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We studied the performance of machine learning models for the de-
tection of dementia using anatomical brain MRI on real-life clinical

routine data.

e We used images coming from a clinical data warehouse and we identified
the population of interest using the 10'" revision of the International

Classification of Diseases (ICD-10).

e We uncovered that the performance of the classifier is mainly driven
by irrelevant characteristics thereby biasing the performance upwards,

a phenomenon known as the Clever Hans effect or shortcut learning.

e The performance was considerably lower on real-life clinical routine

data compared with that obtained on research data.
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e Our work demonstrates the difficulty of translating computer-aided di-

agnosis algorithms to clinical routine.
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Abstract

A variety of algorithms have been proposed for computer-aided diagnosis of
dementia from anatomical brain MRI. These approaches achieve high accu-
racy when applied to research data sets but their performance on real-life
clinical routine data has not been evaluated yet. The aim of this work was to
study the performance of such approaches on clinical routine data, based on

a hospital data warehouse, and to compare the results to those obtained on a
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gators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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research data set. The clinical data set was extracted from the hospital data
warehouse of the Greater Paris area, which includes 39 different hospitals.
The research set was composed of data from the Alzheimer’s Disease Neu-
roimaging Initiative data set. In the clinical set, the population of interest
was identified by exploiting the diagnostic codes from the 10" revision of the
International Classification of Diseases that are assigned to each patient. We
studied how the imbalance of the training sets, in terms of contrast agent
injection and image quality, may bias the results. We demonstrated that
computer-aided diagnosis performance was strongly biased upwards (over 17
percent points of balanced accuracy) by the confounders of image quality
and contrast agent injection, a phenomenon known as the Clever Hans effect
or shortcut learning. When these biases were removed, the performance was
very poor. In any case, the performance was considerably lower than on the
research data set. Our study highlights that there are still considerable chal-
lenges for translating dementia computer-aided diagnosis systems to clinical

routine.

Keywords: Clinical Data Warehouse, Dementia, MRI, Neuroimaging, Deep

Learning, Shortcut learning

1. Introduction

Dementia is a world-wide syndrome that is becoming more and more
important due to population aging. T1-weighted (T1w) brain magnetic res-

onance imaging (MRI) contributes to the positive diagnosis of dementia by



displaying typical spatial patterns of brain atrophy. A variety of computer-

aided diagnosis (CAD) systems using T1w brain MRI data have been devel-

oped using machine learning and deep learning (Kloppel et al., 2008; [Vemuri

et all 2008} [Fan et al. [2008; [Gerardin et al., [2009; [Cuingnet et al., 2011}
Rathore et al., [2017; Wen et al., [2020; Burgos et al., [2021]).

So far, CAD systems have been mainly developed and validated using re-
search data sets due to their ease of access (many can directly be downloaded
from websites). Several data sets originating from research studies such as
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)El, the Open Access
Series Of Imaging Studies (OASIS)EL the Australian Imaging, Biomarker &
Lifestyle Flagship Study of Ageing (AIBL)H, and the Frontotemporal lobar
degeneration neuroimaging initiative (NIFD)H are publicly available and con-
tain various clinical and imaging data, including T1w MRI brain images.
They have pushed the research on machine learning and deep learning for

CAD using neuroimages: previously published works focusing on Alzheimer’s

disease (AD) have exploited the ADNI, OASIS or AIBL data sets (Punjabi

et al.| [2019; Bidani et al.| [2019; Spasov et al., 2019; |Bohle et al.| [2019; Farooq|

et al., [2017; Wegmayr et al.| 2018; Samper-Gonzalez et al., 2018; Wen et al.,
2020}; Bron et al., 2021} [Cuingnet et al., 2011} [Hinrichs et al., 2009} [Chupin

et al) 2009; Misra et al) 2009), whereas those targeting fronto-temporal

Zhttp://adni.loni.usc.edu/
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dementia (FTD) used NIFD (Ma et al., 2020).

Even if all these data sets have proven extremely useful to propel method-
ological research on machine learning applied to neurological diseases, they
are far from the everyday clinical routine for two main reasons. First, in
many works, the aim is to differentiate patients with a particular, well-
characterised, disease (most often AD), from healthy controls. Such homo-
geneous diagnostic classes do not reflect the reality of clinical routine. Some
works focused on differential diagnosis between different types of dementia
but they still use research data sets: Ma et al.| (2020)) classified patients with
AD and FTD using ADNI and NIFD, [Koikkalainen et al.| (2016) differenti-
ated AD, FTD, dementia with Lewy bodies and vascular dementia using the
Amsterdam Dementia Cohort. Second, research images are usually acquired
following a standardized protocol whose aim is to guarantee data quality and
homogenization. This is obviously not the case in clinical routine.

In order to bring research advances to clinical practice, various groups,
including our own, have developed and validated CAD systems using clinical
data sets (Morin et al 2020; Chagué et all 2021; Platero et al., 2019; Sohn
et al., 2015; [Kloppel et al.,|2015). Nevertheless, the participants, even though
the MRI was indeed acquired as part of clinical workup, were retrospectively
selected to fit a well defined task of interest. The images were also filtered to
remove low quality images. Moreover, the data come from highly specialized
centers that are not representative of the overall clinical practice (for instance

rare dementias and early-onset cases are over-represented). Furthermore, the



data often come from a single or few hospitals, thus they may not reflect the
full spectrum of heterogeneity. Finally, they often restrict themselves to
diagnosis of patients with dementia. It is thus unclear what their specificity
is when dealing with MRI from patients with other diagnoses. Therefore,
the performance reported cannot be considered to reflect those that would
be obtained on real-life data.

Clinical data warehouses (CDW), which gather all images acquired in
large groups of hospitals, are a better representation of clinical routine and
they are thus an important tool for the translation of research to the clinic.
Images of a CDW are heterogeneous (i.e. different sites, MRI sequences
not harmonized) and they include a very wide range of diagnoses (including
not only patients with dementia but also patients with other neurological
or psychiatric diseases, as well as patients who underwent a brain MRI for
another indication) (Bottani et al., 2022a; Wood et al.| 2022)).

The aim of this work is to experimentally study the performance of ma-
chine learning methods to detect dementia patients in a CDW using T1w
brain MRI. Patients with dementia were labeled using diagnostic codes as-
signed during the hospitalization period. The main machine learning model
was a linear support vector machine using gray matter maps as features. It
was then compared to several deep learning models. We compared the per-
formance obtained on a research data set to that obtained on the present
clinical data set. We studied how results in a clinical data set may be biased

by the characteristics of the training data set (in particular by the injection



of gadolinium and the presence of images of different quality). We used an
image translation approach to change the appearance of images for which

gadolinium was injected in order to mitigate bias associated to this factor.

2. Materials

To compare the performance of CAD systems to detect dementia in a

research and a clinical setting, two data sets were used.

2.1. Research data set

The research data set used in this work was composed of subjects from
the ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNTI has been to test whether serial MRI, positron
emission tomography, other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild
cognitive impairment and early Alzheimer’s disease.

We considered subjects from ADNI 1/2/Go/3 diagnosed as cognitive nor-
mal (CN) or AD at baseline and only kept subjects whose diagnosis did not
change over time. This resulted in 800 subjects with a T1lw MR image
at the first session including imaging data (CN: 410 subjects, 54.87 % F,
age 73.20 £+ 6.15 in range [55.1, 89.6]; AD: 390 subjects, 44.0 % F, age
74.88 £+ 7.76 in range [55.1, 90.1]). Two hundred subjects (100 CN and 100

AD) composed the independent test set and the remaining subjects (310 CN
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and 290 AD) were used for the training/validation of the models using a

5-fold cross-validation (CV).

2.2. Clinical routine data set

The clinical data set comes from the data warehouse of AP-HP (Assis-
tance Publique-Hopitaux de Paris) which represents data from 39 hospitals
of the Greater Paris area (Daniel and Salamanca), 2020). The study was ap-
proved by the Ethical and Scientific Board of the AP-HP data warehouse.
All details regarding the ethics approval and the procedure and regulations
allowing the access and use of patient data for research purposes are de-
scribed in Supplementary material section 1. The data were only accessed
within the AP-HP network and it was strictly forbidden to export any kind
of data.

All the data, both imaging and clinical, were pseudonymized by the AP-
HP data warehouse and they always remained within the hospital network.
The DICOM were pseudonymized as follows: information about the patient
such as name, age, sex, weight as well as information about the physicians
who requested and analysed the results of the examination are erased, the
examination date is shifted of a random amount of time (from 1 to 10 years).
Note that, for a given patient, the same shift is applied to the examination
date and to the date of birth (part of clinical data in the ORBIS system,
see below). As the age is calculated as the difference between these two

dates, this pseudonymization process does not affect the computation of the



age. The images were not defaced. However, the identification from the im-
ages would be very difficult because no 3D image viewer (with 3D rendering
or mutiple plane visualization) was available within the platform. Only a
JupyterLab instance was available (Bottani et al., 2022a). In order to visual-
ize a snapshot of the image on a Jupyter Notebook, we developed a tool avail-
able at: (https://github.com/SimonaBottani/image_synthesis, commit

number 98710ed).

2.2.1. Imaging and clinical data collection

Images from this clinical data warehouse are very heterogeneous (Bot-
tani et al., 2022a)): they include 3D T1w brain MR images of patients with
a wide range of ages (from 18 to more than 90 years old) and diseases, ac-
quired with different scanners (more than 30 different models). Imaging data
were gathered in a central hospital picture archiving and communication sys-
tem (PACS) and images relevant to our research project were copied to the
research PACS where they were pseudonymized. The selection process to
obtain images of interest is described in (Bottani et al., 2022a): a neurora-
diologist manually selected all the DICOM header attributes (in particular
the acquisition protocol, the series description and the body part) referring
to a 3D brain T1w MRI.

At the same time, clinical data corresponding to the patients of our query
are stored in a database managed by the ORBIS clinical information system.

Clinical data gather all the information connected to the patients, i.e. date of
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birth, sex, diagnostic codes, medications, biological tests, electronic health
reports. As explained in (Daniel and Salamancal, [2020), ORBIS has been
installed progressively in the AP-HP hospitals since 2009. Among all the
patients aged more than 18 years old who undertook a 3D T1w brain MRI
examination at AP-HP (~130.000 patients), only ~25% were registered in
ORBIS. Among them, 23,688 patients were hospitalized. Note that for non-
hospitalized patients, only sociodemographic data (sex and age) are available
and not clinical data. As for the imaging data, the data warehouse provided
the pseudonymized clinical data.

For our work, we were interested in two sociodemographic items (age
and sex) as well as one clinical item (diagnostic codes). Codes from the
10*" revision of the International Classification of Diseases (ICD-10) (World
Health Organization et al., 2007)) were used to associate a diagnosis to each
T1w brain MRI. Images were labeled according to the ICD-10 codes assigned
to the visit corresponding to the acquisition of the image. We defined a visit
as a period of plus or minus three months from the acquisition date of the
image. As clinical data can be entered by the medical staff at different
moments during hospitalization, this time window ensures that all pieces of
information regarding brain disorders related to the need of a brain MRI
exam are collected.

In conclusion, the initial clinical data set of interest was composed of
23,688 patients, which corresponds to 32,348 visits and 43,418 3D T1w brain

MR images.



2.2.2. Definition of the different diagnostic categories from ICD-10 codes

On average, 60 ICD-10 codes were assigned to each visit. Since we did not
know the reason of a patient’s hospitalization (which may be different from
the reason why they were prescribed an MRI examination), we considered
principal diagnoses, secondary diagnoses and comorbidities at the same level.
First, we identified all the ICD-10 codes that could refer to dementia (denoted
as D). Note that we use the term “dementia” in a broad sense, i.e. we
consider mild cognitive impairment as belonging to this category. However,
we restricted this category to the two most common causes of dementia (i.e.
neurodegenerative and vascular dementias) and we did not include the more
atypical causes such as dementia in HIV disease (F02.4) or psychotic disorder
due to alcohol (F10.7), or dementia whose cause was undefined (F03).

Then, we divided the remaining codes into two groups: ICD-10 codes
referring to diseases (for instance cancer, demyelinating diseases, stroke, hy-
drocephalus) that lead to lesions that visibily alter T1w brain MRI (referred
to as “no dementia but with lesions” - NDL) and ICD-10 codes correspond-
ing to diseases that, in principle, do not lead to lesions visibly altering T1w
brain MRI (referred to as “no dementia and no lesions” - NDNL). We con-
sidered two different classification tasks in which dementia patients had to
be differentiated from these two classes (NDL and NDNL), which have very
different characteristics.

In Table [1] we list the three classes mentioned above (D, NDL, NDNL).

For each of them, we provide a brief description and a list of all the associ-

10



ated ICD-10 codes. Sixteen diseases were associated to the category demen-
tia. Four families of diseases were associated to the NDL category (which
are defined by grouping different ICD-10 codes). The NDNL category corre-
sponded to all the other codes. According to the standard structure of the
ICD-10 codes, we considered just the first letter and the first two numbers,
indicating the category, to identify the diseases belonging to the NDL cat-
egory. The third number, indicating the etiology, was used to identify the
diseases corresponding to the dementia category as we wanted to be more

specific.

2.2.3. Selection of patients belonging to the dementia category

Dementia is the principal category we consider since our aim is to study
how well this category can be distinguished from the others. We thus started
by selecting patients labeled as dementia. In the workflow displayed in Fig-
ure[I] we report the different choices made to create this population. For each
step, we report the number of patients, visits and images.

Starting from 2441 patients with at least one ICD-10 code in the dementia
category, corresponding to 2671 visits and 3633 images (considering only 3D
T1w brain MRI), the final population is composed of 1255 patients, corre-
sponding to 1255 visits and 1415 images. We first excluded patients that had
multiple ICD-10 codes belonging to the dementia category at the same visit
to have a unique label per visit. We then excluded patients with an ICD-10

code belonging to the NDL category with the aim that lesions visible on T1w
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Table 1: Description of the three categories of interest with the corresponding ICD-10
codes. Details about dementia codes: “/” indicates that the two codes refer to the same
diagnosis, “4” means that the diagnosis of dementia is defined by the presence of both
codes. “.*7 in the NDL category indicates that all the sub-categories of the code were

considered.

Category

ICD-10 codes

D: Dementia associated to a
neurodegenerative disease or
a vascular disease that causes
atrophy visible on T1w MRI.

Dementia in AD with early onset (F00.0/G30.0)
Dementia in AD with late onset (F00.1/G30.1)
Dementia in AD, atypical or mixed type (F00.2/G30.8)
Dementia in AD, unspecified (F00.9/G30.9)
Dementia in Pick disease (F02.0/G31.0)

Dementia in Creutzfeldt-Jakob disease (F02.1/A81.0)
Dementia in Huntington disease (F02.2 + G10)
Vascular dementia of acute onset (F01.0)
Multi-infarct dementia (F01.1)

Subcortical vascular dementia (F01.2)

Mixed cortical & subcortical vascular dementia (F01.3)
Other vascular dementia (F01.8)

Vascular dementia, unspecified (F01.9)

Mild cognitive disorder (F06.7)

Dementia in Parkinson’s disease (F02.3 + G20)

Lewy bodies dementia (G02.8 + G31.8)

NDL: No dementia but di-
agnosis that suggests presence
of lesions that modify the
anatomical structure of the
brain visible on T1w MRI.

Cancer (C70.%, C71.%, C72.%, D32.*, D33.*%, D42.%)
Demyelination (G35.*%, G36.*, G37.%)

Stroke (G45.*, G46.%)

Hydrocephalus (G91.%)

NDNL: No dementia and no
diagnosis suggesting the pres-
ence of lesions on T1w brain

MRI.

All the other codes

12



brain MRI originate only from dementia. Patients were further excluded if
the ICD-10 code in the dementia category was changing over time (i.e. over
the different visits) as this may be due to an error in coding. Patients aged
more than 90 years old were excluded because there were very few patients
above this age across the different diagnostic groups (and thus it was not pos-
sible to find patients with the same age/sex). Patients labeled F067 (mild
cognitive disorder) aged less than 45 years old were excluded because the
diagnosis may correspond to a transient mild cognitive impairment and not
to a prodromal stage of dementia. Some images were also excluded after the
pre-processing step: if they had less than 40 DICOM slices or if they were
labeled as straight reject by the quality control step (see Section . This

pre-processing step was applied to all the images of the different categories.

2.2.4. Selection of patients belonging to the no dementia with lesions (NDL)
and no dementia and no lesions (NDNL) categories

The aim of this work is to assess whether patients with dementia can
be distinguished from patients with other brain diseases, no matter if these
diseases result in the presence (NDL category) or absence (NDNL category)
of lesions visible on T1w brain MRI. To define the cohorts for the NDL and
NDNL categories, we matched each patient belonging to the dementia cat-
egory with a patient in the NDL category and with a patient in the NDNL
category that had the same age (£1 year) and sex. We first created the

NDL cohort, which is composed of patients with one of these four diseases
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Overall population Images with more than 40 DICOM slices

—————>
Patients 23688; Visits 32348; Images 43418 Patients 1744; Visits 1838; Images 2369
\J A
Patients with at least one ICD10 code in Images which are proper 3D T1w brain

the dementia category MRI (after QC)
Patients 2441; Visits 2671; Images 3633 Patients 1444; Visits 1512; Images 1675
! ‘
Patients with just one code among all the .
codes in the dementia category in the Patients aged less than 90 years old

same Vvisit
Patients 1332; Visits 1399; Images 1551
Patients 2160; Visits 2369; Images 3244

\ A Y

Patients aged more than 45 years old not

Patients without any code in the class of labeled F067

not dementia with lesions

Patients 1958; Visits 2112; Images 2866 Patients 1283; Visits 1344; Images 1486

\J Y

Patients whose code in the dementia

. Patients with just one visit
category does not change over time

Patients 1895; Visits 2013; Images 2754 Patients 1235; Visits 12535; Images 1413

Figure 1: Workflow describing the selection of patients belonging to the dementia category.
For each selection step, we report the corresponding number of patients, visits and images.

potentially leading to brain lesions visible on the T1w MRI: cancer, stroke,
demyelination and hydrocephalus (see Table . We selected all the patients
having at least one ICD-10 code in this category, resulting in 3843 patients
corresponding to 6598 visits and 9615 images. We then matched these pa-
tients with those composing the dementia cohort following several criteria.

For each patient with dementia:

14



e We selected all the patients with the same age (+1 year) and the same

sex having at least one code in the NDL category.

e We excluded all the patients having different NDL codes at the same

visit.

e We considered only one visit for each patient when there were mul-
tiple visits available with the same diagnosis. The visit was selected

randomly.

e Among all the patients with one visit matching these criteria, we ran-

domly selected one of them.

We iterated this selection process twice since some images were discarded
after the pre-processing steps (i.e. images with fewer than 40 DICOM slices
or flagged as straight reject at the quality control step). In total we matched
808 patients (corresponding to 808 visits and 978 images).

The NDNL class is composed of all the patients having no code in the

dementia nor NDL categories. For each patient with dementia:

e We selected all the patients with the same age (+1 year) and the same

sex having no ICD-10 code in the dementia nor NDL categories.

e In case of multiple visits for a patient, we randomly selected one of

them.

e Among all the patients with one visit matching these criteria, we ran-

domly selected one of them.

15



We iterated this selection process twice since some images were discarded
after the pre-processing steps. In total we matched 1144 patients (corre-

sponding to 1144 visits and 1343 images).

2.2.5. Final cohorts

The final cohorts were created by taking the intersection of the NDL pa-
tients matching with dementia patients and of the NDNL patients matching
with dementia patients. This resulted in three cohorts each of 756 patients
for a total number of 2268 patients (corresponding to 2268 visits and 2823
images). Note that this number of 756 patients is lower than the initial
number of patients in the dementia class because some of them could not be
matched for age and sex with a patient of the two other classes.

In Table [2| we report the number of subjects, visits and images for each
category. In addition, we report the percentage of females and the average
age of the patients as well as the percentage of images with and without
injection of gadolinium, and of images of good or medium quality (tier 1/2).
The presence of gadolinium and the quality of the images were determined
through the automatic approach described in (Bottani et al., 2022a)), which

will be detailed in the Methods section.

2.2.6. Training, validation and testing subsets
Before starting the experiments, we defined a test set by randomly select-
ing 20% of the patients of the dementia class and the corresponding matched

patients of the other two classes (NDL and NDNL). While for the train-
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ing/validation set, if there were several images at the same visit all were kept
to increase the number of training samples, for the test set, we selected only
one image per visit (the selection was made randomly). This resulted in a
test set composed of 152 patients/images for each of the three classes (D,
NDL, NDNL). The training/validation set was composed of 604 patients and
719 images for D, 604 patients and 799 images for NDL, 604 patients and
756 images for NDNL.

We respected the same distribution of image quality and presence of
gadolinium between the test and the training/validation sets. We also checked
that the distribution of the ICD-10 codes between the test and the train-
ing/validation sets among the dementia and NDL categories was the same.

For each task, the images of the training/validation set were further split
using a 5-fold CV. The splits were the same for all the experiments and the
distribution of image quality and presence of gadolinium respected the overall

distribution.

2.2.7. Training subsets
In order to study potential biases related to the presence of gadolinium

or the quality of the images, we created different training subsets:

o T)7% 4 includes only matched dementia, NDL and NDNL patients with

images acquired without gadolinium injection. This results in a training

subset of 172 patients per class.

o TI81. /o includes only matched dementia, NDL and NDNL patients with

17



Table 2: For each category, we report the number of patients and images, the age, the
percentage of females, of images in tier 1/2 (i.e. images of good and medium quality) and
the percentage of images with gadolinium-based contrast agent. Results with ** mean that
the distributions between the overall population and a specific category were statistically
significantly different (x? test corrected for multiple comparisons using the Bonferroni
procedure, corrected p-value <0.05). Age and sex were computed at the patient level,
while the tiers and the gadolinium injection were computed at the image level.

Category N . N Age Sex %Tier Wlth
patients images (mean + std [range]) (%F) 1/2 gadolinium
D 756 887 71.17 + 11.58 [18,90]  50.34%  57.72%** 24.80%**
NDL 756 997 71.17 £ 11.58 [18,90] 50.34%  52.25% 63.59%**
NDNL 756 939 71.17 £ 11.58 [18,90] 50.34%  36.42%** 66.13%**
Total 2268 2823 71.17 £ 11.58 [18,90]  50.34%  48.71% 52.24%

images of good or medium quality (tier 1/2). This results in a training

subset of 181 patients per class.

e 7' includes 172 patients per class with the same distribution of image

quality and gadolinium injection than the overall data set.

o T do. tier 1 /o includes only matched dementia, NDL and NDNL pa-
tients with images of medium or good quality acquired without gadolin-

ium injection. This results in a training subset of 88 patients per class.

o T8

e 1/2 includes 88 patients per class of only images of good or medium

quality.

e T includes 88 subjects per class with the same distribution of image

quality and gadolinium injection as the overall data set.
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3. Methods

3.1. Image pre-processing

The T1lw MR images were converted from DICOM to NIfTI using the
software dicom2niix (version tag v1.0.20190902, commit number f54be46)
(Li et al.l 2016 and organized following the Brain Imaging Data Structure
(BIDS) standard (Gorgolewski et al 2016]). Images with a voxel dimension
smaller than 0.9 mm were resampled using a 3'-order spline interpolation
to obtain 1 mm isotropic voxels. Two different pre-processing pipelines were
applied to the T1w MR images in the BIDS format.

Most of the pre-processing was performed using Clinica (Routier et al.
2021)) (version tag 0.3.5, commit number 06fdbcb). The first pre-processing
consisted in applying the t1-1linear pipeline of Clinica, which is a wrapper
of the ANTs software (Avants et al., 2014) (version tag 2.3.1). Bias field
correction was applied using the N4AITK method (Tustison et al., [2010). An
affine registration to MNI space was performed using the SyN algorithm
(Avants et al., 2008). N4ITK and SyN algorithms are implemented in the
ANTs software. The registered images were further rescaled based on the min
and max intensity values. Images were then cropped to remove background
resulting in images of size 169x208x 179, with 1 mm isotropic voxels (Wen
et al., 2020).

This pre-processing was used to assess the quality of the images with
an automatic approach proposed in (Bottani et al., 2022a). The automatic

quality control (QC) approach first identified if a given image was or not a
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straight reject (i.e. segmented or cropped image). If it was not a straight
reject, it was further labeled by the automatic QC tool according to the tiers
of quality, i.e. tier 1 (good quality), tier 2 (medium quality) or tier 3 (bad
quality). In addition, the automatic QC tool determined the presence or the
absence of gadolinium-ba