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Abstract. In this paper, we consider a variant of the classic Assignment
Problem (AP), called the Balanced Assignment Problem (BAP) [2]. The
BAP seeks to find an assignment solution with the smallest value of max-
min distance: the difference between the maximum assignment cost and
the minimum one. However, by minimizing only the max-min distance,
the total cost of the BAP solution is neglected, and it may lead to a
very inefficient solution in terms of the total cost. Hence, we propose a
fair way based on Nash equilibrium [1] [3], [4] to inject the total cost
into the objective function of the BAP for finding assignment solutions
having a better trade-off between the two objectives: the first aims at
minimizing the total cost and the second aims at minimizing the max-min
distance. For this purpose, we introduce the concept of Nash Fairness
(NF) solutions based on the definition of proportional-fair scheduling
adapted in the context of the AP: a transfer of utilities between the total
cost and the max-min distance is considered to be fair if the percentage
increase in the total cost is smaller than the percentage decrease in the
max-min distance and vice versa.
We first show the existence of an NF solution for the AP, which is exactly
the optimal solution minimizing the product of the total cost and the
max-min distance. However, finding such a solution may be difficult as
it requires minimizing a concave function. The main result of this paper
is to show that finding all NF solutions can be done in polynomial time.
For that, we propose a Newton-based iterative algorithm converging to
NF solutions in polynomial time. It consists in optimizing a sequence of
linear combinations of the two objectives based on the Weighted Sum
Method [5]. Computational results on various instances of the AP are
presented and commented.

Keywords: Combinatorial optimization · Balanced assignment problem
· Proportional fairness · Proportional-fair scheduling · Weighted Sum
Method

1 Introduction

The Assignment Problem (AP) is a fundamental combinatorial optimization
problem. It can be formally defined as follows. Given a set of n workers, a set
of n jobs, and a n × n cost matrix whose elements are positive, representing
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the assignment of any worker to any job, the AP aims at finding a one-to-one
worker-job assignment (i.e., a bipartite perfect matching) that minimizes certain
objective functions.

In the classic AP, we seek to find an assignment solution minimizing the
total cost. It is a well-known optimization problem that can be solved by the
Hungarian algorithm in O(n3) [7]. The Balanced Assignment Problem (BAP)
is a variant of the classic AP where instead of minimizing the total cost, we
minimize the max-min distance, which is the difference between the maximum
assignment cost and the minimum one in the assignment solution. In [2], the
authors proposed an efficient threshold-based algorithm to solve the BAP in
O(n4). However, by minimizing only the max-min distance, the total cost of the
BAP solution is neglected, and it may lead to a very inefficient solution in terms
of the total cost.

In this paper, to overcome the possible inefficiency of the solutions for the
BAP, we propose a fair way based on Nash equilibrium to inject the total cost
into the objective function of the BAP. Nash equilibrium is the most common
optimality notion for sharing resources among users [1] [3],[4]. We are interested
in assignment solutions for the AP achieving a Nash equilibrium between two
players: the first aims to minimize the total cost, and the second aims to minimize
the max-min distance. For this purpose, we introduce the Nash Fairness (NF)
solutions based on the definition of proportional-fair scheduling adapted in the
context of the AP: a transfer of utilities between the total cost and the max-min
distance is considered to be fair if the percentage increase in the total cost is
smaller than the percentage decrease in the max-min distance and vice versa.

We have introduced the concept of NF solutions for the Balanced Travel-
ing Salesman Problem (BTSP) in a recent paper [12]. In [12], we proposed an
algorithm converging to particular NF solutions called extreme NF solutions
having respectively smallest value of total cost and max-min distance. Similar
to [12], in this current paper, we also introduce the concept of NF solutions in
the context of the AP. But, the main contribution of our work in this paper is a
stronger result than in [12]: we provide an algorithm for finding all NF solutions
in polynomial time.

The paper is organized as follows. In Section 2, we introduce a linear program-
ming (LP) formulation for the BAP. The concept of NF solutions is presented in
Section 3. In particular, we prove the existence of NF solutions for the AP and
show that they are optimal solutions of a weighted sum objective problem. In
Section 4, an algorithm for finding all NF solutions and computational results on
various instances of the AP is given. Finally, this paper’s conclusion and future
works are discussed in Section 5.

2 LP formulation for the BAP

We consider an AP with a n × n cost matrix whose elements ci,j are positive,
and they represent the cost assignments between worker i and job j. We first
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present the linear programming (LP) formulation for the BAP as follows

min Q = u− l (1a)

s.t.
∑
j∈[n]

xj,i =
∑
j∈[n]

xi,j = 1 ∀i ∈ [n] (1b)

u ≥
∑
j∈[n]

ci,jxi,j ∀i ∈ [n] (1c)

l ≤
∑
j∈[n]

ci,jxi,j ∀i ∈ [n] (1d)

xi,j ≥ 0 ∀i, j ∈ [n]. (1e)

where [n] = {1, ..., n} and xi,j represents the assignment between worker i
and job j corresponding to the cost assignment ci,j . To calculate the max-min
distance Q, we need to determine the maximum and the minimum assignment
costs u and l in the assignment solution. Constraints (1c) obviously allow bound-
ing u from below by the maximum assignment cost in the assignment solution.
Similarly, constraints (1d) allow bounding l from above by the minimum as-
signment cost in the assignment solution. As Q = u − l is minimized, u and l
will respectively take the values of the maximum and the minimum assignment
costs. We will show that this LP formulation has an integral optimal solution
corresponding to an assignment solution (i.e., bipartite perfect matching).

Theorem 1. This LP formulation always has an optimal solution where the
variables take integer values.

Proof. The objective function assures that u and l will be equal, respectively,
to the maximum and the minimum assignment costs in the optimal solution.
Consequently, the optimal solution of this LP is always integral because the
constraints matrix of (1b) is totally unimodular (e.g., see [6]), and the constraints
(1c) and (1d) are simply bound constraints. □

In the following, we solve the classic AP as well as the BAP for several
instances of the AP where we generate random uniform ci,j in [1, 102]. Optimal
solutions of these instances are shown in Table 1 where assignx represents an
instance of the AP with a cost matrix of dimension x × x and P,Q represent
respectively the total cost and the max-min distance in the optimal solution.
We use CPLEX 12.10 on a PC Intel Core i5-9500 3.00GHz with 6 cores and 6
threads for solving the classic AP and the BAP. We can see in each instance of
the AP that the optimal solutions for the classic AP may be undesirable with
respect to those for the BAP and vice versa: inefficient values of Q in the optimal
solutions for the classic AP compared with those in the optimal solutions for the
BAP and inefficient values of P in the optimal solutions for the BAP comparing
with those in the optimal solutions for the classic AP.

Hence, this paper aims to use a fair way to inject the total cost into the objec-
tive function for finding assignment solutions having a better trade-off between
the two objectives.
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Table 1. Optimal solutions for the classic AP and the BAP

Instance classic AP BAP
P Q Time P Q Time

assign3 100 6 0.01 200 3 0.01
assign6 114 15 0.01 173 10 0.01
assign17 68 10 0.01 242 3 2.43
assign25 189 27 0.03 2004 11 2.44
assign30 157 18 0.04 643 7 32.4

3 Nash fairness solutions for the AP

We have introduced the concept of Nash fairness (NF) solution for the Balanced
Traveling Salesman Problem (BTSP) [12]. In this section, we restate the concept
of NF solutions in the context of the AP, and we put the proofs of theorems in
the Appendix.

3.1 Proportional fairness

NF solutions for the AP are closely related to the concept of proportional fairness
for multiple players problem [1]. In the context of multiple players problem, let
U be a set of possible states of the world or alternatives and let I be a finite
set, representing a collection of individuals. For each i ∈ I, ui : U −→ R+ be a
utility function, describing the amount of happiness an individual i derives from
each possible state such that we prefer the alternative x to the alternative y if
and only if ui(x) ≥ ui(y),∀i ∈ I.

NF solutions for two-player problem [3] are defined by using the Nash stan-
dard of comparison: a transfer of utilities between the two players is considered
to be fair if the percentage increase in the utility of one player is larger than the
percentage decrease in utility of the other player [1].

Proportional fairness introduced by Bertsimas et al. [1] is a generalized NF
solution for multiple players. In that setting, the fair allocation should be such
that, if compared to any other feasible allocation of utilities, the aggregate pro-
portional change is less than or equal to 0 [3], [1], [4].

Definition 1. [1] xNF ∈ U is an NF solution for multiple players problem if
and only if

n∑
j=1

uj(x)− uj(x
NF )

uj(xNF )
≤ 0, ∀x ∈ U, (2)

where n is the number of players and uj(x) > 0, ∀j ∈ I, ∀x ∈ U .
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3.2 Characterization of NF solutions for the AP

Let P,Q now represent the total cost and the max-min distance in a feasible
assignment solution for the AP. From the definitions of P and Q we have P >
Q ≥ 0. We first suppose that Q > 0. As P,Q now are two strictly positive
utility functions, we have a two-player problem. In the usual definition of NF
solutions [3], [1], an alternative assigned a greater value is preferred. However,
in the context of the AP, we prefer the alternative assigned a smaller value for
two utility functions P and Q. Thus, the aggregate proportional change should
be greater than or equal to 0 in the definition of NF solutions for the AP. That
is to say, the sum of relative gains when switching from NF solutions to another
feasible solution is not negative in the context of the AP.

We denote the value solution for the total cost and the max-min distance
corresponding to a feasible assignment solution by (P,Q). Let (P ∗, Q∗) be an
NF solution for the AP, condition (2) can be translated into the context of the
AP as follows

P − P ∗

P ∗ +
Q−Q∗

Q∗ ≥ 0, ∀(P,Q) ∈ S, (3)

which is equivalent to

PQ∗ +QP ∗ ≥ 2P ∗Q∗, ∀(P,Q) ∈ S, (4)

where S is the set of solutions (P,Q) corresponding to all feasible assignment
solutions for the AP.

Note that in case Q∗ = 0, the condition (4) is also satisfied. Hence, NF
solution for the AP can be generally stated as follows

Lemma 1. [12] (P ∗, Q∗) ∈ S is a NF solution for the AP if and only if PQ∗ +
QP ∗ ≥ 2P ∗Q∗, ∀(P,Q) ∈ S.

Remark 1. An assignment solution with equal assignment costs (i.e., Q = 0) is
a NF solution.

3.3 Existence of NF solutions

In this section, we first show the existence of NF solutions for the AP. Let us
recall that in the multiple players problem mentioned in Section 3.1 where we
prefer an alternative assigned a greater value, NF solutions can be obtained
equivalently as the optimal solution of the problem

max

n∑
j=1

log uj ,

provided that U is convex. Notice that the above NF solution equivalently max-
imizes the product of the utilities over U [1].

On the contrary, in the AP, there exist NF solutions that can be obtained by
minimizing instead of maximizing the product of the utilities.
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Theorem 2. [12] (P ∗, Q∗) = argmin(P,Q)∈S PQ is a NF solution.

Proof. Obviously, there always exists a solution (P ∗, Q∗) ∈ S such that

(P ∗, Q∗) = argmin
(P,Q)∈S

PQ.

Now ∀(P ′, Q′) ∈ S we have P ′Q′ ≥ P ∗Q∗. Then

P ′Q∗ +Q′P ∗ ≥ 2
√

P ′Q′P ∗Q∗ ≥ 2P ∗Q∗,

The first inequality is held by the Cauchy-Schwarz inequality.
Hence, (P ∗, Q∗) is a NF solution. □

Theorem 2 proves the existence of NF solutions for the AP that minimize PQ,
or equivalently minimize (logP + logQ). We call such solutions Product Nash
Fairness (PNF) solutions. However, finding PNF solutions may be difficult as it
requires minimizing a concave function. In the following, we show that all NF
solutions can be obtained by solving the following optimization problem

P(α) = min αP +Q s.t (P,Q) ∈ S,

where α ∈ [0, 1] is a coefficient to be determined. For solving P(α), we solve the
LP formulation in Section 2 with αP +Q as the objective function instead of Q.

Let α ∈ R+ and (Pα, Qα) be an optimal solution of P(α). Denote C0 :=
{α ∈ R+|αPα −Qα = 0}. Hence, if α ∈ C0 (i.e., Tα = 0) then α < 1, otherwise
αPα −Qα ≥ Pα −Qα > 0.

Notice that we assume the existence of the algorithms for solving the problem
P(α) with α ∈ [0, 1]. The solution of P(α) will be characterized only by the
solution (P,Q) and not by the decision vector of the solution. Thus, two solutions
having the exact value of (P,Q) will be considered the same. In addition, by
solving the problem P(α) when α = 0, i.e., the problem minimizing Q, we can
determine the particular NF solutions with Q = 0 (if they exist). In the rest of
this paper, we only consider the case Q > 0.

Theorem 3. [12] (P ∗, Q∗) ∈ S is a NF solution if and only if (P ∗, Q∗) is an

optimal solution of P(α∗) where α∗ = Q∗

P∗ .

Proof. See Appendix. □

Theorem 3 states a necessary and sufficient condition for the NF solutions. We
are interested now in the following question: Given a feasible solution (P ′, Q′) ∈
S, how to assert that (P ′, Q′) is an NF solution? We give the answer to this
question in the next proposition.

Proposition 1. Given a feasible solution (P ′, Q′) ∈ S. Let α′ = Q′

P ′ and (P ∗, Q∗)
be an optimal solution of P(α′), then (P ′, Q′) is a NF solution ⇐⇒ α′P ∗ +
Q∗ − α′P ′ −Q′ = 0.
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Proof. =⇒ If α′P ∗ + Q∗ − α′P ′ − Q′ = 0 then (P ′, Q′) is also an optimal

solution of P(α′). Since α′ = Q′

P ′ , (P ′, Q′) is a NF solution due to Theorem 3.

⇐= If (P ′, Q′) is a NF solution then (P ′, Q′) is also an optimal solution
of P(α′) due to Theorem 3. Thus, α′P ∗ + Q∗ = α′P ′ + Q′ which leads to
α′P ∗ +Q∗ − α′P ′ −Q′ = 0.

We call (P,Q) a Pareto-optimal solution for the AP if (P,Q) is an optimal
solution of P(α) where α ∈ [0, 1]. By Theorem 3, an NF solution is necessarily
a Pareto-optimal solution but not vice versa.

Proposition 1. There may be more than one NF solution for the AP.

Proof. Let us illustrate this by an instance of the AP having the following cost
matrix :

A =

30 48 68
44 65 34
67 36 48


By verifying all feasible assignment solutions in this instance, we easily obtain

three assignment solutions (1− 1, 2− 3, 3− 2), (1− 2, 2− 1, 3− 3) and (1− 3, 2−
2, 3−1) corresponding to three NF solutions (100, 6), (140, 4) and (200, 3). Note
that i − j where 1 ≤ i, j ≤ 3 represents the assignment between worker i and
job j in the solution of this instance. □

The main question now is how to determine the coefficients of C0 correspond-
ing one-to-one to all the NF solutions according to Theorem 3. The next section
presents an algorithm for finding all NF solutions in polynomial time.

4 Finding all NF solutions for the AP

In [12], we proposed an algorithm converging to extreme NF solutions having
respectively the smallest value of P and Q. This section introduces another one
to find all NF solutions in polynomial time. Obviously, they include the PNF
solutions minimizing PQ.

4.1 Upper bound for the number of NF solutions

We call (P,Q), (P ′, Q′) two distinct solutions if (P,Q) ̸≡ (P ′, Q′). We will show
that the number of NF solutions for the AP is at most C2

n2 + n where C2
n2 =

n2(n2−1)
2 by the following lemma and theorem.

Lemma 2. If (P,Q) ̸≡ (P ′, Q′) are two distinct NF solutions having Q,Q′ > 0
then Q ̸= Q′.
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Proof. Suppose that Q = Q′ > 0. Using the definition of NF solution, we have

P ′Q+Q′P ≥ 2PQ and P ′Q+Q′P ≥ 2P ′Q′.

which is equivalent to

P ′ + P ≥ 2P and P ′ + P ≥ 2P ′.

Hence we obtain P = P ′, which leads to a contradiction. □

Theorem 4. The number of NF solutions for the AP is at most C2
n2 + n.

Proof. If (P,Q) is an NF solution and Q = 0, the corresponding assignment
solution has n equal assignment costs. For the AP with n × n cost matrix, we
have n2 assignments, and consequently, there are at most n distinct NF solutions
having the same value Q = 0.

We now consider the NF solutions with Q > 0. We will show that the number
of NF solutions having Q > 0 is at most C2

n2 .

Let cmax
i and cmin

i be the maximum and the minimum assignment cost in
the assignment solution corresponding to (Pi, Qi) then Qi = cmax

i − cmin
i . As

shown in Lemma 2, for two distinct NF solutions (Pi, Qi), (Pj , Qj) with both Qi

and Qj strictly positive we obtain Qi ̸= Qj which is equivalent to cmax
i − cmin

i ̸=
cmax
j − cmin

j . We have then (cmax
i , cmin

i ) ̸≡ (cmax
j , cmin

j ). Thus, the assignment
solutions corresponding to (Pi, Qi), (Pj , Qj) have distinct pairs of assignments
representing the maximum and the minimum assignment cost. As we have at
most n2 distinct assignments, the number of distinct pairs of assignments is at
most C2

n2 . Consequently, the number of NF solutions having Q > 0 is at most
C2

n2 . Hence, the total number of NF solutions for the AP is at most C2
n2 + n. □

By Theorem 4, the number of Pareto-optimal solutions having distinct values
of Q is at most C2

n2 .

4.2 Algorithm for finding all NF solutions

As shown in Theorem 3, each element α∗ ∈ C0 corresponds to a NF solution
and vice versa. For all NF solutions, we aim to find all elements of C0. Our main
idea is that from each α0 ∈ [0, 1], we first use a procedure called Find() to find
αk ∈ C0 satisfying αk is the unique element ∈ C0 between α0 and αk.

Thus, let I be the set containing the intervals [αi, αj ] corresponding to
distinct Pareto-optimal solutions (Pi, Qi), (Pj , Qj). We use another procedure
called Test() for verifying whether there exists an NF solution corresponding to
ck ∈ [αi, αj ] or not. Using these procedures, the algorithm for finding all NF
solutions can be stated as follows.
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Algorithm 1 Finding all NF solutions

Input: An AP with positive values in a n× n cost matrix.
Output: Set C0 whose elements correspond to all NF solutions for this AP.
1: c0 ← Find(0)
2: c1 ← Find(1)
3: if c1 = c0 then
4: C0 = {c0}
5: else
6: I = {[c0, c1]}, C0 = {c0, c1}
7: for [ci, cj ] ∈ I do
8: Test([ci, cj ])
9: end for
10: end if
11: procedure Find(α0)
12: solve P(α0) to obtain an optimal solution (P0, Q0)
13: i← 0
14: repeat
15: αi+1 ← Qi/Pi

16: solve P(αi+1) to obtain an optimal solution (Pi+1, Qi+1)
17: Ti ← αi+1Pi+1 +Qi+1 − αi+1Pi −Qi

18: i← i+ 1
19: until Ti = 0
20: Return αi+1.
21: end procedure
22: procedure Test([ci, cj ])

23: αk =
Qi−Qj

Pj−Pi

24: if P(αk) has an optimal solution different to (Pi, Qi) and (Pj , Qj) then
25: ck ← Find(αk)
26: if ci = ck then
27: [ci, cj ]← [αk, cj ] ▷ Update the elements of I
28: Test([αk, cj ])
29: else if ck = cj then
30: [ci, cj ]← [ci, αk]
31: Test([ci, αk])
32: else ▷ ck is a new element of C0
33: [ci, cj ]← [ci, ck], [ck, cj ]
34: C0 ← C0 ∪ ck
35: Test([ci, ck]), Test([ck, cj ])
36: end if
37: end if
38: end procedure

Let α0 be the initial point, Ti = αi+1Pi+1 +Qi+1 −αi+1Pi −Qi and {αi}i≥0

denote the sequence constructed by Procedure Find(α0). We show that Algo-
rithm 1 explores all NF solutions in polynomial time by the following lemmas
and theorem. Due to lack of space, we put some proofs in Appendix.



10 Minh Hieu Nguyen et al.

Lemma 3. [12] Let α, α′ ∈ R+ and (Pα, Qα), (Pα′ , Qα′) be the optimal solutions
of P(α) and P(α′) respectively, if α < α′ then Pα ≥ Pα′ and Qα ≤ Qα′ .

Proof. See Appendix. □

As a consequence of Lemma 3, if (Pα, Qα), (Pα′ , Qα′) are optimal solutions
of P(α) and P(α′) and Pα < Pα′ (or Qα > Qα′) then we obtain α ≥ α′.

Lemma 4. [12] During the execution of Procedure Find(α0) in Algorithm 1,
αi+1 ∈ ]0, 1[ and Ti ≤ 0,∀i ≥ 0. Moreover, if α0P0 −Q0 > 0 then the sequence
{αi}i≥0 is strictly decreasing. Otherwise, if α0P0 − Q0 < 0 then the sequence
{αi}i≥0 is strictly increasing.

Proof. See Appendix. □

Lemma 5. [12] From each α0 ∈ [0, 1], Procedure Find(α0) converges to a co-
efficient αk ∈ C0 satisfying αk is the unique element ∈ C0 between α0 and αk.

Proof. See Appendix. □

Lemma 6. Procedure Find(α0) terminates in polynomial time.

Proof. If α0P0 − Q0 = 0 then α0 = Q0/P0 = α1. Thus, T0 = 0 because both
(P0, Q0) and (P1, Q1) are the optimal solutions of P(α0). Consequently, Proce-
dure Find(α0) returns the value α0.

Suppose that Procedure Find(α0) converges to αk ∈ C0 in k + 1 iterations.
We have Ti < 0, ∀0 ≤ i ≤ k − 1. We only consider the nontrivial case where
k > 0 (i.e., α0P0 −Q0 ̸= 0).

Without loss of generality, we suppose that α0P0 − Q0 > 0 that leads to
{αi}i≥0 is strictly decreasing. Since αi > αi+1, we have Qi ≥ Qi+1 and Pi ≤
Pi+1,∀i ≥ 0 due to Lemma 3.

We first show that if Ti < 0 then Qi > Qi+1,∀i ≥ 0.
Let us assume that Qi = Qi+1. The optimality of (Pi+1, Qi+1) gives

αi+1Pi+1 +Qi+1 ≤ αi+1Pi +Qi,

Using Qi = Qi+1 and αi+1 > 0, we obtain Pi+1 ≤ Pi. Thus, Pi = Pi+1.
Since Pi = Pi+1 and Qi = Qi+1, it implies Ti = 0 which leads to a contra-

diction.
Consequently, the execution of Procedure Find(α0) explores k Pareto-optimal

solutions having distinct values of Q. As the number of Pareto-optimal solutions
having distinct value of Q is at most C2

n2 , Procedure Find(α0) terminates after
a polynomial number of iterations. Hence, Procedure Find(α0) terminates in
polynomial time cause the LP formulation in Section 2 for P(α) can be solved
in polynomial time. □

Now by using the following lemma, we show that Procedure Test() can be
used for verifying the existence of a Pareto-optimal solution (as well as NF
solution) in each interval [αi, αj ].
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Lemma 7. Given an interval [αi, αj ] defined by 0 ≤ αi < αj ≤ 1 corresponding

to two distinct Pareto-optimal solutions (Pi, Qi) and (Pj , Qj). Let α
∗ =

Qj−Qi

Pi−Pj
, if

P(α∗) has no Pareto-optimal solution which is different to (Pi, Qi) and (Pj , Qj),
there does not have another one in [αi, αj ].

Proof. Using Lemma 3 with αi < αj and (Pi, Qi), (Pj , Qj) be the two distinct
Pareto-optimal solutions, we have Qi < Qj , Pi > Pj .

We first show that α∗ ∈ [αi, αj ].
Due to the optimality of (Pi, Qi) and (Pj , Qj) we obtain

αiPi +Qi ≤ αiPj +Qj ,

αjPj +Qj ≤ αjPi +Qi,

Hence, αi ≤ Qj−Qi

Pi−Pj
≤ αj which leads to αi ≤ α∗ ≤ αj .

Now suppose that we do not obtain any Pareto-optimal solution by solving
P(α∗) which is different to (Pi, Qi) and (Pj , Qj), we will show that there does
not have another one in [αi, αj ].

Since α∗ =
Qj−Qi

Pi−Pj
, we have α∗Pi + Qi = α∗Pj + Qj . That means in this

case (Pi, Qi) and (Pj , Qj) are two optimal solutions of P(α∗). If there exists
another Pareto-optimal solution (P,Q) of P(α) where α ∈ [αi, αj ], we have then
Qi < Q < Qj and Pi > P > Pj . Applying the consequence of Lemma 3 with
Q < Qj we obtain α ≤ α∗. Similarly, from Q > Qi we obtain α ≥ α∗.

Hence, α = α∗ and then P(α∗) has the Pareto-optimal solution (P,Q) which
is different to (Pi, Qi) and (Pj , Qj). It leads to a contradiction. □

Theorem 5. Algorithm 1 explores all NF solutions in polynomial time.

Proof. As a consequence of Lemma 5, the interval [c0, c1] contains all elements
of C0.

We know that the number of Pareto-optimal solutions having distinct values
of Q is at most C2

n2 . Consequently, [c0, c1] can be separated by at most C2
n2 − 1

intervals [ci, cj ] such that ci < cj correspond to two Pareto-optimal solutions
having distinct values of Q and there intervals have no common points except
the endpoints. By using Procedure Test(), each recursive call give us a Pareto-
optimal solution or show that we have explored an interval having no Pareto-
optimal solution and consequently no NF solution inside. As we use Procedure
Find(α) in each recursive call, Procedure Test() also terminates in polynomial
time. Moreover, we obtain an NF solution from each Pareto-solution found with a
corresponding coefficient ∈ [c0, c1]. Since Algorithm 1 terminated as the interval
[c0, c1] is totally explored, it found all NF solutions in polynomial time. The PNF
solutions minimizing PQ can be easily determined by comparing the products
of all NF solutions. □

4.3 Numerical results

Let us denote NFAP, and PAF as the problems of finding all NF solutions and
finding the NF solutions minimizing PQ for the AP. In this section, we conduct
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several experiments aimed at solving the NFAP with CPLEX 12.10 on some
instances from the data sets of the AP [11] as well as on various instances in
which we generate a random uniform cost matrix. We also solve the classic AP
and the BAP in the same instances. All the experiments are conducted on a PC
Intel Core i5-9500 3.00GHz with 6 cores and 6 threads.

Table 2. Numerical results for the classic AP, BAP, and NFBAP

Instance classic AP BAP PNF NFAP
P Q Time P Q Time P Q Time α all NF solutions

assign3 100 6 0.01 200 3 0.05 140 4 0.11 0.028 (100,6), (140,4), (200,3)
assign4 70 9 0.01 196 3 0.25 196 3 1.20 0.015 (70,9), (80,8)

(120,5), (196,3)
assign6 114 15 0.01 173 10 0.34 118 12 2.54 0.101 (118,12)
assign17 68 10 0.01 262 3 2.43 71 8 14.8 0.112 (71,8), (80,7), (130,4)
assign25 189 27 0.14 2004 11 7.12 189 27 41.2 0.142 (189,27), (452,14)
assign30 157 18 0.04 643 7 32.4 158 16 74.1 0.101 (158,16), (473,8)
assign45 6212 200 0.15 40937 54 85.0 6240 185 574 0.029 (6240,185), (7133,160)

(9394,112), (12766,75)
assign75 8828 65 0.28 63860 36 122 9741 49 336 0.005 (9741,49)
assign100 305 6 0.58 661 3 34.3 310 3 85.6 0.009 (310,3)

Table 3. Sum of relatives gains when switching from PNF solutions to the optimal
solutions of the classic AP and the BAP

Instance Sum of relative gains
PNF vs classic AP PNF vs BAP

assign3 0.214 0.178
assign4 1.357 0.000
assign6 0.216 0.299
assign17 0.207 2.065
assign25 0.000 9.010
assign30 0.118 2.507
assign45 0.076 4.852
assign75 0.232 5.290
assign100 0.983 1.132

Table 2 presents the numerical results in several instances with a range of
dimensions of the cost matrix from 3× 3 to 100× 100. We also provide the PNF
solution minimizing PQ and its corresponding value of α. We can see by the
values of P and Q in this table that the PNF solution strikes a better trade-off
between the total cost and the max-min distance compared with those for the
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classic AP and the BAP. In particular, when the solutions for the classical AP
and the BAP are quite different: inefficient values of Q in the optimal solutions
for the classic AP compared with those in the optimal solutions for the BAP
and inefficient values of P in the optimal solutions for the BAP comparing with
those in the optimal solutions for the classic AP, the PNF solution offers almost a
better alternative than the solution for the classic AP (respectively for the BAP)
with a significant drop on the values of Q (respectively P ) and a slight growth
on the values of P (respectively Q). More precisely, Table 3 presents the sums
of relative gains when switching from PNF solutions to the optimal solutions
for the classic AP and the BAP. Note that their values are not negative as we
mentioned in (3), Section 3.2, and values further from 0 are preferable for the
PNF solutions because they have then a much better trade-off between P and
Q. Table 2 also indicates that we only have several NF solutions, and in most
cases, the PNF solution is one of the extreme NF solutions having the smallest
value of P or Q. One important issue is the CPU time for solving the NFAP
(approximately for finding the PNF solution) is quite huge compared with the
CPU time spent for solving the classic AP and the BAP. A deeper analysis of
the iterations of Procedure Find(α) tells us that the CPU time spent for solving
P (α) with a small value of α occupies a very big part of the overall CPU time.
Hence, a special-purpose algorithm for solving P (α) may be more interesting
than simply optimizing a linear function over the LP given in Section 2.

5 Conclusion

In this paper, we have used Nash fairness equilibrium to achieve a trade-off
between the efficiency estimated by the total cost and the balancedness estimated
by the max-min distance in solutions for the Assignment Problem (AP). We have
proven first the existence of Nash Fairness (NF) solutions for the AP. Second,
we have designed an algorithm to find all NF solutions, including the PNF
solutions minimizing the product of total cost and max-min distance. Numerical
results conducted on instances of the AP have shown that compared with the
optimal solutions for the BAP, the NF solutions found by our algorithm have
almost much smaller total cost with a reasonable augmentation of the max-min
distance and vice versa compared with the optimal solutions for the classic AP.
An important notice is that this paper’s results can also be applied to various
balanced combinatorial optimization problems such as the balanced traveling
salesman problem [12], the balanced spanning tree problem [10], etc. The future
developments of our work are improving time complexity for Algorithm 1 by
developing a special-purpose algorithm for solving P(α). Moreover, we are also
interested in finding a better upper bound for the number of NF solutions and
generating the concept of NF solutions for bi-objective optimization problems
with positive objective functions.
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APPENDIX

Theorem 3. [12] (P ∗, Q∗) ∈ S is a NF solution if and only if (P ∗, Q∗) is an

optimal solution of P(α∗) where α∗ = Q∗

P∗ .

Proof. =⇒ Firstly, let (P ∗, Q∗) be a NF solution and α∗ = Q∗

P∗ . We will show
that (P ∗, Q∗) is an optimal solution of P(α∗).

Since (P ∗, Q∗) is a NF solution, we have

P ′Q∗ +Q′P ∗ ≥ 2P ∗Q∗, ∀(P ′, Q′) ∈ S, (6)

Since α∗ = Q∗

P∗ , we have α∗P ∗ +Q∗ = 2Q∗.
Dividing two sides of (6) by P ∗ > 0 we obtain

2Q∗ ≤ Q∗

P ∗P
′ +Q′, ∀(P ′, Q′) ∈ S, (7)

So we deduce from (7)

α∗P ∗ +Q∗ ≤ α∗P ′ +Q′, ∀(P ′, Q′) ∈ S,

Hence, (P ∗, Q∗) is an optimal solution of P(α∗).

⇐= Now suppose α∗ = Q∗

P∗ and (P ∗, Q∗) is an optimal solution of P(α∗), we
show that (P ∗, Q∗) is a NF solution.

If (P ∗, Q∗) is not a NF solution, there exists a solution (P ′, Q′) ∈ S such
that

P ′Q∗ +Q′P ∗ < 2P ∗Q∗,

We have then

α∗P ′ +Q′ =
P ′Q∗ +Q′P ∗

P ∗ <
2P ∗Q∗

P ∗ = α∗P ∗ +Q∗,

which contradicts the optimality of (P ∗, Q∗). □

Lemma 3. [12] Let α, α′ ∈ R+ and (Pα, Qα), (Pα′ , Qα′) be the optimal solutions
of P(α) and P(α′) respectively, if α < α′ then Pα ≥ Pα′ and Qα ≤ Qα′ .

Proof. The optimality of (Pα, Qα) and (Pα′ , Qα′) gives

αPα +Qα ≤ αPα′ +Qα′ , and (8a)

α′Pα′ +Qα′ ≤ α′Pα +Qα (8b)

By adding both sides of (8a) and (8b), we obtain (α− α′)(Pα − Pα′) ≤ 0. Since
α < α′, it follows that Pα ≥ Pα′ .

On the other hand, inequality (8a) implies Qα′ −Qα ≥ α(Pα−Pα′) ≥ 0 that
leads to Qα ≤ Qα′ . □
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Lemma 4. [12] During the execution of Procedure Find(α0) in Algorithm 1,
αi+1 ∈ ]0, 1[ and Ti ≤ 0,∀i ≥ 0. Moreover, if α0P0 −Q0 > 0 then the sequence
{αi}i≥0 is strictly decreasing. Otherwise, if α0P0 − Q0 < 0 then the sequence
{αi}i≥0 is strictly increasing.

Proof. Since P > Q > 0, ∀(P,Q) ∈ S, it follows that αi+1 = Qi

Pi
∈ ]0, 1[, ∀i ≥ 0.

The optimality of (Pi+1, Qi+1) gives

αi+1Pi+1 +Qi+1 ≤ αi+1Pi +Qi,

Thus, Ti := αi+1Pi+1 +Qi+1 − αi+1Pi −Qi ≤ 0,∀i ≥ 0.

We first consider α0P0 − Q0 > 0. We proof αi > αi+1, ∀i ≥ 0 by induction
on i. For i = 0, we have α0 > Q0/P0 = α1. Suppose that our hypothesis is true
until i = k ≥ 0, we will prove that it is also true with i = k + 1.

The inductive hypothesis gives αk > αk+1 that implies Pk+1 ≥ Pk > 0 and
Qk ≥ Qk+1 > 0 according to Lemma 3. It leads to QkPk+1 − PkQk+1 ≥ 0 and
QkPk+1 − PkQk+1 = 0 ⇐⇒ (Pi, Qi) ≡ (Pi+1, Qi+1).

If Ti = 0 then Procedure Find(α0) returns the value αk+1. In this case,
{αi}0≤i≤k+1 is strictly decreasing.

If Ti ̸= 0 then (Pi, Qi) ̸≡ (Pi+1, Qi+1) that leads to QkPk+1 − PkQk+1 > 0.
We get

αk+1 − αk+2 =
Qk

Pk
− Qk+1

Pk+1
=

QkPk+1 − PkQk+1

PkPk+1
> 0,

Thus, in this case our hypothesis is also true with i = k + 1. Consequently,
{αi} is strictly decreasing, ∀i ≥ 0.

Similarly, if α0P0 − Q0 < 0 we obtain that the sequence {αi}i≥0 is strictly
increasing. That concludes the proof. □

Lemma 5. [12] From each α0 ∈ [0, 1], Procedure Find(α0) converges to a coef-
ficient αk ∈ C0 satisfying αk is the unique element ∈ C0 between α0 and αk.

Proof. If α0P0−Q0 = 0 then Procedure Find(α0) returns the value α0 that leads
to the conclusion. Without loss of generality, we suppose that α0P0−Q0 > 0 and
Procedure Find(α0) converges to a coefficient αn+1 ∈ ]0, 1[,∀α0 ∈ [0, 1] where
n ≥ 0. Due to Lemma 4, {αi}i≥0 is strictly decreasing.

By the stopping criteria of Procedure Find(α0), when Tn = αn+1Pn+1 +
Qn+1 − αn+1Pn − Qn = 0 we obtain αn+1 ∈ C0 and (Pn, Qn) is a NF solution
(Proposition 1). If n = 0 then (P0, Q0) is a NF solution which is an optimal
solution of both P(α0) and P(α1). Due to Lemma 3, for all α ∈ (α1, α0), (P0, Q0)
is the optimal solution of P(α) that leads to the conclusion.

We consider n ≥ 1. We have Tn = 0 and Ti < 0, ∀0 ≤ i ≤ n− 1.

Suppose that there exists α∗ = (αn+1, α0) ∩ C0. According to Theorem 3,
there exists a NF solution (P ∗, Q∗) which is an optimal solution of P(α∗) and
α∗P ∗ = Q∗. Since the sequence {α} is strictly decreasing, there exists 0 ≤ i ≤ n
such that α∗ ∈ [αi+1, αi).
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We first show that α∗ ̸= αi+1 by contradiction. Let assume that α∗ = αi+1.
Since α∗ > αn+1, we have i ≤ n− 1. It leads to αi+1P

∗ = Q∗. Thus, we get

Q∗

P ∗ = αi+1 =
Qi

Pi
=⇒ P ∗

Pi
=

Q∗

Qi
,

If i = 0 then P∗

P0
= Q∗

Q0
. Since α1 < α0, we have P ∗ ≥ P0 that implies

Q∗ ≥ Q0. Thus, α1P
∗ +Q∗ ≥ α1P0 +Q0.

If i ≥ 1 then P ∗ = Pi, Q
∗ = Qi since they are both Pareto-optimal solutions

and P∗

Pi
= Q∗

Qi
. Thus, αi+1P

∗ +Q∗ = αi+1Pi +Qi.
Consequently, we always have αi+1P

∗+Q∗ ≥ αi+1Pi+Qi. Moreover, αi+1Pi+1+
Qi+1 = αi+1P

∗ + Q∗ because both (Pi+1, Qi+1) and (P ∗, Q∗) are the optimal
solutions of P(αi+1). Thus, Ti = αi+1Pi+1+Qi+1−αi+1Pi−Qi ≥ 0 which leads
to a contradiction due to Ti < 0, ∀0 ≤ i ≤ n− 1. Hence, we have α∗ ̸= αi+1.

It follows that α∗ ∈ (αi+1, αi). Since α
∗ < αi, we have P

∗ ≥ Pi and Q∗ ≤ Qi

due to Lemma 3. Thus, we get

α∗ =
Q∗

P ∗ ≤ Qi

Pi
= αi+1,

which leads to a contradiction due to the fact that α∗ > αi+1.
Consequently, Procedure Find(α0) converges to a coefficient αk ∈ C0 satisfy-

ing αk is the unique element ∈ C0 between α0 and αk. □


