
HAL Id: hal-03656224
https://hal.science/hal-03656224v2

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalisation of alpha-beta search for AND-OR graphs
with partially ordered values

Junkang Li, Bruno Zanuttini, Tristan Cazenave, Véronique Ventos

To cite this version:
Junkang Li, Bruno Zanuttini, Tristan Cazenave, Véronique Ventos. Generalisation of alpha-beta
search for AND-OR graphs with partially ordered values. [Research Report] GREYC CNRS UMR
6072, Universite de Caen. 2022. �hal-03656224v2�

https://hal.science/hal-03656224v2
https://hal.archives-ouvertes.fr

Generalisation of alpha-beta search for AND-OR
graphs with partially ordered values∗

Junkang Li†,1,2, Bruno Zanuttini‡,2, Tristan Cazenave§,1,3, and
Véronique Ventos¶,1

1NukkAI, Paris, France
2Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14 000

Caen, France
3LAMSADE, Université Paris-Dauphine, PSL, CNRS, France

Abstract

We define a new setting related to the evaluation of AND-OR directed acyclic
graphs with partially ordered values. Such graphs arise naturally when solving
games with incomplete information (e.g. most card games such as Bridge) or
games with multiple criteria. In particular, this setting generalises standard AND-
OR graph evaluation and computation of optimal strategies in games with complete
information.

Under this setting, we propose a new algorithm which uses both alpha-beta
pruning and cached values. In this paper, we present our algorithm, prove its
correctness, and give experimental results on random games and on a card game
with incomplete information.

1 Introduction
Search in graphs containing AND- and OR-nodes is used as a basis of many algorith-
mic solutions to Artificial Intelligence problems. In such graphs, OR-nodes typically
model choice nodes where an agent can choose a successor, while AND-nodes model
an opponent. For instance, in robust planning with nondeterministic actions, an AND-
node models the outcome of an action: a strategy must be valid whatever the outcome
[Kissmann and Edelkamp, 2009]. Similarly, when solving a zero-sum two-player (se-
quential) game for a player, OR-nodes are those at which it is her turn to play, while
AND-nodes correspond to her opponent [Van Den Herik et al., 2002]: the value of an
OR-node is 1 if and only if at least onemove leads to a nodewith value 1; dually, at AND-
nodes, the values of the children are conjoined. More generally, in games that can have

∗This article is a long version with full proofs of the article published in the proceedings of the 31st
International Joint Conference on Artificial Intelligence (IJCAI 2022).

†junkang.li@nukk.ai
‡bruno.zanuttini@unicaen.fr
§tristan.cazenave@lamsade.dauphine.fr
¶vventos@nukk.ai

1

more than two outcomes, such as chess or checkers [Schaeffer et al., 2007], AND-nodes
(respectively OR-nodes) correspond to a minimum (respectively maximum) operator
on the values of their children.

A fundamental question is that of evaluating rootedAND-ORdirected acyclic graphs
(DAGs), which means computing the value of their root given a value for each of their
leaves. For instance, in gameswith complete information, selecting the bestmove for the
current turn amounts to evaluate each of the children of the root. This problem has been
thoroughly studied in the literature [Marsland, 1986] under the setting of totally ordered
values (Boolean or real) and the standard AND/OR or min/max operators. Following
[Ginsberg and Jaffray, 2002], we investigate here a more general setting, where the val-
ues are taken from a distributive lattice (+,∧,∨) (i.e. a partially ordered set with least
upper bound and greatest lower bound for any two elements), and operators for AND-
and OR nodes are taken to be the meet ∧ and join ∨, respectively. This setting arises
naturally in many applications, in particular in games with incomplete information. Ex-
ample of such games are Skat [Kupferschmid and Helmert, 2006, Rebstock et al., 2019,
Edelkamp, 2020], Bridge [Levy, 1989, Ginsberg, 2001, Cazenave and Ventos, 2020],
Hearts and Spades [Sturtevant and White, 2006].

A well-known technique for evaluating AND-OR graphs is alpha-beta pruning,
which maintains a lower bound U (respectively upper bound V) on the value of each OR-
nodes (respectively AND-nodes), and uses them to prune some of their successors. This
technique is currently used in strong chess programs [Haworth and Hernandez, 2021]
combined with sophisticated evaluation functions such as NNUE neural networks
that were first used in Shogi [Nasu, 2018]. However, the generalisation of alpha-
beta pruning to AND-OR DAGs with partially ordered values is nontrivial since two
values from a lattice are not always comparable. We build on the seminal work by
[Ginsberg and Jaffray, 2002] and generalise it by proving the correctness of lattice-
valued alpha-beta pruning with the consideration for heuristic functions.

Orthogonally, we investigate caching techniques for alpha-beta pruning in lattice-
valued DAGs. The question is again nontrivial because nodes are in general revisited
with different U and V than during previous visits. For this, we propose a new algo-
rithm called ‘alpha-beta duo’. We state its correctness and experimentally evaluate its
efficiency.

The paper is organised as follows. Preliminaries are given in Sections 2 and 3. We
extend the work by [Ginsberg and Jaffray, 2002] in Section 4, and present alpha-beta
duo in Section 5. We then report experimental results and conclude.

2 Preliminaries
The following definitions on posets and lattices are based on [Davey and Priestley, 2002].

Definition 1. Let + be a set and � be a binary relation on + . Then (+, �) is called
a partially ordered set (poset) if � is a partial order (i.e. reflexive, transitive, and
antisymmetric).

For a poset (+, �) and (⊆ + , an element G ∈ + is called an upper bound (UB) of
(if B � G holds for all B ∈ (, and G is called a least upper bound (LUB) if in addition
G � H holds for any UB H of (. If (has an LUB, then it is unique. The greatest lower
bound (GLB) of (is defined dually. For G, H ∈ + , we write G ∨ H (‘G join H’) and G ∧ H
(‘G meet H’) respectively for the LUB and GLB of {G, H}, when they exist.

Definition 2. A poset (+, �) is called a distributive lattice if

2

• for all G, H ∈ + , G ∨ H and G ∧ H exist,

• for all G, H, I ∈ + , G ∨ (H ∧ I) = (G ∨ H) ∧ (G ∨ I),

• for all G, H, I ∈ + , G ∧ (H ∨ I) = (G ∧ H) ∨ (G ∧ I).

It is moreover said to be bounded if there are elements ⊥,> ∈ + satisfying ⊥ � G and
G � > for any G ∈ + .

In the remainder of this paper, we denote by (+, �,∧,∨) an arbitrary bounded
distributive lattice.

Example 1. Let (be a set and let 2(denote its powerset. Then (2(, ⊆,∩,∪) is a
bounded distributive lattice with set inclusion ⊆ as partial order, set intersection ∩ and
set union ∪ respectively as meet and join, ∅ as ⊥, and (as >.

We denote any directed acyclic graph (DAG) by � = (#,�), where # is the set of
nodes, and � : # → 2# is a function that yields the set of children of each node. A
root A is a node without predecessor (i.e. for any = ∈ # , A ∉ � (=)), and a leaf is a node
without child. We denote the set of leaves of a DAG� by !� . We only consider rooted
DAGs, which contain a (necessarily unique) root A such that there exists a directed path
to every vertex from A .

An AND-OR DAG is a rooted DAG (#,�, A) equipped with a labelling function
ℓ : # → {A,O}. Nodes labelled by A and O are respectively called AND-nodes and
OR-nodes. Note that we do not impose nodes to be alternating.

3 Problem setting
We are interested in the problem of evaluating the root value of an AND-OR DAG,
given values for all its leaves. Formally, given an AND-OR DAG � = (#,�, A, ℓ),
a bounded distributive lattice (+, �,∧,∨), and an evaluation function 4 : !� → +

assigning a value in + to each leaf of �, the goal is to compute E(A), where the value
E(=) of = ∈ # is defined recursively by:

• for a leaf node =, E(=) := 4(=);

• for an internal AND-node =, E(=) := ∧
2∈� (=) E(2);

• for an internal OR-node =, E(=) := ∨
2∈� (=) E(2).

Since � is a DAG, the function E : # → + is well-defined.

Example 2. Consider the DAGs in Figure 1, where circle and square nodes represent
AND-nodes and OR-nodes, respectively. On the left, the lattice is the set of Boolean
vectors of length 4 (denoted as words), with bitwise AND and bitwise OR as meet and
join, respectively. One can easily verify that E(A) = 1100. On the right, the lattice is
the set of Boolean vectors of length 3, and E(') = 001.

Example applications
Many important problems are in fact AND-OR DAG evaluation in disguise. The
simplest one is Boolean circuit evaluation. Here AND- and OR-nodes model AND and
OR gates, the lattice is the Boolean algebra (i.e. + = {0, 1} with 0 � 1 and logical

3

r

0100
n

1101 1000

R
A

111

B

001
C

110 001

D

010 001

Figure 1: Two AND-OR DAGs with partially ordered values.

conjunction and disjunction as meet and join), and the evaluation function encodes the
inputs of the circuit.

Solving a game with complete information typically involves computing the min-
imax value of a game tree, which can be regarded as evaluating an AND-OR DAG:
AND- and OR-nodes are respectively choice nodes of player MIN and of player MAX,
the lattice is (+, ≤,min,max) with + a totally ordered set such as Z or R, and the
evaluation function gives the value of terminal nodes, or a heuristic value if the search
is cut at some depth. Then the root value is the minimax value of the game.

In games with incomplete information, nontrivial lattices come into play. For
example, [Ginsberg, 2001] shows that computing the maxmin value of a player amounts
to evaluate the game DAG with the lattice (22(, �,u,∪)1, where (is a finite set and
5 u 6 = {U ∩ V | U ∈ 5 , V ∈ 6} for any 5 , 6 ∈ 22((i.e. 5 and 6 are sets of subsets of
(). We will discuss more about this in Section 6.

4 Alpha-beta pruning under partial order
Most of the literature on alpha-beta pruning concerns only totally ordered values, such as
real numbers. Since AND-OR DAGs with partially ordered values are useful to model
richer problems, [Dasgupta et al., 1996] proposed alpha-beta pruning in this new setting
for multi-criteria game. [Ginsberg and Jaffray, 2002] gave the first thorough study on
this subject, and proved in particular that deep pruning is sound for rational players if
and only if the set of values is a distributive lattice. [Loddo and Saiu, 2010] showed
that deep pruning is sound for tropical algebras if rationality is relaxed.

The form of deep U pruning considered by [Ginsberg and Jaffray, 2002] is given
in Figure 2 (left). If E � U, then the subtree) can be deeply pruned. To show why
this definition of deep pruning does not capture every cut an alpha-beta search should
performwhen values are partially ordered, consider Figure 2 (right). The lattice is again
the set of Boolean vectors of length 3, with bitwise AND and bitwise OR as meet and
join, respectively. When an alpha-beta search algorithm descends to the bottommost
AND-node, the value of U would be 110, which is the join of the value of an already
explored child of two ancestor OR-nodes. We would like the algorithm to prune subtree
) since the value of its parent node cannot be better than the current value of U (due
to the sibling of)). However, deep pruning, as it is defined in the literature such as
[Ginsberg and Jaffray, 2002], does not apply since the value of U does not come from
a child of one single ancestor node. Note that this phenomenon is specific to lattices

1We abuse the notation to denote by 22
(the set of subsets of (closed under subsets, i.e. the set of

down-sets of 2(.

4

OR

U

AND
OR
. . .
AND

E)

OR

100

AND
OR

010

AND

110)

Figure 2: Deep pruning vs expected pruning.

Algorithm 1: Alpha-beta search
1 def AlphaBeta(node =, U, V):
2 � = ℎ(=, U, V)
3 E ← �

4 determine the successor nodes =1, . . . , =1 of =
5 for 8 in {1, . . . , 1}:
6 if = is an OR-node:
7 U← U ∨ E
8 else:
9 V← V ∧ E

10 if U � V:
11 break
12 Echild ← AlphaBeta(=8 , U, V)
13 if = is an OR-node:
14 E ← E ∨ Echild
15 else:
16 E ← E ∧ Echild
17 return E

that are not totally ordered, since otherwise the meet or join (i.e. min or max) of two
values is always one of them, hence deep pruning captures any pruning in a standard
alpha-beta search.

Another question not formally addressed in the literature is the initialisation of node
values. In standard alpha-beta search, one typically initialises the value of an OR-node
(respectively AND-node) to be U (respectively V) [Knuth and Moore, 1975] or −∞
(respectively +∞) [Marsland, 1986] (note that −∞ and +∞ translate to ⊥ and > in our
context). However, one may have access to a heuristic evaluation of nodes, typically
by evaluating a relaxed version of the problem which is easier to solve. For instance, a
player can do no better in a game with incomplete information than in the same game
but with complete information. The latter beingmuch easier to solve, the value obtained
can be used as a heuristic in the original game with incomplete information. Ideally,
initialising values with an accurate heuristic should accelerate the search by finding cuts
earlier.

In order to fill these two gaps in the literature, we first formalise alpha-beta search
under partial order with initialisation function in Algorithm 1. We denote by ℎ the
initialisation function. In general, its value depends on the current U and V, so we
define it to yield a value ℎ(=, U, V) for any node = and bounds U and V. Note that since

5

non-trivial initial value can be used for a node = (Line 3), a cut may happen even before
the first child of = is explored, hence we update U and V (Lines 7 and 9) and determine
whether there is a cut (Line 10) at the beginning of the main loop. This is otherwise
the same algorithm as in the literature (for instance, [Marsland, 1986]).

It can be seen that Algorithm 1 will perform the wished pruning in the example in
Figure 2 (right). By mimicking the proof by [Knuth and Moore, 1975], we prove that
such pruning is indeed sound, thereby extending the result by [Ginsberg and Jaffray, 2002]
to its full form, provided that the initialisation function ℎ satisfies a certain admissibility
condition:

Definition 3. A heuristic function ℎ is said to be admissible for� and+ if for any node
= in � and any U, V ∈ + ,

ℎ(=, U, V)

= E(=) if = is a leaf node;
� E(=) ∧ V if = is an AND-node;
� E(=) ∨ U if = is an OR-node.

Note that this condition is satisfied for the initialisation values usually used in the
literature, such as U or −∞ for OR-nodes (and V or +∞ for AND-nodes). It is also
satisfiedwhen ℎ(=, U, V) overestimates E(=) for internalAND-nodes and underestimates
it for internal OR-nodes.

We denote the value returned by Algorithm 1 with input =, U, V by 5 (=, U, V). The
correctness of Algorithm 1 is a consequence of the following central result.

Proposition 1. If ℎ is an admissible heuristic function for � and + , then for any node
= of � and any U, V ∈ + , we have

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨ E(=)

)
. (1)

Proof. The proof is based on structural induction. We will only focus on OR nodes,
since the case for AND nodes is completely symmetric. So let = be an OR node and let
us consider the execution of the function call AlphaBeta(=, U, V).

If = is a leaf, then 5 (=, U, V) = ℎ(=, U, V) = E(=) since ℎ is admissible, hence
equality (1) holds trivially.

Now consider an internal OR node =. Let 1 ≥ 1 be the number of children of =
and let =1, . . . , =1 be the children of =, listed in the same order as in Algorithm 1. By
definition of the value function,

E(=) =
1∨
9=1

E(= 9).

We assume by induction that all function calls on the children of = satisfy equality (1).
Let : be the index of loop during which a break happens (i.e. a cut is found). If no

break happens, then : is taken to be 1 + 1. For 0 ≤ 8 < : , let E8 and U8 denote the value
of E and U after the 8th loop2. Then we have

E8 = � ∨
8∨
9=1

5 (= 9 , U 9 , V).

In particular, E0 = �. In addition, U0 = U, and U8 = U ∨ E8−1 for 1 < 8 < : .
To prove equality (1) for node =, we need the following lemma:

2By after the 0th loop, we mean before the beginning of the first loop.

6

Lemma 1. For any 0 ≤ 8 < : , we have

V ∧ (U ∨ E8) = V ∧
(
U ∨ � ∨

8∨
9=1

E(= 9)
)
. (2)

Proof. Weprove equality (2) by an induction on 8. When 8 = 0, both sides of equality (2)
equals V ∧ (U ∨ �), hence the equality holds.

For 8 ≥ 1, 5 (=8 , U8 , V) satisfies equality (1) by induction from the main proposition,
which means

V ∧
(
U8 ∨ 5 (=8 , U8 , V)

)
= V ∧

(
U8 ∨ E(=8)

)
. (3)

Notice that U8 = U ∨ E8−1, we have

V ∧ (U ∨ E8) = V ∧
(
U ∨ E8−1 ∨ 5 (=8 , U8 , V)

)
= V ∧

(
U ∨ E8−1 ∨ E(=8)

)
= V ∧

(
U ∨ � ∨

8−1∨
9=1

E(= 9) ∨ E(=8)
)

= V ∧
(
U ∨ � ∨

8∨
9=1

E(= 9)
)
,

where the second line is due to equality (3), the third line is due to distributivity and
equality (2) applied to E8−1. Therefore, equality (2) holds for all 0 ≤ 8 < : . �

Now we can complete the proof of Proposition 1. For a non-leaf OR-node = with
1 ≥ 1 children, two cases are possible:

• No break has taken place, which means : = 1 + 1 and the algorithm has looped
through all children of =. Then we have 5 (=, U, V) = E1 . Plugging 8 = 1 into
equality (2), we get

V ∧ (U ∨ E1) = V ∧
(
U ∨ � ∨

1∨
9=1

E(= 9)
)

= V ∧
(
U ∨ � ∨ E(=)

)
= V ∧

(
U ∨ E(=)

)
where the last equality is due to � = ℎ(=, U, V) � E(=) ∨ U for an OR node since
ℎ is admissible. Hence, equality (1) holds for node =.

• A break happens during the :th loop where 1 ≤ : ≤ 1, which means U: =

U ∨ E:−1 � V (Line 10 in Algorithm 1) and 5 (=, U, V) = E:−1. On the right hand
side of equality (1), we have

V ∧
(
U ∨ E(=)

)
= V ∧

(
U ∨ � ∨ E(=)

)
= V ∧

(
U ∨ � ∨

1∨
9=1

E(= 9)
)

� V ∧
(
U ∨ � ∨

:−1∨
9=1

E(= 9)
)

= V ∧ (U ∨ E:−1),

7

where the first line is due to � � U∨ E(=), the second one is by definition of E(=),
and the last line is due to equality (2) applied to 8 = : − 1. Hence,

V � V ∧
(
U ∨ E(=)

)
� V ∧ (U ∨ E:−1) = V,

which means all inequalities are equalities. Hence,

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨ E:−1

)
= V ∧

(
U ∨ E(=)

)
.

which means, equality (1) holds for node =.

�

Intuitively, Proposition 1 states that the value returned by Algorithm 1 is the exact
value of = up to a factor of U and V. So even for partially ordered values, alpha-beta
search can be interpreted as search with a pruning window.

Now it follows that Algorithm 1 is correct in the sense that if we use a lower and
an upper bound as the initial search window at a node, we can recover its exact value
using the returned value of the algorithm.

Corollary 1. If ℎ is admissible for � and + , then for any node = of � and any
E, E ∈ + satisfying E � E(=) � E, we have E(=) = E ∧

(
E ∨ 5 (=, E, E)

)
. In particular,

E(=) = 5 (=,⊥,>).

Proof. Plug U = E and V = E into the equality in Proposition 1, and use the fact that
E ∨ E(=) = E(=) = E ∧ E(=). �

Importantly, contrary to the case of totally ordered values, it is not true in general
that the stronger equality E(=) = 5 (=, E, E) holds, as the example in Figure 1 (left)
shows. Let ℎ(A, ·, ·) = ⊥ = 0000 and ℎ(=, ·, ·) = > = 1111, so that ℎ is admissible.
Recall that E(A) = 1100. For E = 1000 and E = 1110, indeed E � E(A) � E. However,
5 (A, E, E) = 1101 ≠ E(A) since an U-cut happens in the call on = (Line 10) after
examining its first child, since at this point U = V = 1100. However, since U = E

and V = E yield no constraint on the fourth component of the values, we still have
E(A) = E ∧

(
E ∨ 5 (A, E, E)

)
, as stated in Corollary 1.

5 Alpha-beta duo algorithm
Wenow come to themain contribution of ourwork, namely a caching scheme for reusing
previously computed values in an alpha-beta search for partially ordered values. The
trouble of standard alpha-beta search is that the returned value is equal to the exact
value only up to a factor of U and V. It is therefore a nontrivial question how to reuse a
previously computed value, since subsequent revisits of a node may come with different
search windows.

In alpha-beta searchwith cache for totally ordered values (for instance [Marsland, 1986]),
one can exploit the fact that with usual value initialisation, the value 5 (=, U, V) satisfies
5 (=, U, V) < V ⇒ E(=) ≤ 5 (=, U, V) and 5 (=, U, V) > U ⇒ E(=) ≥ 5 (=, U, V). In par-
ticular, if U < 5 (=, U, V) < V, then 5 (=, U, V) = E(=). Hence by comparing 5 (=, U, V)
to U and V, one can determine whether it is exact, a lower, or an upper bound, and store
it in the cache with an appropriate flag.

However, this does not hold in general for partially ordered values, as shown on
Figure 1 (right). For U = 010 and V = 110, a V-cut happens after evaluating the first

8

child of �, and an U-cut after evaluating the first child of �. Hence, the algorithm
returns 010 for ', which is neither a lower nor an upper bound of the exact value 001.
In fact, these two values are incomparable in the lattice. If ' is an internal node in
a DAG, then caching this returned value 010 may cause an evaluation error when the
algorithm revisits '.

To tackle this difficulty, we propose a new algorithm named ‘alpha-beta duo’, which
computes a pair of values for all nodes instead of one single value. The algorithm
is presented in Algorithm 2, where Cache refers to a transposition table the entries
of which are pairs of values indexed by nodes of �, and (ℎ, ℎ) refers to a pair of
initialisation functions for which we assume the following property.

Definition 4. A pair (ℎ, ℎ) of initialisation functions is said to be admissible for � and
+ if for any node = in �, ℎ(=) � E(=) � ℎ(=) holds, and in addition, if = is a leaf node,
ℎ(=) = ℎ(=) = E(=) holds.

In other words, admissible ℎ and ℎ respectively underestimates and overestimates
the value of a node. Note that ℎ and ℎ that assign respectively ⊥ and > to all internal
nodes form an admissible pair, which can always be used if one does not have better
heuristic functions.

Alpha-beta duo search works in the following manner:

• First, variables 2 and 2 denote respectively the best lower and upper bound of E(=)
available to the algorithm before this call. If = has already been visited, then 2
and 2 are retrieved from the cache. Otherwise, they are given by the initialisation
functions ℎ and ℎ. If 2 = 2, (2, 2) is returned immediately.

• Otherwise, by symmetry consider the case when = is an OR-node. During the
main loop, E and E are respectively the cumulative lower and upper bound of E(=)
(notice that they are both initialised to ⊥ for an OR-node). If a cut ever happens,
it means not all children of = have been evaluated, hence E is not a valid upper
bound of E(=). Then we take E to be 2, the best upper bound previously known.
On the other hand, E, which is the join of lower bounds of children of = that have
been evaluated, is a valid lower bound so we keep it.

• Finally, after the main loop, E and E are the lower and upper bounds of E(=)
computed by the current call. Hence they are combined with the previously
known bounds 2 and 2 to yield to best currently known bounds on E(=) and they
are cached.

We now prove that alpha-beta duo is correct. For this, we first need the following
notion.

Definition 5. A cache Cache is said to be coherent for � and + if for any node = in �,
if there is an entry for = in the cache, then Cache(=) = (2, 2) where 2 � E(=) � 2, and
in addition, if = is a leaf node, then 2(=) = 2(=) = E(=).

Obviously, an empty cache is coherent for any � and + .
In the following, we denote the pair of values returned by Algorithm 2 with input

=, U, V by (5 (=, U, V), 5 (=, U, V)). We first show that if the cache is initially coherent,
then it remains coherent after the execution, and that any interval stored in it cannot
become looser.

9

Algorithm 2: Alpha-beta duo search
1 def AlphaBetaDuo(node =, U, V):
2 if there is an entry for = in the cache:
3 (2, 2) ← Cache(=)
4 else:
5 (2, 2) ← (ℎ(=), ℎ(=))
6 if 2 = 2:
7 return (2, 2)
8 U← U ∨ 2
9 V← V ∧ 2

10 if = is an OR-node:
11 (E, E) ← (⊥,⊥)
12 else:
13 (E, E) ← (>,>)
14 determine the children =1, . . . , =1 of =
15 for 8 in {1, . . . , 1}:
16 if U � V:
17 if = is an OR-node:
18 E = 2

19 else:
20 E = 2

21 break
22 E′, E′← AlphaBetaDuo(=8 , U, V)
23 if = is an OR-node:
24 E ← E ∨ E′
25 E ← E ∨ E′
26 U← U ∨ E′
27 else:
28 E ← E ∧ E′
29 E ← E ∧ E′
30 V← V ∧ E′
31 E ← E ∨ 2
32 E ← E ∧ 2
33 store (E, E) in the cache under an entry for =
34 return (E, E)

Proposition 2. If (ℎ, ℎ) is admissible and Cache is initially coherent for � and+ , then
for any node = in � and any U, V ∈ + , we have

5 (=, U, V) � E(=) � 5 (=, U, V). (4)

Moreover, if there is an entry (2, 2) in the cache for = before the call, then 2 � 5 (=, U, V)
and 5 (=, U, V) � 2.

Proof. 2 � 5 (=, U, V) and 5 (=, U, V) � 2 are direct consequence of Line 31 and 32.
The proof of inequality (4) is based on structural induction. We will only focus on

OR nodes since the case for AND nodes is completely symmetric. So let = be an OR
node and let us consider the execution of the function call AlphaBetaDuo(=, U, V).

10

If = is a leaf node, then whether or not there is an entry for = in the cache, on Line 6
we have 2 = 2 = E(=) since (ℎ, ℎ) is admissible and Cache is coherent. Hence the
function returns immediately, so inequality (4) holds and the cache remains coherent.

Otherwise, = is an internal OR-node. Again, whether or not there is an entry for =
in the cache, on Line 6 and forward we have 2 � E(=) � 2, since (ℎ, ℎ) is admissible
and Cache is coherent.

Let 1 ≥ 1 be the number of children of =. We assume by induction that all function
calls on the children of = satisfy inequality (4) and maintain the coherence of the cache.
Let : be the index of loop during which a break happens (if no break happens, then :
is taken to be 1 + 1). For 1 ≤ 8 ≤ : − 1, let E8 and E8 denote the values returned by
the function call on the child =8 during the 8th loop. Then by induction assumption,
inequality (4) yields E8 � E(=8) � E8 for 1 ≤ 8 ≤ : − 1.

Hence after the loop (i.e. just before Line 31),

E =

:−1∨
8=1

E8 �
:−1∨
8=1

E(=8) �
1∨
8=1

E(=8) = E(=).

As for E, we have two cases.

• No break happens, i.e. : = 1 + 1. Then

E =

1∨
8=1

E8 �
1∨
8=1

E(=8) = E(=).

• Otherwise, a break happens, and E = 2 � E(=).

So in both cases, E � E(=).
Therefore, after the final updates on Line 31 and 32, we have E � E(=) � E.

As a result, the returned values of the function call AlphaBetaDuo(=, U, V) satisfy
inequality (4). And the cache remains coherent after the function call. �

We can now prove results parallel to those in Section 4.

Proposition 3. If (ℎ, ℎ) is admissible and Cache is initially coherent for � and+ , then
for any node = in � and any U, V ∈ + we have

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨ 5 (=, U, V)

)
. (5)

Proof. Again, we will only focus on OR nodes since the case for AND nodes is
symmetric.

If = is a leaf node, then 5 (=, U, V) = 5 (=, U, V) = E(=) since (ℎ, ℎ) is admissible
and Cache is coherent. Hence equality (5) holds.

Otherwise, let 1 ≥ 1 be the number of children of =. We assume by induction that
all function calls on the children of = satisfy inequality (5). Let : be the index of loop
during which a break happens (if no break happens, then : is taken to be 1 + 1). For
1 ≤ 9 < : , let E 9 and E 9 denote the values returned by the function call on = 9 during
the 9 th loop. For 0 ≤ 8 < : , let E

8
, E8 , and U8 denote the value of E, E, and U after the

8th loop. Then for 0 ≤ 8 < : , we have E
8
=

∨8
9=1 E

9 , E8 =
∨8
9=1 E

9 , and U8 = U ∨ 2 ∨ E8 .
In particular, E0 = E0 = ⊥ and U0 = U ∨ 2. For 1 ≤ 9 < : , since function call on the
child = 9 has the form AlphaBetaDuo(= 9 , U 9 , V ∧ 2), by equality (5), we have

V ∧ 2 ∧
(
U 9 ∨ E 9

)
= V ∧ 2 ∧

(
U 9 ∨ E 9

)
.

11

Hence by distributivity, we have

V ∧ 2 ∧
:−1∨
9=1

(
U 9 ∨ E 9

)
= V ∧ 2 ∧

:−1∨
9=1

(
U 9 ∨ E 9

)
. (6)

We distinguish two cases.

• No break happens (i.e. : = 1 + 1). Then

5 (=, U, V) = 2 ∨ E
1
= 2 ∨

1∨
9=1

E 9 ,

5 (=, U, V) = 2 ∧ E1 = 2 ∧
1∨
9=1

E 9 .

First notice that the distributivity of the lattice implies that for any G, H, I ∈ + ,

G ∨ (H ∧ I) = (G ∨ H) ∧ (G ∨ I) = G ∨
(
H ∧ (G ∨ I)

)
, (7)

G ∧ (H ∨ I) = (G ∧ H) ∨ (G ∧ I) = G ∧
(
H ∨ (G ∧ I)

)
. (8)

Applying equalities (7) and (8), one has

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨

(
2 ∧

1∨
9=1

E 9

))
= V ∧

(
U ∨

(
2 ∧

(
U ∨

1∨
9=1

E 9
)))

= V ∧
(
U ∨

(
V ∧ 2 ∧

(
U ∨

1∨
9=1

E 9
)))

.

We will first focus on the term V ∧ 2 ∧ (U ∨∨1
9=1 E

9). Our goal is to massage it
into a form to which the induction assumption (6) can apply.
Recall that for 9 ≤ 1, U 9 = U0 ∨ E 9 = U0 ∨

∨ 9

;=1
E; . Hence,

1∨
9=1

(U 9 ∨ E 9) =
1∨
9=1

(
U0 ∨

9∨
;=1

E; ∨ E 9
)

= U0 ∨
1∨
9=1

9∨
;=1

E; ∨
1∨
9=1

E 9

= U0 ∨
1∨
9=1

E 9 ∨
1∨
9=1

E 9

= U0 ∨
1∨
9=1

E 9 ,

12

where in the last equality we use the fact that by Proposition 2, we have E 9 � E 9
for any 9 ≤ 1. Similarly, we have

1∨
9=1

(U 9 ∨ E 9) =
1∨
9=1

(
U0 ∨

9∨
;=1

E; ∨ E 9
)
= U0 ∨

1∨
9=1

E 9 .

Hence, by U0 = U ∨ 2 � U, the two previous equalities, distributivity, and the
induction assumption (6),

V ∧ 2 ∧
(
U ∨

1∨
9=1

E 9
)
� V ∧ 2 ∧

(
U0 ∨

1∨
9=1

E 9
)

= V ∧ 2 ∧
1∨
9=1

(U 9 ∨ E 9)

= V ∧ 2 ∧
1∨
9=1

(U 9 ∨ E 9)

= V ∧ 2 ∧
(
U0 ∨

1∨
9=1

E 9
)

� V ∧
(
U0 ∨

1∨
9=1

E 9
)
.

Therefore, applying again equalities (7) and (8) yields

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧

(
U ∨

(
V ∧ 2 ∧

(
U ∨

1∨
9=1

E 9
)))

� V ∧
(
U ∨

(
V ∧

(
U0 ∨

1∨
9=1

E 9
)))

= V ∧
(
U ∨ U0 ∨

1∨
9=1

E 9

)
= V ∧

(
U ∨ 2 ∨

1∨
9=1

E 9

)
= V ∧

(
U ∨ 5 (=, U, V)

)
.

• A break happens (i.e. 1 ≤ : ≤ 1). Then 5 (=, U, V) = 2 and 5 (=, U, V) = 2∨E
:−1.

Since a break happens during the :th loop, according to Line 16 in Algorithm 2
we have V ∧ 2 � U:−1 = U ∨ 2 ∨ E

:−1. Hence by distributivity,

V ∧
(
U ∨ 5 (=, U, V)

)
= V ∧ (U ∨ 2)
= V ∧

(
U ∨ (V ∧ 2)

)
� V ∧

(
U ∨ (U ∨ 2 ∨ E

:−1)
)

= V ∧
(
U ∨ 5 (=, U, V)

)
.

13

Therefore, no matter a break happens or not, we have

V ∧
(
U ∨ 5 (=, U, V)

)
� V ∧

(
U ∨ 5 (=, U, V)

)
.

On the other hand, by Proposition 2, 5 (=, U, V) � 5 (=, U, V), which means

V ∧
(
U ∨ 5 (=, U, V)

)
� V ∧

(
U ∨ 5 (=, U, V)

)
.

As a consequence, equality (5) holds. �

Corollary 2. If (ℎ, ℎ) is admissible and Cache is initially coherent for � and + ,
then for any node = in � and any E, E ∈ + satisfying E � E(=) � E, we have E(=) =
E∧

(
E∨ 5 (=, E, E)

)
= E∧

(
E∨ 5 (=, E, E)

)
. In particular, E(=) = 5 (=,⊥,>) = 5 (=,⊥,>).

Proof. By Proposition 2, 5 (=, E, E) � E(=) � 5 (=, E, E). Using E ∧
(
E ∨ E(=)

)
= E(=),

we get
E ∧

(
E ∨ 5 (=, E, E)

)
� E(=) � E ∧

(
E ∨ 5 (=, E, E)

)
.

These inequalities are in fact equalities since from Proposition 3 we have E ∧
(
E ∨

5 (=, E, E)
)
= E ∧

(
E ∨ 5 (=, E, E)

)
. �

6 Experiments
To assess the efficiency of alpha-beta duo (hereafter ‘ABD’), we ran experiments com-
paring it to three other algorithms:

• alpha-beta without cache (Algorithm 1, ‘AB’ for short);

• an alpha-beta search which only caches the value computed for a node if no cut
is found during the search in the subtree rooted at this node (hereafter ‘ABC’);

• a minimax search algorithm without alpha-beta pruning, but with a cache (here-
after ‘MMC’).

The code of ABD was slightly optimized by refining the values computed on
Lines 31 and 32 with the corresponding bounds of all fully explored children. It is easy
to show that this preserves the correctness of the algorithm.

For all experiments, we measured the number of nodes of the DAG visited at least
once, the total number of node visits (equivalently, the total number of recursive calls),
and the time taken for solving the problem. Intuitively, we expect ABD to be better than
ABC, ABC to be better than MMC (because MMC does not use alpha-beta pruning),
and MMC to be better than AB (because the latter does not cache its results and hence,
recomputes several times for the same node).

We used two synthetic sets of benchmarks. The first (hereafter ‘random’) consists of
randomDAGs of the same kind as the one in Figure 1. RandomDAGswith parameters 3
(depth), 1 (branching factor), and E (number of variables) are generated in the following
manner:

• 3 layers 0, 1, . . . , 3 − 1 are built: layer 8 consists of 3min(8, 33
2
−8) nodes (which

yields diamond-shapes DAGs);

• from each node =, a set of 1 nodes is randomly chosen from nodes in the next
layer to be � (=);

14

• each internal node is labelled AND or OR at random;

• the value of each terminal node is a uniformly drawn subset of {1, . . . , E}, or
equivalently a random Boolean vector of length E.

We also consider strictly alternating DAGs, in which all nodes in layer 8 are OR-nodes
(respectively AND-nodes) if 8 is even (respectively odd). In particular, the root is an
OR-node.

The second set of benchmarks consists of a simplified version of the card game
Bridge that we call ‘racing’. There are two players, MIN and MAX. Each has a hand
of ℎ cards drawn uniformly from the deck {1, . . . , 3} where 3 ≥ 2ℎ. Players only see
their own hand. MIN begins the game. During each trick, the player who begins plays
a card from her hand, the other sees it and plays a card in turn. The player who played
the highest card wins this trick and starts the next one. No new card is ever drawn from
the deck. The game ends when the players have no more cards or when one has won in
total 6 tricks. MAX wins if she is the first one to reach 6 tricks. For the benchmark,
each instance with parameter ℎ, 3, and 6 consists of a randomly drawn hand with ℎ
cards for MAX and a randomly drawn card that is supposed to be played byMIN during
the first trick. Notice that when 3 > 2ℎ, each player has incomplete information. We
use evaluation of AND-OR DAGs to compute optimal strategies for MAX against the
best defence adversary model defined in [Frank and Basin, 1998].

In games with incomplete information where (is the set of all possible hidden con-
figurations, [Frank and Basin, 1998, Frank and Basin, 2001] define the maxmin value
of player MAX to be the set of all subsets (′ of (such that there is a uniform strategy
winning in any configuration of (′. [Ginsberg, 2001] shows that computing this value
amounts to evaluate the game DAG with the lattice (22(, �,u,∪). Intuitively, using
∪ at OR-nodes models the fact that player MAX can choose any child as her strategy,
and u at AND-nodes models the fact that a strategy must be robust to all adversarial
strategies, hence a strategy wins in B ∈ (if and only if it wins in B whatever action her
opponent chooses.

In the same setting of games with incomplete information, one can also be interested
in non-uniform strategies which allow player MAX’s actions to depend on the hidden
information. This can be useful for computing heuristic values of for the game with
incomplete information. It can be seen that the set of all configurations for which there
is a non-uniform winning strategy can be computed as the value of the game DAG with
the lattice (2(, ⊆,∩,∪).

Hence, for both benchmarks, we consider the two lattices (22(,u,∪) and (2(,∩,∪).
In ‘random’, (= {1, . . . , E}, while in ‘racing’ (is the set of all possible hands of player
MIN.

For space reasons, we only give the most representative results, in terms of compu-
tation time. For each parameter setting and each algorithm, we averaged over 10 runs.
Figure 3 shows two examples where, as can be expected, it is more efficient to cache
bounds, even more to perform cuts, and still more to compute and store two bounds per
node. On the top plot, the gain of using ABD is exponential: with the branching factor
increasing, ABD gets a better advantage of computing and caching two bounds. On
the bottom plot, ABC and AB (not represented) are exponentially worse, and ABD is
better than MMC when the branching factor is high.

Now Figure 4 shows two examples where it turns out that it is not always better to
use alpha-beta pruning with cache.

On the top plot, not caching results at all turns out to be better: the overhead due

15

Figure 3: Experimental results on random (top) and racing (bottom). Top: 3 = 15,
E = 10 (varying 1), alternating DAGs. Bottom: 3 = 20, 6 = 5 (varying ℎ). The lattice
is 2(in both cases.

to the additional operations from the lattice 22((which are necessary to maintain the
cache) seems to compensate the advantage of ABC or ABD in terms of number of
visited nodes and recursive calls (the curves are reversed for this metrics, not shown
here). On the bottom plot, it turns out that sometimes alpha-beta pruning even degrades
performance. Again, this is due to the overhead of manipulating values from a large
lattice (for a fixed hand size, the lattice grows exponentially with the deck size).

To complete these results, let us mention that in most experiments, the numbers of
nodes explored and visited by each method are ordered as expected, with ratios varying
from linear to exponential. In particular, for these metrics, ABD is most of the time
better, and often much better, than the other three algorithms.

Summarising, ABD seems to provide a real gain in (brute) performance for DAGs

16

Figure 4: Experimental results on random (top) and racing (bottom). Top: 3 = 15,
1 = 4 (varying E), alternating DAGs, lattice 22

(. Bottom: ℎ = 7, 6 = 5 (varying 3),
lattice 2(.

with high branching factors. Contrastingly, when ∧ and ∨ from the lattice are too
expensive to compute (as is the case in some large lattices), it may sometimes be better
not to use cache and alpha-beta pruning together, due to the overhead to maintain the
coherence of the cache.

7 Conclusion
We investigated alpha-beta search for AND-OR DAGs with values from a lattice, which
has direct applications such as solving games with incomplete information. We have
extended previous formal analyses, in particular to the use of heuristic as initialisation

17

functions. Then we have proposed a new algorithm named ‘alpha-beta duo’, which
caches both a lower and an upper bound of the value of each visited node, and we
have formally proved its correctness. Experiments show that it is more efficient than
other algorithms in terms of number of visited nodes and recursive calls. As for time
efficiency, alpha-beta duo turns out to be more efficient than other algorithms for DAGs
with large branching factors and reasonably-sized lattices. As an interesting conclusion,
our experiments also put forth that in other cases, it may be better not to use a cache
with alpha-beta pruning.

Our future work includes algorithmic optimisations for alpha-beta search with cache
applied to games with incomplete information. We will also investigate the use of effi-
cient knowledge representations [Bienvenu et al., 2010, Niveau and Zanuttini, 2016] to
accelerate lattice operations in such context. Another perspective is to apply our work
to games with multiple criteria instead of scalar outcomes.

References
[Bienvenu et al., 2010] Bienvenu, M., Fargier, H., and Marquis, P. (2010). Knowledge

Compilation in the Modal Logic S5. In Proc. 24th AAAI Conference on Artificial
Intelligence (AAAI 2010), pages 261–266.

[Cazenave and Ventos, 2020] Cazenave, T. and Ventos, V. (2020). The U` search algo-
rithm for the game of bridge. In Proc. Monte Carlo Search International Workshop,
pages 1–16. Springer.

[Dasgupta et al., 1996] Dasgupta, P., Chakrabarti, P. P., and Sarkar, S. C. D. (1996).
Searching game trees under a partial order. Artif. Intell., 82(1-2):237–257.

[Davey and Priestley, 2002] Davey, B. A. and Priestley, H. A. (2002). Introduction to
Lattices and Order. Cambridge University Press, 2nd edition.

[Edelkamp, 2020] Edelkamp, S. (2020). Representing and reducing uncertainty for
enumerating the belief space to improve endgame play in skat. In Proc. 24th Euro-
pean Conference on Artificial Intelligence (ECAI 2020), pages 395–402. IOS Press.

[Frank and Basin, 1998] Frank, I. and Basin, D. A. (1998). Search in games with
incomplete information: A case study using bridge card play. Artif. Intell., 100(1-
2):87–123.

[Frank and Basin, 2001] Frank, I. and Basin, D. A. (2001). A theoretical and empirical
investigation of search in imperfect information games. Theor. Comput. Sci., 252(1-
2):217–256.

[Ginsberg and Jaffray, 2002] Ginsberg, M. and Jaffray, A. (2002). Alpha-beta prun-
ing under partial orders. In Nowakowski, R., editor, More Games of No Chance,
number 42 in Mathematical Sciences Research Institute Publications, pages 37–48.
Cambridge University Press.

[Ginsberg, 2001] Ginsberg, M. L. (2001). GIB: imperfect information in a computa-
tionally challenging game. J. Artif. Intell. Res., 14:303–358.

[Haworth and Hernandez, 2021] Haworth, G. and Hernandez, N. (2021). The 20th top
chess engine championship, TCEC20. ICGA Journal, 43(1):62–73.

18

[Kissmann and Edelkamp, 2009] Kissmann, P. andEdelkamp, S. (2009). Solving fully-
observable non-deterministic planning problems via translation into a general game.
In Mertsching, B., Hund, M., and Zaheer Aziz, M., editors, Proc. 32nd Annual
German Conference on Artificial Intelligence (KI 2009), pages 1–8. Springer.

[Knuth and Moore, 1975] Knuth, D. E. and Moore, R. W. (1975). An analysis of
alpha-beta pruning. Artif. Intell., 6(4):293–326.

[Kupferschmid and Helmert, 2006] Kupferschmid, S. and Helmert, M. (2006). A skat
player based on monte-carlo simulation. In Proc. 5th International Conference on
Computers and Games (CG 2006), pages 135–147. Springer.

[Levy, 1989] Levy, D. N. (1989). The million pound bridge program. Heuristic
Programming in Artificial Intelligence: The First Computer Olympiad, pages 95–
103.

[Loddo and Saiu, 2010] Loddo, J. and Saiu, L. (2010). How to correctly prune tropical
trees. In Autexier, S., Calmet, J., Delahaye, D., Ion, P. D. F., Rideau, L., Rioboo,
R., and Sexton, A. P., editors, Proc. 10th International Conference on Intelligent
Computer Mathematics, volume 6167 of Lecture Notes in Computer Science, pages
101–115. Springer.

[Marsland, 1986] Marsland, T. A. (1986). A review of game-tree pruning. J. Int.
Comput. Games Assoc., 9(1):3–19.

[Nasu, 2018] Nasu, Y. (2018). Efficiently updatable neural-network-based evaluation
functions for computer shogi. The 28thWorldComputer Shogi Championship Appeal
Document.

[Niveau and Zanuttini, 2016] Niveau, A. and Zanuttini, B. (2016). Efficient Represen-
tations for the Modal Logic S5. In Proc. 25th International Joint Conference on
Artificial Intelligence (IJCAI 2016).

[Rebstock et al., 2019] Rebstock, D., Solinas, C., Buro, M., and Sturtevant, N. R.
(2019). Policy based inference in trick-taking card games. In Proc. 2019 IEEE
Conference on Games (CoG 2019), pages 1–8. IEEE.

[Schaeffer et al., 2007] Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller,
M., Lake, R., Lu, P., and Sutphen, S. (2007). Checkers is solved. Science,
317(5844):1518–1522.

[Sturtevant and White, 2006] Sturtevant, N. R. and White, A. M. (2006). Feature con-
struction for reinforcement learning in hearts. In Proc. 5th International Conference
on Computers and Games (CG 2006), pages 122–134. Springer.

[Van Den Herik et al., 2002] VanDenHerik, H. J., Uiterwijk, J.W., and Van Rijswijck,
J. (2002). Games solved: Now and in the future. Artif. Intell., 134(1-2):277–311.

19

	Introduction
	Preliminaries
	Problem setting
	Alpha-beta pruning under partial order
	Alpha-beta duo algorithm
	Experiments
	Conclusion

