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We propose to compute physical properties by Monte Carlo calculations using conditional expec-
tation values. The latter are obtained on top of the usual Monte Carlo sampling by partitioning the
physical space in several subspaces or fragments, and subsampling each fragment (i.e., performing
side-walks) while freezing the environment. No bias is introduced and a zero-variance principle holds
in the limit of separability, i.e. when the fragments are independent. In practice, the usual bot-
tleneck of Monte Carlo calculations – the scaling of the statistical fluctuations as a function of the
number of particles N – is relieved for extensive observables. We illustrate the method in variational
Monte Carlo on the 2D Hubbard model and on metallic hydrogen chains using Jastrow-Slater wave
functions. A factor O(N) is gained in numerical efficiency.

Many domains of physics involve large dimensional in-
tegrals which can be computed efficiently with Monte
Carlo methods, e.g. statistical physics [1], quantum
physics applied to molecules and solids [2], or nuclear
physics [3]. Monte Carlo methods reinterpret the energy
or other properties as the expectation value of a random
variable O over a probability distribution π on a config-
uration space Ω

E(O) =

∫
x∈Ω

O(x)π(x)dx. (1)

Typically, the configuration x corresponds to the 3N co-
ordinates of the particles in physical space, but it can also
correspond to the N trajectories of the particles in the
path-integral formulation of quantum mechanics. The
probability distribution π depends on the context. For
example, in equilibrium statistical physics, π is the Gibbs
distribution. In variational Monte Carlo (VMC), π = Ψ2

is the probability density of a wave function Ψ, and if
O = (HΨ)/Ψ is the local energy for a given Hamilto-
nian H then E(O) is the variational energy. Expectation
values are computed using the ergodic theorem which
states that the integral can be written as a time average,
E(O) = limM→∞(1/M)

∑M
i=1O(xi), where the sequence

of M configurations (xi) is built from a π-invariant er-
godic stochastic process (usually a Markov chain). The
sequence (xi) is called a sample of the distribution π.

The bottleneck of Monte Carlo methods comes from
the statistical fluctuations which usually grow with the
system size, as measured by the number of particles N .
For a sample of sufficiently large size M , the statistical
uncertainty σ on the estimation of E(O) is

σ =

√
V (O)c

M
, (2)

where V (O) = E(O2)−E(O)2 is the variance ofO and c >
1 is a correlation factor which takes into account that the
configurations are not fully independent. According to

Eq. (2), reaching a given precision σ requires a CPU time
tM = Mt1 proportional to both the time t1 of performing
one step of the sampling and to the variance V (O). The
numerical efficiency of the method can then be measured
by the asymptotically M -independent quantity

σ2tM = V (O)ct1, (3)

which should be as small as possible for maximal effi-
ciency. In the present work, we will not be concerned
about the correlation factor c which sometimes diverges
with N (e.g. near criticality). A large corpus of work is
devoted to reducing its scaling as a function of N , such as
parallel tempering based methods (see, e.g., Refs. [4, 5]).
Equation (3) indicates a more crucial double penalty of
Monte Carlo methods for large systems: both t1 and
V (O) grow with system sizeN . This double penalty is for
example at the origin of the main bottleneck in comput-
ing the VMC energy of a fermionic system in real space
[2, 6]. Evaluating the wave function involves indeed cal-
culating a Slater determinant of order O(N ×N) which
costs t1 = O(N3) while the variance is typically exten-
sive, V (O) ∝ N , thus rising the scaling of the overall cost
to O(N4). This scaling is still larger than some deter-
ministic methods like the celebrated Kohn-Sham density-
functional theory which scales as O(N3) for a spatially
delocalized (i.e., metallic) system [7].

The extensivity of the variance has a physical origin.
A large system can in general be approximated by a col-
lection of independent fragments. This ideal case corre-
sponds to the separability limit where the random vari-
able O is the sum of independent variables Ok on each
fragment indexed by k, i.e. O =

∑
k Ok, and the vari-

ance is then V (O) =
∑
k V (Ok) ∝ N . It is possible to

reduce considerably the variance using an improved esti-
mator Õ built from the approximate solution of a partial
differential equation [8–10]. But this type of improved
estimator is still a sum of independent random variables
in the separability limit, i.e. Õ =

∑
k Õk, and thus does
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not change the scaling with respect to N but only reduces
the prefactor [11].

To reduce the global computational scaling, a common
and obvious strategy is to reduce the cost of the sampling.
Some distributions π can be sampled with a linear-scaling
algorithm, i.e. t1 = O(N), reducing the overall cost to
an ideal scaling O(N2). One can for example try to use
the sparsity of the Slater matrix when localized Wan-
nier functions are used [12]. But such sparsity is highly
dependent on the physics of the system, and does not
hold for a metallic system. Besides, this linear scaling is
only theoretical because of memory-access slow down as
N increases. Another strategy consists in using a stable-
versus-chaos stochastic dynamics [13] but finding such a
stochastic dynamic is not straightforward [14].

Here we propose to reduce the global computational
scaling by using the locality of physical observables. The
idea of using the locality of information to reduce the
variance is not new: the strong locality in time of the
Schrödinger equation (a first-order partial differential
equation in time) has for example been exploited to re-
move the dynamical sign problem for bosonic systems
[15]. Recently, a method was proposed [16] to exploit
the low correlation between different core regions in a
molecule, resulting in a reduced scaling as a function of
the atomic charge Z but not as a function of N . The
present work exploits the fact that in an extended physi-
cal system (including a metallic system) correlations be-
tween large fragments are small. We construct an im-
proved estimator Õ with a variance having a reduced scal-
ing with respect to N , without changing the scaling of t1,
therefore achieving a reduction of the overall computa-
tional scaling. The present work shares the same general
philosophy as other fragment-based methods (see, e.g.,
Refs. 17–19). However, while the latter methods are sys-
tematic techniques to find a good compromise between a
smaller computational time and a larger systematic error,
in the present method the reduction of the computational
scaling is done without introducing any systematic error.

Theory — A configuration of particles is written as
x = (xj)j∈J where xj is the jth coordinate and J is the
list of coordinate indexes. For a given configuration x =
(xj)j∈J , we define a partition of J as p disjoint sublists
Jk(x) ⊂ J such that

⋃p
k=1 Jk(x) = J . We then define p

fragments as subsets Ωk(x) of the configuration space Ω
such that for all x′ ∈ Ωk(x), (i) x′ differ from x only by
the coordinates indexed by Jk, and (ii) Ωk(x′) = Ωk(x).
In short Ωk can be seen as a parameter which specifies
the positions of the frozen particles in the environment
of a fragment. We then introduce the following improved
estimator

Õ ≡ O +

p∑
k=1

λk(E(O|Ωk)−O), (4)

where λk are constants (or more generally functions of

Ωk) and E(O|Ωk) is the conditional expectation value of
the random variable O with respect to Ωk, defined as the
random variable obtained by partial averaging of O over
only configurations x′ ∈ Ωk

E(O|Ωk) ≡
∫
x′∈Ωk

O(x′)π(x′)dx′∫
x′∈Ωk

π(x′)dx′
. (5)

The estimator Õ in Eq. (4) is always not biased, i.e.
E(Õ) = E(O). Indeed E(O|Ωk) − O has a zero ex-
pectation value because of the well-known law of to-
tal expectation E(E(O|Ωk)) = E(O). This law can
be proven starting from Eq. (1), i.e. E(E(O|Ωk)) =∫
E(O|Ωk)π(x)dx, and decomposing the integral over x

as an integral over the environment variable Ωk and an
integral over x′ ∈ Ωk. Let us prove now that the esti-
mator Õ has a zero-variance property in the separabil-
ity limit when we choose λk = 1 ∀k. In this limit, O
is a sum of p independent contributions on each frag-
ment, O =

∑p
k=1Ok((xj)j∈Jk). Independence implies

that E(Ok|Ωk) = E(Ok) and E(Ol|Ωk) = Ol if l 6= k,
therefore E(O|Ωk)−O = E(Ok)−Ok and

Õ =

p∑
k=1

E(Ok) = E(O). (6)

In this limit Õ is a constant, only one parent configura-
tion x is sufficient for sampling Õ, the algorithm becomes
equivalent to p independent Monte Carlo simulations of
the p subsystems.

Of course, we do not know E(O|Ωk), but we can sample
it from the marginal distribution π(.|Ωk). This is done
through a side-walk which samples only Ωk, i.e. moving
the coordinates indexed by Jk in a given fragment while
the other coordinates are frozen. From now on we will
use the practical definition of the improved estimator

Õ ≡ O +

p∑
k=1

λk
mk

mk∑
i=1

(Oik −O), (7)

where Oik is the value of the random variable O at the
ith step of the kth side-walk (moving only the coordi-
nates indexed by Jk) of length mk. A direct way to see
that the estimator in Eq. (7) is not biased is to note that
E(Oik −O) = 0 as Oik and O share the same distribution
π, since the side-walk and the main walk both sample π.
We expect this scheme that we call the partition Monte
Carlo (PMC) method to reduce the variance with a low
numerical cost because the p subsamplings correspond
to handling p = O(N) low-dimensional problems. The
practical formula in Eq. (7) is equivalent to the theoret-
ical definition in Eq. (4) in the limit mk →∞ thanks to
the ergodic theorem. In practice, the parameters λk and
mk have to be adjusted to lower the variance of Õ for a
given CPU time. Also, for optimal efficiency, we can gen-
eralize the estimator Õ in Eq. (7) using instead of Oik−O
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the control variate Gik −Gk provided it converges to the
former in the separability limit. Gk can be obtained from
O by neglecting terms outside of the fragment k, reducing
the computational cost while retaining the unbiasedness
and the zero-variance property in the separability limit.
For example when computing the variational energy of
a molecule, i.e. O = (HΨ)/Ψ, we take Gk = (HkΨ)/Ψ
where Hk is the truncated Hamiltonian

Hk =

nk∑
i=1

−1

2
∇2
i −

∑
A

ZA
riA

+
∑
j

1

rij

 , (8)

where the index i runs over the nk electrons in the frag-
ment k. The first term is the kinetic-energy operator
and the last two terms are the Coulomb interactions of
the electrons of the fragment with the nuclei A (charges
ZA) and electrons j lying in a given neighborhood of the
fragment.

Let us see now how the PMC method relieves the vari-
ance bottleneck. As an example, we consider VMC cal-
culations using Jastrow-Slater wave functions

Ψ(x) = eJ(x)Φ(x), (9)

where J(x) is any real symmetric function of the elec-
tron configuration x, and Φ(x) = det(A) with the Slater
matrix A = XC where X is a rectangular matrix of lo-
calized atomic orbitals (Kronecker functions in the case
of a lattice model) and C is the rectangular matrix of
the orbital coefficients. For one fragment of the system
we introduce now the matrix P which selects the lines
corresponding to the electrons of that fragment. For a
side-walk in that fragment, X takes different values X ′
such that only the lines PX might differ from the lines
PX ′. The new determinant is [20, 21]

Φ(x′) = det(X ′C)

= det(A) det(X ′CA−1)

= det(A) det(PX ′QTQCA−1PT ), (10)

where we have used the determinant lemma. We in-
serted the projector QTQ where QT selects on the right
of PX ′ only the few columns which may differ from zero
for this fragment. These columns are very few because
the atomic orbitals are localized. In conclusion updat-
ing the determinant along the side-walk is equivalent to
multiplying it by a low-order effective Slater determinant

Φ(x′) = det(A) det(X̄C̄), (11)

where X̄ = PX ′QT and C̄ = QCA−1PT . The matrix
C̄ represents effective orbitals for the fragment and is
computed only once at each step of the usual main walk,
at a O(N3) numerical cost. Once C̄ has been built and
stored the side-walk costs only O(n3) where n is the num-
ber of electrons in the fragment. The local energy of the
subsystem involves a truncated Hamiltonian and can be

computed with the same cost O(n3) [20, 21]. The cost
of subsampling O(N) fragments is thus O(N) for an ex-
tended system with a finite correlation length. This al-
lows us to perform up to

∑
kmk = O(N3) total steps in

the side-walks without modifying the scaling of the main
walk. Therefore, we can perform mk = O(N2) steps in
each fragment and the improved estimator in Eq. (7) will
have consequently a variance reduced by a factor up to
O(N2), which is achieved in the separability limit.

Results — We now illustrate the PMC method on the
calculation of the ground-state energy of the 2D Hubbard
model and of metallic hydrogen chains.

The Hubbard systems that we employ consist in 2D
square grids of L×L sites with periodic boundary condi-
tions, filled to half-capacity with N ≈ L2 electrons evenly
distributed between the spins. Designating by c†iσ and
ciσ the creation and annihilation operators of site i with
spin σ ∈ {↑, ↓}, and by niσ = c†iσciσ the corresponding
number operators, the Hamiltonian takes the form [22]

H = −
∑
i6=j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (12)

where tij = 1 if i and j are adjacent, and tij = 0 other-
wise, and U = 1 is the on-site interaction parameter. We
have chosen the trial ground-state wave function to be a
Slater determinant of plane waves without any Jastrow
factor. We choose the subsystems as adjacent squares of
l × l sites. The number of iterations of the main walk is
kept constant at M = 500.

As an example of a simple system with a continuum
configuration space, we consider metallic hydrogen chains
with a regular interatomic distance of 1.4 a0. The Hamil-
tonian is given by Eq. (8) except of course that there is
no restriction in the sums for the full system. For the
trial ground-state wave function, we use a simple Jastrow
function [16] multiplied by the Hartree-Fock Slater deter-
minant obtained from a basis made of the exact hydrogen
1s orbital on each atom. We choose the subsystems as
consisting in n adjacent hydrogen atoms.

The first parameter of the PMC method whose im-
pact is to be explored is the side-walk length m (cho-
sen to be the same for all subsystems). Figure 1 re-
ports the variance gain VVMC/VPMC, the CPU time in-
crease tPMC/tVMC, and the uncorrelated efficiency gain
(VVMCtVMC)/(VPMCtPMC) [efficiency gain assuming a
correlation factor c = 1] of the PMC method over the
standard variational Monte Carlo (VMC) method. The
efficiency gain is plotted as a function of the side-walk
length m for the 2D Hubbard model with total size
L = 20 and subsystem size l = 5, and for hydrogen chains
with N = 320 total atoms and n = 12 atoms in the sub-
systems. Two regimes are clearly visible. For small m,
the variance gain increases linearly withm while the CPU
time is almost constant (the cost of a side-walk step is
very small compared to that of a main walk step). This
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FIG. 1. Variance gain VVMC/VPMC, time increase tPMC/tVMC, uncorrelated efficiency gain (VVMCtVMC)/(VPMCtPMC) of the
PMC method over the standard VMC method as a function of the side-walk length m for (a) the 20 × 20 square Hubbard
model (half filling) and (b) the H320 metallic hydrogen chain. The real efficiency gain (σ2

VMCtVMC)/(σ
2
PMCtPMC) differs from

the uncorrelated efficiency gain only for hydrogen chains.

leads to a linear increase of the uncorrelated efficiency
gain. For large m, the variance gain saturates while the
CPU time ratio increases linearly, driving the uncorre-
lated efficiency gain down. Between these two regimes,
there is a plateau corresponding to optimal values of the
side-walk length m. The saturation of the variance gain
originates from the correlation between subsystems. In-
deed, if the subsystems were independent, the variance
would converge to zero asm increases (zero-variance prin-
ciple in the separability limit) and the variance gain to
infinity.

One may ask the role of the correlation factor c in
Eq. (2). For the Hubbard model, c has been found to
be very close to 1 leading to a real efficiency gain al-
most identical to the uncorrelated efficiency gain. For
the hydrogen chains c ' 2.5 for m = 0 (VMC) and c
is reduced for small m (about 40% less for H320 and
m ∈ [5, 40]) before increasing slowly for larger values
of m. This explains the difference between the un-
correlated efficiency gain and the real efficiency gain
(σ2

VMCtVMC)/(σ2
PMCtPMC) in Fig. 1. In particular, the

optimal real efficiency gain is 40% higher than the opti-
mal uncorrelated efficiency gain.

We now consider systems of increasing sizes. For the
Hubbard model, the optimal subsystem size has been
found to be l ≈

√
L, and similarly for the metallic hy-

drogen chains we find n ≈
√
N/2. The fact that the op-

timal subsystem size does not saturate to a finite value
as the system size increases is an indication of the non-
separability of the system. The optimal side-walk length
m also increases with system size since larger systems
result in more decorrelated subsystems and cheaper side-
walks compared to the main walk. Figure 2 reports the
real efficiency gain as a function of the electron number
N for the Hubbard model and the hydrogen chains up
to N of the order of 103. Both metallic systems present
a real efficiency gain scaling linearly with N , which hov-

FIG. 2. Optimal real efficiency gain
(σ2

VMCtVMC)/(σ
2
PMCtPMC) as a function of electron number

N for the Hubbard model and metallic hydrogen chains.

ers around 0.075N for the Hubbard model and 0.025N
for the hydrogen chains. This real efficiency gain is en-
tirely achieved by decreasing the variance of the local
energy from O(N) to a behavior close to O(1), as shown
in Fig. 3. Of course, we have checked that computing
E(O) and E(Õ) always gives the same answer within the
error bars, in agreement with the unbiasedness of Õ.

Conclusions — We introduced a general and simple
method to reduce the scaling of Monte Carlo calcula-
tions of extensive properties. It only requires to have
an explicit formula [Eq. (1)] for the integral to be com-
puted, and therefore can be used in any Markov Chain
Monte Carlo application. The method was illustrated
on VMC calculations of metallic systems of N parti-
cles, providing an efficiency gain of order O(N). The
present idea can be applied in many contexts, including
fixed-node path-integral Monte Carlo approaches [23, 24]
since these schemes sample explicit probability distribu-
tions. Finally, the method can in principle be extended to
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FIG. 3. Variance of the local energy in standard VMC and in PMC (for optimal m) as a function of electron number N for (a)
the Hubbard model (PMC variance multiplied by 10 on the plot) and (b) metallic hydrogen chains.

derivatives of extensive properties to reduce the scaling
for calculating response properties or optimizing varia-
tional wave functions.
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