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Ströer, Didier Dormont, Olivier Colliot, for the Alzheimer’s Disease Neu-

roimaging Initiative1, and the APPRIMAGE Study Group

• Dementia

• Not dementia 
with lesions 
(NDL)

• Not dementia 
without lesions 
(NDNL)

Clinical Data Set 

• Alzheimer’s
disease (AD)

• Cognitive 
normal (CN)

Research Data Set 

Quality Control

Good

Medium

Bad

Clinical 
Data Set

Research 
Data Set

Tr
ai

ni
ng

Clinical 
Data SetTe

st
in

g Clinical framework 

Research framework

Clinical framework

Research framework

D
NDL / NDNL

AD
CN

Features Homogenization

PACS ICD10

ADNI

1Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Evaluation of MRI-based machine learning approaches for computer-

aided diagnosis of dementia in a clinical data warehouse

Simona Bottani, Ninon Burgos, Aurélien Maire, Dario Saracino, Sebastian

Ströer, Didier Dormont, Olivier Colliot, for the Alzheimer’s Disease Neu-

roimaging Initiative2, and the APPRIMAGE Study Group

• We studied the performance of machine learning models for the de-

tection of dementia using anatomical brain MRI on real-life clinical

routine data.

• We used images coming from a clinical data warehouse and we identified

the population of interest using the 10th revision of the International

Classification of Diseases (ICD-10).

• We uncovered that the performance of the classifier is mainly driven

by characteristics of the data which are irrelevant thereby biasing the

performances upwards, a phenomenon known as the Clever Hans effect.

• The performance was considerably lower on real-life clinical routine

data compared to that obtained on research data.

2Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


• Our work demonstrates the difficulty of translating computer-aided di-

agnosis algorithms to clinical routine.

3



Evaluation of MRI-based machine learning approaches

for computer-aided diagnosis of dementia in a clinical

data warehouse

Simona Bottania, Ninon Burgosa, Aurélien Maireb, Dario Saracinoa,c,
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Abstract

A variety of algorithms have been proposed for computer-aided diagnosis

of dementia from anatomical MRI. These approaches achieve high accuracy

when applied to research data sets but their performance on real-life clini-

cal routine data has not been evaluated yet. The aim of this work was to

study the performance of such approaches on clinical routine data, based on

a hospital data warehouse, and to compare the results to those obtained on a

1Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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research data set. The clinical data set was extracted from the hospital data

warehouse of the Greater Paris area, which includes 39 different hospitals.

The research set was composed of data from the Alzheimer’s Disease Neu-

roimaging Initiative data set. In the clinical set, the population of interest

was identified by exploiting the diagnostic codes from the 10th revision of the

International Classification of Diseases that are assigned to each patient. We

studied how the imbalance of the training sets, in terms of contrast agent

injection and image quality, may bias the results. We demonstrated that

computer-aided diagnosis performance was strongly biased upwards (over

17 percent points of balanced accuracy) by the confounders of image qual-

ity and contrast agent injection, a phenomenon known as the Clever Hans

effect. When these biases were removed, the performance was very poor.

In any case, the performance was considerably lower than on the research

data set. Our study highlights that there are still considerable challenges for

translating dementia CAD systems to clinical routine.

Keywords: Clinical Data Warehouse, Dementia, MRI, Neuroimaging,

Machine Learning, Deep Learning

1. Introduction

Dementia is a world-wide syndrome that is becoming more and more

important due to population aging. T1-weighted (T1w) brain magnetic res-

onance imaging (MRI) contributes to the positive diagnosis of dementia by

displaying typical spatial patterns of brain atrophy. A variety of computer-
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aided diagnosis (CAD) systems using T1w brain MRI data have been devel-

oped using machine learning and deep learning (Klöppel et al., 2008; Vemuri

et al., 2008; Fan et al., 2008; Gerardin et al., 2009; Cuingnet et al., 2011;

Rathore et al., 2017; Wen et al., 2020; Burgos et al., 2021).

So far, CAD systems have been mainly developed and validated using re-

search data sets due to their ease of access (many can directly be downloaded

from websites). Several data sets originating from research studies such as

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)2, the Open Access

Series Of Imaging Studies (OASIS)3, the Australian Imaging, Biomarker &

Lifestyle Flagship Study of Ageing (AIBL)4, and the Frontotemporal lobar

degeneration neuroimaging initiative (NIFD)5 are publicly available and con-

tain various clinical and imaging data, including T1w MRI brain images.

They have pushed the research on machine learning and deep learning for

CAD using neuroimages: previously published works focusing on Alzheimer’s

disease (AD) have exploited the ADNI, OASIS or AIBL data sets (Punjabi

et al., 2019; Bidani et al., 2019; Spasov et al., 2019; Böhle et al., 2019; Farooq

et al., 2017; Wegmayr et al., 2018; Samper-González et al., 2018; Wen et al.,

2020; Bron et al., 2021; Cuingnet et al., 2011; Hinrichs et al., 2009; Chupin

et al., 2009; Misra et al., 2009), whereas those targeting fronto-temporal

dementia (FTD) used NIFD (Ma et al., 2020).

2http://adni.loni.usc.edu/
3https://www.oasis-brains.org/
4https://aibl.csiro.au/
5https://ida.loni.usc.edu/home/projectPage.jsp?project=NIFD
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Even if all these data sets have proven extremely useful to propel method-

ological research on machine learning applied to neurological diseases, they

are far from the everyday clinical routine for two main reasons. First, in

many works, the aim is to differentiate patients with a particular, well-

characterised, disease (most often AD), from healthy controls. Such homo-

geneous diagnostic classes do not reflect the reality of clinical routine. Some

works focused on differential diagnosis between different types of dementia

but they still use research data sets: Ma et al. (2020) classified patients with

AD and FTD using ADNI and NIFD, Koikkalainen et al. (2016) differenti-

ated AD, FTD, dementia with Lewy bodies and vascular dementia using the

Amsterdam Dementia Cohort. Second, research images are usually acquired

following a standardized protocol whose aim is to guarantee data quality and

homogenization. This is obviously not the case in clinical routine.

In order to bring research advances to clinical practice, various groups,

including our own, have developed and validated CAD systems using clinical

data sets (Morin et al., 2020; Chagué et al., 2021; Platero et al., 2019; Sohn

et al., 2015; Klöppel et al., 2015). Nevertheless, the participants, even though

the MRI was indeed acquired as part of clinical workup, were retrospectively

selected to fit a well defined task of interest. The images were also filtered to

remove low quality images. Moreover, the data come from highly specialized

centers that are not representative of the overall clinical practice (for instance

rare dementias and early-onset cases are over-represented). Furthermore, the

data often come from a single or few hospitals, thus they may not reflect the
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full spectrum of heterogeneity. Finally, they often restrict themselves to

diagnosis of patients with dementia. It is thus unclear what their specificity

is when dealing with MRI from patients with other diagnoses. Therefore,

the performance reported cannot be considered to reflect those that would

be obtained on real-life data.

Clinical data warehouses (CDW), which gather all images acquired in

large groups of hospitals, are a better representation of clinical routine and

they are thus an important tool for the translation of research to the clinic.

Images of a CDW are heterogeneous (i.e. different sites, MRI sequences

not harmonized) and they include a very wide range of diagnoses (including

not only patients with dementia but also patients with other neurological

or psychiatric diseases, as well as patients who underwent a brain MRI for

another indication) (Bottani et al., 2022a; Wood et al., 2022).

The aim of this work is to experimentally study the performance of ma-

chine learning methods to detect dementia patients in a CDW using T1w

brain MRI. Patients with dementia were labeled using diagnostic codes as-

signed during the hospitalization period. The main machine learning model

was a linear support vector machine using gray matter maps as features.

It was then compared to several deep learning models. We compared per-

formance obtained on a research data set to that obtained on the present

clinical data set. We studied how results in a clinical data set may be biased

by the characteristics of the training data set (in particular by the injection

of gadolinium and the presence of images of different quality). We used an

5



image translation approach to change the appearance of images for which

gadolinium was injected in order to mitigate bias associated to this factor.

2. Materials

To compare the performance of CAD systems to detect dementia in a

research and a clinical setting, two data sets were used.

2.1. Research data set

The research data set used in this work was composed of subjects from

the ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial MRI, positron

emission tomography, other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of mild

cognitive impairment and early Alzheimer’s disease (AD).

We considered subjects from ADNI 1/2/Go/3 diagnosed as cognitive nor-

mal (CN) or AD at baseline and only kept subjects whose diagnosis did not

change over time. This resulted in 800 subjects with a T1w MR image

at the first session including imaging data (CN: 410 subjects, 54.87 % F,

age 73.20 ± 6.15 in range [55.1, 89.6]; AD: 390 subjects, 44.0 % F, age

74.88 ± 7.76 in range [55.1, 90.1]). Two hundred subjects (100 CN and 100

AD) composed the independent test set and the remaining subjects (310 CN

and 290 CN) were used for the training/validation of the models using a

5-fold cross-validation (CV).
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2.2. Clinical routine data set

The clinical data set comes from the data warehouse of AP-HP (Assis-

tance Publique-Hôpitaux de Paris) which represents data from 39 hospitals

of the Greater Paris area. The study was approved by the Ethical and Scien-

tific Board of the AP-HP data warehouse. According to French regulation,

consent was waived as these images were acquired as part of the routine

clinical care of the patients. All the data, both imaging and clinical, were

pseudonymized by the AP-HP data warehouse and they always remained

within the hospital network. We accessed them remotely for our study.

2.2.1. Imaging and clinical data collection

Images from this clinical data warehouse are very heterogeneous (Bottani

et al., 2022a): they include 3D T1w brain MR images of patients with a wide

range of ages (from 18 to more than 90 years old) and diseases, acquired

with different scanners (more than 30 different models). Imaging data were

gathered in a central hospital picture archiving and communication system

(PACS) and images relevant to our research project (i.e. 3D T1w brain

MR images of patients aged more than 18 years old) were copied to the

research PACS where they were pseudonymized. The selection process to

obtain images of interest is described in (Bottani et al., 2022a).

At the same time, clinical data corresponding to the patients of our query

are stored in a database managed by the ORBIS clinical information system.

Clinical data gather all the information connected to the patients, i.e. date of
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birth, sex, diagnostic codes, medications, biological tests, electronic health

reports. As explained in (Daniel and Salamanca, 2020), ORBIS has been

installed progressively in the AP-HP hospitals since 2009. Among all the

patients aged more than 18 years old who undertook a 3D T1w brain MRI

examination at AP-HP (∼130.000 patients), only ∼25% were registered in

ORBIS. Among them, 23,688 patients were hospitalized. Note that for non-

hospitalized patients, only sociodemographic data (sex and age) are available

and not clinical data. As for the imaging data, the data warehouse provided

the pseudonymized clinical data.

For our work, we were interested in two sociodemographic items (age and

sex) as well as one clinical item (diagnostic codes). Codes from the 10th

revision of international classification of diseases (ICD-10) (World Health

Organization et al., 2007) were used to associate a diagnosis to each T1w

brain MRI. Images were labeled according to the ICD-10 codes assigned to

the visit corresponding to the acquisition of the image. We defined a visit

as a period of plus or minus three months from the acquisition date of the

image. As clinical data can be entered by the medical staff at different

moments during hospitalization, this time window ensures that all pieces of

information regarding brain disorders related to the need of a brain MRI

exam are collected.

In conclusion, the initial clinical data set of interest was composed of

23,688 patients, which corresponds to 32,348 visits and 43,418 3D T1w brain

MR images.
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2.2.2. Definition of the different diagnostic categories from ICD-10 codes

On average, 60 ICD-10 codes were assigned to each visit. Since we did not

know the reason of a patient’s hospitalization (which may be different from

the reason why they were prescribed an MRI examination), we considered

principal diagnoses, secondary diagnoses and comorbidities at the same level.

First, we identified all the ICD-10 codes that could refer to dementia (denoted

as D). Note that we use the term “dementia” in a broad sense, i.e. we consider

mild cognitive impairment as belonging to this category. Then, we divided

the remaining codes into two groups: ICD-10 codes referring to diseases (for

instance cancer, demyelinating diseases, stroke, hydrocephalus) that lead to

lesions altering T1w brain MRI (referred to as “no dementia but with lesions”

- NDL) and ICD-10 codes corresponding to diseases that, in principle, do not

lead to lesions altering T1w brain MRI (referred to as “no dementia and no

lesions” - NDNL). We considered two different classification tasks in which

dementia patients had to be differentiated from these two classes (NDL and

NDNL), which have very different characteristics.

In Table 1, we list the three classes mentioned above (D, NDL, NDNL).

For each of them, we provide a brief description and a list of all the associ-

ated ICD-10 codes. Sixteen diseases were associated to the category demen-

tia. Four families of diseases were associated to the NDL category (which

are defined by grouping different ICD-10 codes). The NDNL category corre-

sponded to all the other codes. According to the standard structure of the

ICD-10 codes, we considered just the first letter and the first two numbers,
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indicating the category, to identify the diseases belonging to the NDL cat-

egory. The third number, indicating the etiology, was used to identify the

diseases corresponding to the dementia category as we wanted to be more

specific.

2.2.3. Selection of patients belonging to the dementia category

Dementia is the principal category we consider since our aim is to study

how well this category can be distinguished from the others. We thus started

by selecting patients labeled as dementia. In the workflow displayed in Fig-

ure 1 we report the different choices made to create this population. For each

step, we report the number of patients, visits and images.

Starting from 2441 patients with at least one ICD-10 code in the dementia

category, corresponding to 2671 visits and 3633 images (considering only 3D

T1w brain MRI), the final population is composed of 1255 patients, corre-

sponding to 1255 visits and 1415 images. We first excluded patients that had

multiple ICD-10 codes belonging to the dementia category at the same visit

to have a unique label per visit. We then excluded patients with an ICD-10

code belonging to the NDL category with the aim that lesions visible on T1w

brain MRI originate only from dementia. Patients were further excluded if

the ICD-10 code in the dementia category was changing over time (i.e. over

the different visits) as this may be due to an error in coding. Patients aged

more than 90 years old were excluded because there were very few patients

above this age across the different diagnostic groups (and thus it was not pos-
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Table 1: Description of the three categories of interest with the corresponding ICD-10
codes. Details about dementia codes: “/” indicates that the two codes refer to the same
diagnosis, “+” means that the diagnosis of dementia is defined by the presence of both
codes.

Category ICD-10 codes

D: Dementia associated to a
neurodegenerative disease or
a vascular disease that causes
atrophy visible on T1w MRI.

• Dementia in AD with early onset (F000/G300)
• Dementia in AD with late onset (F001/G301)
• Dementia in AD, atypical or mixed type (F002/G308)
• Dementia in AD, unspecified (F009/G309)
• Dementia in Pick disease (F020/G310)
• Dementia in Creutzfeldt-Jakob disease (F021/A810)
• Dementia in Huntington disease (F022 + G10)
• Vascular dementia of acute onset (F010)
• Multi-infarct dementia (F011)
• Subcortical vascular dementia (F012)
• Mixed cortical & subcortical vascular dementia (F013)
• Other vascular dementia (F018)
• Vascular dementia, unspecified (F019)
• Mild cognitive disorder (F067)
• Dementia in Parkinson’s disease (F023 + G20)
• Lewy bodies dementia (G028 + G318)

NDL: No dementia but di-
agnosis that suggests presence
of lesions that modify the
anatomical structure of the
brain visible on T1w MRI.

• Cancer (C70, C71, C72, D32, D33, D42)
• Demyelination (G35, G36, G37)
• Stroke (G45, G46)
• Hydrocephalus (G91)

NDNL: No dementia and no
diagnosis suggesting the pres-
ence of lesions on T1w brain
MRI.

All the other codes
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Figure 1: Workflow describing the selection of patients belonging to the dementia category.
For each selection step, we report the corresponding number of patients, visits and images.

sible to find patients with the same age/sex). Patients labeled F067 (mild

cognitive disorder) aged less than 45 years old were excluded because the

diagnosis may correspond to a transient mild cognitive impairment and not

to a prodromal stage of dementia. Some images were also excluded after the

pre-processing step: if they had less than 40 DICOM slices or if they were

labeled as straight reject by the quality control step (see Section 3.1).
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2.2.4. Selection of patients belonging to the no dementia with lesions (NDL)

and no dementia and no lesions (NDNL) categories

The aim of this work is to assess whether patients with dementia can

be distinguished from patients with other brain diseases, no matter if these

diseases result in the presence (NDL category) or absence (NDNL category)

of lesions visible on T1w brain MRI. To define the cohorts for the NDL

and NDNL categories, we matched each patient belonging to the dementia

category with a patient in the NDL category and with a patient in the NDNL

category that had the same age and sex.

We first created the NDL cohort, which is composed of patients with one

of these four diseases potentially leading to brain lesions visible on the T1w

MRI: cancer, stroke, demyelination and hydrocephalus (see Table 1). We

selected all the patients having at least one ICD-10 code in this category,

resulting in 3843 patients corresponding to 6598 visits and 9615 images. We

then matched these patients with those composing the dementia cohort fol-

lowing several criteria. For each patient with dementia:

• We selected all the patients with the same age and the same sex having

at least one code in the NDL category.

• We excluded all the patients having different NDL codes at the same

session.

• We considered only one visit for each patient when there were mul-

tiple visits available with the same diagnosis. The visit was selected
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randomly.

• Among all the patients with one visit matching these criteria, we ran-

domly selected one of them.

We iterated this selection process twice since some images were discarded

after the pre-processing steps (i.e. images with fewer than 40 DICOM slices

or flagged as straight reject at the quality control step). In total we matched

808 patients (corresponding to 808 visits and 978 images).

The NDNL class is composed of all the patients having no code in the

dementia nor NDL categories. For each patient with dementia:

• We selected all the patients with the same age and the same sex having

no ICD-10 code in the dementia nor NDL categories.

• In case of multiple visits for a patient, we randomly selected one of

them.

• Among all the patients with one visit matching these criteria, we ran-

domly selected one of them.

We iterated this selection process twice since some images were discarded

after the pre-processing steps. In total we matched 1144 patients (corre-

sponding to 1144 visits and 1343 images).

2.2.5. Final cohorts

The final cohorts were created by taking the intersection of the NDL pa-

tients matching with dementia patients and of the NDNL patients matching

14



with dementia patients. This resulted in three cohorts each of 756 patients

for a total number of 2268 patients (corresponding to 2268 visits and 2823

images). Note that this number of 756 patients is lower than the initial

number of patients in the dementia class because some of them could not be

matched for age and sex with a patient of the two other classes.

In Table 2 we report the number of subjects, visits and images for each

category. In addition, we report the percentage of females and the average

age of the patients as well as the percentage of images with and without

injection of gadolinium, and of images of medium or good quality (tier 2-1).

The presence of gadolinium and the quality of the images were determined

through the automatic approach described in (Bottani et al., 2022a), which

will be detailed in the Methods section.

2.2.6. Training, validation and testing subsets

Before starting the experiments, we defined a test set by randomly select-

ing 20% of the patients of the dementia class and the corresponding matched

patients of the other two classes (NDL and NDNL). While for the train-

ing/validation set, if there were several images at the same visit all were kept

to increase the number of training samples, for the test set, we selected only

one image per visit (the selection was made randomly). This resulted in a

test set composed of 152 patients/images for each of the three classes (D,

NDL, NDNL). The training/validation set was composed of 604 patients and

719 images for D, 604 patients and 799 images for NDL, 604 patients and
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Table 2: For each category, we report the number of patients and images, the age, the
percentage of females, of images in Tier 2-1 (i.e. images of medium and good quality) and
the percentage of images with gadolinium-based contrast agent. Results with ** mean that
the distributions between the overall population and a specific category were statistically
significantly different (χ2 test corrected for multiple comparisons using the Bonferroni
procedure, corrected p-value <0.05). Age and sex were computed at the patient level,
while the tiers and the gadolinium injection were computed at the image level.

Category
N

patients
N

images
Age

(mean ± std [range])

Sex
(%F)

%Tier
2-1

With
gadolinium

D 756 887 71.17 ± 11.58 [18,90] 50.34% 57.72%** 24.80%**

NDL 756 997 71.17 ± 11.58 [18,90] 50.34% 52.25% 63.59%**

NDNL 756 939 71.17 ± 11.58 [18,90] 50.34% 36.42%** 66.13%**

Total 2268 2823 71.17 ± 11.58 [18,90] 50.34% 48.71% 52.24%

756 images for NDNL.

We respected the same distribution of image quality and presence of

gadolinium between the test and the training/validation sets. We also checked

that the distribution of the ICD-10 codes between the test and the train-

ing/validation sets among the dementia and NDL categories was the same.

For each task, the images of the training/validation set were further split

using a 5-fold CV. The splits were the same for all the experiments and the

distribution of image quality and presence of gadolinium respected the overall

distribution.

2.2.7. Training subsets

In order to study potential biases related to the presence of gadolinium

or the quality of the images, we created different training subsets:

16



• T 172
no gado includes only matched dementia, NDL and NDNL patients with

images acquired without gadolinium injection. This results in a training

subset of 172 patients per class.

• T 181
tier 1/2 includes only matched dementia, NDL and NDNL patients with

images of medium or good quality (tier 2-1). This results in a training

subset of 181 patients per class.

• T 172 includes 172 patients per class with the same distribution of image

quality and gadolinium injection than the overall data set.

• T 88
no gado, tier 1/2 includes only matched dementia, NDL and NDNL pa-

tients with images of medium or good quality acquired without gadolin-

ium injection. This results in a training subset of 88 patients per class.

• T 88
tier 1/2 includes 88 patients per class of only images of good or medium

quality.

• T 88 includes 88 subjects per class with the same distribution of image

quality and gadolinium injection than the overall data set.

3. Methods

3.1. Image pre-processing

The T1w MR images were converted from DICOM to NIfTI using the soft-

ware dicom2niix (Li et al., 2016) and organized following the Brain Imaging

Data Structure (BIDS) standard (Gorgolewski et al., 2016). Images with a
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voxel dimension smaller than 0.9 mm were resampled using a 3rd-order spline

interpolation to obtain 1 mm isotropic voxels.

A first pre-processing consisted in applying the t1-linear pipeline of

Clinica (Routier et al., 2021), which is a wrapper of the ANTs software

(Avants et al., 2014). Bias field correction was applied using the N4ITK

method (Tustison et al., 2010). An affine registration to MNI space was

performed using the SyN algorithm (Avants et al., 2008). The registered

images were further rescaled based on the min and max intensity values.

Images were then cropped to remove background resulting in images of size

169×208×179, with 1 mm isotropic voxels (Wen et al., 2020).

This pre-processing was used to assess the quality of the images with

an automatic approach proposed in (Bottani et al., 2022a). The automatic

quality control (QC) approach first identified if a given image was or not a

straight reject (i.e. segmented or cropped image). If it was not a straight

reject, it was further labeled by the automatic QC tool according to the tiers

of quality, i.e. tier 1 (good quality), tier 2 (medium quality) or tier 3 (bad

quality). In addition, the automatic QC tool determined the presence or the

absence of gadolinium-based contrast agent.

A second pre-processing consisted in applying the t1-volume-tissue-

segmentation pipeline of Clinica (Routier et al., 2021; Samper-González

et al., 2018) to obtain probability gray matter maps. This wrapper of the

Unified Segmentation procedure implemented in SPM (Ashburner and Fris-

ton, 2005) simultaneously performs tissue segmentation, bias correction and
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spatial normalization. This results in probability gray matter maps in the

MNI space that have a size of 121×145×121 voxels.

3.2. Synthesis of images without gadolinium

To attenuate a potential bias due to the presence or absence of gadolin-

ium, all the images pre-processed with the t1-linear pipeline went through

the Att-U-Net described in (Bottani et al., 2022b) that translates contrast-

enhanced images into non-contrast-enhanced images. To prevent introducing

a potential bias because of differences in smoothness between the real and

synthetic images, all the images were fed to the network no matter the initial

presence or absence of gadolinium. The synthetic images were then pre-

processed with the t1-volume-tissue-segmentation pipeline, as done for

the real images.

3.3. Machine learning models used for classification

3.3.1. Linear support vector machine

A linear support vector machine (SVM) using probability gray matter

maps as features was used for the binary classification tasks. We followed

the implementation of (Samper-González et al., 2018) using Scikit-learn (Pe-

dregosa et al., 2011). The Gram matrix K = (k(xi,xj))i,j was pre-calculated

using a linear kernel k for each pair of images (xi,xj) for the provided sub-

jects and was used as input for the generic SVM. When using a pre-computed

Gram matrix, computing time depends on the number of subjects, and not

on the number of features and it can speed up calculations. We optimized
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the penalty parameter C of the error term. The optimal value of C was

chosen using nested CV, with an inner k-fold (k=10). For each fold of the

outer CV, the value of C that led to the highest balanced accuracy in the

inner k-fold was selected.

3.3.2. Convolutional neural networks

We used three different 3D convolutional neural networks (CNN) for the

binary classification tasks to have a comparison with the linear SVM. Note

that the input of the CNNs are the images pre-processed with t1-linear as

this procedure was validated in (Wen et al., 2020).

The three 3D CNN architectures considered in the paper are denominated

as follows: Conv5 FC3, ResNet, InceptionNet. The first is composed of

five convolutional layers and three fully connected layers as implemented in

(Wen et al., 2020; Thibeau-Sutre et al., 2021), the ResNet contains residual

blocks inspired from (Jónsson et al., 2019) and the InceptionNet is a modified

version of the Inception architecture implemented by (Szegedy et al., 2016).

The ResNet and the InceptionNet were implemented and used for the work

of (Couvy-Duchesne et al., 2020). All the details of the architectures can be

found in (Bottani et al., 2022a).

The models were trained using the cross entropy loss. We used the Adam

optimizer with a learning rate of 10−5 for the ResNet and of 10−4 for the

InceptionNet and Conv5 FC3 architectures. We implemented early stopping

and all the models were evaluated with a maximum of 50 epochs. The batch
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size was set to 2. The model with the lowest loss, determined on the valida-

tion set, was saved as final model. Implementation was done using Pytorch

through the ClinicaDL platform Thibeau-Sutre et al. (2021).

4. Results

We first classified AD vs CN subjects using the ADNI data set in order

to obtain baseline results on a research data set. Then we performed two

tasks using the clinical data sets: dementia vs no dementia with lesions (D

vs NDL) and dementia vs no dementia no lesions (D vs NDNL).

4.1. Performance in a research data set

Results for classification of AD vs CN on ADNI are reported in Table 3.

The best balanced accuracy was reached using the linear SVM with gray mat-

ter maps as input (86.4%), followed by the ResNet (85.3%), the Conv5 FC3

(84.1%), and the InceptionNet (82.1%) using minimally pre-processed T1w

MR images as input. These results are in line with the literature (Samper-

González et al., 2018; Wen et al., 2020). As training linear SVMs is less

computationally expensive than CNNs and since the objective of our work

is not to compare different machine learning approaches, for the subsequent

experiments we will only report results obtained with the linear SVM.

4.2. Performance in the clinical data set

Classification results on the clinical data set (for both D vs NDNL and

D vs NDL) using all the training samples available are reported in Table 3.
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Table 3: Dementia classification performance (AD vs CN) on the research data set (ADNI).
Results were obtained with different machine learning models: a linear SVM using as input
gray matter maps and three CNN models (Conv5 FC3, ResNet and InceptionNet) using as
input minimally pre-processed T1w MR images). We present results on the independent
test set using the average performance of the five models corresponding to the five folds.

AD vs CN

Metric SVM Conv5 FC3 ResNet InceptionNet

Balanced accuracy 86.80 84.10 85.30 82.10

Sensitivity 82.80 79.80 83.00 75.80

Specificity 90.80 88.40 87.60 88.40

Table 4: Dementia classification performance (D vs NDNL and D vs NDL) in the clinical
data set. Results were obtained with a linear SVM using as input gray matter maps.

Metric D vs NDNL D vs NDL

Balanced accuracy 68.75 73.09

Sensitivity 66.97 75.92

Specificity 70.53 70.26

We observed an important drop in balanced accuracy compared with that

obtained on the research data set: 68.8% for D vs NDNL and 73.1% for D

vs NDL compared with 86.4% for AD vs CN in ADNI. This may due to the

heterogeneity of the classes in the clinical data set, where many diagnoses

coexist, but also to differences in image characteristics.
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4.2.1. Influence of gadolinium injection and image quality on the classifica-

tion performance

As shown in Table 2, the proportions of images with and without gadolin-

ium injection and of medium/good vs low quality differ in the dementia, NDL

and NDNL categories. In the dementia class, 25% images were acquired

with gadolinium injection. In NDL and in NDNL, this proportion is around

65%. In the dementia and NDL categories, the majority of the images are

of medium/good quality (58% and 52%, respectively), while in the NDNL

category only 36% of images are of medium/good quality. Since these acqui-

sition characteristics are correlated with the diagnostic class, it is possible

that the classifier uses this information characteristic, thereby biasing the

performance upwards, a phenomenon often referred to as the Clever Hans

effect (Lapuschkin et al., 2019).

To test this hypothesis, we used the training subsets T 172
no gado, T 181

tier 1/2

and T 172. The order of magnitude of patients per class among the training

subsets is equivalent, meaning that differences observed in the classification

score should not depend on the training sample size but on the characteristics

of the training subset. We assume that if gadolinium or image quality has

no impact, the performance will not vary when using the different training

subsets. On the other hand, if results differ between training subsets, this

will be the sign of a Clever Hans effect. Results of these experiments are

displayed in Table 5. Note that the test set never changed across all the

experiments of the work: it is composed of 152 patients/images per class.
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The balanced accuracy when using T 172 was substantially higher than when

using T 172
no gado or T 181

tier 1/2. This indicates that results are biased by the presence

of gadolinium and by the differences in image quality. The classifiers exploit

these characteristics to determine the diagnosis.

Table 5: Influence of gadolinium injection and image quality on the classification per-
formance. Results were obtained for the D vs NDNL and D vs NDL classification tasks
with a linear SVM using as input gray matter maps and trained on different clinical data
subsets (T 172

no gado, T 181
tier 1/2 and T 172).

A. D vs NDNL

Metric T 172
no gado T 181

tier 1/2 T 172

Balanced accuracy 60.33 61.32 68.16

Sensitivity 52.76 79.87 73.95

Specificity 67.89 42.76 62.37

B. D vs NDL

Metric T 172
no gado T 181

tier 1/2 T 172

Balanced accuracy 69.74 64.61 72.30

Sensitivity 85.13 45.53 66.45

Specificity 54.34 83.68 78.16

The training subset T 172
no gado still contains images of different quality and

T 181
tier 1/2 images with and without gadolinium. The classifier may thus still be

exploiting biases in the image characteristics. To evaluate the performance

of the classifier using a training data set without any of these two poten-
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tial biases, we used the training subset called T 88
no gado, tier 1/2 and compared

it with using the training subset T 88 having the same training size. Results

are reported in Table 6. For both tasks, there was a dramatic drop in bal-

anced accuracy, down from about 70% to random (about 50%). Therefore,

the classifier is only using the Clever Hans effect and not relevant diagnostic

information. In other words, when it cannot exploit biases in image charac-

teristics, the trained classifier is not better than a random classifier.

Table 6: Joint influence of gadolinium injection and image quality on the classification
performance. Results were obtained for the D vs NDNL and D vs NDL classification
tasks with a linear SVM using as input gray matter maps and trained on two clinical data
subsets (T 88

no gado, tier 1/2 and T 88).

A. D vs NDNL

Metric T 88
no gado, tier 1/2 T 88

Balanced accuracy 51.51 69.47

Sensitivity 6.71 71.97

Specificity 96.32 66.97

B. D vs NDL

Metric T 88
no gado, tier 1/2 T 88

Balanced accuracy 50.00 73.03

Sensitivity 40.00 66.58

Specificity 60.00 79.47
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4.2.2. Classification performance obtained after gadolinium removal using

image translation

In our previous work (Bottani et al., 2022b), we proposed a deep learning-

based image translation approach to remove the visual effect of gadolinium

from contrast-enhanced T1w MR images. In the present paper, we assess

whether this approach could reduce the classification bias due to gadolinium

injection. We created a training subset composed of 88 synthetic images

obtained from images of medium/good quality acquired with and without

gadolinium injection that all went through the gadolinium removal Att-

U-Net, as described in section 3.2. If the gadolinium is successfully re-

moved, training with this subset should be equivalent to training with the

T 88
no gado, tier 1/2 subset that includes only images without gadolinium. Results

of these experiments are reported in Table 7. The balanced accuracy is equiv-

alent in both cases, meaning that the effect of gadolinium has been removed

using the synthetic images. Nevertheless, it is not better than chance indi-

cating, again, that the classifier cannot learn image characteristics which are

relevant to the diagnostic classification.

However, it is possible that the low performance is due to the small size of

the training set. We therefore used the image translation method to build a

larger clinical data set composed only of images of medium/good quality and

where the visual appearance has been removed, this data set was denoted

Synthetic T 181
tier 1/2). Using this training set, we assessed both the linear SVM

(using gray matter maps) and the ResNet (with minimally pre-processed T1w
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MRI as input). Results appear in Table 8. We found increased performance

using this synthetic, larger, training set. The ResNet obtained a slightly

higher performance than the SVM. It is thus possible that homogenizing

the data set using image translation allows removing bias and increasing

classification performance. Nevertheless, we cannot directly demonstrate this

in the absence of a training set of the same size containing only images

without gadolinium and of higher quality. It is thus possible that visually

imperceptible differences still exist between the images that were initially

acquired with gadolinium and those without, and that the classifiers exploit

these differences.

4.2.3. Classification performance when training on a research data set and

testing on the clinical data set

Another way to ensure that gadolinium or poor image quality is not ex-

ploited by the classifier is to train using the research data set (ADNI contains

only images without gadolinium and of good quality). We both trained a lin-

ear SVM and a ResNet. Results appear in Table 9. No matter the task, the

linear SVM trained on research data led to a slightly higher balanced accu-

racy than the ResNet. Note that the accuracy was also slightly higher than

when training with synthetic data (Table 8). In any case, one should keep

in mind that these classification performance are too low to be acceptable in

clinical practice.
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Table 7: Classification performance obtained after gadolinium removal using image trans-
lation, training on a set of 88 patients. Results were obtained for the D vs NDNL and
D vs NDL classification tasks with a linear SVM using as input gray matter maps and
trained on three clinical data subsets (T 88

tier 1/2, T 88
tier 1/2, T 88

no gado, tier 1/2).

A. D vs NDNL

Metric T 88
tier 1/2 Synthetic T 88

tier 1/2 T 88
no gado, tier 1/2

Balanced accuracy 60.26 51.71 51.51

Sensitivity 58.68 75.66 6.71

Specificity 61.84 27.76 96.32

B. D vs NDL

Metric T 88
tier 1/2 Synthetic T 88

tier 1/2 T 88
no gado, tier 1/2

Balanced accuracy 68.29 54.08 50.00

Sensitivity 69.34 52.50 40.00

Specificity 67.24 55.66 60.00
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Table 8: Classification performance obtained after gadolinium removal using image transla-
tion, training on a set of 181 patients. Results were obtained a linear SVM with probability
gray matter maps or a ResNet with minimally pre-processed T1w MR images.

A. D vs NDNL

Metric SVM ResNet

Balanced accuracy 61.91 63.22

Sensitivity 81.32 52.24

Specificity 42.50 74.21

B. D vs NDL

Metric SVM ResNet

Balanced accuracy 64.61 67.50

Sensitivity 45.53 64.47

Specificity 83.68 70.53
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Table 9: Classification performance when training on a research data set and testing on a
clinical data set. Results were obtained for the D vs NDNL and D vs NDL classification
tasks using a linear SVM with probability gray matter maps or a ResNet with minimally
pre-processed T1w MR images.

A. D vs NDNL

Metric SVM ResNet

Balanced accuracy 64.08 61.84

Sensitivity 62.76 60.92

Specificity 65.39 62.76

B. D vs NDL

Metric SVM ResNet

Balanced accuracy 69.47 61.78

Sensitivity 62.76 60.92

Specificity 76.18 62.63
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5. Discussion

In this paper, we studied the performance of machine learning approaches

for computer-aided detection of dementia based on T1w MRI using a real-life

clinical routine cohort coming from an hospital data warehouse. To the best

of our knowledge, this is the first paper of this kind since previous works have

used either research data sets or clinical data from specialized centers that

have been carefully selected and are thus not representative of daily clinical

routine. We demonstrated that the classifiers trained on clinical routine data

are highly biased by image acquisition specificities such as image quality or

injection of gadolinium. When such biases are removed, the performance is

very poor. Models trained on research data perform better but their accuracy

remains unacceptably low for clinical use.

As a research topic, machine learning for diagnosis of Alzheimer’s dis-

ease is now almost 15 year old Klöppel et al. (2008); Vemuri et al. (2008);

Gerardin et al. (2009); Fan et al. (2008). While high performance has been

consistently reported, most of these works use research data sets for training

and validation (Samper-González et al., 2018; Falahati et al., 2014; Manera

et al., 2021; Bron et al., 2021). There are a few papers using clinical rou-

tine data sets but they cannot be considered representative of daily clinical

routine as they come from a single or a handful of highly specialized centers

and carefully select data using strict criteria regarding data quality (Morin

et al., 2020; Platero et al., 2019; Sohn et al., 2015; Klöppel et al., 2015). It is

thus unclear how such methods would perform on real-life clinical MRI and
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ultimately translate to the clinic.

The main results of our work are three-fold: i) the performance of such

CAD methods is considerably lower on clinical routine data compared to re-

search data sets; ii) on clinical routine data, classifiers were heavily biased

by irrelevant characteristics and when such biases were removed, the per-

formance was particularly low; iii) training on research data and testing on

clinical data allowed reaching slightly higher accuracies but the overall per-

formance remained low. More specifically, when both training and testing on

research data, we obtained high classification performance (around 87% bal-

anced accuracy) which is in line with the literature. When training/testing on

clinical data, the performance dropped by more than 15 percent points and,

more importantly, was heavily biased by irrelevant characteristics. When

such confounders were removed, the performance was around the chance

level. Training on the research data set and testing on the clinical routine

data set allowed removing this source of bias but the performance remained

poor (decrease of at least 19 percent points of balanced accuracy). Thus,

classifiers that lead to high classification performance in a research frame-

work do not necessarily generalize to clinical data set. Part of this drop in

accuracy could be explained by an increase in the difficulty of the classifica-

tion task between the research and clinical setups. In the research setup, the

AD and CN classes are quite homogeneous, while in the clinical setup, the

D, NDL and NDNL classes are much more heterogeneous as each category

corresponds to several diagnoses. However, this may not be the only factor
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leading to this performance difference and more analyses were performed to

dissect these results.

In the clinical routine data set, there was a clear correlation between

the diagnostic groups on the one hand and image quality and presence of

gadolinium on the other hand ( 65% of images with gadolinium in NDL and

NDNL and 25% in D; 37% of images of medium or good quality in NDNL,

and 55% in D and NDL). We hypothesized that models trained on such data

could exploit this bias. To assess this, we trained different models changing

the characteristics of the training subsets: we used training subsets having

only images without gadolinium (T 172
no gado) or images of medium/good quality

(T 181
tier 1/2) or both (T 88

no gado, tier 1/2) and we compared their performance with

a training subset of the same sample size but having the same proportions of

images with gadolinium and of low quality than the whole data set (T 172 and

T 88). We showed that the performance of the classifier was heavily biased by

these image characteristics, a phenomenon known as the Clever Hans effect

(Lapuschkin et al., 2019). Such phenomenon has been previously described

in different medical image computing applications (Lapuschkin et al., 2019;

Wallis and Buvat, 2022).

The primary aim of this work was not to find the most efficient machine

learning algorithm but to evaluate the performance of well-known methods.

For this reason, most of the experiments were conducted using a simple lin-

ear SVM using gray matter maps as inputs. To justify this choice, we first

confirmed that its performance on research data was in line with the litera-
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ture and comparable to more advanced deep learning classification methods

(namely ResNet and Inception). At the end of the study, we also confirmed

that a deep learning method did not reach substantially higher performance

on clinical routine data. Of course, it does not mean that sophisticated deep

learning methods could not achieve higher performance using larger, unbi-

ased, clinical routine data sets but it was not the case in our work.

We aimed to remove the bias coming from gadolinium injection by apply-

ing an image translation Att-U-Net model proposed in (Bottani et al., 2022b).

On the smaller set of 88 patients, its performance was close to chance and

similar to that of a classifier trained on images without gadolinium and of

good/medium quality. When using a larger data set of synthetic images, we

obtained higher accuracies. This potentially indicates that the use of image

translation allows removing some of the biases while improving performance.

Nevertheless, we cannot strictly assert this because there may be residual,

visually imperceptible differences between images that were acquired with

gadolinium and those without. Overall, this stresses the importance of de-

veloping image homogenization techniques for training unbiased classifiers.

Our study has the following limitations. Unlike in research studies, the

diagnosis may not be trustworthy as it is assigned using ICD-10 codes, which

could be a source of bias. Indeed, in the French healthcare system, they are

assigned during hospitalization by the clinical department for the billing of

the expenses. In addition, ICD-10 codes do not undergo quality control and it

is likely that mistakes occur when entering the codes. These limitations of the
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diagnostic labels may hamper the performance of the classifiers. In order to

have more reliable diagnostic labels, it would be necessary to use information

from medical reports. This could be done by medical experts but this is time

consuming and may not scale up to large populations. Another option is

to use natural language processing but it may also lead to errors. Other

limitations concern the training data set we have used: due to the choices

done we have reduced the sample size. Further evaluations should be done

to assess whether the performance of the classifiers could improve according

to the present work by adding more subjects in the training. Finally, we

have limited our experimental settings to the use of a linear SVM or CNN

models, but more improvements could be done using other models or other

CNN architectures with different hyper-parameters.

Overall, our results highlight the challenges for translation of CAD sys-

tems from research to clinical routine. A major result of this study is un-

covering the strong influence of biases coming from image heterogeneity. We

specifically studied the case of gadolinium injection and image quality but

other sources of biases such as image resolution, sequence parameters or

scanner type could exist. They could in turn induce Clever Hans effects on

the CAD systems if they are correlated with the diagnosis of interest. This

highlights the need for automatic quality control tools in order to identify

the various sources of biases as well as for homogenization tools that could

remove these biases.
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Nathalie Boddaert 3

Farida Benoudiba, Ghaida Nasser, Claire Ancelet, Laurent Spelle 4

Hubert Ducou-Le-Pointe5

Catherine Adamsbaum6

Marianne Alison7

Emmanuel Houdart8

Robert Carlier 9,17

Myriam Edjlali9

Betty Marro10,11

Lionel Arrive10

Alain Luciani12

Antoine Khalil13

Elisabeth Dion14

Laurence Rocher15

Pierre-Yves Brillet16

37



Paul Legmann, Jean-Luc Drape 18
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Klöppel, S., Peter, J., Ludl, A., Pilatus, A., Maier, S., Mader, I., Heimbach,
B., Frings, L., Egger, K., Dukart, J., et al., 2015. Applying automated
mr-based diagnostic methods to the memory clinic: a prospective study.
Journal of Alzheimer’s disease 47, 939–954.
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