impact of certain policies. However, even with only three states (New York, New Jersey, and Pennsylvania) and a simple stochastic SEIR model as in [START_REF] Xuan | Optimal policies for a pandemic: A stochastic game approach and a deep learning algorithm[END_REF], this problem's state space is already twelve dimensions. Figure 1 below showcases the equilibrium lockdown policy corresponding to the multi-region SEIR model solved by a deep learning algorithm proposed in [START_REF] Han | Deep fictitious play for finding Markovian Nash equilibrium in multi-agent games[END_REF] (see Section 4.1.2) between the three states. The model parameters are estimated from real data posted by the Centers for Disease Control and Prevention (CDC). In general, the problem dimension is propositional to the number of compartments in the epidemiological model multiplied by the number of regions considered. For the most basic SIR model, the dimension of the problem for US governors will be 3 × 50 = 150.

Figure 1: A case study of the COVID-19 pandemic in three states: New York (NY), New Jersey (NJ), and Pennsylvania (PA) in [START_REF] Xuan | Optimal policies for a pandemic: A stochastic game approach and a deep learning algorithm[END_REF]. Plots of optimal policies (top-left), Susceptibles (top-right), Exposed (bottom-left), and Infectious (bottom-right) for three states: New York (blue), New Jersey (orange), and Pennsylvania (green). Large indicates high intensity of lockdown policy. Choices of parameters are referred to [172, Section 4.2].

An illustrative linear quadratic model

To illustrate numerical methods and show that they can correctly compute the problem's solution, it is convenient to have examples with analytical or semi-explicit solutions. We present here an example introduced in [START_REF] Carmona | Mean field games and systemic risk[END_REF] to model the interactions in a bank system. This model and other similar models with linear-quadratic structures admit a closed-form solution and have found applications in various fields.

We consider a stochastic differential game with N players, and we denote by I := {1, 2, . . . , N } the set of players. Let T be a finite time horizon. At each time t ∈ [0, T], player i ∈ I has a state X i t ∈ R and takes an action α i t ∈ R. In [START_REF] Carmona | Mean field games and systemic risk[END_REF], each player is interpreted as a bank and the state is its log-reserve. The dynamics of the controlled state process X i on [0, T] are given by

dX i t = [a(X t -X i t) + α i t] dt + σ ρ dW 0 t + 1 -ρ 2 dW i t , X t = 1 N N i=1 X i t , i ∈ I,
where W := [W 0 , W 1 , . . . , W N] are (N + 1) m-dimensional independent Brownian motions, and we shall call W i the individual noises and W 0 the common noise. The parameter ρ ∈ [0, 1] characterizes the noise correlation between agents. Here a(X t -X i t) represents the rate at which bank i borrows from or lends to other banks in the lending market, while α i t denotes its control rate of cash flows to a central bank. Furthermore, Xt = 1 N N i=1 X i t denotes the average state. The N dynamics are thus coupled since all the states X t = [X 1 t , . . . , X N t] affect the drift of every agent. Given a set of strategies (α t) t∈[0,T] , the cost associated to player i is of the form

J i (α) := E T 0 f i (t, X t , α t) dt + g i (X T) ,
where the running cost f i : [0, T] × R N × R N → R and the terminal cost g i : R N → R are given by

f i (t, x, α) = 1 2 (α i) 2 -qα i (x -x i) + 2 (x -x i) 2 , g i (x) = c 2 (x -x i) 2 , x = 1 N N i=1 x i .
All the parameters are non-negative. Here 1 2 (α i) 2 denotes the quadratic cost of the control, and -qα i (x-x i) models the incentive to borrowing or lending: bank i will want to borrow if X i t is smaller than X t and lend if X i t is larger than X t . The quadratic term (xx i) 2 in f i and g i penalizes the deviation from the average. Player i chooses (α i t) t∈[0,T] to minimize her cost J i (α) within some set of admissible strategies. We assume q ≤ 2 so that the Hamiltonian is jointly convex in state and control variables, ensuring that there is at most one Nash equilibrium. In the original work [START_REF] Carmona | Mean field games and systemic risk[END_REF]Section 3.1], open-loop and closed-loop equilibria are characterized using semi-explicit formulas through ordinary differential equations (ODEs).

As the number of agents N grows to infinity, the idiosyncratic noise no longer influences X, which depends only on the common noise W 0 . This is formalized in the following MFG. Let (W t) 0≤t≤T and (W 0 t) 0≤t≤T be independent m-dimensional Brownian motions. We shall refer W as the idiosyncratic noise and W 0 as the common noise of the system. We consider the stochastic control problem

inf α E T 0 α 2 t 2 -qα t (m t -X t) + 2 (m t -X t) 2 dt + c 2 (m T -X T) 2 ,
where dX t = [a(m t -X t) + α t] dt + σ(ρ dW 0 t + 1ρ 2 dW t), (1.1) where the representative agent controls her state X through a control process α. Here m t = E[X t |F W 0 t] is the conditional population mean given the common noise. As in the N -player case, one advantage of LQ models lies in the existence of an analytical solution for the mean-field equilibrium, which can provide a benchmark to test numerical algorithms. In this model, at equilibrium, we have

m t = E[X 0] + ρσW 0 t , t ∈ [0, T], (1.2)
α t = (q + η t)(m t -X t), t ∈ [0, T], (1.3)
where η t is a deterministic function solving the Riccati equation, ηt = 2(a + q)η t + η 2 t -(q 2), η T = c, with the solution given by η t = -(q 2)(e (δ + -δ -)(T -t) -1)c(δ + e (δ + -δ -)(T -t)δ -) (δ -e (δ + -δ -)(T -t)δ +)c(e (δ + -δ -)(T -t) -1) .

Here δ ± = -(a + q) ± √ R, R = (a + q) 2 + (q 2) > 0, and the minimized expected cost is

u(0, x 0 -E[x 0]), with u(t, x) = η t 2 x 2 + 1 2 σ 2 (1 -ρ 2) T t η s ds.
Existing deep learning methods for solving mean-field games (MFGs) with common noise fix the sampling common noise paths and then solve the corresponding MFGs. This leads to a nested-loop structure with millions of simulations of common noise paths in order to produce accurate solutions, which results in prohibitive computational cost and limits the applications to a large extent. In [START_REF] Min | Signatured deep fictitious play for mean field games with common noise[END_REF], based on the rough path theory, we propose a novel single-loop algorithm, named signatured deep fictitious play, by which we can work with the unfixed common noise setup to avoid the nested-loop structure and reduce the computational complexity significantly. The proposed algorithm can accurately capture the effect of common uncertainty changes on mean-field equilibria without further training of neural networks, as previously needed in the existing machine learning algorithms. See Section 4.2.2 for the detailed algorithm. Figure 2 showcases the performance for this LQ MFG with common noise, where the benchmark trajectories are simulated according to (

Organization of the survey

In the rest of this survey, we shall systematically review recent developments in machine learning methods and theory for stochastic control and games, with an emphasis on summarizing state-of-the-art works done at the crossroad of artificial intelligence and stochastic analysis. We shall also identify unsolved challenges, and make connections to real applications. As a preparation, in Section 2, we first review two main tools of modern machine learning, i.e., neural networks and stochastic gradient descent. Then we present a detailed introduction and reviews of machine learning algorithms and theory for stochastic control problems in Section 3. In Section 4, we focus on stochastic differential games, including (moderately large) N -player games and mean-field games. Reinforcement learning methods are generally model-free, and we review these types of methods for stochastic control and games in Section 5. We make conclusive remarks and discuss unsolved challenges in Section 6. In the appendix, we summarize all the acronyms and frequently used notations in this paper.

Deep Learning Tools

In this section, we briefly review two of the main tools of modern machine learning: neural networks and stochastic gradient descent, and connect them to the applications in stochastic control and games. We refer to [START_REF] Higham | Deep learning: An introduction for applied mathematicians[END_REF] for a more comprehensive mathematical introduction to deep learning for applied mathematicians and to [START_REF] Goodfellow | Deep learning[END_REF] for more background on this topic.

Neural network architectures

We start by introducing the feedforward fully connected architecture, before discussing recurrent neural networks and long short-term memory networks (LSTMs).

Feedforward fully connected neural networks.

Feedforward neural networks (FNNs) are straightforward choices as function approximators. We denote

L ρ d1,d2 = φ : R d1 → R d2 ∃(w, β) ∈ R d2×d1 × R d2 , ∀i ∈ {1, . . . , d 2 }, φ(x) i = ρ β i + d1 j=1 w i,j x j
as the set of layer functions with input dimension d 1 , output dimension d 2 , and activation function ρ : R → R. Typical choices for ρ are ReLU (positive part), identity, sigmoid, or hyperbolic tangent,

ρ ReLU (x) = max{x, 0}, ρ Id (x) = x, ρ s (x) = 1 1 + e -x , ρ tanh (x) = tanh(x).
Building on this notation and denoting by • the composition of functions, we define

N ρ, ρ d0,...,d +1 = φ • φ -1 • • • • • φ 0 (φ i) i=0,..., -1 ∈ i= -1 × i=0 L ρ di,di+1 , φ ∈ L ρ d ,d +1
as the set of regression neural networks with hidden layers and one output layer, the activation function of the output layer being ρ. The number of hidden layers, the numbers d 0 , d 1 , • • • , d +1 of units per layer, and the activation functions, is what is called the architecture of the network. Once it is fixed, the actual network function ϕ ∈ N ρ, ρ d0,...,d +1 is determined by the remaining real-valued parameters θ = (β (0) , w (0) , β (1) , w (1) ,

• • • • • • , β (-1) , w (-1) , β () , w ()),
defining the functions φ 0 , φ 1 , • • • , φ -1 and φ respectively. The set of such parameters is denoted by Θ.

For each θ ∈ Θ, the function computed by the network will be denoted by ϕ θ ∈ N ρ, ρ d0,...,d +1 when we want to stress the dependence on the parameters.

To alleviate the presentation, we will follow the convention to use vector and matrix notations, and that activation functions are implicitly applied coordinate-wise, so that:

ϕ θ (x) = ρ β () + w () ρ β (-1) + w (-1) ρ . . . β (0) + w (0) x .

Recurrent neural networks.

FNNs have difficulties in handling the path-dependent property when the stochastic control and games have delay features. The idea of recurrent neural networks (RNNs) [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] is to make use of sequential information, and thus provide a natural framework for overcoming these issues. In fact, RNNs have already shown great success in, e.g., natural language processing and handwriting recognition [START_REF] Graves | Generating sequences with recurrent neural networks[END_REF][START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF][START_REF] Graves | Offline handwriting recognition with multidimensional recurrent neural networks[END_REF]. Many variants exist and below we shall focus on one such variant, but the generic architecture can be described as follows: the neural network takes two inputs x and h, and produces two outputs y and h as follows, h = ρ β (1) + w (1,1) h + w (1,2) x , y = ρ β (2) + w (2) h , where ρ, ρ are two activation functions, and the parameters of the neural network are vectors β (1) , β (2) of suitable sizes, and matrices w (1,1) , w (1,2) , w (2) of suitable sizes.

Given a sequence of data points (x k) k≥0 and an initial input h 0 , a RNN can be used recursively to produce the sequence (y k , h k) k≥1 defined by

h k = ρ β (1) + w (1,1) h k-1 + w (1,2) x k-1 , y k = ρ β (2) + w (2) h k .
Therefore, h k+1 encodes information that is transmitted from iteration k to iteration k+1. This information is produced using previous information h k and the current data point x k , and it is used to compute the output y k associated to the current input x k .

Long short-term memory

The most common RNN is long short-term memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF]. The advantage of an LSTM is the ability to deal with the vanishing gradient problem and data with lags of unknown duration.

An LSTM is composed of a series of units, each of which corresponds to a timestamp, and each unit consists of a cell c and three gates: input gate i, output gate o, and forget gate f. Among these components, the cell keeps track of the information received so far, the input gate captures to which extent new input information flows into the cell, the forget gate captures to which extent the existing information remains in the cell, and the output gate controls to which extent the information in the cell will be used to compute the output of the unit. Given a data sequence (x k) k≥0 and an initial input h 0 , the information flows as:

forget gate: f k = ρ s (W f x k + U f h k-1 + b f), input gate: i k = ρ s (W i x k + U i h k-1 + b i), ontput gate: o k = ρ s (W o x k + U o h k-1 + b o), cell: c k = f k c k-1 + i k ρ tanh (W c x k + U c h k-1 + b c), output of the k th unit: h k = o k ρ tanh (c k),
where the operator denotes the Hadamard product, and

W f , W i , W o , W c , U f , U i , U o , U c , b f , b i ,

Stochastic gradient descent and its variants

Stochastic gradient descent (SGD) is the main tool to find (near-)optimal parameters when optimizing an overly parameterized system, which includes but not limited to the aforemenstioned FNNs, RNNs and LSTMs. The process of obtaining optimal parameters is called training in deep neural networks.

Consider a generic optimization problem, i.e., to minimize over ϕ,

J(ϕ) = E ξ∼ν [L(ϕ, ξ)],
where ξ follows a distribution ν and L is a loss function. Using neural networks as approximators for ϕ, the goal becomes minimizing over θ,

J(θ) = E ξ∼ν [L(ϕ θ , ξ)].
Then we describe SGD in Algorithm 1, which relies on an empirical risk minimization problem,

J S,N (θ) = 1 N N i=1 L(ϕ θ , ξ i),
where N is the number of training samples of ξ and we denote the sample set by S = (ξ 1 , . . . , ξ N).

Remark that doing a regular gradient descent requires computing a good approximation of the expectation at each iteration, which is prohibitive and can be stuck in bad local minima, while SGD performs much better in tackling these issues. The choice of the learning rates can be crucial to ensure convergence in practice. A popular way to adjust the rates is the Adam method [START_REF] Kingma | A method for stochastic optimization[END_REF], summarized in Algorithm 2. The computation of the gradient ∇J S,N (θ) with respect to θ can be done automatically by, e.g., TensorFlow or PyTorch, which perform this computation using backpropagation.

Algorithm 1 Stochastic Gradient Descent (SGD)

Input: An initial parameter θ 0 ∈ Θ. A mini-batch size N Batch . A number of iterations M . A sequence of learning rates (β m) m=0,...,M -1 .

Output: Approximation of θ * for m = 0, 1, 2, . .

= β 2 Vm-1 + (1 -β 2)g 2 m Compute biased-corrected first moment estimate: Mm = Mm /(1 -β m 1) Compute biased-corrected second moment estimate: Vm = Vm /(1 -β m 2) Set θ m+1 = θ m -α Mm /(Vm +) end for Return θ M

Stochastic Control Problems

We start with reviewing the development of machine learning methods for stochastic control (SC) problems. SC is a long-standing topic that studies stochastic dynamic systems under control to achieve optimal performance, inspired by applications in many areas, including but not limited to engineering, economics, and mathematical finance. Some existing methods have been nicely reviewed in, e.g., the papers by Pham and his co-authors [START_REF] Pham | On some recent aspects of stochastic control and their applications[END_REF][START_REF] Germain | Neural networks-based algorithms for stochastic control and PDEs in finance[END_REF]. In this section, we shall focus on reviewing those methods based on the tools in Section 2 for solving SC problems with delay and mean-field type SC problems, BSDE-base deep learning algorithms, Primal-Dual approaches, and PDE-based algorithms. Some topics may overlap with the review paper [START_REF] Germain | Neural networks-based algorithms for stochastic control and PDEs in finance[END_REF] for the purpose of completeness.

Formulation of stochastic control

Let (Ω, F, P) be a probability space supporting an m-dimensional Brownian motion (W t) t∈[0,T] , T < ∞, and F = (F t) t∈[0,T] be the natural filtration generated by W . In the most common case, a stochastic control problem is formulated as follows. Let d and k be integers for the dimension of the state and the action. Let A ⊂ R k denote the set of admissible actions. An agent controls her state process X through an action process α taking values respectively in R d and A, where the dynamics of X are given by the stochastic differential equation (SDE),

dX t = b(t, X t , α t) dt + σ(t, X t , α t) dW t , X 0 = x 0 . (3.1)
The agent aims to minimize the expected cost

J(α) : α → E T 0 f (t, X t , α t) dt + g(X T) , (3.2)
over the set of admissible action processes, denoted by A and to be discussed below.

Here b, σ, f, g are all Borel-measurable functions,

(b, σ, f) : [0, T] × R d × A → (R d , R d×m , R), g : R d → R.
The set A describes the integrability and measurability of α. We usually require that α is square-integrable. For measurability, two popular choices are that either α should be a F t -progressively measurable process, or α should be expressed as a measurable function of (t, X t). The former case is called adaptive controls (also called open-loop) while the later one is referred as Markovian controls. We will sometimes consider closed-loop controls, which means controls that are adapted to the filtration generated by X. We shall see that different choices of A might lead to different algorithm designs in Section 3.2. Before introducing the following machine learning algorithms, we first briefly describe how (3.1)-(3.2) can be solved by PDE, backward stochastic differential equation (BSDE), and forward-backward stochastic differential equation (FBSDE).

Let us start with the PDE approach. When considering Markovian controls, one can define the value function u(t, x),

u(t, x) := inf α E T t f (s, X s , α s) ds + g(X T)|X t = x ,
and employ the dynamic programming principle (DPP) [START_REF] Pham | Continuous-time stochastic control and optimization with financial applications[END_REF]Section 3], that is, u(T, x) = g(x) and for any stopping time τ ∈ [t, T], which leads to

u(t, x) = inf α E τ t f (s, X s , α s) ds + u(τ, X τ)|X t = x .
Then one can derive the Hamilton-Jacobi-Bellman (HJB) equation, which describes the evolution of the value function, by a DPP argument. Under suitable conditions, u(t, x) solves

∂ t u(t, x) + min α∈A H(t, x, ∇ x u(t, x), Hess x u(t, x), α) = 0, (3.3)
with the terminal conditions u(T, x) = g(x), H being

H(t, x, p, q, α) = b(t, x, α) • p + 1 2
Tr(σ(t, x, α)σ(t, x, α) T q) + f (t, x, α), (3.4) and Hess as the Hessian matrix. If (3.3) has a classical solution, then the optimal control is given by α(t, x, ∇ x u(t, x), Hess x u(t, x)) = arg min α∈A H(t, x, ∇ x u(t, x), Hess x u(t, x), α).

The connection between optimal control and BSDEs can be established in several ways, for instance, viewing value function as a solution to a BSDE. When the volatility is uncontrolled, that is, σ(t, x, α) is free of α, then α does not depend on Hess x u(t, x) and the PDE (3.3)

becomes semi-linear b(t, x)•∇ x u(t, x)+h(t, x, σ(t, x) T ∇ x u(t, x)) = b(t, x, α(t, x, ∇ x u(t, x)))•∇ x u(t, x)+f (t, x, α(t, x, ∇ x u(t, x))),
then the nonlinear Feynman-Kac formula [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] gives the BSDE interpretation of u(t, x),

dX t = b(t, X t) dt + σ(t, X t) dW t , X 0 = x 0 , dY t = -h(t, X t , Z t) dt + Z t dW t , Y T = g(X T), (3.5)
by the relation

Y t = u(t, X t), Z t = σ(t, X t) T ∇ x u(t, X t),
and the optimal value is given by Y 0 . When b(t, x) is chosen to be identically zero, this relation Y 0 = J(α) can also be obtained by the comparison principle of BSDEs [START_REF] Carmona | Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications[END_REF]Proposition 4.1].

In the controlled volatility case, the PDE (3.3) is fully nonlinear, and its solution is connected to a solution of the second order BSDE (2BSDE) [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic pdes[END_REF]. If one chooses b(t, x) and Σ(t, x) such that h is determined by

H(t, x, p, q, α(t, x, p, q)) = b(t, x) • p + h(t, x, p, q) + 1 2 Tr(Σ(t, x)Σ(t, x) T q),
then the solution to the 2BSDE

     dX t = b(t, X t) dt + Σ(t, X t) dW t , X 0 = x 0 , dY t = -h(t, X t , Y t , Z t) dt + Z T t Σ(t, X t) dW t , Y T = g(X T), dZ t = A t dt + Γ t Σ(t, X t) dW t , Z T = ∇ x g(X T), (3.6)
gives a solution to the PDE (3.3) with the relation

Y t = u(t, X t), Z t = ∇ x u(t, X t), Γ t = Hess x u(t, X t), A t = L∇ x u(t, X t),
where L denotes the infinitesimal generator of X .

The Pontryagin stochastic maximum principle provides the connection to the FBSDE. Define the generalized Hamiltonian H by

H(t, x, y, z, α) = b(t, x, α)y + Tr(σ T (t, x, α)z) + f (t, x, α).
If the Hamiltonian H is convex in (x, α), and (X t , Y t , Z t) solves

dX t = b(t, X t , αt) dt + σ(t, X t , αt) dW t , X 0 = x 0 , dY t = -∇ x H(t, X t , Y t , Z t , αt) dt + Z t dW t , Y T = ∂ x g(X T), (3.7)
such that α miminize H along (X t , Y t , Z t), then α is the optimal control. If the value function is smooth enough, then

Y t = ∇ x u(t, X t), Z t = σ(t, X t , α) T Hess x u(t, X t).
For machine learning algorithms introduced in the following sections, if a temporal discretization is needed, we shall consider, for simplicity, a uniform grid π on the interval [0, T], i.e., a partition 0 = t

0 < t 1 • • • < t N T = T , with t n -t n-1 = ∆t = T /N T .

Direct parameterization

We refer to the first class of algorithms as direct parameterization methods, which, literally, make use of the neural networks' ability of efficiently representing high-dimensional functions without using spatial grids, and directly replace the object control by a neural network with appropriate inputs.

Global and local in time approaches

There are two types of direct parameterization methods, depending on how the neural networks get trained.

Global in time approach

The first method is to train the neural networks used for, the control using the whole time horizon at once. Such ideas have been used for control and optimal control problems e.g., in [START_REF] Psaltis | A multilayered neural network controller[END_REF][START_REF] Hunt | Neural networks for control systems-a survey[END_REF][START_REF] Lehalle | Piecewise affine neural networks and nonlinear control[END_REF][START_REF] Gobet | Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control[END_REF] and more recently, Han and E [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF] revisited this type of method to solve problems in high dimension with a framework that corresponds to a discretized version of (In practice, the expected value in (3.9) is approximated by the following Monte Carlo counterpart

J(θ) = E N T -1 n=0 f (t n , Xθ tn , α tn (Xθ tn ; θ n))∆t + g(Xθ T) , θ := (θ n) N T n=0 , (3.9
L(θ, S) = 1 N N j=1 N T -1 n=0 f (t n , Xj,θ tn , α tn (Xj,θ tn ; θ n))∆t + g(Xj,θ T) ,
where {(Xj,θ tn) N T n=1 } j=1,...,N are samples paths of Xθ tn in (3.10) using i.i.d. samples of ∆ Wtn . In some applications that require constraints on the state and/or control process in the form,

C i e (X t , α t) = 0, C j ie (X t , α t) ≥ 0, 1 ≤ i ≤ I, 1 ≤ j ≤ J, t ∈ [0, T],
where I and J denote respectively the number of equality and inequality constraints, they can be enforced by adding the penalty function

I k=1 η k N T -1 n=0 |C k e (Xθ tn , α tn (Xθ tn ; θ n))| 2 + J k=1 ηk N T -1 n=0 ReLu(-C k ie (Xθ tn , α tn (Xθ tn ; θ n)))
to (3.9) with some large penalization parameters η k , ηk to be tuned. Further implementation details can be found in [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF].

Remark 3.1. It is commonly observed that the NNs of α tn share the same architecture. That is, people choose one feedforward neural network N ρ, ρ d0,...,d +1 with a d 0 = d + 1 dimensional input (t n , Xθ tn) and a d +1 = k dimensional output in A.

Local in time approach

The second approach also focuses on Markovian controls and is proposed by Bachouch, Huré, Langrené and Pham in [START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications[END_REF], which combines classical dynamic programming (DP) and deep neural networks for approximating the control and possibly the value function. The first algorithm, termed as NNContPI, is desgined as follows. Assuming that the optimal control at time t n+1 , . . . , t) being used. Then, as always, the expected value is approximated by sample paths of Xj,θ , and the optimal θn is obtained by SGD as described in Section 2. The second algorithm, termed as Hybrid-now, further approximates the value function (i.e., the cost-to-go) at time t n+1 using a deep neural network to avoid repeated computation of the last two terms in (3.11). More precisely, given the learnt approximated value function V tn+1 (•; θn+1) at time t n+1 , the optimal policy at time t n is determined in a manner that is similar to the NNContPI algorithm θn ∈ arg min Remark 3.2. The first approach [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF] learns all the optimal controls α tn (•; θn), n = 0, . . . , N T -1 at once, by performing a unique SGD with a loss function that involves the whole time horizon, while the second approach [START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications[END_REF] learns α tn sequentially and backwardly, for n = N T -1, N T -2, . . . , 0. Though the first work may be efficient since NNs for optimal controls at each time are designed in practice to share parameters and they are getting trained at the same time, it may encounter vanishing or exploding gradient problem for large N T as remarked in [START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications[END_REF].

Choice of input data

In direct parameterization approaches, the neural network is used to approximate the optimal control and/or value function, with no doubt these quantities will serve as the output of NNs. Regarding inputs, it depends on the class of controls within which one is searching for. For Markovian controls which is the focus in [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF] and [START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications[END_REF], the input shall be Xtn for α tn (•; θ n); while for open-loop controls, the more suitable choice will be (Wt0 , . . . , Wtn); and for the closed-loop control, this will be (Xt0 , . . . , Xtn).

Stochastic control with delay

We further illustrate the direct parameterization methods by studying the stochastic control (SC) problems with delay. Such problems have found many applications, e.g., in economics for time-to-build problems [START_REF] Kydland | Time to build and aggregate fluctuations[END_REF][START_REF] Asea | Time-to-build and cycles[END_REF], in marketing for modeling the "carryover" or "distributed lag" advertising effect [START_REF] Gozzi | Stochastic optimal control of delay equations arising in advertising models[END_REF][START_REF] Gozzi | On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects[END_REF], and in finance for portfolio selection under the market with memory and delayed responses [START_REF] Øksendal | A maximum principle for optimal control of stochastic systems with delay, with applications to finance[END_REF][START_REF] Federico | A stochastic control problem with delay arising in a pension fund model[END_REF][START_REF] Elsanosi | Optimal consumption under partial observations for a stochastic system with delay[END_REF][START_REF] Li | Portfolio selection under time delays: A piecewise dynamic programming approach[END_REF]. See also [START_REF] Kolmanovskiȋ | Control of Systems with Aftereffect[END_REF]Chapter 1] for modeling systems with the aftereffect in mechanics and engineering, biology, and medicine. Note that FNN is the most common architecture in deep learning and performs well as function approximators of Markovian controls. Another popular type of NNs is RNNs. In a study by Han and Hu [START_REF] Han | Recurrent neural networks for stochastic control problems with delay[END_REF], it is shown that RNNs have better performance in control problems with a delay effect.

To distinguish between the value of a process at a given time and the portion of trajectory ending at time t with δ history, for any process P , we denote by P t = (P t s) s∈[-δ,0] the trajectory of P from time tδ to t, i.e., P t (s) = P t+s , for -δ ≤ s ≤ 0. Specifically, we consider a SC problem in which the state process X is characterized by a stochastic differential delay equation (SDDE),

dX t = b(t, X t , α t) dt + σ(t, X t , α t) dW t , t ∈ [0, T], X t = ϕ t , t ∈ [-δ, 0], (3.12)
and the objective function is given by

J(α) = E T 0 f (t, X t , α t) dt + g(X T) . (3.13)
Here δ ≥ 0 is the fixed delay, and (ϕ t) t∈[-δ,0] is a given process on [-δ, 0] for the initial condition of X, and X t denotes the value of the state process at time t as usual.

The SDDE (3.12) has been well studied in the literature [START_REF] Mohammed | Stochastic Functional Differential Equations[END_REF][START_REF] Mohammed | Stochastic differential systems with memory: theory, examples and applications[END_REF]. Let C -δ := C([-δ, 0], R d) be the Banach space of all R d -valued continuous functions defined on [-δ, 0] endowed with the supremum norm

y C -δ = sup -δ≤s≤0 |y s |, ∀y ∈ C -δ .
The drift b and volatility σ coefficients, and running f and terminal costs g are deterministic functionals

(b, σ, f) : [0, T] × C -δ × A → (R d , R d×m , R); g : C -δ → R.
Denote by L 2 (Ω, C -δ) the space of all F-measurable stochastic processes, i.e.,

Ω ω → X(ω) ∈ C -δ is in L 2 (Ω, C -δ), iff. Ω X(ω) 2 C -δ dP(ω) < ∞. Then L 2 (Ω, C -δ) is complete with the semi-norm X L 2 (Ω,C -δ) := [Ω X(ω) 2 C -δ dP(ω)] 1/2
. We assume that the initial path ϕ ∈ L 2 (Ω, C -δ) and is independent of the Brownian motion W t , and the existence of solution X to the SDDE (3.12) is considered in L 2 (Ω, C([-δ, T], R d)). Let (F t) t≥0 be the filtration supporting W and ϕ, and let C([0, T], L 2 (Ω, C -δ)) be the space of all L 2 -continuous C -δ -valued F t -adapted process P : [0, T] t → P t ∈ L 2 (Ω, C -δ) with the semi-norm

P C([0,T],L 2 (Ω,C -δ)) := sup 0≤t≤T P t L 2 (Ω,C -δ) .
The trajectory

X t of SDDE (3.12) is considered in C([0, T], L 2 (Ω, C -δ)).
Usually, one requires uniform Lipschitz conditions in the second variable of b and σ to ensure the existence and uniqueness of strong solutions to SDDE (3.12), that is,

(b, σ)(t, y 1 , α) -(b, σ)(t, y 2 , α) L 2 ≤ L y 1 -y 2 L 2 (Ω,C -δ) , ∀t ∈ [0, T] and y 1 , y 2 ∈ L 2 (Ω, C -δ).
See detailed analysis in Mohammed's monographs [START_REF] Mohammed | Stochastic Functional Differential Equations[END_REF][START_REF] Mohammed | Stochastic differential systems with memory: theory, examples and applications[END_REF]. Assumptions on f and g will ensure the expected cost (3.13) is finite.

The authors in [START_REF] Han | Recurrent neural networks for stochastic control problems with delay[END_REF] analyzed this problem with a focus on the deep neural networks' (DNNs) architecture design in order to handle the high-dimensionality arising from the delay and the comparison of their performance based on some tractable examples. Without loss of generality, assume that the fixed delay δ < ∞ covers N δ subintervals, i.e., δ = N δ ∆t, the partition on [0, T] is extended to [-δ, 0],

-δ = t -N δ ≤ t -N δ +1 ≤ . . . ≤ t 0 = 0, with t n+1 -t n ≡ ∆t, ∀n = -N δ , . . . , -1.
and the discretized version of (3.12)-(3.13) becomes Xtn+1 = Xtn + b(t n , Xtn , α tn)∆t + σ(t n , Xtn , α tn)∆ Wtn ,

inf

{αt n } N T -1 n=0 E N T -1 n=0 f (t n , Xtn , α tn)∆t + g(XT) ,
where Xtn represents the discrete path with N δ lags, and ∆ Wtn is the increment in Brownian motions, Xtn = (Xt n-N δ , . . . , Xtn), ∆ Wtn = Wtn+1 -Wtn .

The next two architectures are proposed for approximating α tn ∈ R k .

Feedforward architecture. Motivated by the path-dependent structure of the considered problems (the change of current state only depends on the history up to lag δ), a natural idea is to approximate α tn by a feedforward neural network taking the state history up to lag δ as the input. Note here it could be δ = δ since one may not know the underlying true δ a priori. Without loss of generality, one can assume δ = Nδh (Nδ ∈ N +) and define Xtn ≡ (Xt n-N δ , . . . , Xtn) ∈ R d×(Nδ+1) . Then the policy at time t n can be approximated by α tn ≈ N ρ, ρ d0,...,d +1 (Xtn ; θ n), (3.15) with hidden layers, d 0 = d(Nδ + 1) and d +1 = k. Also, with a fixed input dimension and the added time variable in the input (Xtn , t n), one can share the parameters of sub-neural networks, thus reducing the parameter number by a factor of N T compared to N T different networks at each timestamp.

Recurrent architecture. The LSTM architecture is proposed and the n th unit is responsible for approximating α tn . One takes (X t0 , t 0), (X t1 , t 1), (X t2 , t 2), . . . , as the input sequence x 0 , x 1 , x 2 , . . . in practice, and specify the initial information of h n , c n according to the discretized initial condition ϕ. Then taking an affine transformation of h n as the proxy of α tn , [START_REF] Han | Recurrent neural networks for stochastic control problems with delay[END_REF] only experiment LSTM, other variations of RNNs such as gated recurrent units (GRUs) [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF] or peephole LSTM [START_REF] Gers | Learning precise timing with LSTM recurrent networks[END_REF] are also worth being considered.

α tn ≈ W h n + b. (3
Numerical illustration: a linear-quadratic regulator problem with delay.

Stochastic linear-quadratic (LQ) problems were extensively studied in the literature. They have appeared in many contexts and have been used to benchmark various numerical algorithms due to their tractability. LQ problems with delay was first investigated by Kolmanovskiȋ and Shaȋkhet [START_REF] Kolmanovskiȋ | Control of Systems with Aftereffect[END_REF]. The version presented here aims to minimize

E ϕ T 0 (X t + e λδ A 3 Y t) T Q(t)(X t + e λδ A 3 Y t) + α T t R(t)α t dt + (X T + e λδ A 3 Y T) T G(X T + e λδ A 3 Y T) , subject to dX t = (A 1 (t)X t + A 2 (t)Y t + A 3 Z t + B(t)α t) dt + σ(t) dW t , t ∈ [0, T], (3.17)
where

X 0 = ϕ ∈ L 2 (Ω, C -δ) is a given initial segment, Y t = 0
-δ e λs X t+s ds is the distributed delay and

Z t = X t-δ is the discrete delay, A 1 (t), A 2 (t), Q(t) ∈ R d×d , B(t) ∈ R d×k , R(t) ∈ R k×k are deterministic matrix-valued functions in L ∞ [0, T], σ(t) ∈ R d×m is a deterministic matrix-valued function in L 2 [0, T],
A 3 , G ∈ R d×d are deterministic matrices. It is assumed that Q(t), G are positive semi-definite and R(t) is positive definite for all t ∈ [0, T] and continuous on [0, T]. To have a tractable solution, a further relation is prescribed,

A 2 (t) = e λδ (λI d + A 1 (t) + e λδ A 3)A 3 , (3.18)
where I d is the identity matrix with rank d. This example was studied in [18, Section 4], and the main results are also summarized in [START_REF] Han | Recurrent neural networks for stochastic control problems with delay[END_REF]. Below a ten-dimensional example is presented in which d = k = m = 10, and λ = 0.1. In Eq. (3.17), A 1 , A 3 , B, σ are random generated constant coefficient matrices, Q, R, G are constant matrices proportional to identity matrices, and A 2 is determined by (3.18). The dimension of the hidden state in the LSTM model is d h = 200, which gives 171610 parameters in total. The feedforward model takes the state history as inputs up to lag δ = δ with Nδ = 40, and it has 2 hidden layers with a width of 300, which gives 108910 parameters in total. The LSTM model is trained with 16000 steps, in which the learning rate is 0.005 for the first 8000 steps and 0.0005 for the second 8000 steps. The feedforward model is trained with 32000 steps, in which the learning rate is 0.005 for the first 8000 steps and 0.0005 for the remaining 24000 steps. The total cost is calculated on the validation data every 200 steps and plot the curve against training time in Figure 3. One can see that with the same learning rates and roughly the same number of parameters, the LSTM model converges to a solution with a lower cost compared to the feedforward model. They further test the learned policy on a new set of sample paths, and the average cost of the LSTM model and feedforward model are 2.8740 and 2.8812. Note that the cost obtained by the policy discretized from the analytical optimal control is 2.8723 (cf. [100, Proposition 1]). Figure 4 depicts one sample path (first five dimensions only) of the optimal state X and control α provided by two neural networks in comparison with the analytical solution, in which the LSTM architecture presents a better agreement. Left: the optimal state process discretized from the analytical solution (X t) i (solid lines) and its approximation (Xt) i (dashed lines) provided by the approximating control, under the same realized path of Brownian motion. Right: comparisons of the optimal control (α * t) i (solid lines) and (αt) i (dashed lines).

In the above experiment, the lag time δ processed by the feedforward model is chosen to be the same as δ. One main drawback of the feedforward model is that it requires to know the true lag time δ a priori to determine the network's size. If the chosen lag time δ is smaller than the actual lag δ time, which means there is a loss of information when the feedforward network processes the data, the final performance might be compromised. To quantify this effect, we test the feedforward model with different processed lag time δ from 0.2 to 1 with step size 0.1, while the actual lag δ = 1. The corresponding optimized costs are shown in Figure 3. As expected, we observe that the cost increases as the lag time processed by the feedforward model decreases. A higher optimized cost indicates that the model can only find a sub-optimal but not an optimal strategy due to the lack of information.

Mean-field type control

The second example of direct parameterization methods is for mean-field type control problems. In the same spirit of Han and E [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF], Carmona and Laurière [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF] analyzed the optimal control problem of mean-field type. The application of mean-field control (MFC) is not limited to social optima in very large games but also in, e.g., risk management [START_REF] Andersson | A maximum principle for SDEs of mean-field type[END_REF] or optimal control with a cost involving a conditional expectation [START_REF] Achdou | Optimal control of conditioned processes with feedback controls[END_REF][START_REF] Nutz | Conditional optimal stopping: a time-inconsistent optimization[END_REF]. In this section, we shall focus on the numerical solution of McKean-Vlasov control problems proposed in [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF]. It hinges on an approach developed for standard control problems, in which the control feedback function is restricted to a parametric family of functions, especially a class of neural networks whose parameters are learned by stochastic optimization [START_REF] Gobet | Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control[END_REF][START_REF] Han | Deep learning approximation for stochastic control problems[END_REF]. Note that this method was extended to the mean-field setting in [START_REF] Fouque | Deep learning methods for mean field control problems with delay[END_REF][START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF][START_REF] Agram | Deep learning and stochastic mean-field control for a neural network model[END_REF]. Although we focus here on a basic setting for which a simple feedforward fully connected architecture performs well, other architectures may yield better results for problems with more complex time dependencies, see e.g., [START_REF] Fouque | Deep learning methods for mean field control problems with delay[END_REF][START_REF] Gomes | Machine learning architectures for price formation models[END_REF].

Definition 3.1 (MFC optimum). A feedback control α * : [0, T] × R d → R k is an optimal control for the MKV control (or MFC) problem for a given initial distribution µ 0 ∈ P 2 (R d) if it minimizes J(α) : α → E T 0 f (X t , µ t , α(t, X t))dt + g(X T , µ T) , (3.19)
where µ t is the probability distribution of the law of X t , under the constraint that the process X = (X t) t≥0 solves the stochastic differential equation of the McKean-VLasov type,

dX t = b(X t , µ t , α(t, X t)) dt + σ dW t , t ≥ 0, (3.20)
with X 0 having distribution µ 0 .

Existence and uniqueness results have been studied in the literature and we refer the interested reader to e.g. [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications II[END_REF] and in particular the assumption "Control of MKV Dynamics" on page 555. Since MFC is an optimization problem, it is natural to leverage stochastic optimization tools from machine learning to directly apply them to the definition (3.19)- (3.20). We introduce three approximations leading to a formulation more amenable to numerical treatment.

Approximation steps. Recall the notation L ψ d1,d2 and N ψ d0,...,d +1 introduced in Section 2.1. Here, we are interested in the case where d 0 = 1 + d (since the inputs are time and state) and d +1 = k (i.e., the control dimension).

The first approximation is to minimize J(α) defined by (3.19)-(3.20) over α ∈ N ψ d+1,d1,...,d ,k , or equivalently, to minimize over θ ∈ Θ the function

J(θ) = E T 0 f (X θ t , µ θ t , α(t, X θ t ; θ)) dt + g(X θ T , µ θ T) ,
where µ θ t is the law of X θ t , under the constraint that the process X θ solves the SDE (3.20) with feedback controls α(t, X θ t ; θ). Next is to approximate the probability distribution of the state. A (computationally) simple option is to replace it by the empirical distribution of a system of N interacting particles. Given a feedback control α, we denote by (X t) t≥0 = (X 1 t , . . . , X N t) t≥0 the solution of the system

dX i t = b(X i t , µ N t , α(t, X i t)) dt + σ dW i t , t ≥ 0, i = 1, . . . , N, (3.21)
where

µ N t = 1 N N j=1 δ X j t ,
is the empirical measure of the N particles, W = (W i) i=1,...,N is a family of N independent d-dimensional Brownian motions, and the initial positions X 0 = (X i 0) i=1,...,N are i.i.d. with distributions µ 0 . The N stochastic differential equations in (3.21) are coupled via their drifts through the empirical measure µ N t . The controls are distributed in the sense that the control used in the equation for X i is a function of t and X i t itself, and not of the states of the other particles. Despite their dependence due to the coupling, it is expected that the empirical measures converge when N → ∞ to the solution of the SDE (3.20). Not only does this convergence holds, but in this limit, the individual particle processes (X i t) 0≤t≤T become independent. This fundamental result is known under the name of propagation of chaos; see [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications II[END_REF] for details and the role this result plays in the theory of MFGs and MFC. As per this second approximation, the new problem is to minimize over θ ∈ Θ the function

J N (θ) : θ → 1 N N i=1 E T 0 f (X i,θ t , µ N,θ t , α(t, X i,θ t ; θ)) dt + g(X i,θ T , µ N,θ T) ,
under the dynamics (3.21) with control α(•; θ). The third approximation is to discretize time. It is now to minimize over θ ∈ Θ the function

JN (θ) : θ → 1 N N i=1 E N T -1 n=0 f (Xi,θ tn , μN,θ tn , α(t n , Xi,θ tn ; θ))∆t + g(Xi,θ T , μN,θ T) , (3.22)
under the dynamic constraint

Xi,θ tn+1 = Xi,θ tn + b(Xi,θ tn , μN,θ tn , α(t, Xi,α θ tn ; θ))∆t + σ∆ W i n , n = 0, . . . , N T -1, (3.23)
and the initial positions (Xi,θ 0) i=1,...,N are i.i.d. with distribution given by the density µ 0 , where

μN,θ tn = 1 N N j=1
δ Xj,θ tn , and the (∆ W i n) i=1,...,N,n=0,...,N T -1 are i.i.d. random variables with Gaussian distribution N (0, ∆t). Under suitable assumptions on the model and the neural network architecture, the difference between inf θ JN (θ) and inf α J(α) goes to 0 as N T , N and the number of parameters in the neural network go to infinity; see [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF] for details.

Optimization procedure. Here one needs to overcome two difficulties: First, the fact that the cost function (3.22) is in general non-convex; Second, the parameter θ is typically high dimensional. But the cost (3.22) being written as an expectation, it is reasonable to rely on a form of stochastic gradient descent (SGD) algorithm. Given a realization of S = (X0 , (∆ Wn) n) and a choice of parameter θ, one can construct the trajectory (Xi,θ,S tn) i=1,...,N,n=0,...,N T by following (3.23), and compute the induced cost

JS,N (θ) = 1 N N i=1 N T -1 n=0 f (Xi,θ,S tn , μN,θ,S tn , α(t n , Xi,θ,S tn ; θ))∆t + g(Xi,θ,S T , μN,θ,S T) .
Here S play the role of a random sample in SGD, then SGD (see Algorithm 1) can be applied to the empirical loss L(θ,) = JN,S (θ). Note that, contrary to the methods based on optimality conditions, here one works directly with the definition of the MFC, and there is no need to derive by hand any PDE, any FBSDE, or compute gradients. The main reasons behind the success of this method are the expressive power of neural networks and the fact that there is a priori no limitation on the number K of iterations because the samples S come from Monte-Carlo simulations and not from a training set of data. In the implementation of this method, using mini-batches and ADAM [START_REF] Kingma | A method for stochastic optimization[END_REF] can help improving convergence.

Numerical illustration: a mean-field price impact problem.

We now illustrate the method with a financial application on a problem of optimal execution. The model takes into account price impact resulting from a large group of traders affecting the price of a single asset through their aggregate trades, i.e., a large number of buy orders will push the price up while a large number of sell orders will deflate the price.

The N -agent problem was originally solved as a mean-field game (MFG) by Carmona and Lacker in the weak formulation ([START_REF] Carmona | A probabilistic weak formulation of mean field games and applications[END_REF]), and revisited in the book of Carmona and Delarue [42, Sections 1.3.2 and 4.7.1] in the strong formulation. Here, we focus on the mean-field setting. In this model, a typical and infinitesimal trader's inventory at time t is denoted by X t . We assume that it evolves according to the SDE

dX t = α t dt + σ dW t ,
where α t represents the rate of trading, and W is a standard Brownian motion, and the cost can be rewritten in terms of X only as

J(α) = E T 0 c α (α t) + c X (X t) -γX t R a dν α t (a) dt + g(X T) .
Following the Almgren-Chriss linear price impact model, we assume that the functions c X , c α and g are quadratic. Thus, the cost is of the form

J(α) = E T 0 c α 2 α t 2 + c X 2 X 2 t -γX t R a dν α t (a) dt + c g 2 X 2 T .
Let us stress that this problem is an extended MFC: the population distribution is not frozen during the optimization over α, and the interactions occur through the distribution of controls ν α . This model has a semi-explicit solution obtained by reducing the problem to a system of ordinary differential equations (ODEs) as explained in [42, Sections 1.3.2 and 4.7.1]. The deep learning method described above can readily be adapted to solve MFC with interactions through the control's distribution by computing the empirical distribution of controls for an interacting system of N particles. The results displayed in Figure 16 show that the control is linear, as expected from the theory, and the distribution moves towards 0 while becoming more concentrated. In other words, at the beginning the traders have a relatively large inventory with a large variance across the population, and they liquidate to end up with smaller inventories and less variance. One can see that towards the end of the time interval, the control learnt is not exactly linear, probably because a regions has been less explored than the rest leading to a less accurate training. For these results, we used the parameters: T = 1, c X = 2, c α = 1, c g = 0.3, σ = 0.5 and the value of γ indicated in the captions. Moreover, in the algorithm we took N = 2000 particles and N T = 50 time steps. We see in Figure 5 that when γ = 0.2, the optimal control is to constantly liquidate. However, as shown in Figure 6, when γ = 1, the traders start by liquidating by towards the end of the time interval, they buy. This can be explained by the fact that with a higher γ, the price impact effect is stronger and the traders can use phenomenon to increase their wealth by collectively buying and hence increasing the price. In each case, the neural network manages to learn a control which approximately matches the benchmark on.

BSDE-based deep learning algorithms

Alternative deep learning methods for control problems (3.1)-(3.2) are by solving the associated backward stochastic differential equations (BSDEs) (cf. (3.5) and (3.6)). To fix ideas, we illustrate the algorithms on a generic BSDE,

dY t = -F (t, X t , Y t , Z t) dt + Z T t dW t , t ∈ [0, T], (3.24)
with terminal condition Y T = G(X T), where X solves the (possibly) coupled forward equation:

dX t = B(t, X t , Y t , Z t) dt + σ(t, X t) dW t , t ∈ [0, T], (3.25)
with the initial condition: X 0 ∼ µ 0 . As mentioned in Section 3.1, the connection between optimal control and BSDEs (or FBSDEs) can be established in several ways. For example, using Bellman's dynamic programming principle, we find out that the value function u(t, X * t) evaluated along the optimally controlled process X * satisfies a BSDE (see, e.g., [START_REF] Yong | Stochastic controls: Hamiltonian systems and HJB equations[END_REF]). Using Pontryagin stochastic maximum principle, one can derive a BSDE for the gradient ∇ x u(t, X * t) of the value function evaluated along the optimally controlled process [152, Section 6.4], see (3.7). More generally, solutions to parabolic PDEs and BSDEs can be connected thanks to the Feynman-Kac formula, see (3.5) or (3.6). For example, the value function u(t, ξ t) evaluated along an arbitrary Itô process satisfies a BSDE that is coupled with the evolution of this Itô process ξ t . To simplify computations, a possible choice is to take ξ t = W t as a Brownian motion.

Deep backward stochastic differential equation (Deep BSDE)

The Deep BSDE was proposed by E, Han and Jentzen in [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF]. This method relies on a stochastic version of a shooting method that is extensively used to solve ODEs. This strategy has been successfully applied to problems in economic contract theory where it is known as Sannikov's trick. See for example [START_REF] Kohlmann | Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach[END_REF][START_REF] Cvitanić | Contract theory in continuous-time models[END_REF][START_REF] Cvitanić | Dynamic programming approach to principal-agent problems[END_REF]]. The idea is to try to guess the initial value Y 0 and the (Z t) t∈[0,T] process so as to meet the terminal condition Y T = g(X T). Originally, it has been proposed in [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] for decoupled FBSDE systems, and then been extended to fully coupled FBSDEs; see e.g. [START_REF] Han | Convergence of the deep BSDE method for coupled FBSDEs[END_REF][START_REF] Ji | Three algorithms for solving high-dimensional fully coupled FBSDEs through deep learning[END_REF].

To be precise, solving the system (3.24)-(3.25) is reduced to identifying (Y 0 , (Z t) t∈[0,T]) in (3.24) which is characterized as the solution to the following control problem, i.e., to minimize the cost over (y 0 , z)

J(y 0 , z) = E Y T -g(X T) 2 , subject to that (X t , Y t) t∈[0,T] solves      dX t = B(t, X t , Y t , z(t, X t)) dt + σ dW t , t ∈ [0, T], dY t = -F (t, X t , Y t , z(t, X t)) dt + z(t, X t) T dW t , t ∈ [0, T], X 0 ∼ µ 0 , Y 0 = y 0 (X 0).
Then, as in the methods presented above (see Section 3.2), the control functions y 0 and z are replaced by deep neural networks, say y 0 (•; θ Y) and z(•; θ Z) with parameters θ Y and θ Z , respectively. Furthermore, time is discretized using a uniform grid

t 0 < t 1 • • • < t N T = T , t n -t n-1 = ∆t = T /N T .
Then the problem becomes to minimize over θ = (θ Y , θ Z) the cost

J(θ) = E Y θ T -g(Xθ T) 2 , subject to that (Xθ tn , Y θ tn) n=0,...,N T solves      Xθ tn+1 -Xθ tn = B(t n , Xθ tn , Y θ tn , z(t n , Xθ tn); θ Z)∆t + σ∆ Wtn+1 , n = 0, . . . , N T -1, Y θ tn+1 -Y θ tn = -F (t n , Xθ tn , Y θ tn , z(t n , Xθ tn); θ Z)∆t + z(t n , Xθ tn ; θ Z) T ∆ Wtn+1 , n = 0, . . . , N T -1, Xθ 0 = X 0 ∼ µ 0 , Y θ 0 = y 0 (Xθ 0 ; θ Y),
where ∆ Wtn+1 = Wtn+1 -Wtn .

Finally, the optimization can be carried out by applying SGD algorithm (Algorithm 1) with L(θ) = J(θ) and one sample is S = (X 0 , (∆ Wtn) n=1,...,N T), which is sufficient to simulate (Xθ tn , Y θ tn) n=0,...,N T .

Remark 3.4. Instead of using a single neural network for z, viewed as a function of t and x, another possibility is to put a different neural network at each time step, which is a function of x only. With this approach, each neural network can use fewer parameters since there are fewer inputs. However, possible drawbacks are that: (1) the number of neural networks grows linearly with the number of time steps; and

(2) the time dependence is not captured (at least not directly).

Remark 3.5. A possible shortcoming of this method is that the optimization is done globally in time: the loss function is computed only after simulating a whole trajectory, and only then can the parameters be updated. For problems with long time horizons or complicated terminal conditions, the method may have difficulty in converging, as has been pointed out in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF].

Several variants of the Deep BSDE method have been proposed. For example, [START_REF] Ji | Three algorithms for solving high-dimensional fully coupled FBSDEs through deep learning[END_REF] considers learning Y as a feedback of X or using Picard iterations to learn feedback controls based on (X, Y, Z). The Deep BSDE method has been extended to include control problems with mean-field effects [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF]Secion 4.2] and delay [68, Section 3.2], and generalized to stochastic differential games [99, Section 3.2]. Remark 3.6. As mentioned in Section 3.1, the solution to a BSDE is closely related to the solution of a semi-linear PDE which could be derived from an uncontrolled volatility problem. In the case of a fully controlled volatility problem, a similar relation exists, and the corresponding deep 2BSDE method is proposed by Beck, E and Jentzen [START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF].

Deep backward dynamic programming (DBDP)

The DBDP method has been proposed by Huré, Pham and Warin in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], based on ideas similar to the loca approach discussed in Section 3.2.1. The main idea is to learn Ytn and Žtn at each t n as functions of Xtn by backward induction in time. So the resolution of the BSDE is decomposed as a sequence of optimization problems which are solved backward in time. This is in contrast with the above Deep BSDE method which goes forward in time, just like the difference between the two algorithms introduced in Section 3.2.

In DBDP, for each n, Ytn and Žtn are replaced by neural networks, say y n (•; θ Y n) and z n (•; θ Z n), with possibly different parameters at each time step. Here, one need to choose a sampling distribution, say µ tn for Xtn for each t n , and the algorithm proceed with a backward induction. First, θ Y N T is trained such that

y N T (•; θ Y N T) ≈ g(•), for example by minimizing J(θ Y) = E y N T (XT ; θ Y) -g(XT) 2 ,
where XT ∼ µ N T . Note that the value of θ Z N T is not relevant for the result of the method. Then, the neural networks

y n (•; θ Y n) and z n (•; θ Z n) are trained for n = N T -1, N T -2, .
. . , 0. There are at least two different ways to train these neural networks:

• Version 1: θ n = (θ Y n , θ Z n) is trained to minimize over θ = (θ Y , θ Z), J1 n (θ) = E y n+1 (Xθ tn+1 ; θ Y n+1) -y n (Xtn ; θ Y) + F (t n , Xtn , y n (Xtn ; θ Y), z n (Xtn ; θ Z))∆t -z n (Xtn ; θ Z) • ∆ Wtn+1 2 , with Xθ tn+1 = Xtn + B(t n , Xtn , y n (Xtn ; θ Y), z n (Xtn ; θ Z n))∆t + σ∆ Wtn+1 , Xtn ∼ µ tn . • Version 2: θ Y n is trained to minimize over θ = θ Y , J2 n (θ) = E y n+1 (Xθ tn+1 ; θ Y n+1) -y n (Xtn ; θ Y) + F (t n , Xtn , y(Xtn ; θ Y), σ T D x y n (Xtn ; θ Y))∆t -D x y n (Xtn ; θ Y) T σ∆ Wtn+1 2 , with Xθ tn+1 = Xtn + B(t n , Xtn , y n (Xtn ; θ Y), σ T D x y n (Xtn ; θ Y))∆t + σ∆ Wtn+1 , Xtn ∼ µ tn ,
and the derivative D x y n representing the numerical differentiation of the neural network y n .

Then at each time step t n , the optimization can be carried out by applying SGD algorithm (see Algorithm 1) to the loss J1 n (θ) or J2 n (θ), and one sample is S = (Xtn , ∆ Wtn+1).

The DBDP method has been used successfully to solve the BSDE associated with the semi-linear PDE.

Remark 3.7. In [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], the authors also extended this idea to reflected BSDEs that arise in optimal stopping problem and American option pricing in finance [152, Section 6.5].

Remark 3.8. The difference between the two versions of DBDP is: Version 1 uses independent neural networks for the approximation of Y t and Z t in (3.24); while Version 2 only approximate Y t by neural networks and representing Z t through auto-differentiating y n (•; θ Y n). Though the former one has more modeling flexibility, it may also introduce some inconsistency, as in many scenarios, the backward process is a function of time and the forward process Y t = u(t, X t) and the adjoint process is indeed the derivative of this function up to a scale:

Z t = σ T (t, X t)∇ x u(t, X t).
The main advantage of the DBDP method is that it makes use of the time structure of the problem to split it into much simpler problems. Two possible shortcomings of the DBDP method are that: (1) the number of neural networks grows linearly with the number of time steps; and (2) it is not always clear how to choose the sampling distributions µ tn , which have an impact on the way the neural networks are trained.

Primal-Dual approaches

The Deep BSDE method presented above tackles directly a BSDE, without making explicit use from the fact that, in our context, the BSDE comes from an optimal control problem. In this context and under suitable assumptions, we can rely on a dual formulation to introduce primal-dual deep learning methods. Such methods have been studied, e.g., in [START_REF] Henry-Labordere | Deep primal-dual algorithm for BSDEs: Applications of machine learning to CVA and IM[END_REF][START_REF] Bender | A primal-dual algorithm for BSDEs[END_REF][START_REF] Davey | Deep learning for constrained utility maximisation[END_REF] and have applications to several problems in finance.

Recall that the stochastic optimal control we consider is given by (3.1)-(3.2), i.e., we want to minimize

J(α) = E T 0 f (t, X t , α t) dt + g(X T) , subject to dX t = b(t, X t , α t) dt + σ(t, X t , α t) dW t , X 0 = x 0 .
Using the aforementioned methods (e.g., Deep BSDE or DBDP), it is in general hard to know how close to being optimal the neural network solution is. This is because we do not know a prior the minimal cost. However, we are always sure that these methods provide an upper bound since, given any admissible control α (for example in the form of a neural network as in the Deep BSDE method), we can compute J(α) which is at least as large as the infimum J * = inf α J(α). So to claim that α is almost optimal, it is enough to exhibit a lower bound on J * that is close to J(α). Except in special cases, there is no analytical expression for a good lower bound, and traditional numerical methods might be inefficient if the problem is in high dimension. Fortunately, the optimal value can be computed through a dual problem which is formulated as a maximization problem and hence easily yields a lower bound. We refer to e.g. [START_REF] Henry-Labordere | A dual algorithm for stochastic control problems: Applications to uncertain volatility models and CVA[END_REF] for more details.

Formally, the dual problem can be expressed as

sup ϕ E inf α Φ ϕ,α ,
where

Φ ϕ,α = g(X α T) + T 0 f (t, X α t , α t)dt - T 0 ϕ(t, X α t)σ(t, X α t) dW t ,
and the superscript α in X α t means to emphasize the dependence of the control α. Here the infimum over α is a pathwise optimization since it is inside the expectation. In some cases, it can be solved explicitly. Then we are left with a more standard optimal control problem with feedback control ϕ. The latter can be solved for instance using ideas similar to the ones presented for the Deep BSDE approach (replacing the feedback control function by a neural network and running stochastic gradient ascent); see e.g. [START_REF] Henry-Labordere | Deep primal-dual algorithm for BSDEs: Applications of machine learning to CVA and IM[END_REF] for more details and numerical examples.

PDE-based algorithms

Last but not least, one can identify the optimal control by solving the corresponding HJB equation (3.3), a backward partial differential equation (PDE). The value function in (3.3) represents the minimized cost if the system start at X t = x.

The Deep Galerkin Method (DGM) by Sirignano and Spiliopoulos [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] proposed to approximate the solution of the parabolic PDE with a deep neural network. In fact, the DGM can tackle PDEs of other (potentially nonlinear) types and with initial and boundary conditions. To focus on the main idea, we present the algorithm on a generic PDE on a spatial domain Q ⊆ R d and a time interval [0, T],

     ∂ t u(t, x) + Lu(t, x) = 0, (t, x) ∈ [0, T] × Q, u(0, x) = u 0 (x), x ∈ Q, u(t, x) = Γ(t, x), x ∈ [0, T] × ∂Q.
Here L is an operator in x, possibly nonlinear, and a Dirichlet boundary condition is considered. Note that other boundary conditions (Neumann, Robin) can also be treated in this framework.

The DGM algorithm proposes to replace u by a deep neural network, denoted by u(t, x; θ), and minimizes the following loss function

J(θ) = η ∂ t u(t, x; θ) + Lu(t, x; θ) 2 L 2 ([0,T]×Q;µ1) + η I u(0, x; θ) -u 0 (x) L 2 (Q;µ2) (3.26) + η BC u(t, x; θ) -Γ(t, x) L 2 ([0,T]×∂Q;µ3) ,
where µ i are probability densities on the corresponding domains, and f (y

) 2 L 2 (Y;µ) = Y |f (y)| 2 µ(y) dy.
The first term is for the PDE residual, the second one is for the initial condition and the third term is for the boundary condition. The positive constants η, η I and η BC give more or less importance to each component. The differential operators ∂ t u(t, x; θ) and Lu(t, x; θ) can be computed analytically for instance, using automatic differentiation implemented in TensorFlow. The L 2 norm of each term in (3.26) is calculated as the average of the squared value evaluated at random points drawn according to respective probability densities. Then we use SGD (see Algorithm 1) to minimize the loss function J defined in (3.26).

One sample is S = ((t, x), x , x) ∈ ([0, T] × Q) × Q × ∂Q picked according to the distribution µ 1 ⊗ µ 2 ⊗ µ 3 .
When applying the DGM to the HJB equation (3.3) associated with the stochastic control problem (3.1)-(3.2), one needs to implement the terminal condition g(x) instead of the initial one u 0 (x), and omit the boundary condition if there is not any. Remark 3.9. Most of the time, the second derivatives are computationally costly of O(d 2 × N Batch) and third-order derivatives ∇ θ Hess x u(t, x; θ) are also needed for SGD algorithms. A fast computation of second derivatives using a Monte Carlo method was proposed in [164, Section 3].

To the best of our knowledge, the convergence of this algorithm remains to be studied for general L. Several recent works have studied the approximation of PDE solutions by neural networks, including the original DGM paper [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF], using a universal approximation result. Remark 3.10. As should be clear from the above presentation, the DGM method can, in principle, be applied to a large variety of PDEs. Its flexibility is a key advantage. However, many choices need to be made in practice when implementing this method. First, the sampling distribution strongly influences the training points and thus the learned function. Choosing a suitable distribution inside the domain and on its boundary is sometimes not trivial, particularly since one needs to sample from this distribution efficiently. Furthermore, when dealing with a loss function composed of several terms (as e.g. (3.26)), balancing the various terms can be challenging. If some weight is too small, the neural network will tend to neglect the corresponding term. On the other hand, if some weight is much larger than needed, it will obfuscate the other terms. Overall, the choice of suitable coefficients seems important to efficiently guide the neural network towards a good local minimum.

The DGM method has been extended to deal with path-dependent PDEs in [START_REF] Saporito | Path-dependent deep galerkin method: A neural network approach to solve path-dependent partial differential equations[END_REF], which used an LSTM network to capture the dependence on the path, and then passed this information to a feed-forward network in charge of learning the PDE solution. Another closely related work is the Physics Informed Neural Networks (PINNs) [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF], which is introduced to approximate solutions to equations arising in physics. The key idea is, here again, to look for the solution to the equation among a class of neural networks.

Stochastic Differential Games

The previous section is dedicated to studying how a single agent makes strategic decisions in a random environment. This section will focus on stochastic differential games, which model and analyze the conflict and decision-making between multiple rational agents in a dynamical random system. In games, an important concept is the so-called Nash equilibrium, which refers to a set of strategies of all agents by which no one has an incentive to deviate. Finding a Nash equilibrium is one of the core problems in noncooperative game theory. However, due to the notorious intractability of N -player game, the computation of the Nash equilibrium has been shown extremely time-consuming and memory demanding, especially for large N [START_REF] Daskalakis | The complexity of computing a nash equilibrium[END_REF].

When the number of player N becomes extremely large, the recently developed mean-field game (MFG) theory [START_REF] Huang | Large population stochastic dynamic games: closedloop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF][START_REF] Huang | Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized -Nash equilibria[END_REF][START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Mean field games[END_REF] provides a nice approximation to the N -player Nash equilibrium if individuals interact symmetrically [START_REF] Carmona | Probabilistic analysis of mean-field games[END_REF]. Despite the huge model reduction from modeling N players to one representative player interacting with the population distribution, the mean-field game itself is still hard to solve numerically if this representative player's state lives in a high-dimensional space, and/or has delay features, common noise, or complicated constraints.

On the other hand, a rich literature on game theory has been developed to study the consequences of strategies on interactions between a large group of rational "agents", e.g., system risk caused by inter-bank borrowing and lending [START_REF] Carmona | Mean field games and systemic risk[END_REF], price impacts imposed by agents' optimal liquidation [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF], market price from the monopolistic competition, and optimal investment with relative performance concerns [START_REF] Lacker | Mean field and n-agent games for optimal investment under relative performance criteria[END_REF][START_REF] Lacker | Many-player games of optimal consumption and investment under relative performance criteria[END_REF][START_REF] Hu | N -player and mean-field games in Itô-diffusion markets with competitive or homophilous interaction[END_REF]. This makes it crucial to develop efficient theory and fast algorithms for computing the Nash equilibrium of N -player stochastic differential games and mean-field equilibrium for MFGs.

Deep neural networks with many layers have been shown, in the previous section, to do a great job in solving single-agent stochastic control problems. The idea is to use compositions of simple functions to approximate complicated ones, and there are approximation theorems showing that a broad class of functions on compact subsets can be approximated by a single-hidden-layer wide enough neural network (e.g., [START_REF] Pinkus | Approximation theory of the mlp model in neural networks[END_REF]) or by a fixed-width neural network whose depth is at most polynomial growth of the input dimension ([START_REF] Hanin | Universal function approximation by deep neural nets with bounded width and ReLu activations[END_REF][START_REF] Grohs | Lower bounds for artificial neural network approximations: A proof that shallow neural networks fail to overcome the curse of dimensionality[END_REF]). This brings the possibility of finding equilibria in high-dimensional games using deep neural networks.

Next, we will systematically review the deep learning algorithms and theory for solving stochastic (moderately large) N -player games, and mean-field games as an approximation for extremely large Nplayer games. Particularly, the strategy of deep fictitious play, which integrates fictitious play (a learning scheme in game theory [START_REF] Brown | Some notes on computation of games solutions[END_REF][START_REF] Brown | Iterative solution of games by fictitious play[END_REF]) into deep neural network designs, will be used frequently to develop parallelizable deep learning algorithms for computing the Nash equilibria of stochastic differential games.

N -player stochastic games

We first consider a stochastic differential game with N players, and each player i ∈ I := {1, 2, . . . , N } has a state process X i t ∈ R d and takes an action α i t in the control set A ⊂ R k . The dynamics of the controlled state process X i

• on [0, T] are given by

dX i t = b i (t, X t , α t) dt + σ i (t, X t , α t) dW i t + σ 0 (t, X t , α t) dW 0 t , X i 0 = x i , i ∈ I, (4.1)
where W := [W 0 , W1 , . . . , W N] are N + 1 m-dimensional independent Brownian motions, and we shall call W i the individual noises and W 0 the common noise 1 . (b i , σ i) are deterministic functions:

[0, T] × R dN × A N → R d × R d×m .
The N dynamics are coupled since all states X t = [X 1 t , . . . , X N t] and all the controls2 α t = [α 1 t , . . . , α N t] affect the drifts b i and diffusions σ i . Given a set of strategies (α t) t∈[0,T] , the cost associated to player i is of the form

J i (α) := E T 0 f i (t, X t , α t) dt + g i (X T) , (4.2)
where the running cost f i : [0, T] × R dN × A N → R and terminal cost g i : R dN → R are deterministic measurable functions. Player i chooses (α i t) t∈[0,T] to minimize her cost J i (α) within the set A i of admissible strategies. As in Section 3, the set A i usually describes the measurability and integrability of α i t , and different measurabilities (the information structure available to the players) lead to different type of solutions to the game. Under noncooperative setting, the notion of optimality is the so-called Nash equilibrium (NE), and the three main types are open-loop NE (W [0,t]), closed-loop NE (X [0,t]), and closed-loop in feedback form NE (X t). In this section, we will focus on the open-loop case (Section 4.1.1) and the closed-loop in feedback form (also known as Markovian Nash equilibrium) case (Section 4.1.2).

Before proceeding to the open-loop case, we first summarize some commonly used notations as below. Given a probability space (Ω, F, P), we consider

• W = [W 0 , W 1 , . . . , W N]
, a (N + 1)-vector of m-dimensional independent Brownian motions;

• F = {F t , 0 ≤ t ≤ T }, the augmented filtration generated by W ;

• H 2 T (R d), the space of all progressively measurable R d -valued stochastic processes α : [0, T] × Ω → R d such that α 2 2 = E[T 0 |α t | 2 dt] < ∞; • α = [α 1 , α 2 , . . . , α N],
a collection of all players' strategy profiles. With a negative superscript, α -i = [α 1 , . . . , α i-1 , α i+1 , . . . , α N] means the strategy profiles excluding player i's. If a non-negative superscript k appears (e.g., α k), this N -tuple stands for the strategies from stage k. When both exist,

α -i,k = [α 1,k , . . . , α i-1,k , α i+1,k , . . . , α N,k
] is a (N -1)-tuple representing strategies excluding player i at stage k. We use the same notations for other stochastic processes (e.g., X -i , X k).

Open-loop Nash equilibrium

The open-loop case is firstly analyzed by Hu [START_REF] Hu | Deep fictitious play for stochastic differential games[END_REF], where the algorithm is termed as deep fictitious play (DFP) which by name, is known to build on fictitious play and deep learning. In this setting, each player's control α i t lives in the space A = H 2 T (A), and

A N = A × A × . . . × A denotes a product of N copies of A. Definition 4.1 (Open-loop Nash equilibrium). A set of strategies (α * t) t∈[0,T] = (α 1, * t , . . . , α N, * t) t∈[0,T] ∈ A N is called a Nash equilibrium if ∀i ∈ I and β i ∈ A, J i (α *) ≤ J i (β i , α -i, *),
where α -i, * represents strategies of players other than the i-th one

α -i, * := [α 1, * , . . . , α i-1, * , α i+1, * , . . . , α N, *] ∈ A N -1 .
The idea of DFP is to decouple the N -player game into N individual decision problems using fictitious play, and then solve these N individual problems iteratively using deep neural networks. Fictitious play was firstly introduced by Brown for static games [START_REF] Brown | Some notes on computation of games solutions[END_REF][START_REF] Brown | Iterative solution of games by fictitious play[END_REF], and was recently adapted to the mean-field setting by [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF][START_REF] Briani | Stable solutions in potential mean field game systems[END_REF]. It is a simple yet important learning scheme in game theory for finding Nash equilibria. Deep learning provides efficient tools for solving the decoupled yet still high-dimensional optimization problems.

The DFP algorithm starts with an initial set of strategies (α 0 t) t∈[0,T] ∈ A N , as the initial belief of all players, and it got updated K times:

α 0 t → α 1 t → . . . → α k t → . . . → α K
t or until some predetermined error bound is satisfied. At the beginning of stage k + 1, α k is observable by all players. Player i then chooses best response to her beliefs about opponents described by their play at the previous stage α -i,k . Then, player i faces an optimization problem inf

β i ∈A J i (β i ; α -i,k), J i (β i ; α -i,k) = E T 0 f i (t, X α t , (β i , α -i,k)) dt + g i (X α T) , (4.3)
where

X α t = [X 1,α t , X 2,α t , . . . , X N,α t] are state processes controlled by (β i , α -i,k), dX ,α t = b (t, X α t , (β i , α -i,k)) dt + σ (t, X α t , (β i , α -i,k)) dW t + σ 0 (t, X α t , (β i , α -i,k)) dW 0 t , (4.4)
with X ,α 0 = x , for all ∈ I. Denote by α i,k+1 the minimizer in (4.3), α i,k+1 := arg min

β i ∈A J i (β i ; α -i,k), ∀i ∈ I, k ≤ K.
We assume α i,k+1 exists through out this section. More precisely, α i,k+1 is the player i's optimal strategy at the stage k + 1 when her opponents dynamics (4.1) evolve according to α j,k , j = i. All players find their best responses simultaneously, which together form α k+1 .

Remark 4.1. Note that the above learning process is slightly different than the usual simultaneous fictitious play, where the belief is described by the time average of past play:

1 k k k =1 α -i,k
. In general, one can not expect that the players' actions α k always converge. However, if the sequence {α k } ∞ k=1 ever admits a limit, denoted by α ∞ , one would expect it to form an open-loop Nash equilibrium under suitable assumptions. Intuitively, in the limiting situation, when all other players are using strategies α j,∞ t , j = i, by some stability argument, player i's optimal strategy to the control problem (4.3) should be α i,∞ t , meaning that she will not deviate from α i,∞ t , which makes (α i,∞ t) N i=1 an open-loop equilibrium by definition. Therefore, finding an open-loop Nash equilibrium consists of iterating this play until it converges. We refer readers of interest to the original work [START_REF] Hu | Deep fictitious play for stochastic differential games[END_REF]. Specifically, one has the following theorem and proposition on the convergence of DFP for linear-quadratic games. 2). Moreover, the limit, denote by α ∞ , is independent from the choice of initial belief α 0 .

In lieu with Han and E [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF] reviewed in Section 3.2, Hu [START_REF] Hu | Deep fictitious play for stochastic differential games[END_REF] solved each player's control problems (4.3) at stage k by using FNN to direct parameterize α i,k . In the case of seeking open-loop equilibrium, these N optimizations can be solved in parallel, as α i,k are meant to be W -adapted thus can not feel the direct feedback if other players are changing their positions X -i t . More precisely, each β i,k tn is implemented by

β i,k tn ∼ β i,k tn (X0 , Wt1 , . . . , Wtn ; θ i n), (4.5)
and the optimal strategy at the k th stage, denoted by (α i,k tn (•;

θ i,k n)) N T -1 n=0
, is determined by minimizing a discretized version of (4.3), i.e.,

{θ i,k n } N T -1 n=0 ∈ arg min {θ i n } N T -1 n=0 E N T -1 n=0 f i (t n , Xθ tn , (β i,k tn (X0 , Wt1 , . . . , Wtn ; θ i n), α -i,k-1 tn))∆t + g i (Xθ T) ,
where (Xθ tn) N T n=1 follows the Euler scheme of (4.4) with (β i,k tn , α i,k-1 tn

) N T -1 n=0
being used. The pseudo-code is given in Algorithm 3.

Numerical illustration: a linear-quadratic systemic risk problem (N = 24).

The DFP algorithm will be illustrated on the LQ systemic risk game presented in Section 1.2 and originally introduced in [START_REF] Carmona | Mean field games and systemic risk[END_REF]. For the sake of convenience, we recall here the model. Consider an inter-bank market with N banks, and let X i t ∈ R be the log-monetary reserves of bank i at time t. Its dynamics is modelled as the following diffusion processes,

dX i t = [a(X t -X i t) + α i t] dt + σ ρ dW 0 t + 1 -ρ 2 dW i t , X t = 1 N N i=1 X i t , i ∈ I.
Here

d = k = m = 1, a(X t -X i t)
represents the rate at which bank i borrows from or lends to other banks in the lending market, while α i t denotes its control rate of cash flows to a central bank. The standard Brownian motions {W i t } N i=0 are independent, in which {W i t , i ≥ 1} stands for the idiosyncratic noises and W 0 t denotes the systemic shock (the so-called common noise in the general context). The cost functional (4.2) that player i wishes to minimize has the form

f i (t, x, α) = 1 2 (α i) 2 -qα i (x -x i) + 2 (x -x i) 2 , g i (x) = c 2 (x -x i) 2 , x = 1 N N i=1 x i .
All parameters are non-negative with |ρ| ≤ 1 and q 2 ≤ . For explicit open-loop Nash equilibrium, we refer the readers to the original work [40, Section 3.1].

In the numerical illustration, the number of players is set to be N = 24, and the time steps is set at N T = 20, after observing the relative errors did not increase too much from N T = 50 to N T = 20. The

= {α i,0 t)n ∈ A ⊂ R k , i ∈ I} N T -1 n=0 = initial belief, X 0 = {x i 0 ∈ R d , i ∈ I} = initial states 1:
Create N separated deep neural networks as described in Eq. (4.5) 2: Generate M discrete sample path of BM:

W = {W i tn ∈ R m , i ∈ I ∪ {0}} N T n=1 3: k ← 0 4: repeat 5:
for all i ∈ I do in parallel

6: k ← k + 1 7: (Continue to) Train i th NN with data {X 0 , α -i,k-1 = {α j,k-1 tn , j ∈ I \ {i}} N T -1 n=0 , W } 8:
Obtain the approximated optimal strategy α i,k and cost J i (α i,k ; α -i,k-1)

9:
end for 10:

Collect optimal policies at stage k:

α k ← (α 1,k , . . . , α N,k) 11:
Compute relative change of cost err k := max

i∈I J i (α i,k ; α -i,k-1) -J i (α i,k-1 ; α -i,k-2) J i (α i,k-1 ; α -i,k-2)
12: until err k go below a threshold

k ← k + 1 17: Evaluate i th NN with {X 0 , α -i,k -1 , out-of-sample paths}, ∀i ∈ I 18:
Obtain α i,k and J i,k := J i (α i,k ; α -i,k -1) ∀i ∈ I 19: until J i,k converges in k , ∀i ∈ I 20: return The optimal policy α i,k , and the final cost for each player J i,k initial positions for the i th player is x i 0 = 0.5i, and results are presented in Figures 789. Note that the problem by natural is high-dimensional: the n th subnetwork β i,k tn maps R N n to R. Some key features that have been observed: the maximum of relative error drops below 3% after ten iterations; the average error of estimated trajectories are convex/concave functions of time t; the standard deviation of estimated error aggregates from steps to steps. In fact, the convexity/concavity with respect to time t is caused by two factors: the propagation of errors, which produces an magnitude increase in error mean; and the existence of terminal cost, which puts more weights on X T than X t , t ∈ (0, T), resulting in a better estimate of X T and a decreasing effect.

In the original paper, the author also gave numerical experiments with N = 5 and N = 10 players. To better illustrate that the algorithm can overcome the curse of dimensionality, the performance comparison is made across different N . Particularly, the author computed the error max i∈I max n≤N T X i tn -Xi,θ tn , where X denotes the state process following the open-loop Nash equilibrium, while Xθ is the deep fictitious play counterpart. The error is 1.09 × 10 -2 for N = 5, 1.49 × 10 -2 for N = 10 and 2.08 × 10 -2 for N = 24.

Markovian Nash equilibrium

In this subsection, we describe deep fictitious play algorithms [START_REF] Han | Deep fictitious play for finding Markovian Nash equilibrium in multi-agent games[END_REF] and convergence theory [START_REF] Han | Convergence of deep fictitious play for stochastic differential games[END_REF] for finding the closed-loop Nash equilibrium, in particular, the Markovian Nash equilibrium. That is, the strategies α t in (4.1) are considered to be functions of (t, X t), i.e.,

dX i t = b i (t, X t , α(t, X t)) dt + σ i (t, X t , α(t, X t)) dW i t + σ 0 (t, X t , α(t, X t)) dW 0 t , X i 0 = x i 0 , i ∈ I,
In additional to the cost functional considered in (4.2), the algorithm is also able to deal with the risk-sensitive cost minimization, where ξ i is a parameter characterizing how risk-averse/seeking player i is. This flexibility allows one to model much broader classes of games that accommodate the players' attitudes to risk. It is also worth mentioning that the dependence of b i and σ i on α leads to a stronger coupling problem, which is unsurprisingly harder to deal with both theoretically and numerically. The difficulty even persists in the limiting problem as N → ∞ with indistinguishable players, when allowing α i entering into others' states. This is called the extended mean-field game and it has attracted lots of attention recently (see e.g., [START_REF] Gomes | On the existence of classical solutions for stationary extended mean field games[END_REF][START_REF] Gomes | Extended deterministic mean-field games[END_REF][START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF]).

J i (α) := E ξ i exp ξ i T 0 f i (t, X t , α(t, X s) dt + g i (X T) , (4.6)
Definition 4.3. A tuple α * = (α 1, * , . . . , α N, *) of the form α i, * t = α i (t, X t) for measurable feedback functions α i is said to be a Markovian Nash equilibrium, if ∀i ∈ I, and any feedback function β i , J i (α *) ≤ J i (α 1, * , . . . , α i-1, * , β i , α i+1, * , . . . , α N, *), where on the right-hand side, (α 1 , . . . , α i-1 , β i , α i+1 , . . . , α N)(t, X t) is used in (4.1) to solve for X t .

In this case, due to the direct feedback nature (a small change in X t will cause changes in α t), merely adapting the algorithm in Section 4.1.1 will not be efficient nor parallelizable. Nevertheless, in the Markovian setting, finding a Nash equilibrium is related to solving N -coupled HJB equations. To this end, we define u i (t, x) the value function of player i. For the sake of notation clarity, we present the discussion based on the "vectorized" system,

dX t = b(t, X t , α(t, X t)) dt + Σ(t, X t , α(t, X t)) dW t , X 0 = x 0 , (4.7)
where X, b(t, x, α(t, x)) and W are vectorization of X i , b i , W i respectively, and Σ(t, x, α(t, x)) is matrixvalued given by

X t =      X 1 t X 2 t . . . X N t      , b =      b 1 b 2 . . . b N      , W t =      W 0 t W 1 t . . . W N t      , Σ =      σ 0 σ 1 σ 0 σ 2 σ 0 σ N      .
Using the dynamic programming principle, the HJB system reads

   ∂ t u i + inf α i ∈A i G i (t, x, α, ∇ x u i , Hess x u i , u i) = 0, u i (T, x) = g i (x), i ∈ I, (4.8)
Figure 8: Comparisons of optimal trajectories for N = 24 players in the linear quadratic game. For a sake of clarity, we only show the mean (blue triangles) and standard deviation (red bars) of optimal trajectories errors for the 1 st , 4 th , 7 th , 10 th , 11 th , 13 th , 16 th , 19 th and 22 th player, respectively. The results are based on a total sample of 65536 paths, show that deep fictitious play provides a uniformly good accuracy of optimal trajectories. where G i is given by under objective (4.2),

G i = G i (t, x, α, p, q) = b(t, x, α) • p + f i (t, x, α) + 1 2
Tr(ΣΣ T (t, x, α)q), under objective (4.6),

G i = G i (t, x, α, p, q, s) = b(t, x, α) • p + θ i sf i (t, x, α) + 1 2
Tr(ΣΣ T (t, x, α)q).

In the risk-neutral case (4.2), when N = 1, G i recovers the H function defined in (3.4). To unify the notation between two objectives (4.2) and (4.6), we shall stick to G i (t, x, α, p, q, s) for the rest of the paper, although it does not depend on s under objective (4.2). Note that while minimizing α i in the equation for u i in (4.8), the policies (α 1 , . . . , α i-1 , α i+1 , . . . , α N) are given and fixed. In other words, u i implicitly depends on the other players' strategies, thus on u j . Naively, for such a coupled system (4.8), one can adopt the PDE-based algorithms discussed in Section 3.5. However, for problems of large scale, one may encounter a very long computational cost or run out of GPU memory. To this end, Han and Hu [START_REF] Han | Deep fictitious play for finding Markovian Nash equilibrium in multi-agent games[END_REF] proposed a DFP algorithm for finding Markovian NE. Similar to Section 4.1.1, the game is still decoupled by fictitious play, i.e., starting with a guess of the solution α 0 ∈ A, at stage k + 1, α k is observed by all players, and player i's decoupled decision problem is

inf α i ∈A i J i (α i ; α -i,k), (4.9)
where J i is defined in (4.2) or (4.6), and the state process X t is given in (4.7) with α being replaced by (α i , α -i,k). The optimal strategy, if ever exists, is denoted by α i,k+1 . The problem (4.9) for all i ∈ I are solved simultaneously using α -i,k , and the optimal responses together form α k+1 . Due to the Markovian Figure 9: Comparisons of optimal controls for N = 24 players in the linear quadratic game. For a sake of clarity, we only show two sample paths of optimal controls for the 1 st , 4 th , 7 th , 10 th , 11 th , 13 th , 16 th , 19 th and 22 th player, respectively. The solid lines are optimal controls given by the closed-form solution, and the dotted dash lines are computed by deep fictitious play.

structure, the problem (4.9) is translated into an HJB equation

∂ t u i,k+1 + inf α i ∈A i G i (t,
x, (α i , α -i,k (t, x)), ∇ x u i,k+1 , Hess x u i,k+1 , u i,k+1) = 0, (4.10) with the terminal condition u i,k+1 (T, x) = g i (x). In [START_REF] Han | Deep fictitious play for finding Markovian Nash equilibrium in multi-agent games[END_REF], they consider the uncontrolled volatility problem, thus the PDE is semi-linear. Consequently, G i is free of q. Assuming the minimizer arg min α i ∈A i G i (t, x, α, p, s) exists, and is unique and explicit in other arguments, ∀ i ∈ I, (t, x, p, s) and α j ∈ A j with j = i. If the classical solution ever exists, the optimal strategy at stage k + 1 for player i is given by α i,k+1 (t, x) = arg min

α i ∈A i G i (t, x, (α i , α -i,k (t, x)), ∇ x u i,k+1 (t, x), u i,k+1 (t, x)). (4.11)
Solving (4.10) for all i ∈ I completes one stage in the loop of fictitious play. Once having the N decoupled semi-linear PDEs, the authors connected their solutions to BSDEs via the non-linear Feynman-Kac formula (3.5) and solved them in parallel by the deep BSDE method (see Section 3.3.1). More precisely, player i's semi-linear PDE is intimately related to the following BSDE,

               X i,k+1 t = x 0 + t 0 bi (s, X i,k+1 s ; α -i,k (s, X i,k+1 s)) ds + t 0 Σ(s, X i,k+1 s) dW s , Y i,k+1 t = g i (X i,k+1 T) + T t h i (s, X i,k+1 s , Y i,k+1 s , Z i,k+1 s ; α -i,k (s, X i,k+1 s)) ds - T t (Z i,k+1 s) T dW s , (4.12) (4.13) with Y i,k+1 t = u i,k+1 (t, X i,k+1 t) and Z i,k+1 t = Σ(t, X i,k+1 t) T ∇ x u i,k+1 (t, X i,k+1 t
), where bi and h i are func-tions such that Eq. (4.10) can be rewritten as

∂ t u i,k+1 + 1 2 Tr(Σ T Hess x u i,k+1 Σ) + bi (t, x; α -i,k) • ∇ x u i,k+1 + h i (t, x, u i,k+1 , Σ T ∇ x u i,k+1 ; α -i,k) = 0. (4.14)
Note that we treat α -i,k as known functions when solving the BSDE due to its exogeneity.

For each player i, the BSDE (4.12)-(4.13) is then solved using the deep BSDE algorithm which is discussed in Section 3.3.1. More precisely, let us consider the minimization problem (for less cumbersome notations, the subscript t n in X, Y, Z has been replaced by n, and the superscript k that denotes the index of fictitious play is dropped for simplicity), inf

ψ0∈N i 0 , {φn∈N i n } N T -1 n=0 E|g i (Xi N T) -Y i N T | 2 , (4.15)
s.t. Xi 0 = x 0 , Y i 0 = ψ 0 (Xi 0), Ži n = φ n (Xi n), n = 0, . . . , N T -1 Xi n+1 = Xi n + bi (t n , Xi n ; α -i (t n , Xi n))∆t + Σ(t n , Xi n)∆W tn , (4.16) Y i n+1 = Y i n -h i (t n , Xi n , Y i n , Ži n ; α -i (t n , Xi n))∆t + (Ži n) T ∆W tn ,
where we recall that ∆t = t n+1t n , ∆W tn = W tn+1 -W tn . Here N i 0 and {N i n } N T -1 n=0 are hypothesis spaces of player i related to deep neural networks. The goal of the optimization is to find optimal deterministic maps ψ i, * 0 , {φ i, * n } N T -1 n=0 such that the loss function is small. The pseudo-code of the proposed deep fictitious play algorithm is summarized in Algorithm 4.

Algorithm 4 Deep Fictitious Play for Finding Markovian Nash Equilibrium

Require: N = # of players, N T = # of subintervals on [0, T], K = # of total stages in fictitious play, N sample = # of sample paths generated for each player at each stage of fictitious play, N SGD per stage = # of SGD steps for each player at each stage, N batch = batch size per SGD update, α 0 : the initial policies that are smooth enough 1: Initialize N deep neural networks to represent u i,0 , i ∈ I 2: for k ← 1 to K do Generate N sample sample paths { Xi tn } N T n=0 according to (4.16) and the realized optimal policies α -i,k-1 (t n , Xi tn)

5:

for ← 1 to N SGD per stage do 6:

Update the parameters of the i th neural network one step with N batch paths using the SGD algorithm (or its variant), based on the loss function (4.15)

7:

end for

8:

Obtain the approximate optimal policy α i,k according to (4.11)

9:

end for 10:

Collect the optimal policies at stage k: α k ← (α 1,k , . . . , α N,k) 11: end for 12: return The optimal policy α K Next, we present the theoretical foundation for the deep fictitious play of computing the Markovian Nash equilibrium under the objective (4.2). Specifically, Theorem 4.1 proves the convergence to the true Nash equilibrium, if the decoupled sub-problems (4.9)-(4.10) are solved exactly and repeatedly. Theorem 4.2 focuses on the numerical error on the deep BSDE algorithm (4.15). Theorem 4.3 identifies the -Nash equilibrium produced by deep fictitious play, and analyzes its numerical performance on the original game. In the sequel, bi in (4.14) is chosen to be zero. Theorem 4.1. ([94, Theorem 2]) Denote k as the stage index in the fictitious play. Under proper assumptions specified in [START_REF] Han | Convergence of deep fictitious play for stochastic differential games[END_REF], there exists a constant q ∈ (0, 1), such that

sup 0≤t≤T E|Y k t -Y t | 2 + T 0 E Z k t -Z t 2 F dt + T 0 E|α k t -α * t | 2 dt ≤ C(q)q k T 0 E|α 0 t -α * t | 2 dt, where (Y k t , Z k t) is defined by Y k t = [Y 1,k t , . . . , Y N,k t] T , Z k t = [Z 1,k t , . . . , Z N,k t],
with (Y i,k t , Z i,k t) as solutions to (4.12)-(4.13), (Y t , Z t) are the BSDE counterpart of (4.8), α k t = α k (t, X t) and α * t = α * (t, X t) are optimal strategies on the k th stage and to the original game. Theorem 4.2. ([94, Theorem 3]) Under proper assumptions specified in [START_REF] Han | Convergence of deep fictitious play for stochastic differential games[END_REF], let α0 :

{t n } N T n=0 × R N d → A be a measurable function satisfying | α0 (t 1 , x 1) -α0 (t 2 , x 2)| 2 ≤ L [|t 1 -t 2 | + |x 1 -x 2 | 2], | α0 (t, x)| 2 ≤ L (1 + |x| 2).
Then, for some q ∈ (0, 1), we have

sup t∈[0,T] E|Y t -Y k π(t) | 2 + T 0 E Z t -Žk π(t) 2 F dt + T 0 E|α * t -αk π(t) | 2 dt ≤ C ∆t + q k T 0 E α * t -α0 π(t) 2 dt + k j=1 q k-j E g(XT) -Y j T 2
, where the discrete system (Xtn , Y k tn , Žk tn) satisfies

Xtn+1 = Xtn + Σ(t n , Xtn)∆W tn , X0 = x 0 , Y k+1 tn+1 = Y k+1 tn -h k (t n , Xtn , Z k+1 tn)∆t + (Z k+1 tn) T ∆W tn , (4.17)
where

h k is [h 1,k , • • • , h N,k] T with h i,k (t, x, p) = inf α i ∈A i G i (t, x, (α i , α-i,k (t, x)), p), and αk π(t) ≡ αk tn = αk (t n , Xtn) for t ∈ [t n , t n+1).
Next, with a slight abuse of notation, we define

(Y k t , Z k t) as Y k t = [Y 1,k t , . . . , Y N,k t] T , Z k t = [Z 1,k t , . . . , Z N,k t],
with (Y i,k t , Z i,k t) from the BSDE systems in the setting of fictitious play (4.12)-(4.13), in which the previous stage policy is given by the extension of the numerical approximation in time

α k (t, x) = inf t ∈{tn} N T n=0 [αk (t , x) + L |t -t| 1 2].
Then we have the following inequality

inf ψ k 0 ∈N 0 ,{φ k n ∈N k } N T -1 n=0 E|g(X π T) -Y k T | 2 ≤ C ∆t + inf ψ k 0 ∈N 0 ,{φ k n ∈N k } N T -1 n=0 {E|Y m 0 -ψ k 0 (x 0)| 2 + N T -1 n=0 E Ẑk tn -φ k n (Xtn) 2 F ∆t} ,
where N 0 and {N n } N T -1 n=0 are hypothesis spaces for neural network architectures to approximate Y 0 and Z tn ,

Ẑk tn = (∆t) -1 E[tn+1 tn Z k t dt| Xtn].
We still refer N 0 and N n as the hypothesis spaces for

ψ k 0 : R N d → R N , φ k m : R N d → R k×N ,
α(t 1 , x 1) -α(t 2 , x 2)| 2 ≤ L [|t 1 -t 2 | + |x 1 - x 2 | 2], and T 0 E|α * (t, X t) -α(π(t), Xπ(t))| 2 dt ≤ ,
where X follows (4.17), then [START_REF] Acciaio | Extended mean field control problems: stochastic maximum principle and transport perspective[END_REF] The value of the discrete game produced by α is close to the one associated with the Nash equilibrium of the continuous game, i.e.,

| J (α) -J (α *)| 2 ≤ C[+ ∆t],
where J (α) = [J1 (α), . . . , JN (α)], and Ji denotes the discrete version of (4.2) using strategy α, i.e.,

Ji (α) = E[N T -1 n=0 f i (t n , X α tn , α(t n , X α tn))∆t + g i (X α T)]. X α tn+1 = X α tn + b(t n , X α tn , α(t n , X α tn))∆t + Σ(t n , X α tn)∆W tn , X α 0 = x 0 .
Moreover, there exists 0 < i 1 such that

N i=1 2 i ≤ C[+ ∆t] and J i (β i , α-i) ≥ Ji (α) -i , ∀β i ∈ A i and i ∈ I.
(2) The generated game paths X α tn are close to the paths X α * t associated with the Nash equilibrium,

E sup 0≤t≤T |X α * t -X α π(t) | 2 ≤ C(λ)[+ π] λ ,
where X α * t follows (4.7) with the true Nash equilibrium strategy α * and X α tn follows (4.17), and λ is an arbitrary constant in (0, 1).

The DFP algorithm is then extended in [START_REF] Chen | Large-scale multi-agent deep FBSDEs[END_REF], named as Scaled Deep Fictitious Play (SDFP). There, the authors integrated the importance sampling and invariant layer embedding into DFP. Then focusing on the homogeneous agent problem, they utilized the symmetry and showed numerical experiments scales to N = 3, 000 agents.

Numerical illustration: the linear-quadratic systemic risk example revisited.

Here we revisit the example introduced in Section 1.2 and studied in Section 4.1.1, but focus on the Marknovian Nash equilibrium.

To describe the model in the form of (4.7), we concatenate the log-monetary reserves X i t of N banks to form X t = [X 1 t , . . . , X N t] T . The associated drift term and diffusion term are defined as

b(t, x, α) = [a(x -x 1) + α 1 , . . . , a(x -x N) + α N] T ∈ R N ×1 , x = 1 N N i=1 x i , (4.18)
Σ(t, x) =      σρ σ 1 -ρ 2 0 • • • 0 σρ 0 σ 1 -ρ 2 • • • 0 σρ 0 0 • • • σ 1 -ρ 2      ∈ R N ×(N +1) , (4.19)
and W t = (W 0 t , . . . , W N t) is (N + 1)-dimensional. Recall the running and terminal costs that player i aims to minimize

f i (t, x, α) = 1 2 (α i) 2 -qα i (x -x i) + 2 (x -x i) 2 , g i (x) = c 2 (x -x i) 2 .
The closed-form Nash equilibrium is detailed in [40, Section 3.2-3.3]. The coupled HJB system corresponding to this game reads

∂ t u i + inf α i    N j=1 [a(x -x j) + α j]∂ x j u i + (α i) 2 2 -qα i (x -x i) + 2 (x -x i) 2    + 1 2 Tr(Σ T Hess x u i Σ) = 0, with the terminal condition u i (T, x) = c 2 (x -x i) 2 , i ∈ I.
The minimizer in the infimum gives a candidate of the optimal control for player i: α i (t, x) = q(xx i) -∂ x i u i (t, x). Plugging it back into the i th equation yields a PDE of form (4.14),

∂ t u i + 1 2 Tr(Σ T Hess x u i Σ) + a(x -x i)∂ x i u i + j =i [a(x -x j) + α j (t, x)]∂ x j u i + 2 (x -x i) 2 - 1 2 (q(x -x i) -∂ x i u i) 2 = 0,
where α j with j = i are considered exogenous for player i's problem, and are given by the best responses of the other players from the previous stage. To be precise, bi and h i in (4.14) are defined as bi (t, x; α -i) = [a(xx 1) + α 1 , . . . , a(xx i), . . . , a(x

-x N) + α N] T , h i (t, x, y, z; α -i) = 2 (x -x i) 2 - 1 2 (q(x -x i) - z i σ 1 -ρ 2) 2 ,
where z = (z 0 , z 1 , . . . , z N) ∈ R N +1 . Figures 1011show the performance of the DFP algorithm on a 10-player game, using the parameter, a = 0.1, q = 0.1, c = 0.5, = 0.5, ρ = 0.2, σ = 1, T = 1.

The relative squared error (RSE) is defined by

RSE = i∈I 1≤j≤J u i (0, x (j) t 0) -u i (0, x (j) t 0) 2 i∈I 1≤j≤J u i (0, x (j) t 0) -ūi 2 , or RSE = i∈I 0≤k≤N T -1 1≤j≤J ∇xu i (t k , x (j)
t k) -∇x u i (t k , x (j) t k) 2 i∈I 0≤k≤N T -1 1≤j≤J ∇xu i (t k , x (j)
t k) -∇xu i 2 ,
where ûi is the prediction from the neural networks, and ūi (resp. ∇ x u i) is the average of u i (resp. ∇ x u i) evaluated at all the indices j, k. To compute the relative error, J = 256 ground truth sample paths {x (j)

t k } N T -1 k=0
are generated using Euler scheme based on (4.7)(4.18)(4.19) and the true optimal strategy. Note that the superscript (j) here does not mean the player index, but the j th path for all players.

In particular, Figure 10 compares the relative squared error as N SGD per stage varies from 10 to 400. The convergence of the learning curves with small N SGD per stage asserts that each individual problem does not need to be solved so accurately. Furthermore, the similar performances under different N SGD per stage with the same total budget of SGD updates suggests that the algorithm is insensitive to the choice of this hyperparameter. The final relative squared errors of u and ∇u averaged from three independent runs of deep fictitious play are 4.6% and 0.2%, respectively. Figure 11 presents one sample path for each player of the optimal state process X i t and the optimal control α i t vs. their approximations Xi t , αi t provided by the optimized neural networks.

i (0, X i,π 0) and {∇u i (t k , X i,π k)} N T -1 k=0
are evaluated. The error is computed every 400 SGD updates, averaged over all the players. A smoothed moving average with window size 3 is applied in the final plots.

Mean-field stochastic games

Mean-field games, introduced independently by Lasry and Lions in [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] and by Huang, Malhamé and Caines in [START_REF] Huang | Large population stochastic dynamic games: closedloop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF][START_REF] Huang | Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized -Nash equilibria[END_REF], provide a paradigm to approximately solve extremely large N -player stochastic differential games. The idea is to approximate finite-player Nash equilibria by mean field equilibria (the formal limit of N → ∞) under mild conditions [START_REF] Carmona | Probabilistic analysis of mean-field games[END_REF], which leads to an approximation error of order N -1/(d+4) assuming that the players are indistinguishable, i.e., all coefficients (b i , σ i , f i , g i) are free of i.

We refer to the notes [START_REF] Cardaliaguet | Notes on mean field games[END_REF] and the books [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications II[END_REF] as well as the references therein for further background on mean-field games. Numerical methods for such games have been developed using mostly traditional techniques such as finite difference schemes [START_REF] Achdou | Mean field games: numerical methods[END_REF][START_REF] Achdou | Mean field games: numerical methods for the planning problem[END_REF], semi-Lagrangian scheme [START_REF] Carlini | A fully discrete semi-Lagrangian scheme for a first order mean field game problem[END_REF][START_REF] Carlini | On the discretization of some nonlinear Fokker-Planck-Kolmogorov equations and applications[END_REF], or methods based on probabilistic approaches [START_REF] Chassagneux | Numerical method for FBSDEs of McKean-Vlasov type[END_REF][START_REF] Angiuli | Cemracs 2017: numerical probabilistic approach to MFG[END_REF]. See e.g. [START_REF] Achdou | Mean field games and applications: Numerical aspects[END_REF][START_REF] Laurière | On numerical methods for mean field games and mean field type control[END_REF] for recent surveys. However, similarly to control problems or finite-player games, these methods do not scale well in terms of dimensionality, which is a motivation to investigate deep learning methods, some of which are described in [START_REF] Carmona | Deep learning for mean field games and mean field control with applications to finance[END_REF]. In the sequel, we describe the theoretical framework of mean field games and then survey recent deep learning methods.

Theoretical background

We start by introducing the theoretical background of mean-field games (MFGs), consisting of the definition, the PDE approach, and connections to BSDEs and mater equation. The reviewed approaches in this subsection solve MFGs with no existence of common noise, and we shall discuss the method for the case of common noise in Section 4.2.2.

Definition of the problem

Going back to problem (4.2), let us assume that b i , σ 0 , σ i , f i , g i depend on the rest of the population's states and actions in a symmetric way, i.e., b i (t,

X t , α t) = b(t, X i t , ν N t , α i t), σ 0 (t, X t , α t) = σ 0 (t, X i t , ν N t , α i t), σ i (t, X t , α t) = σ(t, X i t , ν N t , α i t), f i (t, X t , α t) = f (t, X i t , ν N t , α i t) and g i (X T) = g(X i T , µ N T)
, for some functions b, σ 0 , σ, f, g, where

ν N t = 1 N N j=1 δ (X j t ,α j t)
is the empirical state-action distribution of the population and

µ N T = 1 N N j=1 δ X j t
is its first marginal, which corresponds to the state distribution. We keep the same notation σ 0 for simplicity, with a slight abuse of notation.

Then the cost associated to a strategy profile α is defined as

J i (α) := E T 0 f (t, X i t , ν N t , α i t) dt + g(X i T , µ N T) , (4.20)
where the processes X j , j = 1, . . . , N , solve the SDE system

dX j t = b(t, X j t , ν N t , α j t) dt + σ(t, X j t , ν N t , α j t) dW j t + σ 0 (t, X j t , ν N t , α j t) dW 0 t , X j 0 = x j , j ∈ I,
with ν and µ being as above the flows of empirical state-action and state distributions. To be consistent with the MFG literature, we will consider that the initial positions x j are i.i.d. and have distribution µ 0 .

To formulate the MFG, let ν = (ν(t, •)) 0≤t≤T be a mean-field distribution flow adapted to the filtration generated by W 0 , which is interpreted at the evolution of the population's state-action configuration. Let α be a control. In this section, since we want to stress the dependence on ν and α to present the fixed point problem, we will use superscripts. A representative player's dynamics is given by, for t ≥ 0,

dX ν,α t = b(t, X ν,α t , ν t , α(t, X ν,α t)) dt + σ(t, X ν,α t , ν t , α(t, X ν,α t)) dW t + σ 0 (t, X ν,α t , ν t , α(t, X ν,α t)) dW 0 t , (4.21)
where W 0 is a standard m 0 -dimensional Brownian motion independent of W . We assume that X ν,α 0 has distribution µ 0 . The cost associated to the control α given the mean-field distribution flow ν = (ν t) 0≤t≤T is defined as

J M F G (α; ν) = E T 0 f (t, X ν,α t , ν t , α(t, X ν,α t)) dt + g(X ν,α T , µ T) , (4.22)
under the constraint that the process X ν,α = (X ν,α t) t≥0 solves the SDE (4.21). 2. For all t ∈ [0, T], νt is the probability distribution of (X ν, α t , αt) conditioned on W 0 . Note that, in the first condition, ν is fixed when an infinitesimal agent performs their optimization. The second condition ensures that if all the players use the control α identified in the condition, the law of their individual states and actions is indeed ν.

PDE system

Let us start with the PDE approach. Assume that there is no common noise, and consider the problem faced by a representative player when the mean field flow is given by the equilibrium mean field ν = (ν t) t≥0 . When considering Markovian controls, one can define the value function u(t, x)

u(t, x) := inf α E T t f (s, X s , νs , α s) ds + g(X T , μT)|X t = x ,
and employ the dynamic programming principle (DPP) [START_REF] Pham | Continuous-time stochastic control and optimization with financial applications[END_REF]Section 3], that is, u(T, x) = g(x, μT) and for any stopping time τ ∈ [t, T], one has

u(t, x) = inf α E τ t f (s, X s , νs , α s) ds + u(τ, X τ)|X t = x .
Then one can derive the Hamilton-Jacobi-Bellman equation, which describes the evolution of the value function, by a DPP argument. Under suitable conditions, u(t, x) solves ∂ t u(t, x) + min α∈A H(t, x, νt , ∇ x u(t, x), Hess x u(t, x), α) = 0, u(T, x) = g(x, μT), (4.23) with H being

H(t, x, ν, p, q, α) = b(t, x, ν, α) • p + 1 2
Tr(σ(t, x, ν, α)σ(t, x, ν, α) T q) + f (t, x, ν, α). (4.24)

Notice that the dependence of u on ν is implicit through the time variable because (in the absence of common noise) ν is a deterministic function of time and μ0 = µ 0 is fixed. If (4.23) has a classical solution, then the optimal control is given by

α(t, x) = α(t, x, νt , ∇ x u(t, x), Hess x u(t, x)),
where α(t, x, ν, p, q) = arg min α∈A H(t, x, ν, p, q, α).

The consistency condition for the equilibrium mean field flow can be expressed as follows. First the state distribution flow μ = (μ t) t≥0 solves the following Kolmogorov-Fokker-Planck (KFP) PDE

     ∂ t μ(t, x) - i,j ∂ 2 ∂ xi ∂ xj Di,j (t, x)μ(t, x) + div μ(t, x) b(t, x) = 0, μ(0) = µ 0 , (4.25)
where

D(t, x) = 1 2 σ(t, x, νt , α(t, x))σ(t, x, νt , α(t, x)) T , b(t, x) = b(t, x, νt , α(t, x)), (4.26)
and the state-action distribution νt at time time t is the push forward of μt by (I d , α(t, •)), which we will denote by νt = μt • (I d , α(t, •)) -1 . In the presence of interactions through the action distribution; see, e.g., [START_REF] Kobeissi | On classical solutions to the mean field game system of controls[END_REF] for the existence of classical solutions to the PDE system under suitable assumptions. MFC problems also give rise to analogous forward-backward PDE systems, except that the solution u of the backward equation is not interpreted as a value function of an optimal control problem but rather as an adjoint state. We refer to [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF][START_REF] Achdou | On the system of partial differential equations arising in mean field type control[END_REF] for more details. The KFP equation remains the same, but the HJB equation has one extra term that reflects the fact that the whole population performs the optimization simultaneously,

             ∂ t u(t, x) + H(t, x, μt • (I d , α(t, •)) -1 , ∇ x u(t, x), Hess x u(t, x), α(t, x)) + ∂H ∂µ (t, ξ, μt • (I d , α(t, •)) -1 , ∇ x u(t, ξ), Hess x u(t, ξ), α(t, ξ))(x)μ(t, ξ)dξ = 0, u(T, x) = g(x, μT) + ∂g ∂µ (ξ, µ T)(x)µ(T, ξ)dξ. (4.27)
In the presence of common noise, the HJB and KFP equations become stochastic. We will not discuss this system in the sequel, and refer the interested reader to [START_REF] Peng | Stochastic Hamilton-Jacobi-Bellman equations[END_REF] for the derivation of stochastic HJB equations and [START_REF] Carmona | The master equation for large population equilibriums[END_REF][START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF] for stochastic HJB-KFP systems arising in MFG (with the state distribution only).

FBSDE system

We now make the connection with BSDEs. Assume there is no common noise. We first explain how to view the value function as the solution to a BSDE. When the volatility is uncontrolled, that is, σ(t, x, ν, α) is free of α, then α is independent of Hess x u(t, x) and the PDE (4.23) becomes semi-linear

∂ t u(t, x) + 1 2 Tr(σ(t, x, νt)σ(t, x, νt) T Hess x u(t, x)) + b(t, x, νt , α(t, x, νt , ∇ x u(t, x))) • ∇ x u(t, x) + f (t, x, α(t, x, νt , ∇ x u(t, x))) = 0.
In this case, suppose that there exist functions µ(t, ν, x) and h(t, x, ν, z) such that b(t, νt , x)

• ∇ x u(t, x) + h(t, x, νt , σ(t, x) T ∇ x u(t, x)) = b(t, x, νt , α(t, x, νt , ∇ x u(t, x))) • ∇ x u(t, x) + f (t, x, νt , α(t, x, ∇ x u(t, x))).
Then the non-linear Feynman-Kac formula [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] gives the BSDE interpretation of u(t, x)

dX t = b(t, νt , X t) dt + σ(t, νt , X t) dW t , X 0 ∼ µ 0 , dY t = -h(t, νt , X t , Z t) dt + Z t dW t , Y T = g(X T , μT),
by the relation

Y t = u(t, X t), Z t = σ(t, νt , X t) T ∇ x u(t, X t),
and the optimal value is given by

E[Y 0] = E[u(0, X 0)].
The consistency condition for the equilibrium mean field flow ν reads νt = L X t , α(t, X t , νt , (σ(t, νt , X t) T) -1 Z t) .

In the controlled volatility case, the PDE (4.23) is fully nonlinear, and its solution is connected to a solution of the 2BSDE [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic pdes[END_REF]. If one chooses µ(t, x) and Σ(t, x) such that h is determined by ,x,ν,p,q,α(t,x,ν,p,q)) = µ(t, x, ν) • p + h(t, x, ν, p, q) + 1 2 Tr(Σ(t, x, ν)Σ(t, x, ν) T q), then the solution to the 2BSDE,

H(t
     dX t = b(t, νt , X t) dt + Σ(t, νt , X t) dW t , X 0 ∼ µ 0 , dY t = -h(t, X t , νt , Y t , Z t) dt + Z T t Σ(t, νt , X t) dW t , Y T = g(X T , μT), dZ t = A t dt + Γ t Σ(t, νt , X t) dW t , Z T = ∇ x g(X T , µ T),
gives a solution to the PDE (4.23) with the relation

Y t = u(t, X t), Z t = ∇ x u(t, X t), Γ t = Hess x u(t, X t), A t = L∇ x u(t, X t),
where L denotes the infinitesimal generator of the process X .

The Pontryagin stochastic maximum principle provides the connection to the FBSDE. Define the generalized Hamiltonian H by

H(t, x, ν, y, z, α) = b(t, x, ν, α)y + Tr(σ T (t, x, ν, α)z) + f (t, x, ν, α).
If the Hamiltonian H is convex in (x, α), and (X t , Y t , Z t) solve

dX t = b(t, X t , νt , αt) dt + σ(t, X t , νt , αt) dW t , X 0 ∼ µ 0 , dY t = -∇ x H(t, X t , νt , Y t , Z t , αt) dt + Z t dW t , Y T = ∂ x g(X T , μT).
such that α minimizes H along (X t , νt , Y t , Z t), then α is the optimal control. If the value function is smooth enough, then

Y t = ∇ x u(t, X t), Z t = σ(t, X t , νt , α) T Hess x u(t, X t).
In this case, the consistency condition for the equilibrium mean field flow ν reads

νt = L X t , α(t, X t , νt , (σ(t, νt , X t) T) -1 Y t) .
When there is common noise, the FBSDE system becomes

dX t = b(t, X t , νt , αt) dt + σ(t, X t , νt , αt) dW t + σ 0 (t, X t , νt , αt) dW 0 t , X 0 ∼ µ 0 , dY t = -∇ x H(t, X t , νt , Y t , Z t , Z 0 t , αt) dt + Z t dW t + Z 0 t dW 0 t , Y T = ∂ x g(X T , μT).
MFC problems also give rise to analogous FBSDE systems. In the absence of common noise, Pontryagin's maximum principle is derived in [START_REF] Acciaio | Extended mean field control problems: stochastic maximum principle and transport perspective[END_REF] and leads to the BSDE (the forward SDE remains the same)

dY t = -∇ x H(t, X t , νt , Y t , Z t , αt) dt -Ẽ ∂ µ H(t, Xt , νt , Ỹt , Zt , αt)(X t , αt) dt + Z t dW t , Y T = ∂ x g(X T , μT) + Ẽ ∂ µ g(XT , μT)(X T) ,
where the tilde notation (Xt , Ỹt , Zt , αt) refers to an independent copy of (X t , Y t , Z t , αt) and Ẽ denotes an expectation over these random variables.

All these systems are particular cases of the following system of FBSDEs of McKean-Vlasov type (MKV FBSDE for short)

                               dX t =B t, X t , L(X t , Y t , Z t |W 0), Y t , Z t , Z 0 t dt + σ(t, X t , L(X t , Y t , Z t |W 0), Y t , Z t , Z 0 t) dW t + σ 0 (t, X t , L(X t , Y t , Z t |W 0), Y t , Z t , Z 0 t) dW 0 t , dY t = -F t, X t , L(X t , Y t , Z t |W 0), Y t , σ T (t, X t , L(X t , Y t , Z t |W 0), Y t , Z t , Z 0 t)Z t , σ 0 T (t, X t , L(X t , Y t , Z t |W 0), Y t , Z t , Z 0 t)Z 0 t dt + Z t dW t + Z 0 t dW 0 t , L(X 0) = µ 0 , Y T = G(X T , L(X T |W 0)).
Remark 4.4. When there is no common noise, W 0 and Z 0 are dropped and the system becomes

       dX t =B (t, X t , L(X t , Y t , Z t), Y t , Z t) dt + σ(t, X t , L(X t , Y t , Z t), Y t , Z t) dW t , dY t = -F t, X t , L(X t , Y t , Z t), Y t , σ T (t, X t , L(X t , Y t , Z t), Y t , Z t)Z t dt + Z t dW t , L(X 0) = µ 0 , Y T = G(X T , L(X T)).
(4.28)

When the interactions are through the state distribution only, L(X t , Y t , Z t) is reduced to L(X t).

Master equation

As mentioned earlier, in the PDE system (4.25)-(4.27), u plays the role of the value function of a representative player when the rest of the population is at equilibrium. This function depends explicitly on t and x but, intuitively, a player's value function can also depend on the population distribution. When there is no common noise, this distribution evolves in a deterministic way, so knowing µ 0 and t as well as the control used by the population (which is the equilibrium control when the population is at equilibrium) is enough to recover μ(t), e.g., by solving the corresponding KFP equation (4.25). However, we can make this dependence explicit by considering a function

U : [0, T] × R d × P(R d) → R such that U(t, x, μ(t)) = u(t, x), (4.29)
where μ = (μ(t)) t is the mean-field equilibrium distribution flow. This correspondence is even more useful when common noise influence the dynamics of the players. In this case, u(t, x) is a random variable whereas U is still a deterministic function and the randomness in the lefthand side of (4.29) is random only through μ(t). This function U has applications to the question of convergence of finite-player Nash equilibria towards mean field Nash equilibria, see [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF] for more details. It turns out that, under suitable conditions, this function satisfies the following PDE, referred to as the Master equation. This equation involves partial derivatives with respect to the probability measure argument in U. We say that a function F : P(R d) → R is C 1 if there exists a continuous map δF δµ :

P(R d) × R d → R such that, for any µ, µ ∈ P(R d), lim s→0 + F ((1 -s)µ + sµ) -F (µ) s = R d δF δµ (µ, y)d(µ -µ)(y).
If δF δµ is of class C 1 with respect to the second variable, the intrinsic derivative ∂ µ F :

P(R d) × R d → R is defined by ∂ µ F (µ, y) = ∂ y δF δµ (µ, y).
We will write ∂ µ F (µ)(y) instead of ∂ µ F (µ, y). For more details, we refer to the lectures of Pierre-Louis Lions [START_REF] Lions | Cours du Collège de France[END_REF], [START_REF] Cardaliaguet | Notes on mean field games[END_REF] and [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I[END_REF]Chapter 5].

We can now present the Master equation. To the best of our knowledge, the theory has not yet been developed for the fully general MFG model described above. We thus consider the case in which the volatility is not controlled and the interactions are only through the state distribution instead of the stateaction distribution. For the sake of brevity, we omit the derivation and refer to e.g. [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications II[END_REF]Section 4.4]. The Master equation is the following backward PDE, on the space [0 For more details on the analysis of this PDE, we refer the interested reader to the monographs [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF], [43, Chapters 4 to 7], and [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF] concerning the existence of classical solutions under suitable conditions.

, T] × R d × P 2 (R d), ∂ t U(t, x, µ) + b(t, x, µ, α(t, x, µ, ∂ x U(t, x, µ))) • ∂ x U(t, x, µ) + R d b(t, v, µ, α(t, v, ∂ x U(t, v, µ))) • ∂ µ U(t, x, µ)(v)dµ(v) + 1 2 Tr (σσ T + σ 0 (σ 0) T)(t, x, µ)∂ 2 xx U(t, x, µ) + 1 2 R d Tr (σσ T + σ 0 (σ 0) T)(t, v, µ)∂ v ∂ µ U(t, x, µ)(v) dµ(v) + 1 2 R 2d Tr (σσ T + σ 0 (σ 0) T)(t, v, µ)∂ 2 µ U(t, x, µ)(v, v) dµ(v)dµ(v) + R d Tr (σ 0 (t, x, µ)(σ 0) T)(t, v, µ)∂ x ∂ µ U(t, x , µ)(v) dµ(v) + f (t, x, µ, α(t, x, µ, ∂ x U(t, x, µ)

The Sig-DFP algorithm for mean-field games with common noise

As seen in Definition 4.2, the mean-field equilibrium is nothing more than a standard control problem (corresponding to the first item in the definition) plus a fixed point problem (corresponds to the second item). Using neural networks to approximate the controls directly, Min and Hu [START_REF] Min | Signatured deep fictitious play for mean field games with common noise[END_REF] proposed an efficient algorithm (named Sig-DFP) utilizing the concept of signature in rough path theory [START_REF] Lyons | Differential equations driven by rough paths[END_REF] and fictitious play from game theory [START_REF] Brown | Some notes on computation of games solutions[END_REF][START_REF] Brown | Iterative solution of games by fictitious play[END_REF]. Signature is to accurately represent the conditional distribution given the common noise, and fictitious play is used to solve the fixed-point problem and identify the equilibrium [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF]. For a path x : [0, T] → R d , the p-variation is defined by

x p := sup D⊂[0,T] r-1 n=0 x tn+1 -x tn p 1/p , where D ⊂ [0, T] denotes a partition 0 ≤ t 0 < t 1 < . . . < t r ≤ T . Let T ((R d)) := ∞ k=0 (R d
) k be the tensor algebra and V p ([0, T], R d) the space of continuous mappings from [0, T] to R d with finite p-variation, equipped with norm

• V p := • ∞ + • p . Definition 4.3 (Signature). Let X ∈ V p ([0, T], R d) such that the following integral makes sense. The signature of X, denoted by S(X), is an element of T ((R d)) defined by S(X) = (1, X 1 , • • • , X k • • •) with X k = 0<t1<t2<•••<t k <T dX t1 ⊗ • • • ⊗ dX t k . (4.30)
Denote by S M (X) the truncated signature of X of depth M , i.e., S M (X) = (1, X 1 , • • • , X M) which has the dimension d M +1 -1 d-1 . In the current setting, X is a semi-martingale, thus equation (4.30) is understood in the Stratonovich sense. The signature has many nice properties, including: (a) it characterizes paths uniquely up to the treelike equivalence, and the equivalence is removed if at least one dimension of the path is strictly increasing [START_REF] Boedihardjo | The signature of a rough path: uniqueness[END_REF]. Therefore, in practice one usually augments the original path X t with the time dimension, i.e., working with Xt = (t, X t) since S(X) characterizes paths X uniquely. (b) Terms in the signature present a factorial decay property [START_REF] Lyons | System control and rough paths[END_REF], which provides the accuracy of using a few terms in the signature (small M) to approximate a path. (c) As a feature map of sequential data, the signature has a universality [START_REF] Bonnier | Deep signature transforms[END_REF], which is summarized below. Theorem 4.5 (Universality, [START_REF] Bonnier | Deep signature transforms[END_REF]). Let p ≥ 1 and f :

V p ([0, T], R d) → R be a continuous function in paths. For any compact set K ⊂ V p ([0, T], R d), if S(x)
is a geometric rough path for any x ∈ K, then for any > 0 there exist M > 0 and a linear functional l ∈ T ((R d)) * such that

sup x∈K |f (x) -l, S(x) | < .
The unique characterization of S(Ŵ 0 t) to (W 0 s) s∈[0,t] and the factorial decay property motivate

ν t ≡ L(X t , α t |F 0 t) = L(X t , α t |S(Ŵ 0 t)) ≈ L(X t , α t |S M (Ŵ 0 t)), with Ŵ 0 t = (t, W 0 t), (4.31)
where the last term in (4.31) can computed by machine learning methods, e.g., by GANs [START_REF] Goodfellow | Generative adversarial nets[END_REF]. In particular, if the mean-field interaction is through moments

ν t = E[ι(X t , α t)|F 0 t],
for some measurable function ι, the approximation can be arbitrarily close for sufficiently large M [140, Lemma 4.1], and [START_REF] Min | Signatured deep fictitious play for mean field games with common noise[END_REF] proposed

ν t ≈ l, S M (Ŵ 0 t) , where l = arg min β y -Xβ 2 , y = {ι(X t (ω i), α t (ω i))} N i=1 , X = {S M (Ŵ 0 t (ω i))} N i=1 .
(4.32) where ω i denotes the i th sample path. The rationality behind is the universality and the interpretation of ordinary linear regression: the least square minimization gives the best prediction of E[y|X] restricting to linear relations. Once l is obtained, the prediction on unseen common noise is efficient: ν t (ω) ≈ l, S M (Ŵ 0 t (ω)) for any ω and t. Then finding the mean-field equilibrium is broken down to: (1) initiate ν (0) ; (2) solve the standard control problem given ν (0) in (4.22) in the spirit of [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF]; (3) approximate ν (1) via signature using (4.32), i.e., compute l(1) ; (4) repeat steps (2)-(3) until converge. The update of ν t from step to step is by averaging l(n) . The Sig-DFP algorithm consists of repeatedly solving (4.21)-(4.22) for a given measure flow ν using deep learning in the spirit of [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF], and passing the yielded ν to the next iteration by using signatures. The flowchart of the idea is illustrated in Figure 12.

More precisely, at each step, given a proxy ν(k-1) of the equilibrium distribution ν, the problem (4.21)-(4.22) becomes a standard stochastic control and is solved by using the direct parameterization approach reviewed in Section 3.2.1.1: the loss function will be the discretized version of (4.22), X will be follow the Euler scheme of (4.21) with ν replaced by ν(k-1) and so do f and g, and the control α tn is parameterized by a neural network in the feedback form

α tn := α(t n , Xtn , ν(k-1) tn ; θ).
The yielded optimizer θ * gives α

(k)
tn , with which the optimized state process paths are simulated and its conditional law, denoted by ν (k) , is approximated using signatures via (4.32). This finishes one iteration of fictitious play. Denote by ν(k) the approximation of ν (k) , we then pass ν(k) to the next iteration via updating ν

(k) = 1 k ν(k) + k-1 k ν(k-1)
by averaging the coefficients obtained in (4.32). We summarize it in Algorithm 5, with implementation details in [START_REF] Min | Signatured deep fictitious play for mean field games with common noise[END_REF]Appendix B]. We also have the following convergence theorem, with the proof given in [140, Appendix C].

E[W 2 2 (ν (k) t , ν (k)
t)] ≤ , we have

sup t∈[0,T] E[W 2 2 (ν (k) t , νt)] + T 0 E|α (k) t -αt | 2 dt ≤ C(q k sup t∈[0,T] E[W 2 2 (ν (0) t , νt)] +),
for some constants C > 0 and 0 < q < 1, where W 2 denotes the 2-Wasserstein metric.

Numerical illustration: MFG of optimal consumption and investment.

We consider an extended heterogeneous MFG proposed by [START_REF] Lacker | Many-player games of optimal consumption and investment under relative performance criteria[END_REF], where agents interact via both states and controls. The setup is similar to [START_REF] Lacker | Mean field and n-agent games for optimal investment under relative performance criteria[END_REF] except for including consumption and using power utilities. Here, each agent's type is characterized by a random vector ζ = (ξ, δ, θ, b, σ, σ 0 ,), and the optimization problem reads

sup π,c E T 0 U (c t X t (Γ t m t) -θ ; δ) dt + U (X T m -θ T ; δ) , where U (x; δ) = 1 1-1 δ x 1-1 δ , δ = 1, is the power utility function, X t follows dX t = π t X t (b dt + σ dW t + σ 0 dW 0 t) -c t X t dt, (4.33)
and X 0 = ξ. The processes Γ t = exp E[log c t |F 0 t] and m t = exp E[log X t |F 0 t] are the mean-field interactions from the control and state processes. Two constraints are posed:

X t ≥ 0, c t ≥ 0.
The interpretation of this problem is as follows. There are infinitely many agents trade in a common investment horizon [0, T], each invests between a bond (with constant return rate r) and a private stock Algorithm 5 The Sig-DFP Algorithm Input: b, σ, σ 0 , f, g, ι and X 0 (ω i), {W tn (ω i)} N T n=0 , {W 0 tn (ω i)} N T n=0 for i = 1, 2, . . . , N ; K: rounds for FP; B: minibatch size; N batch : number of minibatches. Compute the signatures of Ŵ 0 tn (ω i) for i = 1, . . . , N , n = 1, . . . , N T ; Initialize ν(0) , θ; for k = 1 to K do for r = 1 to N batch do Simulate the r th minibatch of X (k) (ω i) using ν(k-1) and compute J B (θ, ν(k-1)); Minimize J B (θ, ν(k-1)) over θ, then update α(•; θ); end for Simulate X (k) (ω i) with the optimized α(•; θ *), for i = 1, . . . , N ; Regress ι(X

(k) 0 (ω i), α (k) 0 (ω i)), ι(X (k) T /2 (ω i), α (k)
T /2 (ω i)), ι(X (k) T (ω i), α (k)
T (ω i)) on S M (Ŵ 0 0 ω i), S M (Ŵ 0 t N T /2 (ω i)), S M (Ŵ 0 T (ω i)) to get l(k) ; Update l(k) = k-1 k l(k-1) + 1 k l(k) ; Compute ν(k) by ν(k) tn (ω i) = l(k) , S M (Ŵ 0 tn (ω i))
, for i = 1, 2, . . . , N, n = 1, . . . , N T ; end for Output: the optimized α * ϕ and l(K) .

with dynamics dS t /S t = b dt + σ dW t + σ 0 dW 0 t , and consume c t of his wealth at time t. The portion of wealth into S t is denoted by π t . Assuming r ≡ 0 without loss of generality, the wealth process reads (4.33). Then each agent aims to maximize his utility of consumption plus his terminal wealth compared to his peers' averages Γ t and m t . To relate it to the formulation (4.21)-(4.22), α ≡ (α 1 , α 2) := (π, c) will be a 2D control with the constraint

α 2 t ≥ 0, b(t, x, ν, α) = bα 1 x -α 2 x, σ(t, x, ν, α) = σα 1 x, σ 0 (t, x, ν, α) = σ 0 α 1 x, f = -U and g = -U
. The explicit solutions is derived in [START_REF] Lacker | Many-player games of optimal consumption and investment under relative performance criteria[END_REF] and also summarized in [START_REF] Min | Signatured deep fictitious play for mean field games with common noise[END_REF]Appendix D].

For this experiment, we use truncated signatures of depth M = 4. The optimal controls (π t , c t) 0≤t≤1 are parameterized by two neural networks π(•; θ) and c(•; θ), each with three hidden layers. 3 Due to the extended mean-field interaction term Γ t , we will propagate two conditional distribution flows, i.e., two linear functionals l(k) , l(k)

c
during each iteration of fictitious play. Instead of estimating m t , Γ t directly, we estimate E[log

X t |F 0 t], E[log c t |F 0 t] by l(k) , S 4 (W 0 t) , l (k)
c , S 4 (W 0 t) and then take exponential to get m t , Γ t . To ensure the non-negativity condition of X t , we evolve log X t and then take exponential to get X t . For optimal consumption, c(•; θ) is used to predicted log c t and thus exp c(•; θ) gives the predicted c t . With 600 iterations of fictitious play and a learning rate of 0.1 decaying by a factor of 5 for every 200 iterations, the relative L 2 errors for π t , c t , m t , Γ t are 0.1126, 0.0614, 0.0279, 0.0121, respectively. Figure 13 compares X and m to their approximations, and plots the maximized utilities. Further comparison with the existing literature, different choices of truncation M , and the ability to deal with higher m 0 are also discussed in [START_REF] Min | Signatured deep fictitious play for mean field games with common noise[END_REF].

Deep learning for mean-field PDE systems

We now consider the PDE systems describing the equilibrium or social optimum in MFG or MFC, respectively. The Deep Galerkin Method (DGM) introduced in [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] and reviewed in Section 3.5 can be adapted to solve such PDE systems for MFG or MFC [START_REF] Al-Aradi | Solving nonlinear and high-dimensional partial differential equations via deep learning[END_REF][START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: I-the ergodic case[END_REF][START_REF] Ruthotto | A machine learning framework for solving high-dimensional mean field game and mean field control problems[END_REF][START_REF] Cao | Connecting GANs, mean-field games, and optimal transport[END_REF][START_REF] Lin | APAC-Net: Alternating the population and agent control via two neural networks to solve high-dimensional stochastic mean field games[END_REF][START_REF] Laurière | On numerical methods for mean field games and mean field type control[END_REF]. We recall that the principle of the method is, for a single PDE, to replace the unknown function by a neural network and to optimize the parameters so as to minimize the residual of the PDE.

For the sake of the presentation, we consider the MFG PDE system (4.23)-(4.25). In line with the DGM method described in section 3.5, we proceed as follows. First, the MFG PDE system is rewritten as a minimization problem over the pair consisting of the density and the value function. The loss function is the sum of the two PDE residuals, as well as penalization terms for the initial and terminal conditions. If needed, extra terms taking into account the boundary conditions can be added. Instead of the whole state t) (solid lines) and their approximation (dashed lines) using different (X 0 , W, W 0) from test data. Panel (c) shows the maximized utility computed using validation data over fictitious play iterations. Parameter choices are:

δ ∼ U (2, 2.5), b ∼ U (0.25, 0.35), σ ∼ U (0.2, 0.4), θ, ξ ∼ U (0, 1), σ 0 ∼ U (0.2, 0.4), ∼ U (0.5, 1).
space R d , we focus on a compact subset Q ⊂ R d . We introduce the following loss function

L(µ, u) = L (KFP) (µ, u) + L (HJB) (µ, u), (4.34)
where the KFP loss function is Remark 4.7. The same ideas can be applied to tackle the PDE systems arising in MFC, or other settings such as ergodic MFG. In this latter case, the initial and terminal conditions are replaced by normalization conditions, see [START_REF] Lasry | Mean field games[END_REF]. Furthermore, if the PDE system was initially posed on a bounded domain and the solution had to satisfy boundary conditions, then these extra conditions could be dealt with by adding more penalty terms. See e.g. [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: I-the ergodic case[END_REF] for more details on these settings.

L (KFP) (µ, u) = C (KFP) ∂ t μ - i,j ∂ 2 ∂ xi ∂ xj Di,j μ + div μb L 2 ([0,T]× Q) + C (KFP) 0 µ(0) -µ 0 L 2 (Q) ,
We can then follow the lines of the DGM approach as described in Section 3.5. The idea is to minimize over a set of parameterized functions. We replace m and u by neural networks, say m θ1 and u θ2 , parameterized by θ 1 and θ 2 respectively. The integrals on [0, T] × Q (resp. Q) are interpreted as expectations for a uniform random variable over [0, T] × Q (resp. Q). Other distributions could also be used, provided we are able to sample random variables following these distributions. Last, we use SGD to minimize the total loss function L(µ θ1 , u θ2) over θ = (θ ! , θ 2).

The two neural networks could be taken with different architectures and their parameters optimized with different learning rates. The convergence of the neural network approximation was discussed in [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] in the context of a single PDE using a standard universal approximation theorem. Unfortunately, this does not shed any light on the rate of convergence. A rate of convergence can be obtained by using more constructive approximation results with neural networks. See [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: I-the ergodic case[END_REF] and the references therein. In turn, this property leads to bounds on both the loss function of the algorithm and the error on the value function of the control problem. However, to the best of our knowledge, the convergence of the algorithm towards approximately optimal parameters remains to be proved.

An important advantage of the DGM method is its flexibility and its generality: in principle, it can be applied to almost any PDE since it is agnostic to the structure of the PDE in question, or in the extension described above, of the PDE system. In tailoring the strategy to the specifics of our system, our main challenge was the choice of the relative weights to be assigned to the various terms in the aggregate loss function. If they are not chosen appropriately, SGD can easily be stuck in local minima. For example, if the weights C (KFP) 0 and C (HJB) T are not large enough, the neural networks might find trivial solutions minimizing the residuals while ignoring the initial and terminal conditions. However, if these weights are too large, the neural networks might satisfy these conditions very well without solving very precisely each PDE on the interior of the domain. See e.g. [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: I-the ergodic case[END_REF] for a more detailed discussion on this aspect.

Numerical illustration: a mean-field model of optimal execution. We now present an example based on a model of optimal execution. This model is similar to the one studied in Subsection 3.2.4. We consider a population of brokers in which each broker wants to liquidate Q 0 shares of a given stock by a fixed time horizon T . At time t ∈ [0, T], we denote by S t the price of the stock, by Q t the inventory (i.e. number of shares) held by the representative broker, and by X t their wealth. These state variables are subject to the following dynamics

     dS t = γ μt dt + σ dW t , dQ t = α t dt, dX t = -α t (S t + κα t) dt.
The time evolution of the price S t is subject to random shocks with standard deviation σ where the innovation dW t is given by the increments of a standard Brownian motion, and a drift accounting for a permanent price impact γ μt . Here γ > 0 is a multiplicative constant and μt is the aggregate trading rate of all the brokers. The individual rate of trading α t is the control of the broker. Finally, the constant κ > 0 account for a quadratic transaction cost.

We assume that the representative agent tries to maximize the following quantity, in which the first two terms reflect their payoff while the last two terms captures their risk aversion

E X T + Q T S T -A|Q T | 2 -φ T 0 |Q t | 2 dt .
The constants φ > 0 and A > 0 give weights to penalties for holding inventory through time and at the terminal time, respectively. Remark 4.8. Except for the fact that μt is here endogenous, this is the model considered in [START_REF] Cartea | Incorporating order-flow into optimal execution[END_REF], to which a deep learning method has been applied in [START_REF] Leal | Learning a functional control for high-frequency finance[END_REF] to approximate the optimal control on real data. Remark 4.9. The current model has two major differences from the model considered earlier in Subsection 3.2.4. It does not belong to the class of linear-quadratic models because the transaction costs entering the dynamics are quadratic in control. But most importantly, the broker's inventory does not have a Brownian component. The presence of a quadratic variations term in the dynamics of the inventory was demonstrated in [START_REF] Carmona | The self-financing equation in high frequency markets[END_REF] running econometric tests on high-frequency market data. This was one of the reasons for the choice of the model used in Subsection 3.2.4. Surprisingly, it is shown in [START_REF] Carmona | Optimal execution with quadratic variation inventories[END_REF] that the inclusion of a Brownian motion component in the dynamics of the inventory process Q t does not require significant changes to the proof, including the form of the ansatz for the value function.

Although this problem is formulated with three state variables, we can actually reduce the complexity of the problem in the following way. When the flow (μ t) 0≤t≤T is fixed, the optimization problem involved in the computation of the best response reduces to an HJB equation whose solution V (t, x, s, q) can be found like in [START_REF] Cartea | Incorporating order-flow into optimal execution[END_REF] by formulating the ansatz V (t, x, s, q) = x + qs + v(t, q) for some function v. Rewriting the HJB equation, one sees that v must solve the equation

-γ μq = ∂ t v -φq 2 + sup α {α∂ q v -κα 2 },
with terminal condition v(T, q) = -Aq 2 , the optimal control being α * t (q) = ∂qv(t,q) 2κ

. Accordingly, if we denote by µ(t, •) the distribution of inventories at time t, the aggregate trading rate is given by μt = α * t (q)µ(t, dq) = ∂ q v(t, q) 2κ µ(t, dq), in equilibrium since we use the optimal control. Since the evolution of the inventory distribution can be captured by the Kolmogorov-Fokker-Planck partial differential equation,

∂ t µ + ∂ q µ ∂ q v(t, q) 2κ = 0,
given initial condition µ(0, •) = µ 0 , the solution of the MFG can be characterized by the PDE system

                     -γ μq = ∂ t v -φq 2 + |∂ q v(t, q)| 2 4κ , ∂ t µ + ∂ q µ ∂ q v(t, q) 2κ = 0, μt = ∂ q v(t, q) 2κ µ(t, dq), µ(0, •) = µ 0 , v(T, q) = -Aq 2 . (4.35)
Note that the mean-field interactions are through μt , which is a non-local (in space) term involving the derivative of the solution to the HJB equation. The value function, the associated control, and the mean of the distribution can be computed by solving a system of ODEs, which provides a benchmark to test numerical methods. We refer to [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF] for more details. This PDE system has been solved with the DGM method in [START_REF] Al-Aradi | Solving nonlinear and high-dimensional partial differential equations via deep learning[END_REF] after a change of variable for the distribution. Here, for the sake of numerical illustration, we present results based on directly solving this system by following the methodology discussed above, suitably modified for the time-dependent PDE system (4.35). The initial and terminal conditions are imposed by penalization. The non-local term is estimated with Monte Carlo samples. For the results presented here, we used the following values for the parameters: T = 1, σ = 0.3, A = 1, φ = 1, κ = 1, γ = 1, and a Gaussian initial distribution with mean 4 and variance 0.3.

The evolution of the distribution m is displayed in Figure 14 while the value function v and the optimal control α * are displayed in Figure 15. As expected from the theory, the distribution concentrates close to 0, and we recover a linear control, which matches the optimal one obtained with semi-explicit formula (see [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF] for more details). For the neural network approximating the density, on the last layer, we used an exponential activation function. This ensures that the density is always non-negative.

Deep learning for McKean-Vlasov FBSDE systems

We now explain how to adapt the Deep BSDE method introduced in [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] and reviewed in Section 3.3.1 to mean-field FBSDEs. We recall that the principle of the method is to use neural networks to approximate Y 0 and (Z t) t∈[0,T] and to train the NN parameters by relying on Monte Carlo samples until the terminal condition is approximately matched. In the mean-field setting, the same idea can be used to solve forwardbackward systems of McKean-Vlasov (MKV) SDEs; see [START_REF] Fouque | Deep learning methods for mean field control problems with delay[END_REF][START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF][START_REF] Germain | Numerical resolution of McKean-Vlasov FBSDEs using neural networks[END_REF][START_REF] Han | Learning high-dimensional Mckean-Vlasov forward-backward stochastic differential equations with general distribution dependence[END_REF]. Particularly, [START_REF] Han | Learning high-dimensional Mckean-Vlasov forward-backward stochastic differential equations with general distribution dependence[END_REF] proposed a novel deep learning method for computing MKV FBSDEs with a general form of mean-field interactions, and proved that the convergence of the proposed method is free of the curse of dimensionality by using the generalized maximum mean discrepancy metric previously developed in [START_REF] Han | A class of dimensionality-free metrics for the convergence of empirical measures[END_REF]. Although we focus here on the continuous-state space setting, the same strategy can be applied to finite-state MFGs; see [START_REF] Aurell | Optimal incentives to mitigate epidemics: a stackelberg mean field game approach[END_REF][START_REF] Aurell | Finite state graphon games with applications to epidemics[END_REF]. Let us consider the FBSDE (4.28) in the absence of common noise, with interactions through the state distribution only, and uncontrolled volatility. We rewrite the problem as: minimize over y 0 : R d → R d and z : R + × R d → R d×m the cost functional

J(y 0 , z) = E |Y y0,z T -G(X y0,z T , L(X y0,z T))| 2 ,
where (X y0,z , Y y0,z) solves

dX y0,z t =B (t, X y0,z t , L(X y0,z t), Y y0,z t) dt + σ(t, X t) dW t , dY y0,z t = -F t, X y0,z t , L(X y0,z t), Y y0,z t , σ T (t, X t)z(t, X y0,z t) dt + z(t, X y0,z t) dW t ,
with initial condition X y0,z 0 distributed according to µ 0 and Y y0,z 0 = y 0 (X 0). The above problem is an optimal control problem of MKV dynamics if we view (X y0,z t , Y y0,z t) as state and (y 0 , z) as control. Under suitable conditions, the optimally controlled process (X, Y) solves the MKV FBSDE system (4.28) and vice versa.

In the same spirit as the method presented in Section 3.2.4, we can then replace the distribution by an empirical distribution based on a finite-size population and replace the controls y 0 and z by neural networks, say y θ and z ω with parameters θ and ω respectively. We then discretize time, and use SGD to perform the optimization. This amounts to using Algorithm 1 where each sample is of the form S = (X0 , (∆ Wn) n). This method is illustrated in § 4.2.4 below on a systemic risk MFG model.

Numerical illustration: linear-quadratic mean-field game in systemic risk problems.

We now consider the mean-field game version of the systemic risk model introduced in Section 1.2 which has been studied in Section 4.1.1 and revisited in Section 4.1.2. The mean-field game has been analyzed in [START_REF] Carmona | Mean field games and systemic risk[END_REF]. We consider an inter-bank market again but now with infinitely many banks. We let X t ∈ R be the log-monetary reserves of a typical bank at time t. Its dynamics are modeled as the following diffusion processes,

dX t = [a(X t -X t) + α t] dt + σ ρ dW 0 t + 1 -ρ 2 dW t , X t = E[X t |W 0].
Here d = k = m = 1, a(X t -X t) represents the rate at which the bank borrows from or lends to other banks in the lending market, while α t denotes its control rate of cash flows to a central bank. The standard Brownian motions W 0 and W are independent, in which W stands for the idiosyncratic noises and W 0 denotes the systemic shock, which is an example of common noise (see also Section 4.2.2). The cost functional (4.20) has the following form, which a representative player wishes to minimize

f (t, x, ν, α) = 1 2 α 2 -qα(μ -x) + 2 (μ -x) 2 , g(x, ν) = c 2 (ν -x) 2 , ν = E X∼µ [X].
Here |ρ| ≤ 1 and q 2 ≤ , and all parameters are non-negative. It has been shown in [START_REF] Carmona | Mean field games and systemic risk[END_REF] that open-loop and closed-loop coincide and admit an explicit solution.

The direct method described earlier in Section 3.2.4 can not be used to compute the equilibrium because this is an MFG, not an MFC. Instead, we adapt the deep BSDE method described above and apply it to solve the appropriate FBSDE system. For the sake of brevity, we omit this FBSDE system here and refer to [START_REF] Carmona | Mean field games and systemic risk[END_REF] for the details. Due to the presence of the common noise, two changes need to be made: first, there is an extra process Z 0 to be learned, for which we use a neural network approximation as for Z; second, we expect the random variables Z t and Z 0 t to depend not only on X t but also on the past of the common noise. In general, this would mean learning functions of the common noise's trajectory. However, in some cases, it is enough to rely on finite-dimensional information. Here, we add μt as an input to the neural networks playing the roles of Z t and Z 0 t , and we show that this is sufficient to learn the solution. In fact, the fact that the conditional mean contains all the relevant information can be checked on the semi-explicit solution provided in [START_REF] Carmona | Mean field games and systemic risk[END_REF].

Figure 16 displays three sample trajectories of X and Y , obtained after having trained the neural networks for Y 0 , Z and Z 0 , by simulating in a forward fashion the trajectories of X and Y using Monte Carlo samples and the same Euler-Maruyama scheme used in the numerical method. One can see that the approximation is better for X than for Y , particularly towards the end of the time interval. This is probably because the BSDE is solved by guessing the initial point instead of starting from a terminal point, resulting in errors accumulated over time. Furthermore, [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF] shows that the results improve as the number of time steps, particles, and units in the neural network increase. For the numerical illustration presented here, we used σ = 0.5, ρ = 0.5, q = 0.5, = q 2 + 0.5 = 0.75, a = 1, c = 1.0 and T = 0.5.

Deep learning for Mean-field master equation

All the methods presented so far to solve time-dependent MFC or MFG assume that the initial distribution is fixed. The solution is thus computed to obtain a flow of distributions that starts from this prescribed initial condition. However, in some applications, one does not know for sure the initial distribution. A possible strategy is to repeatedly use one of the methods presented earlier for various initial distributions. However, the computational cost would be prohibitive. It is thus interesting to solve the problem for any initial condition at once. This motivates solving the master equation, which has already been introduced in Section 4.2.1.4 in the continuous space setting. In the remainder of this section, we will focus on a finitestate setting that can be used to approximate continuous space MFGs under suitable assumptions; see e.g. [START_REF] Hadikhanloo | Finite mean field games: fictitious play and convergence to a first order continuous mean field game[END_REF]. In the finite-case setting, the population distribution admits a finite-dimensional representation. However, its dimension increases with the number of states, which can be very large in some applications. As a consequence, the solution to the master equation is defined on a potentially high-dimensional space. This motivates the use of machine learning tools and in particular neural network approximations. Master equation for finite state MFG.

We focus here on a setting in which the state space is finite. Following the discussion in [42, Section 7.2], let E = {e 1 , . . . , e d } be a finite set, and let A ⊆ R k be a Borel set, corresponding respectively to the state space and the action space. We will view E as a subset of R d by identifying its elements with the canonical basis, and we will identify P(E) with the simplex {m ∈ R d | d i=1 m i = 1}. Let f : E × P(E) × A → R and g : E × P(E) → R be respectively a running cost and a terminal cost functions. Let λ : E × P(E) × A → R be a jump rate function. To alleviate the notation, for every m ∈ P(E), we write m(x) instead of m({x}). We will write R E for the set of functions from E to R.

We then consider the following MFG equilibrium problem: Find a flow of probability densities m : [0, T] × E → R and a feedback control α : [0, T] × E → A satisfying the following two conditions:

1. α minimizes

J M F G m : α → E T 0 f (X m,α t , m(t, •), α(t, X m,α t))dt + g(X m,α T , m(T, •)) ,
under the constraint that the process X m,α = (X m,α t) t≥0 is a nonhomogeneous E-valued Markov chain with transition probabilities determined by the Q-matrix of rates q m,α :

[0, T] × E × E → R given by q m,α (t, x, x) = λ(x, x , m(t, •), α(t, •)), (t, x, x) ∈ [0, T] × E × E,
and X m,α 0 has distribution with density m 0 ;

2. For all t ∈ [0, T], m(t, •) is the law of X m, α t .

To formulate an optimality condition, we introduce the Lagrangian L : Assuming there is a unique maximizer for every (x, m, h) ∈ E × P(E) × R E , we denote

E × P(E) × R E × A → R defined by L(x, m, h, α) = x ∈E λ(x, x , m, α)h(x) + f (x, m, α),
α * (x, m, h) = arg max α∈A -L(x, m, h, α). (4.36)
It will also be useful to introduce the function q * : E × E × P(E) × R E → R defined by q * (x, x , m, h) = λ x, x , m, α * (x, m, h) .

In the spirit of the forward-backward PDE system, the solution of a finite state MFG can be characterized through a system of ODEs: a forward ODE for the distribution m : [0, T] × E → R and a backward ODE for the value function u : [0, T] × E → R of an infinitesimal player. To wit, under suitable conditions (see e.g. [42, section 7.2]), there is a unique MFG equilibrium (m, α) given by α

(t, x) = α * (x, m(t, •), u(t, •)),
where α * is defined by (4.36) and (u, m) solves the forward-backward system

         0 = -∂ t u(t, x) + H(x, m(t, •), u(t, •)), (t, x) ∈ [0, T) × E, , 0 = ∂ t m(t, x) - x ∈E m(t, x)q * (x , x, m(t, •), u(t, •)), (t, x) ∈ (0, T] × E, u(T, x) = g(x, m(T, •)), m(0, x) = m 0 (x), x ∈ E. (4.37)
Since E is finite, m(t, •) and u(t, •) can be identified with vectors and each equation can be viewed as an ODE. This forward-backward system can be tackled using techniques similar to the ones described in the previous sections for the PDE system arising in the continuous state space case.

We now turn our attention to the master equation. In contrast with the continuous space master equation discussed in Section 4.2.1.4, in the current setting, the distribution admits a finite-dimensional representation, and hence the solution to the master equation is defined on a finite-dimensional space. In the ODE system (4.37), the coupling between the two equations implies that the value function u depends implicitly on the distribution m. The solution to the master equation allows us to make this dependence explicit. Then this equation takes the following form (see e.g. [42, section 7.2] for more details),

-∂ t U(t, x, m) + H(x, m, U(t, •, m)) - x ∈E h * (m, U(t, •, m))(x) ∂U(t, x, m) ∂m(x) = 0, (4.38)
for (t, x, m) ∈ [0, T] × E × P(E), with the terminal condition U(T, x, m) = g(x, m), for (x, m) ∈ E × P(E).

Here,

h * : [0, T] × P(E) × R E × E → R is defined as h * (m, u)(x) = x∈E λ(x, x , m, α * (x, m, u))m(x).
The notation ∂U(t, x, m) ∂m(x) represents the (classical) partial derivative of R d m → U(t, x, m) with respect to the coordinate corresponding to x when m is viewed as a vector of dimension d. The link between the master equation and the forward-backward system is, for every initial distribution m 0 ∈ P(E),

U(t, x, m m0 (t, •)) = u m0 (t, x), (t, x) ∈ [0, T] × E, (4.39)
where (u m0 , m m0) is the solution to (4.37) starting with m(0, •) = m 0 . In words, the solution to the forwardbackward system plays the role of characteristics for the master equation, and U explicitly captures the (implicit) dependence of the infinitesimal player's value function u on the population's distribution m. Note that the master equation (4.38) is posed on the space [0, T] × E × P(E) ⊂ [0, T] × E × R d , which is high dimensional as soon as the number of states, d, is large. To solve this PDE, here we propose to use the Deep Galerkin Method (DGM) introduced in [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] and already discussed above in Sections 3.5 and 4.2.3. We replace the unknown function U by a neural network U θ with parameters θ, and we look for θ minimizing the residual of the PDE (4.38). SGD as described in Algorithm 1 is used, where a sample is ξ = (t, x, m) ∈ [0, T] × E × P(E) and the loss function is

L(U θ , ξ) = ∂ t U θ (t, x, m) -H(x, m, U θ (t, x, m)) + x ∈E h * (m, U θ (t, x, m))(x) ∂U θ (t, x, m) ∂m(x)
(x = 1, m) (x = 2, m) (x = 3, m) (x = 4, m) u(x = 1) u(x = 2) u(x = 3) u(x = 4) (b)
(x = 1, m) (x = 2, m) (x = 3, m) (x = 4, m) u(x = 1) u(x = 2) u(x = 3) u(x = 4) (b)
Figure 18: MFG Cyber-security example, test case 2: Evolution of the distribution m m0 (left) and the value function u m0 and U(•, •, m m0 (•)) (right) for m 0 = (1, 0, 0, 0).

Reinforcement Learning (RL)

All the previous methods rely, in one way or another, on the fact that the cost functions f and g as well as the drift b and the volatility σ (cf. (3.1)-(3.2)) are known. However, in many applications, coming up with a realistic and accurate model is a daunting task. It is sometimes impossible to guess the form of the dynamics, or the way the costs are incurred. This motivates us to study so-called model-free methods. The reinforcement learning (RL) theory provides the framework of studying such problems by mainly using the optimal control theory of incompletely-known Markov decision processes. Intuitively, an agent evolving in an environment can take actions and observe the consequences of her actions: the state of the environment (or her own state) changes, and a reward is incurred to the agent. The agent does not know how the new state and the reward are computed. The goal for the agent is then to learn an optimal behavior (i.e., which maximizes the sum of future rewards) by trial and error.

Numerous algorithms have been developed under the topic of RL; see, e.g., the surveys and books [START_REF] Kaelbling | Reinforcement learning: A survey[END_REF][START_REF] Busoniu | A comprehensive survey of multiagent reinforcement learning[END_REF][START_REF] Li | Deep reinforcement learning: An overview[END_REF][START_REF] Sutton | Reinforcement learning: An introduction[END_REF][START_REF] Hambly | Recent advances in reinforcement learning in finance[END_REF]. Most of them focus on RL itself, with state-of-the-art methods in single-agent or multi-agent problems and/or theoretical guarantees of numerical performances. We aim to review

(x = 1, m) (x = 2, m) (x = 3, m) (x = 4, m) u(x = 1) u(x = 2) u(x = 3) u(x = 4) (b)
Figure 19: MFG Cyber-security example, test case 3: Evolution of the distribution m m0 (left) and the value function u m0 and U(•, •, m m0 (•)) (right) for m 0 = (0, 0, 0, 1). its connections to stochastic control theory and recent advances in mean-field settings (infinite manyagent case). We shall start by discussing how problems in Section 3 are formulated as single-agent RL 4 . Although we here focus on the traditional presentation of RL in discrete time, let us mention that a continuous-time stochastic optimal control viewpoint on RL has been developed for the mean-variance portfolio problem [START_REF] Wang | Continuous-time mean-variance portfolio selection: A reinforcement learning framework[END_REF] and for generic continuous time and space problems [START_REF] Wang | Reinforcement learning in continuous time and space: A stochastic control approach[END_REF]. It has also been extended in several directions, such as risk-aware problems in [START_REF] Jaimungal | Robust risk-aware reinforcement learning[END_REF] and mean-field games in [START_REF] Guo | Entropy regularization for mean field games with learning[END_REF]) and [START_REF] Firoozi | Exploratory LQG mean field games with entropy regularization[END_REF].

RL for stochastic control problems

Recall the stochastic control problems studied in Section 3,

dX t = b(t, X t , α t) dt + σ(t, X t , α t) dW t , X 0 = x 0 , (5.1)
and the goal is to identify the optimal control α that minimizes the expected cost,

J(α) : α → E T 0 f (t, X t , α t) dt + g(X T) . (5.2)
In this section, we will assume that the agent can not directly access b, σ, f and g, but can observe the next "step" information given current state and control. For learning algorithms, it is natural to consider the discretized problem

Xtn+1 = Xtn + b(t n , Xtn , α tn)∆t + σ(t n , Xtn , α tn)∆ Wtn , (5.3)
min

(αt n) n=0,...,N T -1 E N T -1 n=0 f (t n , Xtn , α tn)∆t + g(XT) , (5.4)
where 0 = t 0 < t 1 < . . . < t N T = T, with t nt n-1 = ∆t = T /N T , is the temporal discretization on [0, T] as before. By doing so, the system is Markovian, and can be viewed as a Markov Decision process (MDP). We next briefly discuss the MDP, which is widely used to describe the agent-environment interface, and then make the connections between the two.

Similarly, an action-value function Q π t is defined for policy π, as the expected cost when starting from x at time t, taking the action a and therefore following π,

Q π tn (x, a) := E π   N T -1 j=n f (t j , X tj , α tj)∆t + g(X T)|X tn = x, α tn = a   .
Both functions satisfy the well-known dynamic programming principle,

V π tn (x) = a∈A π tn (a|x) x ∈X p(x |x, a, t n)[f (t n , x, a)∆t + V π tn+1 (x)] dx da, Q π tn (x, a) = x ∈X p(x |x, a, t n)[f (t n , x, a)∆t + V π tn+1 (x)] dx , with terminal conditions V π T (x) = Q π T (x, a) = g(x)
, where we have simplified the subscript t N T = T . They are also called the Bellman equations for V π and Q π . The goal of RL is to identify the optimal π * such that V π t (x) is minimized for every t and x ∈ X . To this end, one also works with the optimal value function V * t (x) := inf π V π t (x), and the Bellman equation reads,

V * tn (x) = inf a∈A x ∈X p(x |x, a, t n)[f (t n , x, a)∆t + V * tn+1 (x)] dx .
There is also a Bellman equation for the optimal action-value function defined as

Q * t (x, a) = inf π Q π t (x, a), Q * tn (x, a) = f (t n , x, a)∆t + inf a ∈A x ∈X p(x |x, a, t n)Q * tn+1 (x , a) dx .
For both optimal functions, the terminal conditions are

V * T (x) = Q * T (x, a) = g(x)
. In RL, it is assumed that the transition probability kernel p is not accessible, but the simulator of X tn+1 ∼ p(x |x, a, t n) is available. One aims to identify π * , V * and Q * via repeated samples of (5.5). While implementing π, there is always a trade-off between exploration and exploitation: a balance between trying new actions and repeating past experiences. There are primarily two categories of learning methods: value-based methods and policy gradient methods.

Value-based methods

For value-based methods, the workflow can be summarized as follows: starting with an arbitrary policy π, evaluate its value, improve the policy, repeating until convergence,

π 0 → V π0 → π 1 → V π1 → . . . π * → V * .
The symbol π i → V πi denotes a policy evaluation, and the symbol π i → V πi+1 denotes a policy improvement. The drawback of the above the procedure is the computational cost of evaluating a given policy π i → V πi , which requires many Monte Carlo (MC) samples without knowing p(x |x, a, t n). The Temporal-Difference (TD) learning is a remedy to this issue by updating V π tn (x) with one sample drawn according to

X tn+1 ∼ p(x |x, a, t n), V π tn (X tn) ← V π tn (X tn) + β[f (t n , X tn , α tn)∆t + V π tn+1 (X tn+1) -V π tn (X tn)].
This is the simplest TD method, usually denoted by TD(0). To unify TD methods and MC methods, one can view the later as updating V π tn using the entire sequence of observed cost from time t n until the end of the episode T . So something in between is called n-step TD methods, which simulate n MC samples to update V π .

TD learning can also be applied to action-value function, and one of this kind is

Q π tn (X tn , α tn) ← Q π tn (X tn , α tn) + β[f (t n , X tn , α tn)∆t + Q π tn+1 (X tn+1 , α tn+1) -Q π tn (X tn , α tn)],
where X tn+1 , α tn+1 are random samples from (5.3) and from Q plus some randomization (e.g., -greedy). This is called SARSA as each update uses the quintuple: State at time t n , Action at time t n , Reward, State at time t n+1 , and Action at time t n+1 .

Based on SARSA, one can straightforwardly design a RL algorithm to learn the optimal action-value function Q * : choose α tn according to Q plus -greedy for some exploration, then update Q using SARSA. It falls into the category of on-policy algorithms, that is, it evaluate or improve the policy that is used to make decisions. In fact, to balance between learning optimal behavior and behaving non-optimally for exploration, with the help of -greedy, it learns Q not for the optimal policy but a sub-optimal one that still explores. Off-policy methods, on the contrary, uses different policies for evaluation/improvement and data generation. Q-learning may be the earliest well known off-policy algorithm, which directly approximates Q * , and updates it as follows, Q π tn (X tn , α tn) ← Q π tn (X tn , α tn) + β[f (t n , X tn , α tn)∆t + max a Q π tn+1 (X tn+1 , a) -Q π tn (X tn , α tn)].

Policy gradient methods

This section describes some methods that learn a parameterized policy that gives the optimal behavior without checking with the value function. We write π t (a|x; θ) as the probability of taking action a at state x with parameter θ. In practice, this can be linear functions θ T f(x, a) where f(x, a) is called feature vector, or neural networks. The policy gradient methods update the policy parameter θ based on the gradient of some performance measure J(θ), taking the form

θ ← θ -β ∇J(θ),
where ∇J(θ) denotes a MC version of ∇J(θ). A natural choice of J(θ) is the value function V π θ we aim to minimize, and the policy gradient theorem tells where G tn denotes the cumulated cost from time t n to T . With an additional parameterized value function V * tn (x; θ), this leads to the actor-critic algorithm, δ tn = f (t n , X tn , α tn)∆t + V * tn+1 (X tn+1 ; θ) -V * tn (X tn ; θ), θ ← θβ δ tn ∇ θ V * tn (X tn ; θ), θ ← θβδ tn ∇ θ ln π tn (α tn |X tn ; θ).

∇V π θ tn (x) = E π [A Q π tn (x,
Both REINFORCE and actor-critic methods mentioned above stochastically select actions a in state x according to the parameter θ: sample an action a according to the distribution π(a|x, θ). Deterministic policy on the contrary, aims to provide a deterministic map α tn (x; θ). To ensure enough exploration, offpolicy algorithms are more appropriate: a stochastic behavior policy π(a|x) is used to choose the action, and α tn (x; θ) is leanred (exploitation). The deterministic policy gradient (DPG) [START_REF] Silver | Deterministic policy gradient algorithms[END_REF] is one of this type. It is a off-policy actor-critic algorithm that learns a deterministic target policy α tn (x; θ) from an exploratory behavior policy π(a|x). In particular, a differentiable critic Q(x, a; θ) is used to approximate Q α(•;θ) (x, a) and is updated via Q-learning: at each step we sample α tn from π(a|x) and δ tn = f (t n , X tn , α tn)∆t + Q tn+1 (X tn+1 , α tn+1 (X tn+1 ; θ); θ) -Q tn (X tn , α tn ; θ), θ ← θβ δ tn ∇ θ Q tn (X tn , α tn ; θ), θ ← θβδ tn ∇ θ α tn (X tn ; θ)∇ a Q(X tn , α tn ; θ)| a=αt n (Xt n ;θ) . Hu and Wellman proposed in [START_REF] Hu | Nash Q-learning for general-sum stochastic games[END_REF] a version of Q-learning for (infinite horizon discounted) N -player games, called Nash Q-learning, and identified conditions under which this algorithm converges to a Nash equilibrium. This method can be applied with deep neural networks, as done for instance in [START_REF] Casgrain | Deep q-learning for nash equilibria: Nash-dqn[END_REF]. We refer the interested reader to e.g. [START_REF] Busoniu | A comprehensive survey of multiagent reinforcement learning[END_REF][START_REF] Tuyls | Multiagent learning: Basics, challenges, and prospects[END_REF][START_REF] Bloembergen | Evolutionary dynamics of multi-agent learning: A survey[END_REF][START_REF] Lanctot | A unified game-theoretic approach to multiagent reinforcement learning[END_REF][START_REF] Yang | An overview of multi-agent reinforcement learning from game theoretical perspective[END_REF][START_REF] Zhang | Multi-agent reinforcement learning: A selective overview of theories and algorithms[END_REF][START_REF] Gronauer | Multi-agent deep reinforcement learning: a survey[END_REF] for more details on MARL. Recently, [START_REF] Gu | Mean-field multi-agent reinforcement learning: A decentralized network approach[END_REF][START_REF] Gu | Mean-field controls with Q-learning for cooperative MARL: convergence and complexity analysis[END_REF] also studied mean-field control RL in decentralized way using cooperative MARL.

RL for mean-field games

We now turn our attention to RL methods for MFG. As pointed out in Section 4.2, finding a mean-field Nash equilibrium boils down to (1) finding a control that is optimal for a representative infinitesimal player facing the equilibrium distribution flow, and (2) computing the induced distribution flow, which should match the equilibrium one. These two elements can be tackled alternatively, as described in Section 4.1 in the N-player case and in Section 4.2.2 in the mean-field case. The first part is a standard optimal control problem, which can thus be tackled using standard RL techniques, see Section 5.1.1. In this setting, we assume that the agent who is learning can repeat experiments of the following form: given the current state, the agent chooses an action (or a sequence of actions), and the environment returns the new state as well as the reward (or a sequence of states and rewards). In the representative player's MDP, the distribution enters as a parameter that influences the reward and dynamics, but is fixed when the player learns an optimal policy. During such experiments, we generally assume that the population distribution is fixed, and it is updated after a number of iterations, see e.g. [START_REF] Guo | Learning mean-field games[END_REF][START_REF] Elie | On the convergence of model free learning in mean field games[END_REF]. Alternatively, we can assume that it is updated at every iteration but at a slow rate, see e.g. [START_REF] Subramanian | Reinforcement learning in stationary mean-field games[END_REF][START_REF] Angiuli | Unified reinforcement Q-learning for mean field game and control problems[END_REF][START_REF] Xie | Learning while playing in mean-field games: Convergence and optimality[END_REF]. Most of the literature thus far focuses on tabular methods. A few works have used deep RL methods to compute the best response. For example, DDPG has been used in [START_REF] Elie | On the convergence of model free learning in mean field games[END_REF], soft actor-critic (SAC) has been used for a flocking model in [START_REF] Perrin | Mean field games flock! the reinforcement learning way[END_REF], while deep Q-learning or some variants of it has been used in [START_REF] Cui | Approximately solving mean field games via entropy-regularized deep reinforcement learning[END_REF][START_REF] Perrin | Generalization in mean field games by learning master policies[END_REF][START_REF] Laurière | Scalable deep reinforcement learning algorithms for mean field games[END_REF]. Recently, several works have have studied the advantages and the limitations brought by regularization of the policy through penalization terms in the cost function [START_REF] Anahtarci | Q-learning in regularized mean-field games[END_REF][START_REF] Cui | Approximately solving mean field games via entropy-regularized deep reinforcement learning[END_REF][START_REF] Guo | Entropy regularization for mean field games with learning[END_REF]. Numerical illustration: an example with explicit solution.

For the sake of illustration, we consider an MFG model which admits an explicit solution in the continuous time in ergodic setting; see [START_REF] Almulla | Two numerical approaches to stationary mean-field games[END_REF]. The MFG is defined as follows. The state space is the 1-dimensional unit torus, i.e., T = [0, 1] with periodic boundary condition. The action space is R (or in practice any bounded interval containing [-2π, 2π], which is the range of the equilibrium control). The drift function is b(x, m, a) = a.

The running cost is

f (x, m, a) = f (x) + 1 2 |a| 2 + log(m),
where the first term is the following cost, which encodes spatial preferences for some regions of the domain:

f (x) = -2π 2 sin(2πx) + 2π 2 cos(2πx) 2 -2 sin(2πx).

In the ergodic MFG setting, the objective of an infinitesimal representative player is to minimize lim

T →+∞ 1 T E T 0 f (X t , µ t (X t), α t (X t)) dt ,
where X is controlled by α. Here µ t is assumed to have a density for every t ≥ 0, and we identify it with its density. So µ t (X t) denotes the value of the density of µ t at X t . The equilibrium control and the equilibrium mean-field distribution are respectively given by a * : x → 2π cos(2πx) and µ * : x → e 2 sin(2πx) T e 2 sin(2πy) dy .

We use fictitious play [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF] combined with a deep RL algorithm to learn the best response at each iteration for the solution. The problem is in continuous state and action space and admits a deterministic equilibrium control. Hence, following [START_REF] Elie | On the convergence of model free learning in mean field games[END_REF], at each iteration, we solve the representative player's MDP using DPG [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] reviewed in Section 5.1.1.2. The left plot of Figure 21 displays (blue line) the population distribution learned by fictitious play, which corresponds to the distribution induced by the average of past best responses. This is to be compared with the ergodic distribution (red dashed line). The right plot displays the last iteration of the best response. This control is approximated by two neural networks: a target network (green dashed line) and an actor network (blue line). We also display the ergodic equilibrium control (red dashed line).

Conclusion and Perspectives

This paper aims to give a systematic review of the existing literature on machine learning methods for stochastic optimal control and games, with a special focus on the emerging field of deep learning. Despite the rapidly growing number of recent works, many questions remain to be investigated further. We hope this survey can trigger interest and attract more researchers to work on this topic. Besides the material already reviewed in this survey, we outline a few research directions below. First, most of the methods presented here lack satisfactory analysis on the theoretical side. The mathematical foundations of deep learning are attracting growing interest, and recent results could help analyze the methods described in this paper. The main motivation underlying the use of deep networks is their ability to cope with the curse of dimensionality. However, rigorously phrasing and proving such a statement has been done only in particular cases. Analyzing the generalization capability of neural networks is typically done by splitting the analysis into several types of errors, such as approximation, estimation, and optimization errors. Bounds on the approximation and estimation errors can be obtained based on the regularity of the function to be approximated, which can be difficult in the context of differential games. Furthermore, the bounding the optimization error is even more challenging since it involves not only the definition of the game but also the optimization algorithm. Due to these difficulties, estimating these errors remains an open question for most methods discussed in this survey.

From a practical viewpoint, an important question related to neural network-based methods is the choice of hyperparameters. The most obvious one is the architecture of the neural network. In many cases, a feedforward fully connected architecture provides good performances (e.g., for deep BSDE, DBDP, Sig-DFP). However, in other cases (e.g., DGM, RNN for problems with delay, as discussed in this survey), ad hoc architectures seem necessary to reach decent results. In any case, architectures undoubtedly play a crucial role in the performance of every deep learning method, and a careful design is, in general, what leads to the state of the art results. So far, most deep learning methods for differential games have focused on providing proof of concepts. Given these baselines, it is now a natural question to try more sophisticated architectures in order to achieve better numerical performance. Once the architecture is fixed, the hyperparameters of the optimization method need to be determined. For example, the initialization of the network parameters, the learning rate, and the mini-batch size are important factors ensuring fast convergence. Their role is crucial for training deep and sophisticated architectures. However, it is hard to find precise rules for choosing these hyperparameters a priori. A popular approach to identifying suitable ranges of values is to try several values and measure the empirical convergence speed on problems for which the solution is known, using either an analytical formula or another numerical method. The task is quite complex because the hyperparameters' influences are interdependent. For problems without benchmarks, finding good hyperparameters values is even more challenging. To the best of our knowledge, the literature does not yet provide a detailed understanding of how to choose hyperparameters and how to measure algorithms' performance without knowing benchmark solutions. We did not discuss this aspect in the present survey for brevity, but finding efficient heuristics is certainly an interesting direction.

Regarding specific problems related to MFGs, a direction that has received little attention thus far is numerical methods that can work even when there is a common noise affecting the whole population. The type of difficulties that arise numerically is connected to the difficulty of solving such MFGs from a theoretical viewpoint. We have exposed the Sig-DFP method to tackle MFGs with common noise, focusing on mean-field interactions through moments. Common noise appears in applications, for instance, in the form of aggregate shocks in macroeconomics. Hence it is worth developing further machine learning algorithms to deal with MFGs with common noise and general interactions. So far, we lack efficient ways to parameterize, represent, and discretize probability measures defined on a continuous-state space.

Another aspect related to concrete applications of the methods presented in this survey pertains to the resources needed to train deep neural networks. For model-based methods and even more for model-free reinforcement learning methods, sophisticated models typically need a vast number of training episodes, leading to two challenges: First, as the model complexity grows, the massive computational cost required to learn the solution becomes prohibitive; Second, for real-world applications, Monte Carlo simulations will be replaced by real data, but we generally have much fewer data points than the number of samples used by most deep learning methods described in this survey. It will thus be very interesting to design more sample-efficient methods (e.g., deep RL methods) and establish sharp estimates of their sample complexity.

Last but not least, to the best of our knowledge, the methods presented in this survey have been applied only to relatively simple models for the purpose of academic research. But a significant motivation for the development of machine learning methods is that they will allow us to solve efficiently more realistic optimal control and games. We hope that this survey can contribute to fostering interactions between theoretical research and applied research communities, and lead to concrete applications in real-world problems.

A List of Acronyms

Figure 2 :

 2 Figure 2: Panels (a) and (b) give three trajectories of X t , m t = E[X t |F W 0 t] (solid lines) and their approximations (dashed lines) using different (X 0 , W, W 0) from test data. Panel (c) shows the minimized cost computed using validation data over fictitious play iterations. Parameter choices are referred to [140, Section 5].

 b o and b c are neural network parameters of compatible sizes.

Figure 3 :Figure 4 :

 34 Figure 3: Left: Training curve of two models in the example of linear-quadratic problem. Right: The effect of lag time δ processed by the feedforward model in the example of linear-quadratic problem. The lag time δ in the actual system is 1.

Figure 6 :

 6 Figure 6: Price impact MFC example solved by direct method. Left: Control learnt (dots) and exact solution (lines). Right: associated empirical state distribution. Here, γ = 1.

Theorem 4 . 2 .

 42 ([107, Theorem 3.1]) For linear-quadratic games, under appropriate conditions, the family {α n } n∈N converges and forms an open-loop Nash equilibrium of the original problem (4.1)-(4.

Algorithm 3

 3 Deep Fictitious Play for Finding Open-loop Nash Equilibrium Require: N = # of players, N T = # of subintervals on [0, T], M = # of training paths, M = # of out-of-sample paths for final evaluation, α 0

Figure 7 :

 7 Figure 7: Comparisons of cost functions and optimal trajectories for N = 24 players in the linear quadratic systemic risk problem. Left: the maximum relative errors of the cost functions for 24 players; Right: for a sake of clarity, the comparison of optimal trajectories in only presented for the 1 st , 4 th , 7 th , 10 th , 13 th , 16 th , 19 th and 22 th players, where the solid lines are given by the closed-form solution and the stars are computed by deep fictitious play.

3 :

 3 for all i ∈ I do in parallel 4:

NSGD per stage = 10 NSGD per stage = 50 NSGD per stage = 100 NSGDNSGD per stage = 10 NSGD per stage = 50 NSGDFigure 10 :

 1050100105010 Figure10: The relative squared errors of u i (left) and ∇u i (right) along the training process of deep fictitious play for the inter-bank game. The relative squared errors of u i (0, X i,π 0) and {∇u i (t k , X i,π k)}

Definition 4 . 2 (

 42 MFG equilibrium). When considering the mean-field game problem for a given initial distribution µ 0 ∈ P 2 (R d), we call a Nash equilibrium a flow ν = (ν t) 0≤t≤T of probability measures in P 2 (R d) and a feedback control α : R d × [0, T] → R k satisfying the following two conditions 1. α minimizes J M F G (•; ν);

)) = 0, for t ∈ [0, T], x ∈ R d and µ ∈ P 2 (R d), and with the terminal condition: for every x ∈ R d and µ ∈ P 2 (R d), U(T, x, µ) = g(x, µ).

Figure 12 :

 12 Figure 12: Flowchart of one iteration in the Sig-DFP Algorithm. Input: idiosyncratic noise W , common noise W 0 , initial position X 0 and measure flow ν(k-1) from the last iteration. Output: measure flow ν(k) for the next iteration.

Theorem 4 . 6 (

 46 Convergence analysis). Let (α,ν) be the mean-field equilibrium in Definition 4.2, α (k) be the optimal control, and ν (k) be the measure flow of the optimized state process after the k th iteration of fictitious play, and ν(k) be the approximation by truncated signatures. Under [140, Assumption C.1] and sup t∈[0,T]

Figure 13 :

 13 Figure13: Panels (a) and (b) give three trajectories of X t and m t = exp E(log X t |F 0 t) (solid lines) and their approximation (dashed lines) using different (X 0 , W, W 0) from test data. Panel (c) shows the maximized utility computed using validation data over fictitious play iterations. Parameter choices are: δ ∼ U (2, 2.5), b ∼ U (0.25, 0.35), σ ∼ U (0.2, 0.4), θ, ξ ∼ U (0, 1), σ 0 ∼ U (0.2, 0.4), ∼ U (0.5, 1).

L 2 (

 2 with D and b defined in(4.26), and the HJB loss function isL (HJB) (µ, u) = C (HJB) ∂ t u + min α∈A H(•, •, ν, ∇ x u, Hess x u, α))g(•, µ(T)) L 2 (Q) ,with H defined by (4.24). Each component of the loss L in (4.34) encodes one of the two PDEs of the optimality system (4.23)-(4.25) with one term for the PDE residual and one term for the initial or terminal condition. The positive constants C (KFP) , C (KFP) 0 , C (HJB) , and C (HJB) T allows to tune the importance of each component relatively to the other components. Note that L(µ, u) = 0 if (µ, u) is a smooth enough solution to the PDE system (4.23)-(4.25).

Figure 14 :

 14 Figure 14: Trade crowding MFG example solved by DGM. Evolution of the distribution m: surface (left) and contour (right). The dashed red line corresponds to the mean obtained by the semi-explicit formula.

Figure 15 :

 15 Figure 15: Trade crowding MFG example solved by DGM. Optimal control α * (dashed line) and learnt control (full line) at three different time steps.

3 Figure 16 :

 316 Figure 16: Systemic risk MFG example solved by the algorithm described in this section. Sample trajectories: solution computed by deep solver (full lines, in cyan, blue, and green) and by analytical formula (dashed lines, in orange, red and purple).

 and the Hamiltonian H(x, m, h) = sup α∈A -L(x, m, h, α).

Figure 17 :

 17 Figure 17: MFG Cyber-security example, test case 1: Evolution of the distribution m m0 (left) and the value function u m0 and U(•, •, m m0 (•)) (right) for m 0 = (1/4, 1/4, 1/4, 1/4).

 a)∇π tn (a|x; θ) da]. Multiplying the first term by π tn (a|x; θ), dividing the second term by π tn (a|x; θ), replacing a by a sample α tn , and using E π [G tn |x, a] = Q π tn (x, a) produce the REINFORCE algorithm, θ ← θ -βG tn ∇ θ π tn (α tn |X tn ; θ) π tn (α tn |X tn ; θ) ,

Figure 20 :

 20 Figure 20: Cybersecurity MFC model solved with DDPG: Evolution of the population distribution for five initial distributions.

Figure 21 :

 21 Figure 21: MFG with analytical solution for the ergodic setting, solved with fictitious play and DDPG: stationary distribution and control

 1.1) with m t and α t in (1.2) and (1.3).

		0.7		X t	Xt	0.58 0.60				
	X t and Xt	0.4 0.5 0.6				0.50 0.53 0.55				
						0.48				
		0.3				0.45				
		0.0	0.2	0.4 time t 0.6	0.8	1.0	0.0	0.2	0.4 time t 0.6	0.8	1.0
				(a) Xt						

 . , M -1 do Sample a minibatch of N Batch samples S = (ξ i) i=1,...,N Batch where ξ i are i.i.d. drawn from ν Compute the gradient ∇J S,N Batch (θ m) Update θ m+1 = θ mβ m ∇J S,N Batch (θ m) end for Return θ M Algorithm 2 Adaptive Moments (ADAM) Input: Stepsize α. Exponential decay rates for the moment estimates β 1 , β 2 ∈ [0, 1). Initial parameter θ 0 . Small parameter for numerical stability .

Output: Approximation of θ * Initialize first moment vector M0 and second moment vector V0 for m = 0, 1, 2, . . . , M -1 do Sample a minibatch of N Batch samples S = ((ξ i) i=1,...,N Batch where x i are i.i.d. drawn from ν Compute the gradient g m = ∇J S (θ m) Update biased first moment estimate: Mm = β 1 Mm-1 + (1β 1)g m Update biased second moment estimate: Vm

 That is, for(3.15) which one feed the discretized state values (3.14) of length Nδ + 1, to obtain the best performance, one needs to get an good estimate δ of δ first; while for (3.16) one only need to provide the current state value X tn . Notice that in an LSTM all input information up to time t n is summarized by the n th cell, but if the optimal control depends only on the past up to δ, the forget gates are designed for dropping out the unneeded information. This dropout is characterized by NN's parameters, which are determined by supervised learning. Though the authors in

	.16)
	Remark 3.3. Although for both schemes (3.15) and (3.16), the input dimensions keep constant as k
	changes, using (3.15) requires prior knowledge of δ.

 Figure 5: Price impact MFC example solved by direct method. Left: Control learnt (dots) and exact solution (lines). Right: associated empirical state distribution. Here, γ = 0.2.

	control	8 6 4 2 0	1	2 t=0.000 t=0.100 t=0.200 t=0.300 t=0.900 t=0.800 t=0.700 t=0.600 t=0.500 t=0.400	3	4 x	5	6	7	density	0.0 0.2 0.4 0.6 0.8 1.0	1	2	3	x	4	5	6	7 t=0.000 t=0.100 t=0.200 t=0.300 t=0.400 t=0.500 t=0.600 t=0.700 t=0.800 t=0.900 t=1.000
						(a)									(b)			
	control	8 6 4 2 0 2 4	1	2 t=0.000 t=0.100 t=0.200 t=0.300 t=0.700 t=0.900 t=0.800 t=0.600 t=0.500 t=0.400	3	4 x	5	6	7	density	0.0 0.2 0.4 0.6 0.8 1.0	2	3	4	x	5	6		7 t=0.000 t=0.100 t=0.200 t=0.300 t=0.400 t=0.500 t=0.600 t=0.700 t=0.800 t=0.900 t=1.000
						(a)									(b)			

 without introducing superscript k to indicate the stage.

	Theorem 4.3. ([94, Theorem 5]) Under proper assumptions specified in [94], if α is a policy function on
	{t n } N T

n=0 × R N d , Lipschitz in x and Hölder continuous with t: |

 Figure11: A sample path for each player of the inter-bank game with N = 10. Top: the optimal state process X i t (solid lines) and its approximation Xi t (circles) provided by the optimized neural networks, under the same realized path of Brownian motion. Bottom: comparisons of the strategies α i t and αi

		2.0	X 1 t	X 2 t	X 3 t	X 4 t	X 5 t		X 6 t	X 7 t	X 8 t	X 9 t	X 10 t
			X1 t	X2 t	X3 t	X4 t	X5 t		X6 t	X7 t	X8 t	X9 t	X10 t
	t and Xt											
	X											
		1.00	α 1 t	α 2 t	α 3 t	α 4 t	α 5 t		α 6 t	α 7 t	α 8 t	α 9 t	α 10 t
		0.75	α1 t	α2 t	α3 t	α4 t	α5 t		α6 t	α7 t	α8 t	α9 t	α10 t
		0.50										
	αt											
	t and	0.25										
	α	0.00										
	-0.25										
	-0.50										
		0.0	0.2	0.4	0.6	0.8	1.0	0.0	0.2	0.4	0.6	0.8	1.0
					Time t					Time t		

t (dashed lines).

Though at the N -player level, it may be equivalent to choose N correlated Brownian motions, the current formulation is better when we pass the limit N → ∞.

Although in the literature of math finance, one usually models b i and σ i to only depend on player i's own action, it is common in literature of economics that player i's state is also influenced by others' actions, e.g., α i t is a priced set by companies, and X i t is the production quantity. To be general, we include this feature in our model, yielding (4.1). Note that by choosing b i and σ i properly, one can reduce it to the simpler case where each player controls her private state through α i .

Due to the nature of heterogeneous extended MFG, both α(•; θ) and c(•; θ) take (ζ, t, Xt, mt, Γt) as inputs. Hidden neurons in each layer are[START_REF] Elie | On the convergence of model free learning in mean field games[END_REF][START_REF] Elie | On the convergence of model free learning in mean field games[END_REF][START_REF] Elie | On the convergence of model free learning in mean field games[END_REF].

The terminology RL is from the perspective of artificial intelligence/computer science. In the operation research community, people call this approximate dynamic programming (ADP)[START_REF] Powell | Approximate Dynamic Programming: Solving the curses of dimensionality[END_REF].

Acknowledgement

R.H. was partially supported by the NSF grant DMS-1953035, the Faculty Career Development Award, the Research Assistance Program Award, the Early Career Faculty Acceleration funding, and the Regents' Junior Faculty Fellowship at University of California, Santa Barbara. Some parts of the review paper have been used for teaching special topic graduate classes at the University of California, Santa Barbara, and R.H. appreciates all the feedback from the audience of these classes. R.H. and M.L. are grateful to all their co-authors of the papers mentioned in this review.

Remark 4.10. We have discussed here how to solve the Master equation arising in finite-state MFGs. This yields an approach to solving the continuous space Master equation described in Section 4.2.1.4 by first introducing a finite-state model that approximates the continuous model and then using the DGM method. Other methods could be investigated, such as the one proposed in [START_REF] Germain | DeepSets and their derivative networks for solving symmetric PDEss[END_REF]: a combination of dynamic programming, Monte Carlo simulations and symmetric neural networks is used to solve the Bellman equation arising in a continuous space MFC problem.

Numerical illustration: A Cybersecurity model.

We illustrate the above method on a model on cybersecurity introduced in [START_REF] Kolokoltsov | Mean-field-game model for botnet defense in cyber-security[END_REF] and revisited in [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I[END_REF]Section 7.2.3]. In this model, each player owns a computer which can be either defended (D) or undefended (U), and either infected (I) or susceptible (S) of infection. Hence the set E has four elements corresponding to the four possible combinations: E = {DI, DS, U I, U S}. The action set is A = {0, 1}, where 0 is interpreted as the fact that the player is satisfied with the current level of protection (D or U) of its computer, whereas 1 means that she wants to change this level of protection (i.e., she wants to go from D to U or vice versa). In the latter case, the update occurs at a (fixed) rate ρ > 0. At each of the four states, all the computers are indistinguishable. When infected, each computer may recover at rate q D rec or q U rec depending on whether it is defended or not. On the other hand, a computer may be infected directly by a hacker, at rate v H q D inf (resp. v H q U inf) if it is defended (resp. undefended), or it may be infected by undefended infected computers, at rate β U U µ({U I}) (resp. β U D µ({U I})) if it is undefended (resp. defended), or by defended infected computers, at rate β DU µ({DI}) (resp. β DD µ({DI})) if it is undefended (resp. defended). In short, the matrix of transition rates is given by, for m ∈ P(E), a ∈ A,

where

, and all the instances of . . . should be replaced by the negative of the sum of the entries of the row where . . . appears on the diagonal. At each time, the player pays a protection cost k D > 0 if its computer is defended, and a penalty k I > 0 if it is infected. There is no terminal cost, i.e., g ≡ 0, and the instantaneous cost at time t is

which depends only on the representative player's state. The cost is independent of the population's distribution and the mean-field interactions are only in the dynamics. We apply the DGM method described above to the master equation (4.38) in this cyber-security example. We obtain a neural network U θ which is an approximation of U. For the sake of comparison, we (separately) solve the forward-backward system (4.37) for various initial distributions m 0 and obtain solutions (u m0 , m m0). We then compare U θ (t, x, m m0 (t, •)) and u m0 (t, x), which gives two curves for each of the four x ∈ E. According to the relation (4.39), we know that these two curves should coincide. This is indeed verified in our numerical experiments; see Figures 171819where we consider three test cases corresponding to three different initial conditions. Here we used the following values for the parameters

In the implementation, we use a feedforward fully connected neural network with sigmoid activation function. For problems in higher dimension, other architectures are sometimes more suitable.

Markov decision process (MDP)

We shall use the notations consistent with the learning problem (5.3)- (5.4) in the Markov decision process (MDP), i.e., MDP is a tuple (X , A, p, f, g, N T), where • X is the set of states called the state space;

• A is the set of actions called the action space;

• p(x |x, a, t n) = P(X tn+1 = x |X tn = x, α tn = a) is the transition probability to state x if currently at at state x and take action a at time t n ;

• f (t n , x, a) is the immediate cost at time t n at state x due to action a;

• g(x) is the terminal cost at the final time N T ;

• N T is the finite final horizon.

We refer to Remark 5.1 for standard notations in the reinforcement learning community.

In model-free RL, the agent uses multiple episodes to learn the optimal α that optimize (5.3) with blackbox simulators. In one episode of learning, the agent-environment interaction is: Starting with X 0 ∈ X , the agent choose α 0 ∈ A and then as a consequence of her action, the agent pays a cost f (0, X 0 , α 0)∆t and finds herself in a new state X t1 . Keep doing so will result in a sequence of trajectory like

(5.5)

The transition probability, if not stationary, is denoted by p(x |x, a, t),

and satsifies

depending on whether the state space X is countable or not. In the sequel, we will only use the integral notation since the state-action space in (5.1)-(5.2) is continuous.

Under the Euler scheme (5.3), given the state-action pair (Xtn , α tn) = (x, a) at time t n , X tn+1 follows a normal distribution N (x + b(t n , x, a)∆t, σ 2 (t n , x, a)∆t).

Remark 5.1. In the RL literature, the time indices used will be 0, 1, 2, . . . , T , and agents are mostly dealt with maximizing the expected signal rewards R 1 , R 2 , . . . , R T . The outcome of rewards can also be random, in contrast to the deterministic mapping x → f (t, x, a) in (5.5). The problem are usually stationary or T = ∞, thus the time variable in the given state-action pair (X t , α t) will not make a difference. Therefore, the transition probability is p(x , r|x, a

In RL, there are four main components: policy, reward signal, value function, and optionally, a model of the environment. The MDP provides mathematical tractability of the agent-environment interface.

A policy π t (a|x) : X → P(A) is a mapping from the state space to the probability space of the action space, describing the probability of choosing action a at state X t = x. This can be either deterministic or random.

The value function under a specific policy π, denoted by V π t (x), is the expected cost when starting from x at time t and following π thereafter, i.e.,

When using neural networks to approximate Q α(•;θ) and the deterministic policy α tn (x; θ), this leads to the Deep DPG (DDPG) algorithm [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF]. It shares the same idea of DPG, and for the sake of robustness it borrows the "replay-buffer" idea from Deep Q Network (DQN) [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. The network parameters are learnt in mini-batches rather than online by using a replay buffer, so that correlation between samples are kept minimal. Another set of networks Q (x, a; θ) and α tn (x; θ) are copied from Q(x, a; θ) and α tn (x; θ) for calculating the target value in order to improve the stability. At each step, an action α tn is sampled from α tn (X tn ; θ) + N tn where N t is a noise process for exploration, then the cost f (t n , X tn , α tn)∆t and the new state X tn+1 are observed and saved to the buffer. A mini-batch of N transitions (X tn , α tn , f, X tn+1) are sampled from the buffer, acting as supervise learning data for the critic Q(x, a; θ). The loss to be minimized is the mean-square error of Q tn (X tn , α tn ; θ) and f (t n , X tn , α tn)∆t + Q tn+1 (X tn+1 , α tn+1 (X tn+1 ; θ); θ). The actor network and both copies are updated via

where the superscript i indicate the i th sample from the mini-batch, and τ 1 are used to slowly track the learnt counterparts θ and θ .

Mean-field MDP and RL for mean-field control problems

We start by introducing the reinforcement learning (RL) settings for mean-field control (MFC) problems. MFC introduced in Section 3.2.4 can be viewed as an optimal control problem in which a "state" is a population configuration, and an "action" is a function providing a control for every individual state. In discrete time, this yields an MDP of the form (P(X), F A , p, f , ḡ, N T), where

• The state space is the set P(X) of probability measures on X ;

• The action space F A is a suitable subset of A X , the set of functions from X to A;

• The transition kernel is given by p : {t 0 , t 1 , . . . , T } × P(X) × F A → P(P(X)), p(•|t, µ, ā) = δ p(•|t,x,µ,ā(x))µ(x)dx , meaning that with probability one, the new mean field state is given by one transition of the population distribution. Here µ is a population distribution, ā is an action at the population-level, and p(•|t, µ, ā) is the next population distribution;

• The running and terminal cost functions are given by f : {t 0 , t 1 , . . . , T } × P(X

Such MDPs have been referred to as mean field MDPs (MFMDP for short) in the literature [START_REF] Gast | Mean field for Markov decision processes: from discrete to continuous optimization[END_REF][START_REF] Carmona | Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning[END_REF][START_REF] Gu | Dynamic programming principles for mean-field controls with learning[END_REF][START_REF] Gu | Mean-field controls with Q-learning for cooperative MARL: convergence and complexity analysis[END_REF][START_REF] Motte | Mean-field Markov decision processes with common noise and open-loop controls[END_REF]. These MDPs can be rigorously studied using the tools developed for instance by Bertsekas and Shreve in [START_REF] Bertsekas | Stochastic optimal control: the discrete-time case[END_REF]. Since this problem fits in the framework of MDPs, one can directly apply RL methods in principle. For instance, the Q-function of the MDP naturally satisfies a dynamic programming principle; see [START_REF] Carmona | Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning[END_REF][START_REF] Gu | Dynamic programming principles for mean-field controls with learning[END_REF][START_REF] Gu | Mean-field controls with Q-learning for cooperative MARL: convergence and complexity analysis[END_REF][START_REF] Motte | Mean-field Markov decision processes with common noise and open-loop controls[END_REF]. Note that, if there is no common noise (as in the setting presented above), the evolution of the population distribution is purely deterministic.

To implement RL methods for MFC, the main difficulties are related to handling the distribution and the class of controls. In particular, we note that • If X is finite, then the state of the MDP, namely µ, is a finite dimensional vector; if A is also finite, then F A can simply be taken as A X , which is a finite set as well;

• If X is not finite, then µ is infinite-dimensional and likewise for the elements of A X .

One simple approach is to discretize P(X) and A X , then use standard RL techniques for finite state, finite action MDPs, such as the ones described in Section 5.1.1. For instance tabular Q-learning has been used e.g. in [START_REF] Carmona | Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning[END_REF][START_REF] Gu | Mean-field controls with Q-learning for cooperative MARL: convergence and complexity analysis[END_REF] in the first case above by identifying P(X) with the simplex ∆ X in dimension |X | and by approximating the latter with an -net. However, this approach does not scale well when the number of states is large or when X is continuous. In this case, one can use RL methods for continuous state space, such as deep RL methods, see for instance [START_REF] Carmona | Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning[END_REF].

For the sake of illustration, we provide an example in a setting where X is finite. Let d = |X | be the number of states. As mentioned above, we view P(X) as the d-dimensional simplex ∆ X . In this case, the MFMDP is an MDP over a finite-dimensional continuous state space. To avoid discretizing the space, deep RL methods rely on neural networks to efficiently approximate the value function and/or the policy.

Numerical illustration: A Cybersecurity model revisited.

We consider a model introduced in [START_REF] Kolokoltsov | Mean-field-game model for botnet defense in cyber-security[END_REF] and revisited in [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I[END_REF]Section 7.2.3]. It has a finite number of states and was originally presented as an MFG but we will here consider the corresponding MFC problem. We start with the continuous time formulation, as in the original presentation of the problem. In this model, each agent owns a computer that can be either defended (D) or undefended (U), and either infected (I) or susceptible (S) of infection. Hence the set X has four elements corresponding to the four possible combinations: X = {DI, DS, U I, U S}. The action set is A = {0, 1}, where 0 is interpreted as the fact that the agent is satisfied with the current level of protection (D or U) of its computer, whereas 1 means that she wants to change this level of protection (i.e., she wants to go from D to U or vice versa). In the latter case, the update occurs at a (fixed) rate ρ > 0. At each of the four states, all the computers are indistinguishable. When infected, each computer may recover at rate q D rec or q U rec depending on whether it is defended or not. On the other hand, a computer may be infected directly by a hacker, at rate v H q D inf (resp. v H q U inf) if it is defended (resp. undefended), or it may be infected by undefended infected computers, at rate β U U µ({U I}) (resp. β U D µ({U I})) if it is undefended (resp. defended), or by defended infected computers, at rate β DU µ({DI}) (resp. β DD µ({DI})) if it is undefended (resp. defended). In short, the matrix of transition rates is given by, for m ∈ P(X), a ∈ A, where

and all the instances of . . . should be replaced by the negative of the sum of the entries of the row in which . . . appears on the diagonal. At each time, the agent pays a protection cost k D > 0 if its computer is defended, and a penalty k I > 0 if it is infected. There is no terminal cost (g ≡ 0) and, given a mean-field flow µ and a control α, the instantaneous cost at time t is hence

Note that in this example, the cost is independent of the action and the the population's distribution. The mean-field interactions are only in the dynamics.

We now consider a discrete version of the problem on a time mesh {t n = n∆t, n = 0, 1, 2, . . . , N T } with ∆t = T /N T > 0. The discrete time social cost is defined as

with a given initial condition µ 0 , and f :

Here f and p are the finite space analogs of the functions introduced above in the continuous space setting.

The problem thus fits in the framework of (continuous space) MDP by considering the distribution m as the state (which is consistent with the point of view of the central planner).

In [START_REF] Laurière | On numerical methods for mean field games and mean field type control[END_REF], the solution is learned using tabular Q-learning after discretizing the simplex: replacing P(X) by an -net with a finite number of distributions allows one to replace the MFMDP by a finite-state MFMDP on which tabular RL methods can be applied. The solution can also be learned without discretizing the simplex P(S), by directly approximating the value function on a continuous space with a neural network, which can be trained using deep RL algorithms. Following [START_REF] Carmona | Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning[END_REF], we focus on deterministic controls and use the DDPG algorithm [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF], which has been reviewed in Section 5.1.1.2. Since this method allows the control to take continuous values, we replace A = {0, 1} by A = [0, 1] (without changing the transition rate matrix), which amounts to letting the player choose the intensity with which she seeks to change her computer's level of protection.

We train the neural networks by picking at each episode a random initial distribution µ 0 . Figure 20 displays the evolution of the population when using the learned control starting from five initial distributions of the testing set and one initial distribution of the training set. The testing set of initial distributions is: {(0.25, 0.25, 0.25, 0.25), (1, 0, 0, 0), (0, 0, 0, 1), (0.3, 0.1, 0.3, 0.1), (0.5, 0.2, 0.2, 0.1)}. We see that the distribution always evolves towards a configuration in which there is no defended agents, and the proportion of undefended infected and undefended susceptible are roughly 0.43 and 0.57, respectively.

RL for stochastic differential games

Multi-agent RL (MARL)

Multi-agent reinforcement learning (MARL) studies RL methods for multiple learners. The main difficulty is that, when several agents learn while interacting, from the point of view of each agent, the environment is non-stationary. Another issue is the question of scalability, which arise when the number of learners is very large. However, for a small number of agents, MARL has led to recent breakthrough results; see e.g. [START_REF] Shalev-Shwartz | Safe, multi-agent, reinforcement learning for autonomous driving[END_REF][START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF][START_REF] Vinyals | Grandmaster level in StarCraft II using multi-agent reinforcement learning[END_REF].

Several viewpoints can be considered. Relying on dynamical systems theory, one approach is to consider that each agent uses a learning algorithm, and to study the resulting behavior of the group of agents viewed as a system evolving in discrete or continuous time. Another approach, based on game theory and closer to the topics discussed in Section 4, is to look for notions of solutions such as Nash equilibria and to design algorithms that let the agents learn such solutions. A typical example is Nash Q-learning, in which every player runs their own version of Q-learning simultaneously with the other players. Each player tries to compute its optimal Q-function, but the optimal policy of player i depends on the policies implemented by the other players. To be specific, consider an N -player game, as in Section 4.1 but in discrete time. Note that the problem faced by player i is not an MDP with state X i because the cost and dynamics of player i depend on the other players. Assume the players use a strategy profile π = (π 1 , . . . , π N). Then the Q-function of player i is: for x = (x 1 , . . . , x N) and a = (a 1 , . . . , a N), a collection of all players' strategy profiles α -i := [α 1 , . . . , α i-1 , α i+1 , . . . , α N] the strategy profiles excluding player i's W = [W 0 , W 1 , . . . , W N] (N + 1)-vector of m-dimensional independent Brownian motions F = {F t , 0 ≤ t ≤ T } the augmented filtration generated by W J i (α) cost function for player i k stage index in deep fictitious play m mean process (or conditional mean if there is common noise) µ state distribution process µ N empirical state distribution process ν state-action distribution process ν N empirical state-action distribution process

B List of Frequently Used Notations