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Measure (ω, c)-pseudo almost periodic functions and

Lasota-Wazewska model with ergodic and unbounded oscillating

oxygen demand.
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May 4, 2022

Abstract. The primary aim of this work is to introduce a new class of functions called µ-
(ω, c)-pseudo almost periodic functions. Using the measure theory, we generalize in a natural
way some recent works and study some properties of those µ-(ω, c)-pseudo almost periodic
functions including two new composition results which play a crucial role for the existence of
some µ-(ω, c)-pseudo almost periodic solutions of certain semilinear differential equations and
partial differential equations. We also investigate the existence and uniqueness of the µ-(ω, c)-
pseudo almost periodic solutions for some models of Lasota-Wazewska equation with measure
(ω, c)-pseudo almost periodic coefficient and mixed delays.
Key words: Periodic oscillations, (ω, c)-periodic, Unboundedness, Lasota-Wazewska model,
Composition Theorem
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1 Introduction

Most of the natural phenomena we consider as periodic are in fact almost periodic, in other
words, they are periodic up to epsilon. The concept of almost periodic functions was introduced
in the literature in the mid-1920s by the Danish mathematician Harald Bohr [4]. It was later
generalized in various directions by many may researchers [1–3, 7, 8, 10, 12, 14, 18, 24, 25]. As
we all know, many phenomena in nature have oscillatory character and their mathematical
models have led to the introduction of certain classes of functions to describe them. Such a
class form pseudo almost periodic functions which is a natural generalization of the concept of
almost periodicity (in Bohr’s sense). In this work we introduce the notion of measure (ω, c)-
pseudo almost periodic functions (or µ-(ω, c)-pseudo almost periodic functions) with values in
a complex Banach space and enlighten their applications throughout the study of a biological
model. This work generalizes the concept of µ-Pseudo almost periodic functions introduced by
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Blot et al. [3] which already generalizes the class of weighted pseudo almost periodic functions
of Diagana [8,9]. Here, we investigate many interesting properties of this new class of functions
and present new and more general results based on measure theory that extend the existing
ones.

The concept of (ω, c)-periodicity was introduced by Alvarez et al. [1] motivated by the
qualitative properties of solutions to the Mathieu linear second-order differential equation

y′′(t) + [a− 2q cos(2t)] y(t) = 0,

arising in seasonally forced population dynamics. Further on, Alvarez et al. proposed a new
concept of (ω, c)-pseudo periodicity and proved the existence of positive (ω, c)-pseudo periodic
solutions to the Lasota-Wazewska equation with (ω, c)-pseudo periodic coefficients

y′(t) = −δy(t) + h(t)e−a(t)y(t−τ), t ≥ 0.

This equation describes the survival of red blood cells in the blood of an animal. The works of
Khalladi et al. [15] have shown that (ω, c)-pseudo periodic functions can be also solutions time
varying impulsive differential equations and linear delayed equations.

First, pseudo-almost periodicity was introduced in the literature in the early nineties by
Zhang [23–25], as a natural generalization of the classical almost periodicity in the sense of
Bohr. Then, Diagana [8, 9], introduced the concept of weighted pseudo almost periodicity
which generalizes the latter and the author gave some properties of the space of weighted
pseudo almost periodic functions such as the completeness and a composition theorem. The
concept of weighted pseudo almost periodic functions became an interesting field of dynamical
systems that attracted many authors. A few years later, Blot et al. [3] came up with a new
concept of weighted pseudo almost periodic functions under the light of measure theory. Giving
a positive measure µ on R, they defined the concept of µ-pseudo almost periodic functions as
follows : it is said that a function f is µ pseudo almost periodic if

f = g + φ

where g is almost periodic and φ is µ-ergodic in the sense that

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

∥φ(t)∥dµ(t) = 0

where µ([−r, r]) is the measure of the set [−r, r]. Here, the classical theory of weighted pseudo
almost periodicity became a particular case of Blot et al. approach. Indeed, one can observe
that a weighted pseudo almost periodic function of weight ρ is µ-pseudo almost periodic where
the measure µ is absolutely continuous with respect to the Lebesgue measure, and its Radon-
Nikodym derivative is ρ :

dµ(t) = ρ(t)dt.

In their work, Blot et al. have investigated many important results on the theory of µ-pseudo
almost periodicity ; they studied the completeness and provided a composition theorem on the
functional space of µ-pseudo almost periodic functions. They also gave some applications for
evolution equations which inclued reaction-diffusion systems and partial differential equations.
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In this work, we introduce a new class of µ-(ω, c)-ergodic components and we investigate
many important results on the new theory of µ-(ω, c)-pseudo almost periodic functions. We
study the completeness and the composition theorem on the functional space of µ-(ω, c)-pseudo
almost periodic functions.

The organization of this work is as follows : in the next section, we recall the basic definitions
and properties of µ-pseudo almost periodic functions. In Section 3, we give the new concept of µ-
(ω, c)-pseudo almost periodicity and study the convolution product on the spaces of c-bounded
functions, µ-(ω, c)-ergodic functions and µ-(ω, c)-pseudo almost periodic functions. In Section 4,
we introduce the concept of (ω, c)-type compactness and then we study a composition theorem
which plays a crucial role to study the existence of µ-(ω, c)-pseudo almost periodic solution
for a perturbed semilinear system. In Section 5, we propose a more realistic Lasota-Wazewska
model than the existing ones due to (ω, c)-periodicity and then we study the existence and
uniqueness of µ-(ω, c)-pseudo almost periodic solutions for the model, using the completeness
and composition results.

2 Terminology and definitions

In this section we review a few notations, definitions and lemmas which will be utilized throughout
this paper.

Let (X, ∥ · ∥), (Y, ∥ · ∥) be complex Banach spaces. Throughout this work, C(R,X) and
BC(R,X) (respectively C(R×Y,X) and BC(R×Y,X)) denotes the Banach spaces consisting of
all continuous functions and all bounded continuous functions from R to X (respectively from
R× Y to X) equipped with the supremum norm

∥f∥∞ = sup
t∈R

∥f∥

Let’s first recall the notion of (ω, c)-periodicity.

Definition 2.1 ( [1]). Let ω > 0 and c ∈ C \ {0}. A function f ∈ C(R,X) is said to be
(ω, c)-periodic if

f(t+ ω) = cf(t), for each t ∈ R.

In this case, ω is called a c-period of the function f .

We denote by P(ω,c)(R,X) the vector space of all (ω, c)-periodic functions from R to X. One
can note that the space P(ω,c)(R,X) contains the spaces of periodic, antiperiodic and Bloch

periodic functions among others (respectively taking c = 1, c = −1 and c = eikt) . (see [17] for
more details)

Proposition 2.2 ( [1]). Let f ∈ C(R,X). Then, f ∈ P(ω,c)(R,X) if and only if

f(t) = c
t
ω u(t), u(t) ∈ Pω,1(R,X).

Using the principal branch of the complex Logarithm, c
t
ω is defined as

c
t
ω := exp(

t

ω
Log(c)) = c∧(t)
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and we will use the notation |c|∧(t) := |c∧(t)| = |c|
t
ω .

Now we recall some properties of almost periodic and (ω, c)-pseudo almost periodic functions.

Definition 2.3. A function f ∈ C(R,X) is called (Bohr) almost periodic if for each ε > 0 there
exists l > 0, such that for all α ∈ R, there exists τ ∈ [α, α+ l] with

sup
t∈R

∥f(t+ τ)− f(t)∥ < ε. (1)

The vector space consisting of all (Bohr) almost periodic functions is denoted by AP(X).

It is well known that a continuous function f : R → X is almost periodic if and only if the set

{fτ : τ ∈ R}

is relatively compact in BC(R,X), where the function fτ is defined by

fτ (t) = f(t+ τ), t ∈ R.

Such number τ in (1) is called ε-translation number of f(t) and we denote by Tε(f) the set of
all ε-translation numbers of f . This set has the following property :
Given any f ∈ AP(X),

1. if τ ∈ Tε(f), then −τ ∈ Tε(f),

This concept has been extended by Khalladi et al. [13] as follows :

Definition 2.4 ( [13]). A function f ∈ C(R,X) is called (ω, c)-almost periodic if and only if
the function

f(ω,c)(t) := c−
t
w f(t), t ∈ R

belongs to AP(X).
The vector space consisting of all (ω, c)-almost periodic functions is denoted by APω,c(X).

Unless specified otherwise, in the remainder of the paper, we will always assume that
c ∈ C \ {0} and ω ∈ R⋆

+ ∩ Tε(f). Furthermore, the principal branches are always used for
taking powers of complex numbers.

In the following, we will keep the notation : f(ω,c)(t) := c−
t
w f(t).

Remark 2.5. When c = 1, APω,c(X) = AP(X).

Remark 2.6. One can note that in our paper, contrary to the paper [13], ω is not only
positive but it belongs also to the set of all ε-translation number of f . This condition yields
APω,1(X) := APω(X) = AP(X).

In order to conserve the periodic structure of (ω, c)-periodic type functions, we need to use
an (ω, c)-norm which can be defined as

∥f∥(ω,c) := sup
t∈R

∥c∧(−t)f(t)∥
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(ω, c)-norms was introduced in the literature by Alvarez et al. taking the supremum norm not on
the whole R but on the principal c-period interval [0, ω] of the (ω, c)-periodic considered function
in order to handle the (ω, c)-periodicity properties of f (see in [1, 2, 17] for more details). We
have the following completeness result.

Remark 2.7. We say that f is c-bounded when ∥f∥(ω,c) <∞.

Proposition 2.8 ( [15]). (APω,c(X), ∥ · ∥(ω,c)) is a Banach space.

Proposition 2.9 ( [16]). APω,c(X) is translation invariant and closed under the multiplication
with complex scalars.

Now we recall the concept of µ-pseudo almost periodic functions introduced by Blot et al. [3].

We denote by B the Lebesgue σ-field of R and by M teh set of all positive measures µ on B
satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R (a ≤ b).

Definition 2.10 ( [3]). Let µ ∈ M. A function f ∈ BC(R,X) is said to be µ-ergodic if

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

∥f(t)∥dµ(t) = 0

We denote the space of all such functions by E(R,X, µ).

Definition 2.11 ( [3]). Let µ ∈ M. A function f ∈ C(R,X) is said to be µ-pseudo almost
periodic if f is written in the form

f = g + φ

where g ∈ AP(X) and φ ∈ E(R,X, µ).
We denote the space of all such functions by PAP(R,X, µ).

Proposition 2.12 ( [3]). Let µ ∈ M. Then (E(R,X, µ), ∥ · ∥∞) is a Banach space.

We end this section with the following result.

Lemma 2.13. If f, g ∈ PAP(R,C, µ), then fg ∈ PAP(R,C, µ).

Proof. Since f, g ∈ PAP(R,C, µ) then they have following decompositions f = f1 + f2 and
g = g1 + g2 where f1, g1 ∈ AP(C) and f2, g2 ∈ E(R,C, µ). Then we have

fg = f1g1 + f1g2 + g1f2 + f2g2

First we show that the product f1g1 ∈ AP(C). If we take f1 = g1 we have

∥(f1)2(t+ τ)− (f1)
2(t)∥ = ∥(f1)(t+ τ) + (f1)(t)∥ × ∥(f1)(t+ τ)− (f1)(t)∥

It can be easily seen that since f1 is bounded, then there exists M ∈ R+ such that

∥f1∥ ≤M
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Thus, it comes the following

∥(f1)2(t+ τ)− (f1)
2(t)∥ ≤ 2Mε ≤ ε′

Then (f1)
2 ∈ AP(C). Now, one can note that f1g1 = 1

4

(
(f1 + g1)

2 − (f1 − g1)
2

)
. Since

(f1 + g1)
2 ∈ AP(C) and (f1 − g1)

2 ∈ AP(C), then f1g1 ∈ AP(C).
Now, for (f1g2 + g1f2 + f2g2) one has that :

1

µ([−r, r])

∫ r

−r

(∣∣∣∣((f1)(g2) + (g1)(f2) + (f2)(g2))(t)

∣∣∣∣)dµ(t)
≤ 1

µ([−r, r])

∫ r

−r

(
∥f1∥∞|(g2)(t)|+ ∥g1∥∞|(f2)(t)|+ ∥f2∥∞|(g2)(t)|

)
dµ(t)

And consequently, since f2, g2 ∈ E(R,C, µ) we have

lim
r→+∞

1

µ([−r, r])

∫ r

−r

(∣∣∣∣((f1)(g2) + (g1)(f2) + (f2)(g2))(t)

∣∣∣∣)dµ(t) = 0

The proof is complete.

3 Measure (ω, c)-pseudo almost periodic functions

In this section, we introduce the new concepts of µ-(ω, c)-ergodic functions and the µ-(ω, c)-
pseudo almost periodic functions. The notion of µ-(ω, c)-pseudo almost periodic functions is
a generalization of µ-pseudo almost periodic functions introduced by Blot et al. [3] which now
becomes the particular case c = 1 of our work. It is also a generalization of the concept of
weighted pseudo almost periodicity given by Diagana [8,9] and consequently this work generalizes
that of Zhang [23–25] on the classical pseudo almost periodicity.

Here we introduce the space BC(R,X, c) (resp. BC(R × Y,X, c)), where BC(R,X, c) (resp.
BC(R×Y,X, c)) denotes the Banach space consisting of all c-bounded continuous functions from
R to X (resp. from R× Y to X) equipped with the (ω, c)-norm ∥ · ∥(ω,c) defined in Section 2.

Remark 3.1. One can note that in the case c = 1,

(BC(R,X, c), ∥ · ∥(ω,c)) = (BC(R,X), ∥ · ∥∞),

(BC(R× Y,X, c), ∥ · ∥(ω,c)) = (BC(R× Y,X), ∥ · ∥∞).

Moreover we have the following results.

Theorem 3.2. Let f ∈ BC(R,X, c). Then f ∈ BC(R,X) is and only if c = 1.

We begin this part with the following helpful convolution theorem for c-bounded functions.

Let L(X) be the space of bounded linear maps from the complex Banach space X into itself.
We denote L1(R,L(X)) the Lebesgue space with respect to the Lebesgue measure on R.
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Remark 3.3. One can note that if h ∈ L1(R,L(X)), then ϕ(·) := c∧(·)h(·) ̸∈ L1(R,L(X)) but
ϕ̃ := (c∧(−·)ϕ(·)) ∈ L1(R,L(X)).

Theorem 3.4. Let f ∈ BC(R,X, c) and ϕ̃ := (c∧(−·)ϕ(·)) ∈ L1(R,L(X)), then the convolution
product of f ⋆ ϕ defined by

(f ⋆ ϕ)(t) =

∫ +∞

−∞
ϕ(s)f(t− s)ds, for t ∈ R.

=

∫ +∞

−∞
c∧(s)ϕ̃(s)f(t− s)ds, for t ∈ R.

is c-bounded.

Proof. Let f ∈ BC(R,X, c). In order to state that (f ⋆ ϕ) ∈ BC(R,X, c), we consider the
function ϱn : R → X (n ∈ N,n ≥ 1) defined by

ϱn(t) =

∫ n

−n
ϕ(s)f(t− s)ds.

Observing that

c∧(−t)ϱn(t) =
∫ n

−n
c∧(−s)ϕ(s)c∧(−t+ s)f(t− s)ds.

it is clear that ϱn is c-bounded on R. We deduce that ϱn(t) is continuous by using the uniform
continuity of f on all compact subsets of R. Consequently, ϱn(t) ∈ BC(R,X, c), which means
that c∧(−t)ϱn(t) ∈ BC(R,X), and from the following inequality :∥∥∥∥ c∧(−t)((f ⋆ ϕ)(t)− ϱn(t)

)∥∥∥∥ ≤ ∥f∥(ω,c)
(∫ −n

−∞
∥c∧(−s)ϕ(s)∥ds+

∫ +∞

n
∥c∧(−s)ϕ(s)∥ds

)
,

we deduce that lim
n→+∞

c∧(−t)ϱn(t) = c∧(−t)(f ⋆ ϕ)(t) uniformly on R.
Therefore f ⋆ ϕ ∈ BC(R,X, c).

3.1 On µ-(ω, c)-ergodicity.

First, we introduce the new concept of µ-(ω, c)-ergodic functions.

Definition 3.5. Let µ ∈ M. A function f ∈ BC(R,X, c) is said to be µ-(ω, c)-ergodic if

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t)∥dµ(t) = 0

We denote the space of all such functions by E(ω,c)(R,X, µ).

We give a completeness result and a characterization of µ-(ω, c)-ergodic functions.

Proposition 3.6. Let µ ∈ M. Then (E(ω,c)(R,X, µ), ∥ · ∥(ω,c)) is a Banach space.
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Proof. It is clear that E(ω,c)(R,X, µ) is a vector subspace of BC(R,X, c). We show that E(ω,c)(R,X, µ)
is closed in BC(R,X, c). Let (fn) ⊂ E(ω,c)(R,X, µ) be a Cauchy sequence converging to f
uniformly in R. From µ(R) = +∞, it follows that µ([−r, r]) > 0 for r sufficiently large. We
have that

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t)∥dµ(t) ≤ ∥f − fn∥(ω,c) +
1

µ([−r, r])

∫
[−r,r]

∥(fn)(ω,c)(t)∥dµ(t)

then

lim sup
r→∞

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t)∥dµ(t) ≤ ∥f − fn∥(ω,c), for all n ∈ N.

Since lim
n→+∞

∥f − fn∥(ω,c) = 0, we deduce that

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t)∥dµ(t) = 0

Theorem 3.7. Let µ ∈ M and I be a bounded interval (eventually I = ∅).
Let f ∈ BC(R,X, c), then following assertions are equivalent :

1. f ∈ E(ω,c)(R,X, µ),

2. lim
r→∞

1

µ([−r, r] \ I)

∫
[−r,r]\I

∥f(ω,c)(t)∥dµ(t) = 0,

3. For any ε > 0,
µ(
{
t ∈ [−r, r] \ I : ∥f(ω,c)(t)∥ > ε

}
)

µ([−r, r] \ I)
= 0.

Proof. (1 ⇔ 2) Let Γ := µ(I) and Λ :=

∫
I
∥f(ω,c)∥dµ(t) then Γ,Λ ∈ R since I is bounded and

f is c-bounded and continuous. For r > 0 such that I ⊂ [−r, r] and µ([−r, r] \ I) > 0, we have

1

µ([−r, r] \ I)

∫
[−r,r]\I

∥f(ω,c)(t)∥dµ(t) =
1

µ([−r, r])− Γ

(∫
[−r,r]

∥f(ω,c)(t)∥dµ(t)− Λ

)
=

µ([−r, r])
µ([−r, r])− Γ

(
1

µ([−r, r])

∫
µ([−r,r])

∥f(ω,c)(t)∥dµ(t)−
Λ

µ([−r, r])

)
Assume that 2 holds, then using the first equality and since µ(R) = +∞, we have that

0 = lim
r→∞

1

µ([−r, r])− Γ

∫
[−r,r]

∥f(ω,c)(t)∥dµ(t) = lim
r→∞

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t)∥dµ(t)

then 1 is true.

Conversely, if assumption 1 holds, using the second equality and since lim
r→∞

µ([−r, r])
µ([−r, r])− Γ

= 1
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then assumption 2 is obviously holds.
(2 ⇔ 3) We set :

Γε
r :=

{
t ∈ [−r, r] \ I : ∥f(ω,c)(t)∥ > ε

}
and Λε

r :=
{
t ∈ [−r, r] \ I : ∥f(ω,c)(t)∥ ≤ ε

}
Using that ∫

[−r,r]
∥f(ω,c)(t)∥dµ(t) =

∫
Γε
r

∥f(ω,c)(t)∥dµ(t) +
∫
Λε
r

∥f(ω,c)(t)∥dµ(t)

we have for sufficiently large r > 0

1

µ([−r, r] \ I)

∫
[−r,r]\I

∥f(ω,c)(t)∥dµ(t) ≤ ∥f∥(ω,c)
µ(Γε

r)

µ([−r, r] \ I)
+ ε

Now assume that assumption 3 holds. Then from previous inequality, we have that for all
ε > 0,

lim
r→∞

1

µ([−r, r] \ I)

∫
[−r,r]\I

∥f(ω,c)(t)∥dµ(t) ≤ ε

and consequently, assumption 2 holds.
In order to prove the last implication, we use the following inequality

1

µ([−r, r] \ I)

∫
[−r,r]\I

∥f(ω,c)(t)∥dµ(t) ≥
1

µ([−r, r] \ I)

∫
Γε
r

∥f(ω,c)(t)∥dµ(t)

≥ ε
µ(Γε

r)

µ([−r, r] \ I)

assume that assumption 2 holds, we obtain assumption 3 when making r → +∞.
The proof is complete.

We recall here the notion of equivalent measures.

Definition 3.8 ( [3]). Let µ1, µ2 ∈ M. µ1 is equivalent to µ2 (or ρ1 ∼ ρ2) if there exists
constants α, β > 0 and a bounded interval I (eventually I = ∅) such that

αµ1(A) ≤ µ2(A) ≤ βµ(A), when A ∈ B satisfies A ∩ I = ∅

We have following result:

Theorem 3.9. Let µ1, µ2 ∈ M. If µ1 ∼ µ2 then E(ω,c)(R,X, µ1) = E(ω,c)(R,X, µ2).

Proof. Assume that µ1 ∼ µ2 and B is the Lebesgue σ-field. Then we obtain for r sufficiently
large

α

β

µ1(
{
t ∈ [−r, r] \ I : ∥f(ω,c)(t)∥ > ε

}
)

µ1([−r, r] \ I)
≤
µ2(

{
t ∈ [−r, r] \ I : ∥f(ω,c)(t)∥ > ε

}
)

µ2([−r, r] \ I)

≤ β

α

µ1(
{
t ∈ [−r, r] \ I : ∥f(ω,c)(t)∥ > ε

}
)

µ1([−r, r] \ I)

We deduce that E(ω,c)(R,X, µ1) = E(ω,c)(R,X, µ2).
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Now, we intend to prove that E(ω,c)(R,X, µ) is translation invariant.

For µ ∈ M and τ ∈ R, we denote µτ the positive measure on (R,B) defined by

µτ (A) = µ
(
{a+ τ : a ∈ A}

)
, for A ∈ B. (2)

We need to formulate the following hypotheses for µ ∈ M and to recall some lemmas.

(H1) For all a, b, c ∈ R such that 0 ≤ a < b ≤ c, there exists τ0 ≥ 0 and α0 such that

|τ | ≥ τ0 ⇒ µ((a+ τ, b+ τ)) ≥ α0µ([τ, τ + c]).

(H2) For all ∈ R, there exists β > 0 and a bounded interval I such that

µ({a+ τ : a ∈ A}) ≤ βµ(A), when A ∈ B satisfies A ∩ I = ∅.

Lemma 3.10 ( [3]). (H2) implies (H1).

Lemma 3.11 ( [3]). Let m ∈ M satisfying (H2). Then the measures µ and µτ are equivalent
for all τ ∈ R.

Lemma 3.12 ( [3]). (H2) implies that for all α > 0

lim sup
r→+∞

µ
(
[−r − α, r + α]

)
µ
(
[−r, r]

) < +∞.

We can prove the following result.

Theorem 3.13. Let µ ∈ M satisfying (H2). Then E(ω,c)(R,X, µ) is translation invariant.

Proof. Let f ∈ E(ω,c)(R,X, µ) and τ ∈ R. Since µ(R) = +∞, there exists r0 > 0 such that
µ
(
[−r − |τ |, r + |τ |]

)
> 0 for all r ≥ r0. In this proof, we always assume that r ≥ r0. Let us

denote by

Mτ (r) =
1

µτ ([−r, r])

∫
[−r,r]

∥f(ω,c)(t)∥dµ(t), for r > 0 and τ ∈ R (3)

where µτ is the positive measure defined by (2). By using Lemma 3.11, it follows that µτ and
µ are equivalent, then by using Theorem 3.9 we have E(ω,c)(R,X, µτ ) = E(ω,c)(R,X, µ), therefore
f ∈ E(ω,c)(R,X, µτ ) that is

lim
r→+∞

Mτ (r) = 0 for all τ ∈ R. (4)

For all A ∈ B, we denote by χA the characteristic functions of A; By using definition of µτ we
have that ∫

[−r,r]
χA(t)dµτ (t) =

∫
[−r+τ,r+τ ]

χA(t− τ)dµ(t)

for all A ∈ B and since t→ ∥f(ω,c)(t)∥ is the pointwise limit of an increasing sequence of linear
combination of characteristic functions (see [20] Theorem 1.17), we deduce that∫

[−r,r]
∥f(ω,c)(t)∥dµτ (t) =

∫
[−r+τ,r+τ ]

∥f(ω,c)(t− τ)∥dµ(t) (5)
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From (2), (3), (5) we obtain

Mτ (r) =
1

µ([−r + τ, r + τ ])

∫
[−r+τ,r+τ ]

∥f(ω,c)(t− τ)∥dµ(t).

If we denote by τ+ := max(τ, 0) and τ− := max(−τ, 0), we have that |τ | + τ = 2τ+ and
|τ | − τ = 2τ− and then [−r + τ − |τ |, r + τ = |τ |] = [−r − 2τ−, r + 2τ+]. Therefore we obtain

Mτ (r + |τ |) = 1

µ([−r − 2τ−, r + 2τ+])

∫
[−r−2τ−,r+2τ+]

∥f(ω,c)(t− τ)∥dµ(t). (6)

From (6) and the following inequality :

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t− τ)∥dµ(t) ≤ 1

µ([−r, r])

∫
[−r−2τ−,r+2τ+]

∥f(ω,c)(t− τ)∥dµ(t)

it comes that

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t− τ)∥dµ(t) ≤ µ([−r − 2τ−, r + 2τ+])

µ([−r, r])
Mτ (r + |τ |),

that implies

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t− τ)∥dµ(t) ≤ µ([−r − 2|τ |, r + 2|τ |])
µ([−r, r])

Mτ (r + |τ |). (7)

From (4), (7) and using Lemma 3.12, we deduce that

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t− τ)∥dµ(t) = 0.

The proof is complete.

We end this section by giving a convolution theorem for µ-(ω, c)-ergodic functions.

Theorem 3.14. Let µ ∈ M satisfying (H2). If f ∈ E(ω,c)(R,X, µ) and ϕ̃(·) := (c∧(−·)ϕ(·)) ∈
L1(R,L(X)), then the convolution product of f ⋆ ϕ defined by

(f ⋆ ϕ)(t) =

∫ +∞

−∞
ϕ(s)f(t− s)ds, for t ∈ R,

=

∫ +∞

−∞
ϕ̃(s)c∧(s)f(t− s)ds, for t ∈ R.

is µ-(ω, c)-ergodic.

Proof. Let f ∈ E(ω,c)(R,X, µ). According to Theorem 3.4, (f ⋆ ϕ) ∈ BC(R,X, c).
From µ(R) = +∞, we deduce the existence of r0 ≥ 0 such that µ([−r, r]) > 0 for all r ≥ r0.
Using the inequality :

1

µ([−r, r])

∫
[−r,r]

∥(f⋆ϕ)(ω,c)(t)∥dµ(t) ≤
1

µ([−r, r])

∫
[−r,r]

∫ +∞

−∞
∥ϕ̃(s)∥∥c∧(−t+s)f(t−s)∥dsdµ(t)
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where ϕ̃ := ϕ(ω,c) ∈ L1(R,L(X)), In view of the Fubini’s Theorem, we deduce

1

µ([−r, r])

∫
[−r,r]

∥(f ⋆ ϕ)(ω,c)(t)∥dµ(t) ≤
∫ +∞

−∞

∥ϕ̃(s)∥
µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t− s)∥dµ(t)ds

Invoking Theorem 3.13, we have that

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t− s)∥dµ(t) = 0, for all s ∈ R.

And since

0 ≤ ∥ϕ̃(s)∥
µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t− s)∥dµ(t) ≤ ∥ϕ̃(s)∥∥f∥(ω,c)

in view of the Lebesgue dominated convergence Theorem, we obtain

lim
r→+∞

∫ +∞

−∞

∥ϕ̃(s)∥
µ([−r, r])

∫
[−r,r]

∥f(ω,c)(t− s)∥dµ(t)ds = 0

It comes that

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥(f ⋆ ϕ)(ω,c)(t)∥dµ(t) = 0

and consequently, (f ⋆ ϕ) ∈ E(ω,c)(R,X, µ).

Example 3.2. The unique solution of the heat equation

ut(x, t) = uxx(x, t), x ∈ R, t ≥ 0,

with the initial condition u(x, 0) = f(x) is given by

u(x, t) =
1

2
√
πt

∫ +∞

−∞
e−

(x−s)2

4t f(s)ds, x ∈ R, t ≥ 0,

If c∧(−·)e−
(·)2
4t0 ∈ L1(R) and f ∈ E(ω,c)(R,R, µ), then by Theorem 3.14, the solution

[x 7→ u(x, t0), x ∈ R] ∈ E(ω,c)(R,R, µ).

Now we are ready to define measure (ω, c)-pseudo almost periodic functions.

3.3 Measure (ω, c)-pseudo almost periodic function

In this subsection, we introduce the new class of measure (ω, c)-pseudo almost periodic function
and we study some properties of such functions. Let us define this new notion.

Definition 3.15. Let µ ∈ M. A function f ∈ C(R,X) is said to be measure (ω, c)-pseudo
almost periodic (or µ-(ω, c)-pseudo almost periodic) if f can be written in the form

f = g + φ

where g ∈ APω,c(X) and φ ∈ E(ω,c)(R,X, µ).
We denote the space of all such functions by PAP(ω,c)(R,X, µ).
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We will say that g is the (ω, c)-almost periodic part of f and φ the µ-(ω, c)-pseudo ergodic
perturbation of f .

We have the following spaces inclusions

APω,c(X) ⊂ PAP(ω,c)(R,X, µ) ⊂ BC(R,X, c)

Remark 3.16. Observe that APω,c(X) is a proper subspace of PAP(ω,c)(R,X, µ) since the
function

ϕ(t) = (0.2)t(sin2(πt) + sin2(
√
5t) + e−ttcos2(t)) ∈ PAP(1,0.2)(R,X, µ)

but ϕ /∈ AP(1,0.2)(X) since [t 7→ sin2(πt) + sin2(
√
5t) + e−ttcos2(t)] /∈ AP(X).

The following theorem gives a characterization of the measure (ω, c)-pseudo almost periodic
functions.

Theorem 3.17. Let f ∈ C(R,X). Then, f ∈ PAP(ω,c)(R,X, µ) if and only if

f(t) ≡ c∧(t)u(t), with c∧(t) := c
t
ω and u ∈ PAP(R,X, µ).

Proof. Obviously, if f(t) = c∧(t)u(t) with u ∈ PAP(R,X, µ) then f ∈ PAP(ω,c)(R,X, µ).
Conversely, let f ∈ PAP(ω,c)(R,X, µ). Then ∃(g, φ) ∈ APω,c(X) × E(ω,c)(R,X, µ) such that
f = g + φ. Therefore, taking u(t) := c∧(−t)f(t) it comes that u ∈ PAP(R,X, µ).

In view of Definition (3.15), for any f ∈ PAP(ω,c)(R,X, µ) we say that c∧(t)u(t) is the c-
factorization of f .

We give the first basic result

Proposition 3.18. Let µ ∈ M. Then PAP(ω,c)(R,X, µ) is a vector space.

Proof. Obvious.

Now we intend to show that PAP(ω,c)(R,X, µ) = APω,c(X)
⊕

E(ω,c)(R,X, µ). In order to
prove Proposition 3.20, we will need following lemma.

Lemma 3.19. Assume f ∈ APω,c(X), write

Bε := {τ ∈ R : ∥f(ω,c)(t0 + τ)− f(ω,c)(t0)∥ < ε}

where ε > 0 and t0 ∈ R is fixed. Then there exists s1, s2, . . . , sm ∈ R such that

m⋃
i=1

(si +Bε) = R.

We have following result.
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Proposition 3.20. Let µ ∈ M satisfying (H1) and f ∈ PAP(ω,c)(R,X, µ) be such that

f = g + φ

where g is its (ω, c)-almost periodic component, then we have

g(R) ⊂ f(R) (8)

Therefore, ∥f∥(ω,c) ≥ ∥g∥(ω,c) ≥ inf
t∈R

|g(ω,c)(t)| ≥ inf
t∈R

|f(ω,c)(t)|.

Proof. Suppose that (8) is not true. Then there exists t0 ∈ R, ε > 0 such that

∥g(ω,c)(t0)− f(ω,c)(t)∥ ≥ 2ε, t ∈ R. (9)

Let s1, s2, . . . , sm be as in Lemma 3.19 and write

τi = si − t0, i = 1, 2, . . . ,m, η = max
1≤i≤m

|τi|.

For r ∈ R with |r| > η, we let

B(i)
ε,r := [−r + η − τi, r − η − τi] ∩ (t0 +Bε), i = 1, 2, . . . ,m.

where Bε is as in Lemma 3.19. It is clear that

m⋃
i=1

(τi +B(i)
ε,r) = [−r + η, r − η].

Thus, we obtain

2(r − η) = µ([−r + η, r − η]) ≤
m∑
i=1

µ(τi +B(i)
ε,r) =

m∑
i=1

µ(B(i)
ε,r)

≤ m · max
1≤i≤m

{µ(B(i)
ε,r)}

≤ m · µ([−r, r] ∩ (t0 +Bε)) (10)

since for each i = 1, 2, . . . ,m

B(i)
ε,r ⊂

(
[−r, r] ∩ (t0 +Bε)

)
Using inequality (9), we have

∥ϕ(ω,c)(t)∥ = ∥f(ω,c)(t)− g(ω,c)(t)∥ ≥ ∥g(ω,c)(t0)− f(ω,c)(t)∥ − ∥g(ω,c)(t)− g(ω,c)(t0)∥ > ε

for any t ∈ t0 +Bε.
This and inequality (10) together give

1

µ([−r, r])

∫
[−r,r]

∥ϕ(ω,c)(t)∥dµ(t) ≥
r − η

mr
ε −→ ε

m
, as r −→ ∞.

This is a contradiction since h ∈ E(ω,c)(R,X, µ) and establishes our claim (8).
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We can now establish the uniqueness of the decomposition in Definition 3.15.

Theorem 3.21. Let µ ∈ M satisfying (H1). Then the decomposition of a µ-(ω, c)-pseudo
almost periodic function in the form f = g + φ, where g ∈ APω,c(X) and φ ∈ E(ω,c)(R,X, µ) is
unique.

Proof. Assume that f = g1 + φ1 and f = g2 + φ2. Then, 0 = (g1 − g2) + (φ1 − φ2).
Since g1−g2 ∈ APω,c(X) and φ1−φ2 ∈ PAP(ω,c)(R,X, µ), in view of proposition 3.20, we deduce
that g1 − g2 = 0 and consequently, φ1 = φ2 which proves the uniqueness of the decomposition.

From above it is clear that
APω,c(X) ∩ E(ω,c)(R,X, µ) = {0}

Furthermore, we have following results

Theorem 3.22. The space PAP(ω,c)(R,X, µ) is a translation invariant.

Proof. This is a direct consequence of Proposition 2.9, Theorem 3.13 and Theorem 3.21.

Theorem 3.23. The space PAP(ω,c)(R,X, µ) is a translation invariant C∗-subalgebra of BC(R,X, c)
without the constant functions. Furthermore,

PAP(ω,c)(R,X, µ)/E(ω,c)(R,X, µ) ∼= APω,c(X)

Proof. We show that PAP(ω,c)(R,X, µ) is a closed subspace of BC(R,X, c).
Let (fn) ⊂ PAP(ω,c)(R,X, µ) be Cauchy. By proposition 3.20, the sequence (gn) ⊂ APω,c(X)
is Cauchy too and so is (φn) ⊂ E(ω,c)(R,X, µ). Since APω,c(X) and E(ω,c)(R,X, µ) are closed in
BC(R,X, c), there are g ∈ APω,c(X) and φ ∈ E(ω,c)(R,X, µ) such that ∥(gn)(ω,c) − g(ω,c)∥ → 0
and ∥(φn)(ω,c) − φ(ω,c)∥ → 0 as n → ∞. Set f = g + φ, then f ∈ PAP(ω,c)(R,X, µ) and
∥(fn)(ω,c) − f(ω,c)∥ → 0 as n→ 0.
The rest of the proof is clear.

Now we show the completeness of PAP(ω,c)(R,X, µ) with the following result.

Theorem 3.24. Let µ ∈ M satisfying (H1). Then (PAP(ω,c)(R,X, µ), ∥ · ∥(ω,c)) is a Banach
space.

Proof. Let (fn) be a Cauchy sequence in PAP(ω,c)(R,X, µ). Then, given ε > 0 ∃n0 ∈ N such
that for all p, q ≥ n0,

∥(fp)(t)− (fq)(t)∥(ω,c) < ε.

Invoking Theorem 3.17, ∃(up, uq) ∈ (PAP(R,X, µ))2 such that fp(t) = c∧(t)up(t) and fq(t) =
c∧(t)uq(t) for all t ∈ R and since p, q ≥ n0 we have

∥up(t)− uq(t)∥ ≤ ∥fp(t)− fq(t)∥(ω,c) < ε.

Consequently, (un) be a Cauchy sequence in PAP(R,X, µ). Using the completeness of PAP(R,X, µ),
we know that ∃u ∈ PAP(R,X, µ) such that ∥un − u∥ → 0 as n→ ∞.



16

We take f(t) := c∧(t)u(t). We claim that ∥un − u∥ → 0 as n → ∞. And it can be easily seen
that :

∥fn − f∥(ω,c) = sup
t∈R

∥un − u∥ → 0 (n→ ∞)

Which completes the proof.

We end this subsection giving a general convolution theorem for our new class of functions.
In their paper, Blot et al. obtained the following convolution result.

Theorem 3.25 ( [3]). Let µ ∈ M satisfying (H2). If f ∈ PAP(R,X, µ) and ϕ(·) ∈ L1(R,L(X)),
then the convolution product f ⋆ ϕ defined by

(f ⋆ ϕ)(t) =

∫ +∞

−∞
ϕ(s)f(t− s)ds, for t ∈ R.

is µ-pseudo almost periodic.

We generalize this result as follows.

Theorem 3.26. Let µ ∈ M satisfying (H2). If f ∈ PAP(ω,c)(R,X, µ) and ϕ̃ := (c∧(−·)ϕ(·)) ∈
L1(R,L(X)), then the convolution product of f ⋆ ϕ defined by

(f ⋆ ϕ)(t) =

∫ +∞

−∞
ϕ(s)f(t− s)ds, for t ∈ R. (11)

=

∫ +∞

−∞
ϕ̃(s)c∧(s)f(t− s)ds, for t ∈ R.

is µ-(ω, c)-pseudo almost periodic.

Proof. Let f ∈ PAP(ω,c)(R,X, µ) and ϕ̃ := (c∧(−·)ϕ(·)) ∈ L1(R,L(X)).
First, note that using Theorem 3.4, (f ⋆ ϕ) ∈ BC(R,X, c). Furthermore, according to Theorem
3.17, there exists a u ∈ PAP(R,X, µ) such that f(t) := c∧(t)u(t), for any t ∈ R. It comes that

(f ⋆ ϕ)(t) =

∫ +∞

−∞
ϕ(s)f(t− s)ds

= c∧(t)

∫ +∞

−∞
c∧(−s)ϕ(s)c∧(−t+ s)f(t− s)ds

= c∧(t)

∫ +∞

−∞
ϕ̃(s)u(t− s)ds (12)

Invoking succesively Theorems 3.25 and 3.17, we have that (12) is µ-(ω, c)-pseudo almost
periodic. The proof is complete.

Example 3.4. The unique solution of the heat equation

ut(x, t) = uxx(x, t), x ∈ R, t ≥ 0,
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with the initial condition u(x, 0) = f(x) is given by

u(x, t) =
1

2
√
πt

∫ +∞

−∞
e−

(x−s)2

4t f(s)ds, x ∈ R, t ≥ 0,

If c∧(−·)e−
(·)2
4t0 ∈ L1(R) and f ∈ PAP(ω,c)(R,R, µ), then by Theorem 3.14, the solution

[x 7→ u(x, t0), x ∈ R] ∈ PAP(ω,c)(R,R, µ).

4 Jointly continuous case.

This section is devoted to the study of a composition result well-suited for the introduced (ω, c)-
periodicity concept. The main results of this section are Theorems 4.7 and 4.16. But first, let’s
define some new notions.

4.1 Basic definitions and properties.

First of all, reader should be aware that the already known concept of compactness for subsets
seems to be irrelevant when it comes to deal with (ω, c)-periodicity where c ̸= 1 since (ω, c)
periodic type functions are not bounded on R (i.e. 1-bounded on R) but c-bounded on R. With
the following definition, we propose a new concept of compactness for subset well-suited for
(ω, c)-periodic calculus.

Definition 4.1. Let K be a non-empty set. We say that K is an (ω, c)-type compact subset of
Y if and only if following assumptions are satisfied :

1. K is compact,

2. Every k ∈ K admits following decomposition k := c∧(−·)y ∈ K where y ∈ Y.

One can note that a compact subset of AP(X) is in fact a (ω, c)-type subset of APω,c(X) since
if K is a compact subset of AP(X) we have the following equality

Σ : = {u(t) : t ∈ R, u ∈ K}
= {(c∧(t)u(t))(ω,c) : t ∈ R, (c∧(t)u(t)) ∈ APω,c(X), u ∈ K}

for any c ∈ C− {0}.

Definition 4.2 ( [22]). A function F ∈ C(R × Y,X) is called (Yoshizawa) almost periodic in
t ∈ R uniformly in y ∈ Y if for each ε > 0 and any compact K ⊂ Y there exists L > 0, such
that for all β ∈ R, there exists τ ∈ [β, β + L] with

sup
t∈R

sup
y∈K

∥F (t+ τ, y)− F (t, y)∥ < ε. (13)

for all t ∈ R and all y ∈ K.
The collection of such functions will be denoted by AP(Y,X).
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Such number τ in (13) is called ε-translation number of F (t, y) and we denote by Tε(F,K) the
set of all ε-translation numbers of F for y ∈ K. This set has the following properties :
For a fixed compact set K,

1. an ε-translation number is also an ε′-translation number if ε′ > ε, and hence we have the
inclusion Tε(F,K) ⊂ Tε′(F,K),

2. if τ ∈ Tε(F,K), then −τ ∈ Tε(F,K),

3. if (τ1, τ2) ∈ Tε1(F,K)× Tε2(F,K) then τ1 + τ2 ∈ Tε1+ε2(F,K).

In what follows, we assume that ω ∈ R⋆
+ ∩ Tε(F,K).

In [13] authors have introduced two concepts of (ω, c)-almost periodic functions in the case
of jointly continuous functions, but in this paper use a novel approach.

Definition 4.3. A function F ∈ C(R×Y,X) is called (ω, c)-almost periodic in t ∈ R uniformly
in y ∈ Y if for each ε > 0 and any (ω, c)-type compact subset K of Y there exists L > 0, such
that for all β ∈ R, there exists τ ∈ [β, β + L] with

sup
t∈R

sup
y∈K

∥c∧(−t− τ)F (t+ τ, y)− c∧(−t)F (t, y)∥ < ε.

⇐⇒ sup
t∈R

sup
y∈K

∥F(ω,c)(t+ τ, y)− F(ω,c)(t, y)∥ < ε

for all t ∈ R and all y ∈ K, where F(ω,c)(t, ·) := c−
t
ωF (t, ·).

The space of all such functions will be denoted by APω,c(Y,X).

In the following, we use the notation : F(ω,c)(t, ·) := c−
t
wF (t, ·).

Remark 4.4. When c = 1, APω,c(Y,X) = AP(Y,X).

Proposition 4.5. (APω,c(Y,X), ∥ · ∥(ω,c)) is a Banach space.

We need to develop some tools in order to propose a composition theorem for measure (ω, c)-
pseudo almost periodic functions.

We give the following results

Lemma 4.6. If K is an (ω, c)-type compact subset of APω,c(Y), then

Σ := {u(ω,c)(t) : t ∈ R, u ∈ APω,c(Y), u(ω,c) ∈ K}

is a relatively compact subset of Y.
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Proof. Let ε > 0.
Since K is compact, it is also precompact, thus there exists {(u1)(ω,c), . . . , (um)(ω,c)} a finite
(ω, c)-type subset of APω,c(Y) (i.e. a finite subset of AP(Y)) such that

K ⊂
⋃

1≤i≤m

{
z ∈ APω,c(Y) : ∥z − ui∥(ω,c) ≤

ε

2

}
.

Since, (ui)(ω,c)(R) is relatively compact in X for all i = 1, . . . ,m, then
⋃

1≤i≤m

(ui)(ω,c)(R) is also

relatively compact and consequently, there exists a finite subset of R {t1, . . . , tk} such that⋃
1≤i≤m

(ui)(ω,c)(R) ⊂
⋃

1≤i≤m

⋃
1≤j≤k

{
y ∈ Y : ∥y − (ui)(ω,c)(tj)∥ ≤ ε

2

}
.

If y ∈ Y there exists z ∈ K and t ∈ R such that y = z(t), and there exists i ∈ {1, . . . ,m} such
that ∥z − (ui)(ω,c)∥ ≤ ε

2 and consequently ∥y − (ui)(ω,c)(t)∥ ≤ ε
2 .

Now, using the previous inclusion, there exists p ∈ {1, . . . ,m} and j ∈ {1, . . . , k} such that

∥(ui)(ω,c)(t)− (up)(ω,c)(tj)∥ ≤ ε

2

It comes that

∥y − (ui)(ω,c)(tj)∥ ≤ ∥y − (ui)(ω,c)(t)∥+ ∥(ui)(ω,c)(t)− (up)(ω,c)(tj)∥ ≤ 2ε

2
= ε

This proves that Σ ⊂
⋃

1≤i≤m

⋃
1≤j≤k

{
y ∈ Y : ∥y − (ui)(ω,c)(tj)∥ ≤ ε

2

}
or in other words, Σ is

precompact, and since Y is complete, we obtain that Σ is relatively compact.

Now, for a given function F ∈ APω,c(Y,X), we define the Nemytskii’s superposition operator
NF : APω,c(Y) −→ APω,c(X) such that [t 7−→ u(t)] 7−→ NF (u) := [t 7−→ F (t, u(t))].

The first main result of this section is the following theorem.

Theorem 4.7. Let F ∈ APω,c(Y,X). Then the Nemytskii superposition operator NF is
continuous from APω,c(Y) into APω,c(X).

Proof. Let K be an (ω, c)-type compact subset of APω,c(Y) let ũ ∈ K and ε > 0.
We set Σ := {u(ω,c)(t) : t ∈ R, u ∈ APω,c(Y), u(ω,c) ∈ K}. According to Lemma 4.6, the closure

Σ is compact.
Since F ∈ APω,c(Y,X), there exists l > 0 such that for α ∈ R, there exists −τ ∈ [α, α + l]
satisfying :

∥F(ω,c)(t+ τ, y)− F(ω,c)(t, y)∥ ≤ ε

3
, for all (y, t) ∈ Σ× R. (14)

Since Σ× [0, l] is compact then F(ω,c) is uniformly continuous on it and consequently there exists

δ > 0 such that, for all t1, t2 ∈ [0, l] and for all y1, y2 ∈ Σ(
∥y1 − y2∥ ≤ δ, |t1 − t2| ≤ δ

)
⇒ ∥F(ω,c)(t1, y1)− F(ω,c)(t2, y2)∥ ≤ ε

3
.
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And this implies that :

∥y1 − y2∥ ≤ δ ⇒ ∥F(ω,c)(t, y1)− F(ω,c)(t, y2)∥ ≤ ε

3
, for all t ∈ [0, l]. (15)

If ṽ ∈ K satisfies ∥ṽ − ũ∥∞ ≤ δ ⇐⇒ ∥c∧(t)ṽ(t)− c∧(t)ũ(t)∥(ω,c) ≤ δ.
We set u(t) := c∧(t)ũ(t) and v(t) := c∧(t)ṽ(t) for all t ∈ R.
Then we have u, v ∈ APω,c(Y), and using (14) and (15), we obtain, for all t ∈ R

∥F(ω,c)(t, u(t))− F(ω,c)(t, v(t))∥ ≤ ∥F(ω,c)(t, u(t))− F(ω,c)(t− τ, u(t))∥
+ ∥F(ω,c)(t− τ, u(t))− F(ω,c)(t− τ, v(t))∥
+ ∥F(ω,c)(t− τ, v(t))− F(ω,c)(t, v(t))∥

≤ 3
ε

3
= ε.

And so, by taking the supremum on the t ∈ R, we obtain ∥NF (u)−NF (v)∥(ω,c) ≤ ε.
This proves that the restriction of Jf to K is continuous for all (ω, c)-type compact subset K
of APω,c(Y). And since (APω,c(Y), ∥ · ∥(ω,c)) and (APω,c(X), ∥ · ∥(ω,c)) are Banach Spaces, this
proves the continuity of JF on APω,c(Y).

The following proposition is a generalization of Cieutat, Fatajou and N’Guérékata’s Theorem
in [6] which becomes the particular case c = 1 of our result.

Proposition 4.8. Let F : R×Y → X be a continuous function. Then F ∈ APω,c(Y,X) if and
only if the following conditions hold :

1. for all y ∈ Y, F(ω,c)(·, y) ∈ AP(X),

2. F(ω,c) is uniformly continuous on each (ω, c)-type compact set K in Y with respect to the
second variable, namely, for each (ω, c)-type compact set K in Y, for all ε > 0, there exists
δ > 0 such that for all y1, y2 ∈ K, one has

∥y1 − y2∥ ≤ δ =⇒ sup
t∈R

∥F(ω,c)(t, y1)− F(ω,c)(t, y2)∥ ≤ ε.

Here, we propose a concept of µ-(ω, c)-ergodicity for the jointly continuous functions case.

Definition 4.9. Let µ ∈ M. A function F ∈ BC(R× Y,X, c) is said to be µ-(ω, c)-ergodic in
t uniformly with respect to y ∈ Y if the two following conditions are true :

1. for all y ∈ Y, F(ω,c)(·, y) ∈ E(R,X, µ),

2. F(ω,c) is uniformly continuous on each (ω, c)-type compact set K in Y with respect to the
second variable, namely, for each (ω, c)-type compact set K in Y, for all ε > 0, there exists
δ > 0 such that for all y1, y2 ∈ K, one has

∥y1 − y2∥ ≤ δ =⇒ sup
t∈R

∥F(ω,c)(t, y1)− F(ω,c)(t, y2)∥ ≤ ε.



21

We denote the space of all such functions by Eω,c,3(R× Y,X, µ).

Remark 4.10. When c = 1, we write E(R× Y,X, µ) instead of Eω,1,3(R× Y,X, µ).

Definition 4.11. Let µ ∈ M. A function F ∈ C(R×Y,X) is said to be µ-(ω, c)-pseudo almost
periodic in t uniformly with respect to y ∈ Y if F is written in the form

F = G+Φ

where G ∈ APω,c(Y,X) and Φ ∈ Eω,c,3(R× Y,X, µ).

PAPω,c(R× Y,X, µ) denotes the set of such that functions.

The following inclusion hold

APω,c(Y,X) ⊂ PAPω,c(R× Y,X, µ) ⊂ BC(R× Y,X, c)

Remark 4.12. When c = 1, we write PAP(R× Y,X, µ) instead of PAPω,1(R× Y,X, µ).

As in the previous section, we propose a characterization result which hold for (ω, c)-almost
periodic, µ-(ω, c)-ergodic and µ-(ω, c)-pseudo almost periodic functions in t uniformly with
respect to y ∈ Y.

Theorem 4.13. Let F ∈ C(R× Y,X).
Then, F ∈ PAPω,c(R× Y,X, µ) (resp. APω,c(Y,X) or Eω,c,3(R× Y,X, µ)) if and only if

F (t, y) ≡ c∧(t)u(t, y),

with c∧(t) := c
t
ω and u ∈ PAP(R× Y,X, µ)(resp. AP(Y,X) or E(R× Y,X, µ)).

Proof. The proof is similar to the one of Theorem 3.17.

We end this section with this result which is a consequence of Proposition 4.8 and definition
4.9.

Theorem 4.14. Let µ ∈ M and F : R × Y → X be µ-(ω, c)-ergodic (of second kind) in t
uniformly with respect to y ∈ Y. Then

1. for all y ∈ Y, F(ω,c)(·, y) ∈ PAP(R,X, µ),

2. F(ω,c) is uniformly continuous on each (ω, c)-type compact set K in Y with respect to the
second variable.

We are now in a position to give a composition theorem for measure (ω, c)-pseudo almost
periodic functions.
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4.2 Composition of measure (ω, c)-pseudo almost periodic functions.

The proof of our result of composition of µ-(ω, c)-pseudo almost periodic functions is based on
the following lemma due to Schwartz [19].

Lemma 4.15. If Ψ ∈ C(X,Y), then for each compact set K in X and all ε > 0, there exists
δ > 0 such that for any x1, x2 ∈ X, one has

x1 ∈ K and ∥x1 − x2∥ ≤ δ ⇒ ∥Ψ(x1)−Ψ(x2)∥ ≤ ε.

We now can state and prove our composition result.

Theorem 4.16. Let µ ∈ M, F ∈ PAPω,c(R×Y,X, µ) and y ∈ PAP(ω,c)(R,Y, µ). Assume that
the following hypothesis holds

1. For all bounded subset Ω of Y, F is c-bounded on R×Ω (i.e. F(ω,c) is bounded on R×Ω).

Then [t 7−→ F (t, y(ω,c)(t))] ∈ PAPω,c(R× Y,X, µ).

Proof. First note that the function [t 7−→ F (t, y(ω,c)(t))] is continuous and by Hypothesis (1)
it is c-bounded. Since y ∈ PAP(ω,c)(R,Y, µ) there exists y1 ∈ APω,c(Y) and y2 ∈ E(ω,c)(R,Y, µ)
such that

y = y1 + y2.

Moreover, since F ∈ PAPω,c(R × Y,X, µ), there exists F1 ∈ APω,c(Y,X) and F2 ∈ Eω,c,3(R ×
Y,X, µ) such that

F = F1 + F2.

and there exists

F̃ ∈ PAP(R× Y,X, µ) such that F (t, y(t)) := c∧(t)F̃ (t, y(t)), ∀t ∈ R.

F̃1 ∈ AP(Y,X) such that F1(t, y(t)) := c∧(t)F̃1(t, y(t)), ∀t ∈ R.

F̃2 ∈ E(R× Y,X, µ) such that F2(t, y(t)) := c∧(t)F̃2(t, y(t)), ∀t ∈ R.

So we have the following decomposition for F (t, y(t))

F (t, y(t)) = c∧(t)

(
F̃1(t, y1(t)) + [F̃ (t, y(t))− F̃ (t, y1(t))] + [F̃ (t, y1(t))− F̃1(t, y1(t))]

)
= c∧(t)

(
F̃1(t, y1(t)) + [F̃ (t, y(t))− F̃ (t, y1(t))] + F̃2(t, y1(t))

)
Invoking Theorem 4.7 and keeping in mind that

(y1)(ω,c) ∈ AP(Y) then F̃1(t, (y1)(ω,c)(t)) ∈ AP(X) (16)

and consequently we have that [t 7−→ F1(t, (y1)(ω,c)(t))] ∈ APω,c(Y,X).
Now denote K the closure of the range of (y1)(ω,c) : K = {(y1)(ω,c)(t) : t ∈ R}. One can easily
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note that since y1 ∈ APω,c(Y), using Theorem 3.17, we have (y1)(ω,c) ∈ AP(Y) and consequently,
K is a compact subset of Y [7].
In what follows, we denote by Ψ the function defined by

Ψ : Y −→ PAP(ω,c)(R,X, µ)
y 7−→ Ψ(y) = c∧(·)F̃ (·, y)

Since F (·, y) := c∧(·)F̃ (·, y) ∈ PAPω,c(R × Y,X, µ), by using Theorem 4.14 we deduce that
the restriction of Ψ on all (ω, c)-type compact subset K of Y is uniformly continuous, which is
equivalent to say that the function Ψ is continuous on Y. From Lemma 4.15 applied to Ψ, we
deduce that for given ε > 0, there exists δ > 0 such that, for all t ∈ R, u1, u2 ∈ Y, one has

u1 ∈ K and ∥u1 − u2∥ ≤ δ ⇒ ∥F̃ (t, u1)− F̃ (t, u2)∥ ≤ ε.

Since, y(t) = y1(t) + y2(t) and (y1)(ω,c)(t) ∈ K, it comes that

t ∈ R and ∥(y2)(ω,c)(t)∥ ≤ δ ⇒ ∥F̃ (t, y(ω,c)(t))− F̃ (t, (y1)(ω,c)(t))∥ ≤ ε.

therefore, the following inequality holds

µ(
{
t ∈ [−r, r] : ∥F̃ (t, y(ω,c)(t))− F̃ (t, (y1)(ω,c)(t))∥ > ε

}
)

µ([−r, r])
≤
µ(
{
t ∈ [−r, r] : ∥(y2)(ω,c)(t)∥ > δ

}
)

µ([−r, r])

Since y2 ∈ E(ω,c)(R,Y, µ) and according to Theorem 3.7 with c = 1 we have for the above-
mentioned δ

lim
r→+∞

µ(
{
t ∈ [−r, r] : ∥(y2)(ω,c)(t)∥ > δ

}
)

µ([−r, r])
= 0,

and consequently

lim
r→+∞

µ(
{
t ∈ [−r, r] : ∥F̃ (t, y(ω,c)(t))− F̃ (t, (y1)(ω,c)(t))∥ > ε

}
)

µ([−r, r])
= 0,

Invoking Theorem 3.7 with c = 1 and previous inequality it is proved that

[t 7−→ F̃ (t, y(ω,c)(t))− F̃ (t, (y1)(ω,c)(t))] ∈ Eω,1(R,Y, µ) = E(R,Y, µ).

which is equivalent to say that (according to Theorem 4.13)

[t 7−→ F (t, y(ω,c)(t))− F (t, (y1)(ω,c)(t))] ∈ E(ω,c)(R,Y, µ).

In order to complete the proof, we prove that [t 7−→ F2(t, (y1)(ω,c)(t))] ∈ E(ω,c)(R,Y, µ).
Since F2 := c∧(·)F̃2 is uniformly continuous on the (ω, c)-type compact setK = {(y1)(ω,c)(t) : t ∈ R}
with respect to the second variable, we deduce that for given ε > 0, there exists η > 0 such
that, for all t ∈ R, ξ1, ξ2 ∈ K, one has

∥ξ1 − ξ2∥ ≤ η =⇒ ∥F̃2(t, ξ1)− F̃2(t, ξ2)∥ ≤ ε.
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Therefore, there exists ϑε and {(yi)(ω,c)}ϑε
i=1 ⊂ K, such that K ⊂

ϑε⋃
i=1

B((yi)(ω,c), η) and then

∥F̃2(t, (y1)(ω,c)(t))∥ ≤ ε+

ϑε∑
i=1

∥F̃2(t, (yi)(ω,c)(t))∥.

Since,

∀i ∈ {1, . . . , ϑε}, lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥F̃2(t, (yi)(ω,c)(t))∥dµ(t) = 0.

we deduce that

∀ε > 0, lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥F̃2(t, (y1)(ω,c)(t))∥dµ(t) ≤ ε,

which implies that

∀ε > 0, lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥F̃2(t, (y1)(ω,c)(t))∥dµ(t) = 0.

Therefore, using Theorem 3.7 with c = 1, we have that [t 7−→ F̃2(t, (y1)(ω,c)(t))] ∈ E(R,Y, µ).
In conclusion, invoking Theorem 4.13, we showed that

[t 7−→ F2(t, (y1)(ω,c)(t))] ∈ E(ω,c)(R,Y, µ).

Finally, it comes that

[t 7−→ F (t, y(ω,c)(t))] ∈ PAPω,c(R× Y,X, µ).

The proof is complete.

We end this section with the following result.

Corollary 4.17. Let µ ∈ M, Ψ ∈ C(X,Y), ω > 0 and c ∈ C− {0}.
Assume that for all bounded subset B of X, Ψ is c-bounded on B, (i.e. Ψ(·) := c∧(·)Ψ̃(·) where
Ψ̃ is bounded on B). Then if x ∈ PAP(ω,c)(R,X, µ),

[t 7−→ Ψ(x(ω,c)(t)) := c∧(t)Ψ̃(x(ω,c)(t))] ∈ PAP(ω,c)(R,X, µ).

Proof. It is a consequence of Theorem 4.16 with F (t, x(ω,c)(t)) = Ψ(x(ω,c)(t)).

5 Application : Measure (ω, c)-Pseudo Almost Periodic solutions
to a Lasota-Wazewska model.

First, Wazewska-Czyzewska and Lasota [21] proposed in 1976 the delay logistic equations with
one constant concentrated delay

N ′(t) = −µN(t) + pe−rN(t−τ)
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in order to describe the survival of red blood cells in an animal. Here N(t) denotes the number
of red blood cells at time t, µ is the probability of death of a red blood cell, p and r are positive
constants related to the production of red blood cells per unit time and τ is the time required
to produce a red blood cell. Few years later, Gopalsamy and Trofimchuk [11] obtained that the
Lasota-Wazewska model with one discrete delay

x′(t) = −α(t)x(t) + β(t)e−νx(t−τ)

has a globally attractive almost periodic solution under some additional assumptions.
The aim here is to study the existence and uniqueness of a generalized Lasota-Wazewska model
with µ-(ω, c)-pseudo almost periodic coefficients and with mixed delay which is in the form :

y′(t) = −α(t)y(t) +
m∑
j=1

aj(t)e
−c∧(−t)ωj(t)

∫ t
−∞ Kj(t−s)y(s)ds

+

n∑
i=1

bi(t)e
−c∧(−t)βi(t)

∑p
j=1 y(t−τij), t ∈ R (17)

where y(t) stands for the number of red blood cells at time t and α(t) is the average part of red
blood cells population being destroyed in time t. For all 1 ≤ j ≤ m and 1 ≤ i ≤ n, aj(t) and bi(t)
are the connected with demand for oxygen at time t, ωj(t) and βi(t) characterize excitability
of haematopoietic system at time t, Kj is the probability kernel of the distributed delays and
τij is the time required to produce a red blood cell. One can note that we consider in our new
approach the µ-(ω, c)-pseudo almost periodic for the connected with demand for oxygen at time
t and the µ-pseudo almost periodic for the excitability of haematopoietic system at time t since
it is more realistic for the description of the physical and biological phenomena.

The method consists to reduce the existence of the unique solution for the Lasota-Wazewska
model (17) to the search for the existence of the unique fixed point of an approriate operator on
the Banach space PAP(ω,c)(R,R+, µ). Notice that we restrict our selves to R+-valued functions
since only non-negative solutions are biologically meaningful.

5.1 Existence and uniqueness of µ-(ω, c)-pseudo almost periodic solution to
the model.

In what follows, given a c-bounded continuous function f defined on R, f(ω,c) and f(ω,c) are

defined by

f(ω,c) = sup
t∈R

f(ω,c)(t) = sup
t∈R

c∧(−t)f(t), and f(ω,c) = inf
t∈R

f(ω,c)(t) = inf
t∈R

c∧(−t)f(t)

Remark 5.1. If c = 1 we use the notations

f := f(ω,1) = sup
t∈R

f(t) and f := f(ω,1) = inf
t∈R

f(t)

First, we give sufficient conditions which ensures existence and uniqueness of µ-(ω, c)-pseudo
almost periodic solution of (17).
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(C1) 0 < c ≤ 1,
(C2) α ∈ AP(R+),
(C3) βi, ωj ∈ PAP(R,R+, µ), for all (i, j) ∈ [[1, n]]× [[1,m]],
(C4) aj , bi ∈ PAP(ω,c)(R,R+, µ), for all (i, j) ∈ [[1, n]]× [[1,m]],

(C5)

∑m
j=1 (aj)(ω,c)ωj + pξ

∑n
i=1 (bi)(ω,c)βi

α
< 1,

(C6) For all 1 ≤ j ≤ m, (Kj)(ω,c) : [0,+∞) → R+ are continuous, integrable and∫ ∞

0
(Kj)(ω,c)(u)du = 1, and

∫ ∞

0
(Kj)(ω,c)(u)e

λudu < +∞,

where λ is a sufficiently non negative small constant.

Lemma 5.2. Let f ∈ PAP(ω,c)(R,R+, µ) and g ∈ PAP(R,R+, µ). If c > 0, then fg ∈
PAP(ω,c)(R,R+, µ).

Proof. According to Theorem 3.17 there exists a unique u ∈ PAP(R,R+, µ) such that

f(t) := c∧(t)u(t)

for all t ∈ R. Using Lemma 2.13 it is clear that u× g ∈ PAP(R,R+, µ). Then,

(fg)(t) := c∧(t)(u(t)g(t)), where ug ∈ PAP(R,R+, µ).

Invoking Theorem 3.17, we complete the proof.

Lemma 5.3. Let µ ∈ M satisfying (H2). For all x(·) ∈ PAP(ω,c)(R,R+, µ), the function

ψi : t 7→ ψi(x(ω,c)(t)) = a(t)e−c∧(−t)ωi(t)
∑p

j=1 x(t−τij)

= c∧(t)a(ω,c)(t)e
−ωi(t)

∑p
j=1 c

∧(−τij)x(ω,c)(t−τij)

belongs to PAP(ω,c)(R,R+, µ) for all 1 ≤ i ≤ n.

Proof. First, by Lemma 3.22, the function

t 7→ x(t− τij) ∈ PAP(ω,c)(R,R+, µ)

for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then according to Proposition 3.18

t 7→
p∑

j=1

x(t− τij) ∈ PAP(ω,c)(R,R+, µ)

Furthermore, by Lemma 5.2

t 7→ ωi(t)

p∑
j=1

x(t− τij) ∈ PAP(ω,c)(R,R+, µ).
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for all 1 ≤ i ≤ n. Now, using the fact that the function (x 7→ e−x) is Lipschitzian and bounded,
and a(ω,c) ∈ PAP(R,R+, µ) is also bounded then invoking the Corollary 4.17 it is clear that

ψi : t 7→ c∧(t)a(ω,c)(t)e
−c∧(−t)ωi(t)

∑p
j=1 x(t−τij) ∈ PAP(ω,c)(R,R+, µ)

for all 1 ≤ i ≤ n.

By using condition (C6) and Theorem 3.26, we can deduce the following Lemma.

Lemma 5.4. Suppose that (H2) and (C6) hold. If x ∈ PAP(ω,c)(R,R+, µ), then the function
defined by

t 7→
∫ t

−∞
Kj(t− s)x(s)ds ∈ PAP(ω,c)(R,R+, µ)

for all 1 ≤ j ≤ m.

Theorem 5.5. Suppose that (H2) and (C1) – (C4) are satisfied. Then the nonlinear operator
Γ defined for each x ∈ PAP(ω,c)(R,R+, µ) by

(Γx)(t) =

∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

aj(s)e
−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)x(σ)dσ +

n∑
i=1

bi(s)e
−c∧(−s)βi(s)

∑p
j=1 x(s−τij)

]
ds

maps PAP(ω,c)(R,R+, µ) into itself.

Proof. Using Lemmas 2.13, 5.2, 5.3, 5.4 and Corrolary 4.17, then the function χ defined by

χ(s) =
m∑
j=1

aj(s)e
−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)x(σ)dσ +

n∑
i=1

bi(s)e
−c∧(−s)βi(s)

∑p
j=1 x(s−τij)

= c∧(s)

( m∑
j=1

(aj)(ω,c)(s)e
−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)x(σ)dσ +

n∑
i=1

(bi)(ω,c)(s)e
−c∧(−s)βi(s)

∑p
j=1 x(s−τij)

)

is measure (ω, c)-pseudo almost periodic.
Consequently, we can write χ = χ1 + χ2 where χ1 ∈ APω,c(R+) and χ2 ∈ E(ω,c)(R,R+, µ). It
follows that

(Γχ)(t) :=

∫ t

−∞
e−

∫ t
s α(ξ)dξχ(s)ds = (Γχ1)(t) + (Γχ2)(t)

Let us show that (Γχ1) ∈ APω,c(R+).
We recall that by applying condition (C1) to the model (17), α is almost periodic (i.e. (ω, c)-
almost periodic with constant c = 1). Now, in the view of the almost periodicity of the function
α and the (ω, c)-almost periodicity of the function χ1, there exists a number lε such that in any
interval [δ, δ + lε] one finds a number η, such that

sup
ξ∈R

|α(ξ + η)− α(ξ)| < ε and sup
ξ∈R

|(χ1)(ω,c)(ξ + η)− (χ1)(ω,c)(ξ)| < ε
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It comes that

(Γχ1)(t+ η)− (Γχ1)(t) =

∫ t+η

−∞
e−

∫ t+η
s α(ξ)dξχ1(s)ds−

∫ t

−∞
e−

∫ t
s α(ξ)dξχ1(s)ds

=

∫ t+η

−∞
e−

∫ t
s−η α(ξ+η)dξχ1(s)ds−

∫ t

−∞
e−

∫ t
s α(ξ)dξχ1(s)ds

=

∫ t

−∞
e−

∫ t
s α(ξ+η)dξχ1(s+ η)ds−

∫ t

−∞
e−

∫ t
s α(ξ)dξχ1(s)ds

=

∫ t

−∞
e−

∫ t
s α(ξ+η)dξχ1(s+ η)ds−

∫ t

−∞
e−

∫ t
s α(ξ)dξχ1(s+ η)ds

+

∫ t

−∞
e−

∫ t
s α(ξ)dξχ1(s+ η)ds−

∫ t

−∞
e−

∫ t
s α(ξ)dξχ1(s)ds

So there exists δ ∈ (0, 1) such that

|(Γχ1)(ω,c)(t+ η)− (Γχ1)(ω,c)(t)|

≤ |χ1|(ω,c)
∫ t

−∞

∣∣∣∣e− ∫ t
s α(ξ+η)dξ − e−

∫ t
s α(ξ)dξ

∣∣∣∣ds+ ∫ t

−∞
e−

∫ t
s α(ξ)dξ

∣∣∣∣(χ1)(ω,c)(s+ η)− (χ1)(ω,c)(s)

∣∣∣∣ds
≤ |χ1|(ω,c)

∫ t

−∞

∣∣∣∣e− ∫ t
s α(ξ+η)dξ − e−

∫ t
s α(ξ)dξ

∣∣∣∣ds+ ε

∫ t

−∞
e−

∫ t
s α(ξ)dξds

≤ |χ1|(ω,c)
∫ t

−∞

∣∣∣∣e− ∫ t
s α(ξ+η)dξ − e−

∫ t
s α(ξ)dξ

∣∣∣∣ds+ ε

∫ t

−∞
e−(t−s)αds

≤ |χ1|(ω,c)
∫ t

−∞

{
e
−

[ ∫ t
s α(ξ+η)dξ+δ

( ∫ t
s α(ξ)dξ−

∫ t
s α(ξ+η)dξ

)]
×
∣∣∣∣ ∫ t

s
α(ξ + η)− α(ξ)dξ

∣∣∣∣ds}
+ ε

∫ t

−∞
e−(t−s)αds

≤ |χ1|(ω,c)
∫ t

−∞

{
e−

∫ t
s α(ξ+η)dξe−δ(

∫ t
s α(ξ)dξ−

∫ t
s α(ξ+η)dξ)

∫ t

s

∣∣∣∣α(ξ + η)− α(ξ)

∣∣∣∣dξds}+ ε

∫ t

−∞
e−(t−s)αds

≤ ε|χ1|(ω,c)
∫ t

−∞
[e−(t−s)αe−δ(

∫ t
s α(ξ)dξ−

∫ t
s α(ξ+η)dξ)(t− s)]ds+ ε

∫ t

−∞
e−(t−s)αds

≤ ε|χ1|(ω,c)
∫ t

−∞
[e−(t−s)α(t− s)]ds+ ε

∫ t

−∞
e−(t−s)αds

≤
ε|χ1|(ω,c)

α2
+ ε

∫ t

−∞
e−(t−s)αds

≤
ε|χ1|(ω,c)

α2
+
ε

α
=

( |χ1|(ω,c)
α2

+
1

α

)
ε

This proves that (Γχ1) ∈ APω,c(R+). Now, let us show that (Γχ2) ∈ E(ω,c)(R,R+, µ). We have
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that

lim
r→+∞

1

µ([−r, r])

∫ r

−r

∣∣∣∣ ∫ t

−∞
e−

∫ t
s α(ξ)dξχ2(s)ds

∣∣∣∣
(ω,c)

dµ(t)

≤ lim
r→+∞

1

µ([−r, r])

∫ r

−r

∫ t

−∞
e−(t−s)α

∣∣∣∣χ2(s)

∣∣∣∣
(ω,c)

dsdµ(t)

≤ lim
r→+∞

1

µ([−r, r])

∫ r

−r

∫ ∞

0
e−αξ

∣∣∣∣χ2(t− ξ)

∣∣∣∣
(ω,c)

dξdµ(t)

= lim
r→+∞

∫ ∞

0
e−αξ

(
1

µ([−r, r])

∫ r

−r

∣∣∣∣χ2(t− ξ)

∣∣∣∣
(ω,c)

dµ(t)

)
dξ.

By the Lebesgue dominated convergence Theorem and (H2), we obtain that

lim
r→+∞

1

µ([−r, r])

∫ r

−r

∣∣∣∣ ∫ t

−∞
e−

∫ t
s α(ξ)dξχ2(s)ds

∣∣∣∣
(ω,c)

dµ(t) = 0.

Then, (Γχ2) ∈ E(ω,c)(R,R+, µ) and consequently, Γ ∈ PAP(ω,c)(R,R+, µ).

Theorem 5.6. Assume that (H2) and (C1) – (C6) hold, then the Lasota-Wazewska model
with mixed delays (17) possess a unique measure (ω, c)-pseudo almost periodic solution y and
we have y(ω,c) in the region

R = {ψ ∈ PAP(ω,c)(R,R+, µ),LB ≤ |ψ(ω,c)| ≤ UB}

where

UB =

m∑
j=1

(
aj

)
(ω,c)

+

n∑
i=1

(
bi

)
(ω,c)

α
and LB =

m∑
j=1

(aj)(ω,c)e
−ωjUB +

n∑
i=1

(bi)(ω,c)e
−pξβiUB

α

Proof. First, we proves that the operator Γ is a mapping from R to R. We set

γj(s) = aj(s)e
−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)x(σ)dσ

θi(s) = bi(s)e
−c∧(−s)βi(s)

∑p
j=1 x(s−τij)

In fact, we have

|Γx(t)|(ω,c) ≤
∫ t

−∞

∣∣∣∣e− ∫ t
s α(ξ)dξ

[ m∑
j=1

γj(s) +

n∑
i=1

θi(s)

]∣∣∣∣
(ω,c)

ds =

∫ t

−∞
e−

∫ t
s α(ξ)dξ

[∣∣∣∣ m∑
j=1

γj(s) +

n∑
i=1

θi(s)

∣∣∣∣
(ω,c)

]
ds

≤
∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

(aj)(ω,c) +
n∑

i=1

(bi)(ω,c)

]
ds

≤
∫ t

−∞
e−α(t−s)

[ m∑
j=1

(aj)(ω,c) +
n∑

i=1

(bi)(ω,c)

]
ds

=

∑m
j=1

(
aj

)
(ω,c)

+
∑n

i=1

(
bi

)
(ω,c)

α
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In the other hand, if we set

ξ = max
{
c∧(τi,j)

}
for (i, j) ∈ [[1, n]]× [[1, p]],

δj(s) = c∧(−s)ωj(s)

∫ s

−∞
Kj(s− σ)x(σ)dσ, for j ∈ [[1,m]].

ϕi(s) = c∧(−s)βi(s)
p∑

j=1

x(s− τij) for i ∈ [[1, n]].

then, we have for x ∈ R

|Γx(t)|(ω,c) =
∣∣∣∣ ∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

aj(s)e
−δj(s) +

n∑
i=1

bi(s)e
−ϕi(s)

]
ds

∣∣∣∣
(ω,c)

≥ c∧(−t)
∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

aj(s)e
−ωj

∫ s
−∞(Kj)(ω,c)(s−σ)x(ω,c)(σ)dσ

+
n∑

i=1

bi(s)e
−βi

∑p
j=1 c

∧(−τij)x(ω,c)(s−τij)

])
ds

≥ c∧(−t)
∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

aj(s)e
−ωjUB

∫ s
−∞(Kj)(ω,c)(s−σ)dσ +

n∑
i=1

bi(s)e
−βiUB

∑p
j=1 c

∧(−τij)

])
ds

≥ c∧(−t)
∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

aj(s)e
−ωjUB +

n∑
i=1

bi(s)e
−pξβiUB

]
ds

≥
∫ t

−∞
c∧(−s)e−

∫ t
s α(ξ)dξ

[ m∑
j=1

aj(s)e
−ωjUB +

n∑
i=1

bi(s)e
−pξβiUB

]
ds

=

∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

(aj)(ω,c)(s)e
−ωjUB +

n∑
i=1

(bi)(ω,c)(s)e
−pξβiUB

]
ds

≥
∫ t

−∞
e−α(t−s)

[ m∑
j=1

(aj)(ω,c)e
−ωjUB +

n∑
i=1

(bi)(ω,c)e
−pξβiUB

]
ds

=

∑m
j=1 (aj)(ω,c)e

−ωjUB +
∑n

i=1 (bi)(ω,c)e
−pξβiUB

α

which implies that the operator Γ is a mapping from R to itself. To end the proof, it suffices
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to prove that Γ is a contraction mapping. Let x, y ∈ R. Then

|Γx(t)− Γy(t)|(ω,c) =

∣∣∣∣∣
∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

aj(s)

(
e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)x(σ)dσ − e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)y(σ)dσ

)

+
n∑

i=1

bi(s)

(
e−c∧(−s)βi(s)

∑p
j=1 x(s−τij) − e−c∧(−s)βi(s)

∑p
j=1 y(s−τij)

)]
ds

∣∣∣∣∣
(ω,c)

≤
∫ t

−∞

∣∣∣∣∣e− ∫ t
s α(ξ)dξ

[ m∑
j=1

aj(s)

(
e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)x(σ)dσ − e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)y(σ)dσ

)

+

n∑
i=1

bi(s)

(
e−c∧(−s)βi(s)

∑p
j=1 x(s−τij) − e−c∧(−s)βi(s)

∑p
j=1 y(s−τij)

)]∣∣∣∣∣
(ω,c)

ds

=

∫ t

−∞
e−

∫ t
s α(ξ)dξ∣∣∣∣∣

[ m∑
j=1

(aj)(ω,c)(s)

(
e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)x(σ)dσ − e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)y(σ)dσ

)

+

n∑
i=1

(bi)(ω,c)(s)

(
e−c∧(−s)βi(s)

∑p
j=1 x(s−τij) − e−c∧(−s)βi(s)

∑p
j=1 y(s−τij)

)]∣∣∣∣∣ds
≤

∫ t

−∞
e−

∫ t
s α(ξ)dξ∣∣∣∣∣

[ m∑
j=1

(aj)(ω,c)

(
e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)x(σ)dσ − e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)y(σ)dσ

)

+
n∑

i=1

(bi)(ω,c)

(
e−c∧(−s)βi(s)

∑p
j=1 x(s−τij) − e−c∧(−s)βi(s)

∑p
j=1 y(s−τij)

)]∣∣∣∣∣ds
≤

∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

(aj)(ω,c)

∣∣∣∣∣e−c∧(−s)ωj(s)
∫ s
−∞ Kj(s−σ)x(σ)dσ − e−c∧(−s)ωj(s)

∫ s
−∞ Kj(s−σ)y(σ)dσ

∣∣∣∣∣
+

n∑
i=1

(bi)(ω,c)

∣∣∣∣∣e−c∧(−s)βi(s)
∑p

j=1 x(s−τij) − e−c∧(−s)βi(s)
∑p

j=1 y(s−τij)

∣∣∣∣∣
]
ds

Obviously, for u, v ∈ [0,+∞)
|e−u − e−v| ≤ |u− v|
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then it comes that

|Γx(t)− Γy(t)|(ω,c) ≤
∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

(aj)(ω,c)

∣∣∣∣∣c∧(−s)ωj(s)

∫ s

−∞
Kj(s− σ)(x(σ)− y(σ))dσ

∣∣∣∣∣
+

n∑
i=1

(bi)(ω,c)

∣∣∣∣∣c∧(−s)βi(s)
p∑

j=1

(x(s− τij)− y(s− τij))

∣∣∣∣∣
]
ds

≤
∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

(aj)(ω,c)ωj

∫ s

−∞
(Kj)(ω,c)(s− σ)dσ|x− y|(ω,c)

+ pξ|x− y|(ω,c)
n∑

i=1

(bi)(ω,c)βi

]
ds

=

∫ t

−∞
e−

∫ t
s α(ξ)dξ

[ m∑
j=1

(aj)(ω,c)ωj + pξ

n∑
i=1

(bi)(ω,c)βi

]
ds|x− y|(ω,c)

≤
∑m

j=1 (aj)(ω,c)ωj + pξ
∑n

i=1 (bi)(ω,c)βi

α
|x− y|(ω,c)

which implies (invoking (C5)) that the mapping Γ is a contraction mapping ofR. Consequently,
Γ possess a unique fixed point x⋆ ∈ R. Hence, x⋆ is the unique measure (ω, c)-pseudo almost
periodic solution of Equation (17) in R.

5.2 Example

In order to illustrate some features of our theoretical study, we will apply our main results to a
special system and demonstrate the efficiencies of our criteria.
We consider the following Lasota-Wazewska model with mixed delays

y′(t) = −α(t)y(t) +
3∑

j=1

aj(t)e
−c∧(−t)ωj(t)

∫ t
−∞ Kj(t−s)y(s)ds +

3∑
i=1

bi(t)e
−c∧(−t)βi(t)y(t−τi)

where α(t) = 8 + cos2(
√
5t) + cos2(t), c = 0.9, ω = 1,

a1(t)a2(t)
a3(t)

 =


(0.9)∧(t)

(
1 + 0.25 cos2(

√
2t) + 0.25 cos2(πt) + 0.5

1+t2

)
(0.9)∧(t)

(
0.5 + 0.25 cos2(

√
3t) + 0.25 cos2(πt) + 1

1+t2

)
(0.9)∧(t)

(
0.5 + 0.25 cos2(

√
5t) + 0.25 cos2(

√
2t) + e−t2 cos2(t)

)
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ω1(t)
ω2(t)
ω3(t)

 =

0.125 cos2(
√
2t) + 0.125 cos2(πt) + 0.25

1+t2

0.125 cos2(
√
2t) + 0.125 cos2(πt) + 0.25

1+t2

0.250 cos2(
√
2t) + 0.25e−t2 cos2(t)


b1(t)b2(t)
b3(t)

 =


(0.9)∧(t)

(
1 + 0.25 cos2(

√
5t) + 0.25 cos2(πt) + 0.5e−t2 cos2(t)

)
(0.9)∧(t)

(
1 + 0.25 cos2(

√
5t) + 0.25 cos2(πt) + 0.5e−t2 cos2(t)

)
(0.9)∧(t)

(
1 + 0.25 cos2(

√
5t) + 0.25 cos2(πt) + 0.5e−t2 cos2(t)

)


β1(t)β2(t)
β3(t)

 =

 0.125 cos2(
√
2t) + 0.125 cos2(πt) + 0.25

1+t2

0.125 cos2(
√
2t) + 0.125 cos2(πt) + 0.25

1+t2

0.125 cos2(
√
2t) + 0.125 cos2(πt) + 0.25e−t2 cos2(t)


τ1 = τ2 = τ3 = 1, Kj = (0.9)∧(t)e−t. Then

m∑
j=1

(aj)(ω,c)ωj + pξ
n∑

i=1

(bi)(ω,c)βi

α
≤ 3

4
< 1

If the Radon-Nikodym derivative ρ of the measure µ is ρ(t) = esin t with respect to the Lebesgue
measure on R (i.e. dµ = ρ(t)dt), then µ ∈ M and satisfies (H1), since

µ([−r, r]) =
∫ r

−r
esin(t) → +∞, if r → +∞,

and
µ(τ + a) ≤ e2µ(A), ∀τ ∈ R and a ∈ A.

Hence, conditions (C1) – (C6) and (H2) are satisfied then according to the Theorem 5.6, the
Lasota-Wazewska model with a mixed delays (18) has a unique µ-(ω, c)-pseudo almost periodic
solution in the region R = {y ∈ PAP(ω,c)(R,R+, µ),LB ≤ |y(ω,c)| ≤ UB} where

UB =

m∑
j=1

(
aj

)
(ω,c)

+
n∑

i=1

(
bi

)
(ω,c)

α
=

3

2

and

LB =

m∑
j=1

(aj)(ω,c)e
−ωjUB +

n∑
i=1

(bi)(ω,c)e
−pξβiUB

α
≤ e−

1
2

3
2 + 0.5e−

1
2

3
2 + 0.5e−

1
2

3
2 + e−0.9 1

2
3
2 + e−0.9 1

2
3
2 + e−0.9 1

2
3
2

10

=
e−

3
4

5
+

3e−
0.9
4

10
≈ 0.246
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