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Chapter 1
A class of dynamic unilateral contact problems
with sub-differential friction law

Oanh CHAU, Adrien PETROV, Arnaud HEIBIG

Abstract We study a class of dynamic unilateral contact problems with sub-
differential friction law, and thermal effects, for time depending long memory visco-
elastic materials, with or without the clamped condition. We describe the mechanical
problem, derive its variational formulation, and after specifying the assumptions on
the data and operators, we prove an existence and uniqueness of weak solution on
displacement and temperature fields.
Mathematics Subject Classification (2000). 74M15, 74M10, 74F05, 74H20, 74H25,
34G25.
Keywords: time depending thermo-visco-elasticity; unilateral contact; sub-differential
friction law; non clamped condition; evolution variational inequality.

1.1 Introduction

Since the dawn of time, situations of contact between deformable bodies abound
in everyday life and engineering applications, where the numerous forces acting on
the system may lead to the appearance of microcracks, and deteriorate the mechan-
ical equipments. It is then important to understand the complexity of the contact
phenomena, in order to guarantee the safety of the mechanism of the system. There-
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fore considerable efforts have been achieved in modeling, mathematical analysis
and numerical simulations, within the weak distributional formulation framework,
expressed in terms of evolutional variational inequalities and hemivariational in-
equalities. The literature dedicated to this field is increasing day by day. The state
of the art can be found in the masterpieces [4], [6], [7].

This work is a continuation of the paper in [1], where the authors studied a fric-
tional unilateral contact problem undergoing the thermal expansion and damage, for
viscoelastic solid. The friction is modeled by the Coulomb’s dry friction law.
Here we investigate a thermal contact with friction, for time depending long memory
visco-elastic materials, with or without the clamped condition. The contact condi-
tions are unilateral. The friction is modeled by an inequality of sub-differential type.

The paper is organized as follows. In Section 2 we describe the mechanical prob-
lem, its corresponding variational formulation, and then we claim the main existence
and uniqueness result under specific assumptions, that we prove in Section 3.



1 A class of dynamic unilateral contact problems with sub-differential friction law 3

1.2 The contact problem

In this section we describe the mechanical problem, list the assumptions on the data
and derive the corresponding variational formulation. Then we state an existence
and uniqueness result on displacement field and temperature, which we will prove
in the next section.
The physical setting is as follows. A visco-elastic body occupies a domain Ω in Rd

(d = 1, d = 2 or d = 3) with a Lipschitz boundary Γ that is partionned into three
disjoint measurable parts, Γ1, Γ2 and Γ3. We denote by ν the unit outward normal
on Γ . Let [0,T ] be the time interval of interest, where T > 0. The body is clamped
on Γ1× (0,T ) and therefore the displacement field vanishes there. Here we suppose
that meas(Γ1) = 0 or meas(Γ1) > 0, which means that Γ1 may be an empty set or
reduced to a finite set of points. We assume that a volume force of density f 0 acts
in Ω × (0,T ) and that surface tractions of density f 2 act on Γ2× (0,T ). The body
may come in contact with an obstacle, the foundation, over the contact surface Γ3.
The contact is unilateral involving here both the normal displacement, the normal
velocity and the normal component of the Cauchy stresss vector. The model of the
friction is specified by a general sub-differential condition, where thermal effects
may occur in the frictional contact with the basis. We are interested in the dynamic
evolution of the body.
Let us recall now some classical notations, see e.g. [4] for further details. We denote
by Sd the space of second order symmetric tensors on Rd , while “ · ” and | · | will
represent the inner product and the Euclidean norm on Sd and Rd . Everywhere in
the sequel the indices i and j run from 1 to d, summation over repeated indices is
implied and the index that follows a comma represents the partial derivative with
respect to the corresponding component of the independent variable. We also use
the following notation:

H =
(

L2(Ω)
)d

, H = {σ = (σi j) | σi j = σ ji ∈ L2(Ω), 1≤ i, j ≤ d},

H1 = {u ∈ H | ε(u) ∈H }, H1 = {σ ∈H | Div σ ∈ H }.

Here ε : H1 −→H and Div : H1 −→ H are the deformation and the divergence
operators, respectively, defined by :

ε(u) = (εi j(u)), εi j(u) =
1
2
(ui, j +u j,i), Div σ = (σi j, j).

The spaces H, H , H1 and H1 are real Hilbert spaces endowed with the canonical
inner products given by :

(u,v)H =
∫

Ω

uivi dx, (σ ,τ)H =
∫

Ω

σi jτi j dx,

(u,v)H1 = (u,v)H +(ε(u),ε(v))H , (σ ,τ)H1 = (σ ,τ)H +(Div σ ,Div τ)H .
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Recall that D(Ω) denotes the set of infinitely differentiable real functions with com-
pact support in Ω ; and W m,p(Ω), Hm(Ω) :=W m,2(Ω), m ∈ N, 1≤ p≤+∞ for the
classical real Sobolev spaces; Lp(U ;X) the classical Lp spaces defined on U with
values in X .
To continue, the mechanical problem is then formulated as follows.
Problem Q : Find a displacement field u : (0,T )×Ω −→ Rd and a stress field
σ : (0,T )×Ω −→ Sd and a temperature field θ : (0,T )×Ω −→ R+ such that for
a.e. t ∈ (0,T ):

σ(t) = A (t)ε(u̇(t))+G (t)ε(u(t))

+
∫ t

0
B(t− s)ε(u(s))ds+ Ce(t,θ(t)) in Ω

(1.1)

ü(t) = Divσ(t)+ f 0(t) in Ω (1.2)

u(t) = 0 on Γ1 (1.3)

σ(t)ν = f 2(t) on Γ2 (1.4)

uν(t)≤ 0, σν(t)≤ 0, σν(t) · u̇ν(t) = 0 on Γ3, (1.5)

ϕc(t,wτ)−ϕc(t, u̇τ(t))≥−σ τ(t) · (wτ − u̇τ(t)) ∀w ∈V on Γ3 (1.6)

θ̇(t)−div(Kc(t,∇θ(t))) = De(t, u̇(t))+q(t) in Ω , (1.7)

−Kc(t,x,∇θ(t,x))ν := ϕ
′
thermal(t,x,θ(t,x)) a.e. x ∈ Γ3, (1.8)

θ(t) = 0 on Γ1∪Γ2 (1.9)

θ(0) = θ0 in Ω (1.10)

u(0) = u0, u̇(0) = v0 in Ω (1.11)

Here, (1.1) is the Kelving Voigt’s time-dependent long memory thermo-visco-elastic
constitutive law of the body, where σ represents the stress tensor; A denotes the
viscosity operator depending on the velocity of infinitesimal deformations ε(u̇),
with the notation : for τ ∈ Sd , A (t)τ = A (t, ·,τ) some function defined on Ω ;
here a dot above a quantity represents the derivative of the quantity with respect
to the time variable; G is the elastic operator depending on the linearized strain
tensor ε(u) of infinitesimal deformations, with G (t)τ = G (t, ·,τ) which is defined
on Ω . The term B(t)τ = B(t, ·,τ) represents the so called relaxation tensor which
is time-depending on the linearized strain tensor and is defined on Ω . Recall that
the visco-elastic short memory corresponds to the case B ≡ 0. The last tensor
Ce(t,θ) := Ce(t, ·,θ) denotes the thermal expansion tensor depending on time and
on the temperature, defined on Ω . For example,

Ce(t,θ) :=−θ Cexp(t) in Ω ,

where
Cexp(t) := (ci j(t, ·))
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is some time-depending expansion tensor, defined on Ω .
In (1.2) is the dynamic equation of motion where the mass density ρ ≡ 1. The equa-
tion in (1.3) is the clamped condition. In (1.4) is the traction condition, where σν

represents the Cauchy stress vector.
On the contact surface, the general relations in (1.5) are the so-called Signorini’s

boundary conditions (see [8]), involving here both the normal displacement uν , the
normal velocity u̇ν and the normal component of the Cauchy stresss vector σν . Re-
call that the condition uν ≤ 0 represents a non penetration of the surface asperities
into the obstacle : the inequality uν < 0 means that there is no contact of the surface
with the obstacle, and the equality uν = 0 denotes contact.
The last condition stipulates that the product σν u̇ν vanishes almost everywhere
on (0,T )× Γ3. It’s physical meaning can be seen as a natural consequence of
the non penetrability, under some regularity assumption. To show that, let fix
(t,x) ∈ (0,T )×Γ3.
Case 1 : uν(t,x)< 0. There is no contact, then σν(t,x) = 0 and σν u̇ν = 0 at (t,x).
Case 2 : uν(t,x) = 0.
Consider three sub-cases : (i) u̇ν(t,x)> 0; (ii) u̇ν(t,x) = 0; (iii) u̇ν(t,x)< 0.
In the case (i), as uν (t+h,x)−uν (t,x)

h → u̇ν(t,x), h→ 0, h > 0; then uν(t +h,x)> 0 for
h > 0 small enought, which contradicts the non penetration.
In the case (ii), we have σν u̇ν = 0 at (t,x).
In the case (iii), as in (i) we deduce that uν(t+h,x)< 0 for any h > 0 small enought,
thus there is no contact and σν(t +h,x) = 0 for any h > 0 small enought, and then
the continuity regularity implies that σν(t,x) = 0 and σν u̇ν = 0 at (t,x).

The friction on the contact surface is modeled by the equation in (1.6), which is a
sub-differential boundary condition, in the classical framework of convex analysis.
Here, V denotes the space of admissible displacements which will be detailed in
the following; σ τ represents the tangential component of the Cauchy stress vector;
and ϕc : (0,T )×Γ3×Rd −→R is a given sub-differential friction contact function.
Various situations may be modelled by such a condition, see below at the end of
this Section. The differential equation (1.7) describes the evolution of the tempera-
ture field, where Kc(t,∇θ) := Kc(t, ·,∇θ) is some nonlinear thermal conductivity
function defined on Ω , depending on time and on the temperature gradient ∇θ . For
example, denote by

Kc(t, ·) := (ki j(t, ·))

the thermal conductivity tensor defined on Ω , we could consider

Kc(t, ·,∇θ) = Kc(t, ·)∇θ .

In the second member, De(t, u̇(t)) := De(t, ·, u̇(t)) represents some deformation-
viscosity heat nonlinear function defied on Ω and depending on the displacement
velocity, whereas q(t) denotes the density of volume heat sources. For example,

De(t, u̇(t)) =−Cexp(t) :5u̇(t) =−ci j(t, ·)
∂ u̇i

∂ x j
(t).
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The associated temperature boundary condition is given by (1.8) and (1.9), where
ϕthermal are some thermal boundary function defined on (0,T )×Γ3×R. Here

ϕ
′
thermal(t,x,r) := [ϕthermal(t,x, ·)]′(r), ∀(t,x,r) ∈ (0,T )×Γ3×R

denotes the derivative on the third variable of ϕthermal .

Taking the previous example for Kc, we have

Kc(t,x,∇θ)ν = ki j(t,x)
∂ θ

∂ x j
νi.

Let consider the following standard example

ϕthermal(t,x,r) :=
1
2

ke(t,x)(r−θR(t,x))2, ∀(t,x,r) ∈ (0,T )×Γ3×R, (1.12)

where θR is the temperature of the foundation, and ke is the heat exchange coef-
ficient between the body and the obstacle. We obtain

ϕ
′
thermal(t,x,r) = ke(t,x)(r−θR(t,x)), (t,x,r) ∈ (0,T )×Γ3×R.

Finally in (1.10) and (1.11), θ0, u0, v0 represent the initial temperature, displace-
ment and velocity respectively.

One may remark that since ϕc is assumed real-valued, then unilateral contact, de-
fined by indicator functions taking infinite values, is excluded. So the body is in
fixed contact with the foundation of the body according to a friction law. This is
consistent with the linear heat conduction modeled in (1.7).
We insist that the new feature here is that we may have the absence of the usual
claimed condition in the case where meas(Γ1) = 0. However, there is coerciveness
with regard to the temperature by (1.8).
To derive the variational formulation of the mechanical problems (1.1)–(1.11) we
need additional notations. Thus, let consider the space V of admissible displace-
ments defined by the following closed subspace of H1

V = {w ∈ H1 | w = 0 on Γ1 and wν ≤ 0}.

On V we consider the inner product given by

(u,v)V = (ε(u),ε(v))H +(u,v)H ∀u, v ∈V,

and let ‖ · ‖V be the associated norm, i.e.

‖v‖2
V = ‖ε(v)‖2

H +‖v‖2
H ∀v ∈V.

It follows that ‖ ·‖H1 and ‖ ·‖V are equivalent norms on V and therefore (V,‖ ·‖V ) is
a real Hilbert space. Moreover, by the Sobolev’s trace theorem, we have a constant



1 A class of dynamic unilateral contact problems with sub-differential friction law 7

C0 > 0 depending only on Ω , and Γ3 such that

‖v‖L2(Γ3)
≤ C0 ‖v‖V ∀v ∈V.

Consider then the following spaces for the temperature field:

E = {η ∈ H1(Ω), η = 0 on Γ1∪Γ2}; F = L2(Ω).

The spaces E and F , endowed with their respective canonical inner product, are
Hilbert spaces.
Identifying then H and F with their own duals, we obtain two Gelfand evolution
triples (see e.g. [9] II/A p. 416):

V ⊂ H ≡ H ′ ⊂V ′, E ⊂ F ≡ F ′ ⊂ E ′

where the inclusions are continuous and dense.
Finally, we use the notation 〈·, ·〉V ′×V and 〈·, ·〉E ′×E to represent the duality pair-

ing between V ′ and V , and respectively between E ′ and E, which means :

〈u,v〉V ′×V = 〈u,v〉H , ∀u ∈ H, ∀v ∈V.

and
〈η ,ξ 〉E ′×E = 〈η ,ξ 〉F , ∀η ∈ F, ∀ξ ∈ E.

In the study of the mechanical problem (1.1)-(1.11), we assume that the viscosity
operator A : (0,T )×Ω ×Sd −→ Sd , (t,x,τ) 7−→A (t,x,τ) satisfies

(i) A (·, ·,τ) is measurable on (0,T )×Ω , ∀τ ∈ Sd ;

(ii) A (t,x, ·) is continuous on Sd for a.e. (t,x) ∈ (0,T )×Ω ;

(iii) there exists mA > 0 such that
(A (t,x,τ1)−A (t,x,τ2)) · (τ1− τ2)≥ mA |τ1− τ2|2,
∀τ1, τ2 ∈ Sd , for a.e. (t,x) ∈ (0,T )×Ω ;

(iv) there exists cA
0 ∈ L2((0,T )×Ω ;R+), cA

1 > 0 such that
|A (t,x,τ)| ≤ cA

0 (t,x)+ cA
1 |τ|,

∀τ ∈ Sd , for a.e. (t,x) ∈ (0,T )×Ω .

(1.13)

In this paper for every t ∈ (0,T ), τ ∈ Sd we denote by A (t) =A (t, ·, ·) a functional
which is defined on Ω ×Sd and A (t)τ = A (t, ·,τ) some function defined on Ω .
The elasticity operator G : (0,T )×Ω ×Sd −→ Sd satisfies :

(i) there exists LG > 0 such that
|G (t,x,ε1)−G (t,x,ε2)| ≤ LG |ε1− ε2|
∀ε1, ε2 ∈ Sd , a.e. (t,x) ∈ (0,T )×Ω ;

(ii) G (·, ·,ε) is Lebesgue measurable on (0,T )×Ω ,∀ε ∈ Sd ;

(iii) the mapping G (·, ·,0) ∈H .

(1.14)
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We put again G (t)τ = G (t, ·,τ) some function defined on Ω for every t ∈ (0,T ),
τ ∈ Sd .
The relaxation tensor B : (0,T )×Ω × Sd −→ Sd , (t,x,τ) 7−→ (Bi jkh(t,x)τkh) sat-
isfies 

(i) Bi jkh ∈ L∞((0,T )×Ω);

(ii) B(t)σ · τ = σ ·B(t)τ
∀σ ,τ ∈ Sd , a.e. t ∈ (0,T ), a.e. in Ω

(1.15)

where we denote by B(t)τ = B(t, ·,τ) which is defined on Ω for every t ∈ (0,T ),
τ ∈ Sd .
We suppose the body forces and surface tractions satisfy

f 0 ∈ L2(0,T ;H), f 2 ∈ L2(0,T ;L2(Γ2)
d) (1.16)

On the contact surface, the following frictional contact function ψc : (0,T )×V −→
R,

ψc(t,w) :=
∫

Γ3

ϕc(t,w)da, ∀(t,w) ∈ (0,T )×V,

verifies
(i) t ∈ (0,T ) 7−→ ψc(t,w) is Lebesgue measurable ∀w ∈V ;

(ii) |ψc(t,w)| ≤ c(t)+d ‖w‖V , ∀w ∈V, a.e. t ∈ (0,T );

(iii) ψc(t, ·) is convex on V a.e. t ∈ (0,T ),

(1.17)

where d > 0 is some constante and c ∈ L2(0,T ;R+).
The thermal expansion tensor Ce : (0,T )×Ω ×R−→ Sd verifies

(i)Ce(·, ·,ϑ) is measurable on (0,T )×Ω , ∀ϑ ∈ R;

(ii) there exists Le > 0 such that
|Ce(t,x,ϑ1)−Ce(t,x,ϑ2)| ≤ Le |ϑ1−ϑ2|
∀ϑ1, ϑ2 ∈ R, a.e. (t,x) ∈ (0,T )×Ω ;

(iii) there exists cCe
0 ∈ L∞((0,T )×Ω ;R+), cCe

1 ≥ 0 such that

|Ce(t,x,ϑ)| ≤ cCe
0 (t,x)+ cCe

1 |ϑ |, ∀ϑ ∈ R, for a.e. (t,x) ∈ (0,T )×Ω .
(1.18)

Here we recall the notation Ce(t,ϑ) = Ce(t, ·,ϑ) some function defined on Ω , for
all t ∈ (0,T ) and ϑ ∈ R.

The nonlinear function Kc : (0,T )×Ω ×Rd −→ R satisfies :
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(i) Kc(·, ·,ξ ) is measurable on (0,T )×Ω , ∀ξ ∈ Rd ;

(ii) Kc(t,x, ·) is continuous on Rd , a.e. (t,x) ∈ (0,T )×Ω ;

(iii) there exists cKc
0 ∈ L2((0,T )×Ω ;R+), cKc

1 ≥ 0, such that
|Kc(t,x,ξ )| ≤ cKc

0 (t,x)+ cKc
1 |ξ |, ∀ξ ∈ Rd , a.e. (t,x) ∈ (0,T )×Ω ;

(iv) there exists mKc > 0 such that
(Kc(t,x,ξ1)−Kc(t,x,ξ2)) · (ξ1−ξ2)≥ mKc |ξ1−ξ2|2,
∀ξ1, ξ2 ∈ Rd , a.e. (t,x) ∈ (0,T )×Ω ;

(v) there exists nKc > 0 such that Kc(t,x,ξ ) ·ξ ≥ nKc |ξ |2,
∀ξ ∈ Rd , a.e. (t,x) ∈ (0,T )×Ω .

(1.19)
We suppose that the deformation-viscosity heat De : (0,T )×Ω×Rd −→R satisfies
: 

(i) De(·, ·,v) is measurable on (0,T )×Ω , ∀v ∈ Rd ;

(ii) there exists LDe > 0 such that
|De(t,x,v1)−De(t,x,v2)| ≤ LDe |v1− v2|,
∀v1, v2 ∈ Rd , a.e. (t,x) ∈ (0,T )×Ω .

(1.20)

We assume for the heat sources density, that

q ∈ L2(0,T ;L2(Ω)) (1.21)

The nonlinear function ϕthermal : (0,T )×Γc×R−→ R verifies :

(i) ϕthermal(·, ·,r) is measurable on (0,T )×Γc, ∀r ∈ R;

(ii) ϕthermal(t,x, ·) is convex derivable on R for a.e. (t,x) ∈ (0,T )×Γc;

(iii) there exists cϕ

0 ∈ L2((0,T )×Γc;R+), cϕ

1 ≥ 0, such that

|ϕ ′thermal(t,x,r)| ≤ cϕ

0 (t,x)+ cϕ

1 |r|,
∀r ∈ R, a.e. (t,x) ∈ (0,T )×Γc.

(1.22)

We notice that these assumptions are verified for the example (1.12).
Finally we assume that the initial data satisfy the conditions

u0 ∈ H, v0 ∈ V, θ0 ∈ E. (1.23)

To continue, using Green’s formula, we obtain the variational formulation of the
mechanical problem Q in abstract form as follows.
Problem QV : Find u : [0,T ]→V , θ : [0,T ]→ E satisfying a.e. t ∈ (0,T ):
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〈ü(t)+A(t) u̇(t)+B(t)u(t)+C(t)θ(t), w− u̇(t)〉V ′×V

+(
∫ t

0
B(t− s)ε(u(s))ds,ε(w)− ε(u̇(t)))H +ψc(t,wτ)−ψc(t, u̇τ(t))

≥ 〈 f (t), w− u̇(t)〉V ′×V ∀w ∈V.

(1.24)

{
〈θ̇(t),η〉E ′×E + 〈K(t)θ(t),η〉E ′×E + 〈ψthermal(t)θ(t),η〉E ′×E

= 〈R(t)u̇(t),η〉E ′×E + 〈Q(t),η〉E ′×E , ∀η ∈ E.
(1.25)

u(0) = u0, u̇(0) = v0, θ(0) = θ0. (1.26)

Here, the operators and functions A(t), B(t) : V −→ V ′, C(t) : E −→ V ′, f :
[0,T ] −→ V ′, K(t) : E −→ E ′, ψthermal(t) : E −→ E ′, R(t) : V −→ E ′ and Q :
[0,T ]−→ E ′ are defined by ∀v ∈V , ∀w ∈V , ∀ζ ∈ E, ∀η ∈ E, a.e. t ∈ (0,T ):

〈A(t)v,w〉V ′×V = (A (t)ε(v),ε(w))H ; (1.27)

〈B(t)v,w〉V ′×V = (G (t)ε(v),ε(w))H ; (1.28)

〈C(t)ζ ,w〉V ′×V = (Ce(t,ζ ), ε(w))H ; (1.29)

〈 f (t),w〉V ′×V = ( f 0(t),w)H +( f 2(t),w)(L2(Γ2))d ; (1.30)

〈K(t)ζ ,η〉E ′×E =
∫

Ω

Kc(t,∇ζ ) ·∇η dx; (1.31)

〈ψthermal(t)ζ ,η〉E ′×E =
∫

Γ3

ϕ
′
thermal(t,x,ζ (x))η(x)da(x); (1.32)

〈R(t)v,η〉E ′×E =
∫

Ω

De(t,v)η dx; (1.33)

〈Q(t),η〉E ′×E =
∫

Ω

q(t)η dx. (1.34)

Our main existence and uniqueness result is stated as follows, that we prove in the
next Section.

Theorem 1. Assume that (1.13)–(1.23) hold, then there exists an unique solution
{u,θ} to the problem QV with the regularity :{

u ∈W 1,2(0,T ;V )∩W 2,2(0,T ;V ′)∩C1(0,T ;H)

θ ∈ L2(0,T ;E)∩W 1,2(0,T ;E ′)∩C(0,T ;F).
(1.35)

Before proving the main theorem, we present here some examples with sub-
differential friction laws of the form (1.6), see e.g. the monograph [6] or the Habili-
tation thesis [2] p. 117.
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Example 1. Contact with Tresca’s friction law. This contact condition can be
found in [4, 7]. It is in the form of the following boundary condition: uν = 0, |σ τ | ≤ g,

|σ τ |< g =⇒ u̇τ = 0, on Γ3× (0,T ).
|σ τ |= g =⇒ u̇τ =−λσ τ , λ ≥ 0

(1.36)

Here g ∈ L∞(Γ3;R+) represents the friction bound, i.e., the magnitude of the
limiting friction traction at which slip begins. The contact is assumed to be bilateral,
i.e., there is no loss of contact during the process.
We choose here

ϕc(v) = g |v|,∀v ∈V.

Example 2. Contact with viscoelastic friction condition. We consider the prob-
lems with the boundary conditions

uν = 0, σ τ =−µ|u̇τ |p−1u̇τ on Γ3× (0,T ), (1.37)

where µ ∈ L∞(Γ3;R+) is the coefficient of friction and 0 < p≤ 1. Here, the tangen-
tial shear is proportional to the power p of the tangential speed, which is the case
when the contact surface is lubricated with a thin layer of non-Newtonian fluid.

Here we choose
ϕc(v) =

µ

p+1
|v|p+1,∀v ∈V.

1.3 Proof of Theorem 1

The idea is to bring the second order inequality to a first order inequality, using
monotone operator, convexity and fixed point arguments, and will be carried out in
several steps.

Let us introduce the velocity variable

v = u̇.

The system in Problem QV is then written for a.e. t ∈ (0,T ):
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u(t) = u0 +
∫ t

0 v(s)ds;

〈v̇(t)+A(t)v(t)+B(t)u(t)+C(t)θ(t), w− v(t)〉V ′×V

+(
∫ t

0
B(t− s)ε(u(s))ds,ε(w)− ε(v(t)))H +ψc(t,w)−ψc(t,v(t))

≥ 〈 f (t), w− v(t)〉V ′×V ∀w ∈V ;

〈θ̇(t),η〉E ′×E + 〈K(t)θ(t),η〉E ′×E + 〈ψthermal(t)θ(t),η〉E ′×E

= 〈R(t)u̇(t),η〉E ′×E + 〈Q(t),η〉E ′×E , ∀η ∈ E;

v(0) = v0, θ(0) = θ0,

with the regularity{
v ∈ L2(0,T ;V )∩W 1,2(0,T ;V ′)∩C(0,T ;H)

θ ∈ L2(0,T ;E)∩W 1,2(0,T ;E ′)∩C(0,T ;F).

To continue, we assume in the sequel that the conditions (1.13)–(1.17) of the Theo-
rem 1 are satisfied. Let define

W := L2(0,T ;H ).

We begin by
Lemma 1. For all η ∈W , there exists an unique

vη ∈ L2(0,T ;V )∩W 1,2(0,T ;V ′)∩C(0,T ;H)

satisfying



〈v̇η(t)+A(t)vη(t), w− vη(t)〉V ′×V +(η(t),ε(w)− ε(vη(t)))H

+ψc(t,w)−ψc(t,vη(t))≥ 〈 f (t),w− vη(t)〉V ′×V ,

∀w ∈V, a.e. t ∈ (0,T );

vη(0) = v0.

(1.38)

Moreover, ∃c > 0 such that ∀η1, η2 ∈W :

‖vη2(t)− vη1(t)‖
2
H +

∫ t

0
‖vη1 − vη2‖

2
V ≤ c

∫ t

0
‖η1−η2‖2

H , ∀t ∈ [0,T ]. (1.39)

Proof. Let η ∈W . Using [9] II/B p. 893, we deduce the existence and uniqueness
of vη .
Now let η1, η2 ∈ W . In (1.38) we take (η = η1, w = vη2(t)), then (η = η2, w =
vη1(t)). Adding the two inequalities, we deduce that for a.e. t ∈ (0;T ):
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〈v̇η2(t)− v̇η1(t),vη2(t)− vη1(t)〉V ′×V + 〈A(t)vη2(t)−A(t)vη1(t),vη2(t)− vη1(t)〉V ′×V

≤−(η2(t)−η1(t),ε(vη2(t))− ε(vη1(t)))H .

Then integrating over (0, t), from (1.13)(iii) and from the initial condition on the
velocity, we obtain:

∀t ∈ [0,T ], ‖vη2(t)− vη1(t)‖2
H +mA

∫ t
0 ‖vη2(s)− vη1(s)‖2

V ds

≤−
∫ t

0
(η2(s)−η1(s),ε(vη2(s))− ε(vη1(s)))H ds+mA

∫ t

0
‖vη2(s)− vη1(s)‖

2
H ds.

We conclude that ∃c > 0 such that ∀η1, η2 ∈W , ∀t ∈ [0,T ]:

‖vη2(t)− vη1(t)‖2
H +

∫ t
0 ‖vη1(s)− vη2(s)‖2

V ds

≤ c
∫ t

0
‖η1(s)−η2(s)‖2

H ds+ c
∫ t

0
‖vη2(s)− vη1(s)‖

2
H ds.

(1.40)

Now let fix τ ∈ [0,T ]. We have ∀t ∈ [0,τ]:

‖vη2(t)− vη1(t)‖
2
H ≤ c

∫
τ

0
‖η1(s)−η2(s)‖2

H + c
∫ t

0
‖vη2(s)− vη1(s)‖

2
H ds.

Using then Gronwall’s inequality, we obtain ∀τ ∈ [0,T ]:

‖vη2(τ)− vη1(τ)‖
2
H ≤

(
c
∫

τ

0
‖η1(s)−η2(s)‖2

H

)
ecT .

Finally, integrating the last inequality and reporting the result in (1.40), we get
(1.39).
Here and below, we denote by c > 0 a generic constant, which value may change
from lines to lines.
Lemma 2. For all η ∈W , there exists an unique

θη ∈ L2(0,T ;E)∩W 1,2(0,T ;E ′)∩C(0,T ;F)

satisfying 
θ̇η(t)+K(t)θη(t)+ψthermal(t)θη(t)

= R(t)vη(t)+Q(t), ∀η ∈ E, a.e. t ∈ (0,T );

θη(0) = θ0.

(1.41)

Moreover, ∃c > 0 such that ∀η1, η2 ∈W :

‖θη1(t)−θη2(t)‖
2
F ≤ c

∫ t

0
‖vη1 − vη2‖

2
V , ∀t ∈ [0,T ]. (1.42)

Proof. The existence and uniqueness result verifying (1.41) follows from standard
result on first order evolution equation (see e.g. [5]). Indeed we verify that from the
expression of the operator R, we have
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vη ∈ L2(0,T ;V ) =⇒ Rvη ∈ L2(0,T ;E ′),

as Q ∈ L2(0,T ;E ′) then Rvη +Q ∈ L2(0,T ;E ′).
Using the assumptions (1.19) and (1.22), the operator

K(t)+ψthermal(t) : E −→ E ′

for a.e. t ∈ (0,T ) is strongly monotone.
Now for η1, η2 ∈W , we have for a.e. t ∈ (0;T ):

〈θ̇η1(t)− θ̇η2(t),θη1(t)−θη2(t)〉E ′×E + 〈K(t)θη1(t)−K(t)θη2(t), θη1(t)−θη2(t)〉E ′×E

≤ 〈R(t)vη1(t)−R(t)vη2(t), θη1(t)−θη2(t)〉E ′×E .

Then integrating the last property over (0, t), using the strong monotonicity of K(t)
and the Lipschitz continuity of R(t) : V −→ E ′, we deduce (1.42).

Proof of Theorem 1.
We have now all the ingredients to prove the Theorem 1.
Consider the operator Λ : W →W defined by for all η ∈W :

Λ η (t) = G (ε(uη(t)))+
∫ t

0
B(t− s)ε(uη(s))ds+Ce(t,θη(t)), ∀t ∈ [0,T ],

where

uη(t)= u0+
∫ t

0
vη(s)ds, ∀t ∈ [0,T ]; uη ∈W 1,2(0,T ;V )∩W 2,2(0,T ;V ′)∩C1(0,T ;H).

Then from (1.14), (1.15), and Lemma 2, we deduce that for all η1, η2 ∈W , for all
t ∈ [0,T ]:

‖Λ η1 (t)−Λ η2 (t)‖2
H ≤ c‖θη1(t)−θη2(t)‖

2
F + c

∫ t

0
‖vη1(s)− vη2(s)‖

2
V ds

≤ c
∫ t

0
‖vη1(s)− vη2(s)‖

2
V ds.

(1.43)
Now using (1.43), after some algebraic manipulations, we have for any β > 0:∫ T

0
e−βτ ‖Λ η1 (τ)−Λ η2 (τ)‖2

H ≤
c
β

∫ T

0
e−βτ ‖η1(τ)−η2(τ)‖2

H dτ.

We conclude from the last inequality by contracting principle that the operator Λ

has a unique fixed point η∗ ∈W . We verify then that the functions

u(t) := u0 +
∫ t

0
vη∗ , ∀t ∈ [0,T ], θ := θη∗
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are solutions to problem QV with the regularity (1.35), the uniqueness follows from
the uniqueness in Lemma 1 and Lemma 2.
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