Oanh Chau 
email: oanh.chau@univ-reunion.fr
  
Adrien Petrov 
email: apetrov@math.univ-lyon1.fr
  
Arnaud Heibig 
email: arnaud.heibig@insa-lyon1
  
  
  
  
A class of dynamic unilateral contact problems with sub-differential friction law

Keywords: Mathematics Subject Classification (2000). 74M15, 74M10, 74F05, 74H20, 74H25, 34G25 time depending thermo-visco-elasticity, unilateral contact, sub-differential friction law, non clamped condition, evolution variational inequality

We study a class of dynamic unilateral contact problems with subdifferential friction law, and thermal effects, for time depending long memory viscoelastic materials, with or without the clamped condition. We describe the mechanical problem, derive its variational formulation, and after specifying the assumptions on the data and operators, we prove an existence and uniqueness of weak solution on displacement and temperature fields.

Introduction

Since the dawn of time, situations of contact between deformable bodies abound in everyday life and engineering applications, where the numerous forces acting on the system may lead to the appearance of microcracks, and deteriorate the mechanical equipments. It is then important to understand the complexity of the contact phenomena, in order to guarantee the safety of the mechanism of the system. There-fore considerable efforts have been achieved in modeling, mathematical analysis and numerical simulations, within the weak distributional formulation framework, expressed in terms of evolutional variational inequalities and hemivariational inequalities. The literature dedicated to this field is increasing day by day. The state of the art can be found in the masterpieces [START_REF] Duvaut | Les Inéquations en Mécanique et en Physique[END_REF], [START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications[END_REF], [START_REF] Panagiotopoulos | Hemivariational Inequalities, applications in Mechanics and Engineering, Contributions to Nonlinear Functional Analysis[END_REF].

This work is a continuation of the paper in [START_REF] Chau | Solvability for a thermodynamic unilateral contact problem with friction and damage[END_REF], where the authors studied a frictional unilateral contact problem undergoing the thermal expansion and damage, for viscoelastic solid. The friction is modeled by the Coulomb's dry friction law.

Here we investigate a thermal contact with friction, for time depending long memory visco-elastic materials, with or without the clamped condition. The contact conditions are unilateral. The friction is modeled by an inequality of sub-differential type.

The paper is organized as follows. In Section 2 we describe the mechanical problem, its corresponding variational formulation, and then we claim the main existence and uniqueness result under specific assumptions, that we prove in Section 3.

The contact problem

In this section we describe the mechanical problem, list the assumptions on the data and derive the corresponding variational formulation. Then we state an existence and uniqueness result on displacement field and temperature, which we will prove in the next section. The physical setting is as follows. A visco-elastic body occupies a domain Ω in R d (d = 1, d = 2 or d = 3) with a Lipschitz boundary Γ that is partionned into three disjoint measurable parts, Γ 1 , Γ 2 and Γ 3 . We denote by ν the unit outward normal on Γ . Let [0, T ] be the time interval of interest, where T > 0. The body is clamped on Γ 1 × (0, T ) and therefore the displacement field vanishes there. Here we suppose that meas(Γ 1 ) = 0 or meas(Γ 1 ) > 0, which means that Γ 1 may be an empty set or reduced to a finite set of points. We assume that a volume force of density f 0 acts in Ω × (0, T ) and that surface tractions of density f 2 act on Γ 2 × (0, T ). The body may come in contact with an obstacle, the foundation, over the contact surface Γ 3 . The contact is unilateral involving here both the normal displacement, the normal velocity and the normal component of the Cauchy stresss vector. The model of the friction is specified by a general sub-differential condition, where thermal effects may occur in the frictional contact with the basis. We are interested in the dynamic evolution of the body. Let us recall now some classical notations, see e.g. [START_REF] Duvaut | Les Inéquations en Mécanique et en Physique[END_REF] for further details. We denote by S d the space of second order symmetric tensors on R d , while " • " and | • | will represent the inner product and the Euclidean norm on S d and R d . Everywhere in the sequel the indices i and j run from 1 to d, summation over repeated indices is implied and the index that follows a comma represents the partial derivative with respect to the corresponding component of the independent variable. We also use the following notation:

H = L 2 (Ω ) d , H = { σ = (σ i j ) | σ i j = σ ji ∈ L 2 (Ω ), 1 ≤ i, j ≤ d}, H 1 = { u ∈ H | ε(u) ∈ H }, H 1 = { σ ∈ H | Div σ ∈ H }.
Here ε : H 1 -→ H and Div : H 1 -→ H are the deformation and the divergence operators, respectively, defined by :

ε(u) = (ε i j (u)), ε i j (u) = 1 2 (u i, j + u j,i ), Div σ = (σ i j, j ).
The spaces H, H , H 1 and H 1 are real Hilbert spaces endowed with the canonical inner products given by :

(u, v) H = Ω u i v i dx, (σ , τ) H = Ω σ i j τ i j dx, (u, v) H 1 = (u, v) H + (ε(u), ε(v)) H , (σ , τ) H 1 = (σ , τ) H + (Div σ , Div τ) H .
Recall that D(Ω ) denotes the set of infinitely differentiable real functions with compact support in Ω ; and W m,p (Ω ), H m (Ω ) := W m,2 (Ω ), m ∈ N, 1 ≤ p ≤ +∞ for the classical real Sobolev spaces; L p (U; X) the classical L p spaces defined on U with values in X.

To continue, the mechanical problem is then formulated as follows.

Problem Q : Find a displacement field u : (0, T ) × Ω -→ R d and a stress field σ : (0, T ) × Ω -→ S d and a temperature field θ : (0, T ) × Ω -→ R + such that for a.e. t ∈ (0, T ):

σ (t) = A (t)ε(u(t)) + G (t)ε(u(t)) + t 0 B(t -s) ε(u(s)) ds + C e (t, θ (t)) in Ω (1.1) ü(t) = Div σ (t) + f 0 (t) in Ω (1.2) u(t) = 0 on Γ 1 (1.3) σ (t)ν = f 2 (t) on Γ 2 (1.4) u ν (t) ≤ 0, σ ν (t) ≤ 0, σ ν (t) • uν (t) = 0 on Γ 3 , (1.5) 
ϕ c (t, w τ ) -ϕ c (t, uτ (t)) ≥ -σ τ (t) • (w τ -uτ (t)) ∀w ∈ V on Γ 3 (1.6) θ (t) -div(K c (t, ∇θ (t))) = D e (t, u(t)) + q(t) in Ω , (1.7) 
-K c (t, x, ∇θ (t, x)) ν := ϕ thermal (t, x, θ (t, x)) a.e. x ∈ Γ 3 , (1.8) 
θ (t) = 0 on Γ 1 ∪ Γ 2 (1.9) θ (0) = θ 0 in Ω (1.10) u(0) = u 0 , u(0) = v 0 in Ω (1.11)
Here, (1.1) is the Kelving Voigt's time-dependent long memory thermo-visco-elastic constitutive law of the body, where σ represents the stress tensor; A denotes the viscosity operator depending on the velocity of infinitesimal deformations ε(u), with the notation : for τ ∈ S d , A (t)τ = A (t, •, τ) some function defined on Ω ; here a dot above a quantity represents the derivative of the quantity with respect to the time variable; G is the elastic operator depending on the linearized strain tensor ε(u) of infinitesimal deformations, with G (t)τ = G (t, •, τ) which is defined on Ω . The term B(t)τ = B(t, •, τ) represents the so called relaxation tensor which is time-depending on the linearized strain tensor and is defined on Ω . Recall that the visco-elastic short memory corresponds to the case B ≡ 0. The last tensor C e (t, θ ) := C e (t, •, θ ) denotes the thermal expansion tensor depending on time and on the temperature, defined on Ω . For example,

C e (t, θ ) := -θ C exp (t) in Ω , where C exp (t) := (c i j (t, •))
is some time-depending expansion tensor, defined on Ω . In (1.2) is the dynamic equation of motion where the mass density ρ ≡ 1. The equation in (1.3) is the clamped condition. In (1.4) is the traction condition, where σ ν represents the Cauchy stress vector.

On the contact surface, the general relations in (1.5) are the so-called Signorini's boundary conditions (see [START_REF] Signorini | Questioni di elasticità non linearizzata e semilinearizzata[END_REF]), involving here both the normal displacement u ν , the normal velocity uν and the normal component of the Cauchy stresss vector σ ν . Recall that the condition u ν ≤ 0 represents a non penetration of the surface asperities into the obstacle : the inequality u ν < 0 means that there is no contact of the surface with the obstacle, and the equality u ν = 0 denotes contact. The last condition stipulates that the product σ ν uν vanishes almost everywhere on (0, T ) × Γ 3 . It's physical meaning can be seen as a natural consequence of the non penetrability, under some regularity assumption. To show that, let fix

(t, x) ∈ (0, T ) × Γ 3 . Case 1 : u ν (t, x) < 0. There is no contact, then σ ν (t, x) = 0 and σ ν uν = 0 at (t, x). Case 2 : u ν (t, x) = 0. Consider three sub-cases : (i) uν (t, x) > 0; (ii) uν (t, x) = 0; (iii) uν (t, x) < 0.
In the case (i), as u ν (t+h,x)-u ν (t,x) h → uν (t, x), h → 0, h > 0; then u ν (t + h, x) > 0 for h > 0 small enought, which contradicts the non penetration. In the case (ii), we have σ ν uν = 0 at (t, x). In the case (iii), as in (i) we deduce that u ν (t + h, x) < 0 for any h > 0 small enought, thus there is no contact and σ ν (t + h, x) = 0 for any h > 0 small enought, and then the continuity regularity implies that σ ν (t, x) = 0 and σ ν uν = 0 at (t, x).

The friction on the contact surface is modeled by the equation in (1.6), which is a sub-differential boundary condition, in the classical framework of convex analysis. Here, V denotes the space of admissible displacements which will be detailed in the following; σ τ represents the tangential component of the Cauchy stress vector; and ϕ c : (0, T ) × Γ 3 × R d -→ R is a given sub-differential friction contact function. Various situations may be modelled by such a condition, see below at the end of this Section. The differential equation (1.7) describes the evolution of the temperature field, where K c (t, ∇θ ) := K c (t, •, ∇θ ) is some nonlinear thermal conductivity function defined on Ω , depending on time and on the temperature gradient ∇θ . For example, denote by

K c (t, •) := (k i j (t, •))
the thermal conductivity tensor defined on Ω , we could consider

K c (t, •, ∇θ ) = K c (t, •) ∇θ .
In the second member, D e (t, u(t)) := D e (t, •, u(t)) represents some deformationviscosity heat nonlinear function defied on Ω and depending on the displacement velocity, whereas q(t) denotes the density of volume heat sources. For example,

D e (t, u(t)) = -C exp (t) : u(t) = -c i j (t, •) ∂ ui ∂ x j (t).
The associated temperature boundary condition is given by (1.8) and (1.9), where ϕ thermal are some thermal boundary function defined on (0, T ) × Γ 3 × R. Here

ϕ thermal (t, x, r) := [ϕ thermal (t, x, •)] (r), ∀(t, x, r) ∈ (0, T ) × Γ 3 × R
denotes the derivative on the third variable of ϕ thermal .

Taking the previous example for K c , we have

K c (t, x, ∇θ ) ν = k i j (t, x) ∂ θ ∂ x j ν i .
Let consider the following standard example

ϕ thermal (t, x, r) := 1 2 k e (t, x)(r -θ R (t, x)) 2 , ∀(t, x, r) ∈ (0, T ) × Γ 3 × R, (1.12) 
where θ R is the temperature of the foundation, and k e is the heat exchange coefficient between the body and the obstacle. We obtain

ϕ thermal (t, x, r) = k e (t, x) (r -θ R (t, x)), (t, x, r) ∈ (0, T ) × Γ 3 × R.
Finally in (1.10) and (1.11), θ 0 , u 0 , v 0 represent the initial temperature, displacement and velocity respectively.

One may remark that since ϕ c is assumed real-valued, then unilateral contact, defined by indicator functions taking infinite values, is excluded. So the body is in fixed contact with the foundation of the body according to a friction law. This is consistent with the linear heat conduction modeled in (1.7). We insist that the new feature here is that we may have the absence of the usual claimed condition in the case where meas(Γ 1 ) = 0. However, there is coerciveness with regard to the temperature by (1.8). To derive the variational formulation of the mechanical problems (1.1)-(1.11) we need additional notations. Thus, let consider the space V of admissible displacements defined by the following closed subspace of

H 1 V = { w ∈ H 1 | w = 0 on Γ 1 and w ν ≤ 0 }.
On V we consider the inner product given by

(u, v) V = (ε(u), ε(v)) H + (u, v) H ∀ u, v ∈ V,
and let • V be the associated norm, i.e.

v 2 V = ε(v) 2 H + v 2 H ∀ v ∈ V.
It follows that • H 1 and • V are equivalent norms on V and therefore (V, • V ) is a real Hilbert space. Moreover, by the Sobolev's trace theorem, we have a constant C 0 > 0 depending only on Ω , and Γ 3 such that

v L 2 (Γ 3 ) ≤ C 0 v V ∀ v ∈ V.
Consider then the following spaces for the temperature field:

E = {η ∈ H 1 (Ω ), η = 0 on Γ 1 ∪ Γ 2 }; F = L 2 (Ω ).
The spaces E and F, endowed with their respective canonical inner product, are Hilbert spaces.

Identifying then H and F with their own duals, we obtain two Gelfand evolution triples (see e.g. [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications[END_REF] II/A p. 416):

V ⊂ H ≡ H ⊂ V , E ⊂ F ≡ F ⊂ E
where the inclusions are continuous and dense. Finally, we use the notation •, • V ×V and •, • E ×E to represent the duality pairing between V and V , and respectively between E and E, which means :

u, v V ×V = u, v H , ∀ u ∈ H, ∀ v ∈ V. and η, ξ E ×E = η, ξ F , ∀ η ∈ F, ∀ ξ ∈ E.
In the study of the mechanical problem (1.1)-(1.11), we assume that the viscosity operator A :

(0, T ) × Ω × S d -→ S d , (t, x, τ) -→ A (t, x, τ) satisfies                              (i) A (•, •, τ) is measurable on (0, T ) × Ω , ∀τ ∈ S d ;
(ii) A (t, x, •) is continuous on S d for a.e. (t, x) ∈ (0, T ) × Ω ;

(iii) there exists m A > 0 such that

(A (t, x, τ 1 ) -A (t, x, τ 2 )) • (τ 1 -τ 2 ) ≥ m A |τ 1 -τ 2 | 2 , ∀τ 1 , τ 2 ∈ S d , for a.e. (t, x) ∈ (0, T ) × Ω ; (iv) there exists c A 0 ∈ L 2 ((0, T ) × Ω ; R + ), c A 1 > 0 such that |A (t, x, τ)| ≤ c A 0 (t, x) + c A 1 |τ|, ∀τ ∈ S d , for a.e. (t, x) ∈ (0, T ) × Ω . (1.13)
In this paper for every t ∈ (0, T ), τ ∈ S d we denote by A (t) = A (t, •, •) a functional which is defined on Ω × S d and A (t) τ = A (t, •, τ) some function defined on Ω . The elasticity operator G : (0, T ) × Ω × S d -→ S d satisfies :

               (i) there exists L G > 0 such that |G (t, x, ε 1 ) -G (t, x, ε 2 )| ≤ L G |ε 1 -ε 2 | ∀ε 1 , ε 2 ∈ S d , a.e. (t, x) ∈ (0, T ) × Ω ; (ii) G (•, •, ε) is Lebesgue measurable on (0, T ) × Ω , ∀ε ∈ S d ; (iii) the mapping G (•, •, 0) ∈ H . (1.14)
We put again G (t)τ = G (t, •, τ) some function defined on Ω for every t ∈ (0, T ), τ ∈ S d . The relaxation tensor B : where we denote by B(t)τ = B(t, •, τ) which is defined on Ω for every t ∈ (0, T ), τ ∈ S d . We suppose the body forces and surface tractions satisfy

(0, T ) × Ω × S d -→ S d , (t, x, τ) -→ (B i jkh (t, x) τ kh ) sat- isfies      (i) B i jkh ∈ L ∞ ((0, T ) × Ω ); (ii) B(t)σ • τ = σ • B(t)τ ∀σ , τ ∈ S d
f 0 ∈ L 2 (0, T ; H), f 2 ∈ L 2 (0, T ; L 2 (Γ 2 ) d ) (1.16)
On the contact surface, the following frictional contact function

ψ c : (0, T ) ×V -→ R, ψ c (t, w) := Γ 3 ϕ c (t, w) da, ∀(t, w) ∈ (0, T ) ×V, verifies        (i) t ∈ (0, T ) -→ ψ c (t, w) is Lebesgue measurable ∀w ∈ V ; (ii) |ψ c (t, w)| ≤ c(t) + d w V , ∀w ∈ V, a.e. t ∈ (0, T ); (iii) ψ c (t, •) is convex on V a.e. t ∈ (0, T ), (1.17) 
where d > 0 is some constante and c ∈ L 2 (0, T ; R + ).

The thermal expansion tensor C e : (0,

T ) × Ω × R -→ S d verifies                      (i) C e (•, •, ϑ ) is measurable on (0, T ) × Ω , ∀ϑ ∈ R;
(ii) there exists L e > 0 such that |C e (t, x, ϑ 1 ) -C e (t, x,

ϑ 2 )| ≤ L e |ϑ 1 -ϑ 2 | ∀ϑ 1 , ϑ 2 ∈ R, a.e. (t, x) ∈ (0, T ) × Ω ; (iii) there exists c C e 0 ∈ L ∞ ((0, T ) × Ω ; R + ), c C e 1 ≥ 0 such that |C e (t, x, ϑ )| ≤ c C e 0 (t, x) + c C e 1 |ϑ |, ∀ϑ ∈ R, for a.e. (t, x) ∈ (0, T ) × Ω .
(1.18) Here we recall the notation C e (t, ϑ ) = C e (t, •, ϑ ) some function defined on Ω , for all t ∈ (0, T ) and ϑ ∈ R.

The nonlinear function K

c : (0, T ) × Ω × R d -→ R satisfies :                                  (i) K c (•, •, ξ ) is measurable on (0, T ) × Ω , ∀ξ ∈ R d ; (ii) K c (t, x, •) is continuous on R d , a.e. (t, x) ∈ (0, T ) × Ω ; (iii) there exists c K c 0 ∈ L 2 ((0, T ) × Ω ; R + ), c K c 1 ≥ 0, such that |K c (t, x, ξ )| ≤ c K c 0 (t, x) + c K c 1 |ξ |, ∀ξ ∈ R d , a.e. (t, x) ∈ (0, T ) × Ω ; (iv) there exists m K c > 0 such that (K c (t, x, ξ 1 ) -K c (t, x, ξ 2 )) • (ξ 1 -ξ 2 ) ≥ m K c |ξ 1 -ξ 2 | 2 , ∀ξ 1 , ξ 2 ∈ R d , a.e. (t, x) ∈ (0, T ) × Ω ; (v) there exists n K c > 0 such that K c (t, x, ξ ) • ξ ≥ n K c |ξ | 2 , ∀ξ ∈ R d , a.e. (t, x) ∈ (0, T ) × Ω . (1.19) We suppose that the deformation-viscosity heat D e : (0, T ) × Ω × R d -→ R satisfies :            (i) D e (•, •, v) is measurable on (0, T ) × Ω , ∀v ∈ R d ; (ii) there exists L D e > 0 such that |D e (t, x, v 1 ) -D e (t, x, v 2 )| ≤ L D e |v 1 -v 2 |, ∀v 1 , v 2 ∈ R d , a.e. (t, x) ∈ (0, T ) × Ω .
(1.20)

We assume for the heat sources density, that

q ∈ L 2 (0, T ; L 2 (Ω )) (1.21)
The nonlinear function

ϕ thermal : (0, T ) × Γ c × R -→ R verifies :                  (i) ϕ thermal (•, •, r) is measurable on (0, T ) × Γ c , ∀r ∈ R;
(ii) ϕ thermal (t, x, •) is convex derivable on R for a.e. (t, x) ∈ (0, T ) × Γ c ;

(iii) there exists c

ϕ 0 ∈ L 2 ((0, T ) × Γ c ; R + ), c ϕ 1 ≥ 0, such that |ϕ thermal (t, x, r)| ≤ c ϕ 0 (t, x) + c ϕ 1 |r|, ∀r ∈ R, a.e. (t, x) ∈ (0, T ) × Γ c . (1.22)
We notice that these assumptions are verified for the example (1.12). Finally we assume that the initial data satisfy the conditions

u 0 ∈ H, v 0 ∈ V, θ 0 ∈ E. (1.23) 
To continue, using Green's formula, we obtain the variational formulation of the mechanical problem Q in abstract form as follows.

Problem QV : Find u : [0, T ] → V , θ : [0, T ] → E satisfying a.e. t ∈ (0, T ):        ü(t) + A(t) u(t) + B(t) u(t) +C(t) θ (t), w -u(t) V ×V +( t 0 B(t -s) ε(u(s)) ds, ε(w) -ε(u(t))) H + ψ c (t, w τ ) -ψ c (t, uτ (t)) ≥ f (t), w -u(t) V ×V ∀w ∈ V. (1.24) θ (t), η E ×E + K(t) θ (t), η E ×E + ψ thermal (t) θ (t), η E ×E = R(t)u(t), η E ×E + Q(t), η E ×E , ∀ η ∈ E. (1.25) u(0) = u 0 , u(0) = v 0 , θ (0) = θ 0 . (1.26)
Here, the operators and functions A(t), B(t

) : V -→ V , C(t) : E -→ V , f : [0, T ] -→ V , K(t) : E -→ E , ψ thermal (t) : E -→ E , R(t) : V -→ E and Q : [0, T ] -→ E are defined by ∀v ∈ V , ∀w ∈ V , ∀ζ ∈ E, ∀η ∈ E, a.e. t ∈ (0, T ): A(t) v, w V ×V = (A (t) ε(v), ε(w)) H ; (1.27) B(t) v, w V ×V = (G (t) ε(v), ε(w)) H ; (1.28) C(t)ζ , w V ×V = (C e (t, ζ ), ε(w)) H ; (1.29) f (t), w V ×V = ( f 0 (t), w) H + ( f 2 (t), w) (L 2 (Γ 2 )) d ; (1.30) 
K(t) ζ , η E ×E = Ω K c (t, ∇ζ ) • ∇η dx; (1.31) 
ψ thermal (t) ζ , η E ×E = Γ 3 ϕ thermal (t, x, ζ (x)) η(x) da(x); (1.32) 
R(t) v, η E ×E = Ω D e (t, v) η dx; (1.33) Q(t), η E ×E = Ω q(t) η dx. (1.34) 
Our main existence and uniqueness result is stated as follows, that we prove in the next Section.

Theorem 1. Assume that (1.13)-(1.23) hold, then there exists an unique solution {u, θ } to the problem QV with the regularity :

u ∈ W 1,2 (0, T ;V ) ∩W 2,2 (0, T ;V ) ∩C 1 (0, T ; H) θ ∈ L 2 (0, T ; E) ∩W 1,2 (0, T ; E ) ∩C(0, T ; F). (1.35) 
Before proving the main theorem, we present here some examples with subdifferential friction laws of the form (1.6), see e.g. the monograph [START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications[END_REF] or the Habilitation thesis [START_REF] Chau | Quelques problèmes d'évolution en mécanique de contact et en biochimie[END_REF] p. 117.

Example 1. Contact with Tresca's friction law. This contact condition can be found in [START_REF] Duvaut | Les Inéquations en Mécanique et en Physique[END_REF][START_REF] Panagiotopoulos | Hemivariational Inequalities, applications in Mechanics and Engineering, Contributions to Nonlinear Functional Analysis[END_REF]. It is in the form of the following boundary condition:

   u ν = 0, |σ τ | ≤ g, |σ τ | < g =⇒ uτ = 0, on Γ 3 × (0, T ). |σ τ | = g =⇒ uτ = -λ σ τ , λ ≥ 0 (1.36)
Here g ∈ L ∞ (Γ 3 ; R + ) represents the friction bound, i.e., the magnitude of the limiting friction traction at which slip begins. The contact is assumed to be bilateral, i.e., there is no loss of contact during the process. We choose here ϕ c (v) = g |v|, ∀v ∈ V.

Example 2. Contact with viscoelastic friction condition. We consider the problems with the boundary conditions

u ν = 0, σ τ = -µ|u τ | p-1 uτ on Γ 3 × (0, T ), (1.37) 
where µ ∈ L ∞ (Γ 3 ; R + ) is the coefficient of friction and 0 < p ≤ 1. Here, the tangential shear is proportional to the power p of the tangential speed, which is the case when the contact surface is lubricated with a thin layer of non-Newtonian fluid.

Here we choose

ϕ c (v) = µ p + 1 |v| p+1 , ∀v ∈ V.

Proof of Theorem 1

The idea is to bring the second order inequality to a first order inequality, using monotone operator, convexity and fixed point arguments, and will be carried out in several steps.

Let us introduce the velocity variable v = u.

The system in Problem QV is then written for a.e. t ∈ (0, T ):

                               u(t) = u 0 + t 0 v(s) ds; v(t) + A(t) v(t) + B(t) u(t) +C(t) θ (t), w -v(t) V ×V +( t 0 B(t -s) ε(u(s)) ds, ε(w) -ε(v(t))) H + ψ c (t, w) -ψ c (t, v(t)) ≥ f (t), w -v(t) V ×V ∀w ∈ V ; θ (t), η E ×E + K(t) θ (t), η E ×E + ψ thermal (t) θ (t), η E ×E = R(t)u(t), η E ×E + Q(t), η E ×E , ∀ η ∈ E; v(0) = v 0 , θ (0) = θ 0 , with the regularity v ∈ L 2 (0, T ;V ) ∩W 1,2 (0, T ;V ) ∩C(0, T ; H) θ ∈ L 2 (0, T ; E) ∩W 1,2 (0, T ; E ) ∩C(0, T ; F).
To continue, we assume in the sequel that the conditions (1.13)-(1.17) of the Theorem 1 are satisfied. Let define

W := L 2 (0, T ; H ).
We begin by Lemma 1. For all η ∈ W , there exists an unique 

v η ∈ L 2 (0, T ;V ) ∩W 1,2 (0, T ;V ) ∩C(0, T ; H) satisfying              vη (t) + A(t) v η (t), w -v η (t) V ×V + (η(t), ε(w) -ε(v η (t))) H +ψ c (t, w) -ψ c (t, v η (t)) ≥ f (t), w -v η (t) V ×V , ∀ w ∈ V, a.e. t ∈ (0, T ); v η (0) = v 0 . (1.38) Moreover, ∃c > 0 such that ∀η 1 , η 2 ∈ W : v η 2 (t) -v η 1 (t) 2 H + t 0 v η 1 -v η 2 2 V ≤ c t 0 η 1 -η 2 2 H , ∀t ∈ [0, T ]. ( 1 
(η = η 1 , w = v η 2 (t)), then (η = η 2 , w = v η 1 (t)).
Adding the two inequalities, we deduce that for a.e. t ∈ (0; T ):

vη 2 (t) -vη 1 (t), v η 2 (t) -v η 1 (t) V ×V + A(t) v η 2 (t) -A(t) v η 1 (t), v η 2 (t) -v η 1 (t) V ×V ≤ -(η 2 (t) -η 1 (t), ε(v η 2 (t)) -ε(v η 1 (t))) H .
Then integrating over (0,t), from (1.13)(iii) and from the initial condition on the velocity, we obtain:

∀t ∈ [0, T ], v η 2 (t) -v η 1 (t) 2 H + m A t 0 v η 2 (s) -v η 1 (s) 2 V ds ≤ - t 0 (η 2 (s) -η 1 (s), ε(v η 2 (s)) -ε(v η 1 (s))) H ds + m A t 0 v η 2 (s) -v η 1 (s) 2 H ds.
We conclude that ∃c > 0 such that ∀η 1 , η 2 ∈ W , ∀t ∈ [0, T ]:

v η 2 (t) -v η 1 (t) 2 H + t 0 v η 1 (s) -v η 2 (s) 2 V ds ≤ c t 0 η 1 (s) -η 2 (s) 2 H ds + c t 0 v η 2 (s) -v η 1 (s) 2 H ds. (1.40) Now let fix τ ∈ [0, T ]. We have ∀t ∈ [0, τ]: v η 2 (t) -v η 1 (t) 2 H ≤ c τ 0 η 1 (s) -η 2 (s) 2 H + c t 0 v η 2 (s) -v η 1 (s) 2 H ds.
Using then Gronwall's inequality, we obtain ∀τ ∈ [0, T ]:

v η 2 (τ) -v η 1 (τ) 2 H ≤ c τ 0 η 1 (s) -η 2 (s) 2 H e cT .
Finally, integrating the last inequality and reporting the result in (1.40), we get (1.39).

Here and below, we denote by c > 0 a generic constant, which value may change from lines to lines. Lemma 2. For all η ∈ W , there exists an unique

θ η ∈ L 2 (0, T ; E) ∩W 1,2 (0, T ; E ) ∩C(0, T ; F) satisfying      θη (t) + K(t) θ η (t) + ψ thermal (t) θ η (t) = R(t)v η (t) + Q(t), ∀ η ∈ E, a.e. t ∈ (0, T ); θ η (0) = θ 0 .
(1.41) Moreover, ∃c > 0 such that ∀η 1 , η 2 ∈ W :

θ η 1 (t) -θ η 2 (t) 2 F ≤ c t 0 v η 1 -v η 2 2 V , ∀t ∈ [0, T ].
(1.42)

Proof. The existence and uniqueness result verifying (1.41) follows from standard result on first order evolution equation (see e.g. [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]). Indeed we verify that from the expression of the operator R, we have Then integrating the last property over (0,t), using the strong monotonicity of K(t) and the Lipschitz continuity of R(t) : V -→ E , we deduce (1.42).

v η ∈ L 2 (0, T ;V ) =⇒ R v η ∈ L 2 (0, T ; E ), as Q ∈ L 2 (0, T ; E ) then R v η + Q ∈ L 2 (
Proof of Theorem 1.

We have now all the ingredients to prove the Theorem 1.

Consider the operator Λ : W → W defined by for all η ∈ W :

Λ η (t) = G (ε(u η (t))) + t 0 B(ts) ε(u η (s)) ds +C e (t, θ η (t)), ∀t ∈ [0, T ],

where u η (t) = u 0 + t 0 v η (s) ds, ∀t ∈ [0, T ]; u η ∈ W 1,2 (0, T ;V )∩W 2,2 (0, T ;V )∩C 1 (0, T ; H).

Then from (1.14), (1.15), and Lemma 2, we deduce that for all η 1 , η 2 ∈ W , for all t ∈ [0, T ]:

Λ η 1 (t) -Λ η 2 (t) 2 H ≤ c θ η 1 (t) -θ η 2 (t) 2 F + c t 0 v η 1 (s) -v η 2 (s) 2 V ds ≤ c t 0 v η 1 (s) -v η 2 (s) 2 V ds.
(1.43) Now using (1.43), after some algebraic manipulations, we have for any β > 0:

T 0 e -β τ Λ η 1 (τ) -Λ η 2 (τ) 2 H ≤ c β T 0 e -β τ η 1 (τ) -η 2 (τ) 2 H dτ.
We conclude from the last inequality by contracting principle that the operator Λ has a unique fixed point η * ∈ W . We verify then that the functions 

  , a.e. t ∈ (0, T ), a.e. in Ω(1.15) 

u(t) := u 0 + t 0 v

 0 η * , ∀t ∈ [0, T ], θ := θ η * are solutions to problem QV with the regularity (1.35), the uniqueness follows from the uniqueness in Lemma 1 and Lemma 2.

  .39) Proof. Let η ∈ W . Using[START_REF] Zeidler | Nonlinear Functional Analysis and its Applications[END_REF] II/B p. 893, we deduce the existence and uniqueness of v η . Now let η 1 , η 2 ∈ W . In (1.38) we take

  0, T ; E ). Using the assumptions(1.19) and (1.22), the operatorK(t) + ψ thermal (t) : E -→ Efor a.e. t ∈ (0, T ) is strongly monotone. Now for η 1 , η 2 ∈ W , we have for a.e. t ∈ (0; T ):θη 1 (t) -θη 2 (t), θ η 1 (t)θ η 2 (t) E ×E + K(t) θ η 1 (t) -K(t) θ η 2 (t), θ η 1 (t)θ η 2 (t) E ×E ≤ R(t) v η 1 (t) -R(t) v η 2 (t), θ η 1 (t)θ η 2 (t) E ×E .

A class of dynamic unilateral contact problems with sub-differential friction law