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We study the existence and uniqueness of a nonlinear system of eikonal equations in one space dimension for any BV initial data. We present two results. In the first one, we prove the existence of a discontinuous viscosity solution without any monotony conditions neither on the velocities nor on the initial data. In the second, we show the continuity of the constructed solution under continuous initial data, and continuous velocities verifying a certain monotony condition. We present an application to a system modeling the dynamics of dislocations densities.

Introduction and main results

Setting of the problem

In this paper, we are interested in a non-linear strongly coupled Hamilton-Jacobi system of the form

   ∂ t u i (t, x) = λ i (t, x, u(t, x))|∂ x u i (t, x)| in (0, T ) × R, u i (0, x) = u i 0 (x) in R, (1.1) 
where T > 0 and i = 1, . . . , d, such that d ∈ N * . The functions u i are real valued, ∂ t u i and ∂ x u i represent the time and spatial derivatives of u i respectively. The velocity λ i is assumed to satisfy, for all i = 1, . . . , d, the following assumption λ i ∈ L ∞ ((0, T ) × R × K) for T > 0 and for all compact K ⊂ R d .

(1.2)

1 Our study of system (1.1) is motivated by the consideration of a model describing the dynamics of dislocations densities (see [START_REF] Hajj | Global continuous solutions for diagonal hyperbolic systems with large and monotone data[END_REF]Section 5] for more details about the model), which is given by

∂ t u i =   j=1,...,d A ij u j   |∂ x u i | for i = 1, . . . , d, (1.3) 
where (A ij ) i,j=1,...,d is a real matrix. This model can be seen as a special case of system (1.1).

From another point of view, we remark that system (1.1) can be seen as the "level-set approach" system associated to the motion of the front Γ i t := {x : u i (t, x) = 0} with a normal velocity λ j (t, x, u) depending on the solution u and affected by λ j (t, x, u) for i = j (see for instance Barles et al. [START_REF] Barles | Front propagation and phase field theory[END_REF]).

We aim in this work to establish first the existence of a discontinuous viscosity solution assuming we have (1.2) and the following regularity on the initial data

u i 0 ∈ L ∞ (R) ∩ BV (R) for every i = 1, . . . , d, (1.4) 
where BV (R) is the space of functions of bounded variations given by

BV (R) = f ∈ L 1 loc (R); T V (f ) < +∞ ,
with T V (f ) being the total variation of f defined as

T V (f ) = sup R f (x)φ (x)dx; φ ∈ C 1 c (R) and φ L ∞ (R) ≤ 1 .
Then, we will show that this discontinuous solution would be continuous if we assume that the system is quasi-monotone in the sense of Ishii, Koike [START_REF] Ishii | Viscosity solutions for monotone systems of second-order elliptic PDEs[END_REF][START_REF]Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games[END_REF], along with (1.4) and u i 0 ∈ C(R) for every i = 1, . . . , d,

and assuming the velocities verify (1.2) and the following assumptions for every i = 1, . . . , d, λ i ∈ C((0, T ) × R × K) for T > 0 and for all compact K ⊂ R d , there exists M 1 > 0 such that, for all x, y ∈ R and t ∈ (0, T ),

|λ i (t, x, u) -λ i (t, y, u)| ≤ M 1 |x -y|. (1.6) 
We refer the reader to [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]] for a complete overview on viscosity solutions. In the following, we take the space BV (R) endowed with the semi-norm |f | BV (R) = T V (f ). Note that BV functions are integrable functions whose distributional derivative is a finite Radon measure.

In order to prove the existence of a discontinuous solution of (1.1), first we will consider, for every i = 1, . . . , d and 0 < ε, η ≤ 1, the following parabolic regularization

   ∂ t u i ε,η (t, x) = η∂ 2 xx u i ε,η (t, x) + λ i ε (t, x, u ε,η (t, x))|∂ x u i ε,η (t, x)| in (0, T ) × R, u i ε,η (0, x) = u i 0,ε (x) in R.
(1.7)

The functions λ i ε and u i 0,ε are the regularizations of λ i and u i 0 by classical convolution, which are defined as

u i 0,ε (x) = u i 0 ρ 1 ε (x) and λ i ε (t, x, w) = λi ρ d+2 ε (t, x, w) ∀ (t, x, w) ∈ R × R × R d , (1.8)
where λi is an extension of λ i by 0 for all i = 1, . . . , d. Moreover, ρ n ε for n = 1 and n = d + 2 are standard mollifiers defined as

ρ n ε (•) = 1 ε n ρ n • ε , such that ρ n ∈ C ∞ c (R n ), supp{ρ n } ⊆ B(0, 1 
), ρ n ≥ 0, and

R n ρ n = 1.
We will show that (1.7) admits a unique Lipschitz solution by the means of a Fixed Point argument. Then, by using stability results of viscosity solutions, we will be able to pass to the limit as (ε, η) → (0, 0), and show that the upper and lower relaxed semi-limits of Barles and Perthame [START_REF] Barles | Exit time problems in optimal control and vanishing viscosity method[END_REF][START_REF]Comparison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations[END_REF], which are defined as

u i (t, x) = lim sup u i ε,η (t, x) = lim sup (ε,η)-→(0,0) (s,y)-→(t,x) u i ε,η (s, y), (1.9) 
and

u i (t, x) = lim inf u i ε,η (t, x) = lim inf (ε,η)-→(0,0) (s,y)-→(t,x) u i ε,η (s, y), (1.10) 
are, respectively, discontinuous viscosity sub-and super-solutions of system (1.1) in the sense of discontinuous viscosity solutions introduced by Ishii in [24, Definition 2.1] for Hamilton-Jacobi systems that is recalled below in Definition 2.1. Then, by applying the comparison principle, we will be able to show the continuity of these discontinuous solutions under (1.5) and (1.6), in the case where system (1.1) is quasi-monotone (defined below in (H)). The uniqueness of the continuous solution is obtained again by a comparison principle.

A brief review of some related literature

Several studies have been made on (1.1), of which we will mention some. In El Hajj et al. [START_REF]BV solution for a non-linear hamilton-jacobi system[END_REF], the global existence of a discontinuous viscosity solution has been obtained, under a certain monotony condition on the velocities. However, without any such monotony conditions, EL Hajj and Oussaily recently proved in [START_REF] Hajj | Existence and Uniqueness of Continuous Solution for a Nonlocal Coupled System Modeling the Dynamics of Dislocation Densities[END_REF] the global existence and uniqueness of a continuous viscosity solution, basing on an entropy and a BV estimate. In this work, we treat the case of discontinuous solutions without any monotony conditions.

We note that in the case of nondecreasing solutions, system (1.1) becomes a diagonal hyperbolic system. For such systems, many existence and uniqueness results have been made. We will recall some of the most significant ones. First, in the case of (2 × 2) strictly hyperbolic system with nondecreasing initial data, Lax proved in [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF], the existence and uniqueness of nondecreasing smooth solutions. Also, assuming that the initial data is nondecreasing, an existence and uniqueness result of a continuous solution was proved in El Hajj, Monneau [START_REF]Uniqueness results for diagonal hyperbolic systems with large and monotone data[END_REF] for a general (d × d) diagonal strictly hyperbolic system. The proof in [START_REF]Uniqueness results for diagonal hyperbolic systems with large and monotone data[END_REF] is based on a global existence result of a continuous nondecreasing solution established previously in El Hajj, Monneau [START_REF] Hajj | Global continuous solutions for diagonal hyperbolic systems with large and monotone data[END_REF], where the system is assumed to be hyperbolic but not necessarily strictly hyperbolic. Also, in the case of (d × d) strictly hyperbolic systems, Bianchini and Bressan proved in [START_REF] Bianchini | Vanishing viscosity solutions of nonlinear hyperbolic systems[END_REF] a global existence and uniqueness result assuming that the initial data had small total variation. This approach is mainly based on a careful analysis of the vanishing viscosity approximation. We can also mention that an existence result has been also obtained by LeFloch, Liu [START_REF] Lefloch | Existence theory for nonlinear hyperbolic systems in nonconservative form[END_REF] and LeFloch [START_REF] Lefloch | Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form[END_REF][START_REF] Lefloch | Graph solutions of nonlinear hyperbolic systems[END_REF], in the nonconservative case.

Many authors have worked on Hamilton-Jacobi equations in several space dimensions with discontinuous coefficients. We mention the work of Camilli and Siconolfi [START_REF] Camilli | Hamilton-Jacobi equations with measurable dependence on the state variable[END_REF][START_REF]Time-dependent measurable Hamilton-Jacobi equations[END_REF], where comparison principles, existence and uniqueness results, stability properties, and representations formulas of viscosity solutions have been made, under the assumptions that the Hamiltonian H(x, p) is measurable with respect to the space variable x and convex in p. We can also point out the work of Chen and Hu [START_REF] Chen | Viscosity solutions of discontinuous Hamilton-Jacobi equations[END_REF], where they establish the existence and uniqueness of Lipschitz continuous viscosity solutions, assuming the Hamiltonian is nonnegative and Lipschitz continuous. What is genuine about our work is that we will show the existence of viscosity solutions assuming our Hamiltonians (velocities λ i ) are only bounded functions.

We note that the system understudy in this paper is strongly coupled. However, it is important to mention that the case of weakly coupled Hamilton-Jacobi equations have been widely studied in the literature. For instance, Camilli and Loreti proved in [START_REF] Camilli | Comparison results for a class of weakly coupled systems of eikonal equations[END_REF] two comparison theorems on the system

H i (x, Du i ) + M j=1 c ij (u i -u j ) = 0, i = 1, . . . , M,
by imposing convexity and coercivity conditions on the Hamiltonians H i . Many other results have been brightened up under such conditions. Loreti and Vergara Caffarelli proved the existence and uniqueness of variational solutions in [START_REF] Loreti | Variational solutions of coupled Hamilton-Jacobi equations[END_REF]. Also, the authors in Mitake et al. [START_REF] Mitake | A Lagrangian approach to weakly coupled Hamilton-Jacobi systems[END_REF] were able to characterize all sub-solutions of their system and represent explicitly some of which enjoy a certain maximality property.

In this paper, we present two results that remain valid whether the system is strictly hyperbolic or not strictly hyperbolic, and without any monotony conditions on the initial data. First, we show the global existence of a discontinuous viscosity solution to (1.1) without any monotony conditions on the velocities for any BV initial data. Second, we prove the continuity of the obtained solution by using the Comparison Principle, assuming that the initial data are continuous and the velocities are Lipschits functions in space verifying certain monotony conditions. Then, as a consequence, we obtain the uniqueness of the solution.

Main results

In this subsection, we first present, in Theorem 1.1, the global existence of a discontinuous viscosity solution to (1.1). Then, we show, in Theorem 1.2, that this solution is continuous for continuous initial data and under certain monotony conditions on the velocities. Lastly, we present an application to the case of the dynamics of dislocations densities in Theorem 1.3. Assume that (1.2) and (1.4) are satisfied. Then the following points hold i) Existence and uniqueness to the regularized problem There exists a unique Lipschitz solution u ε,η = (u i ε,η ) i=1,...,d of (1.7) belonging to the space (C([0, T ); W 1,∞ (R))) d , and satisfying for all T > 0 and i = 1, . . . , d, the following uniform estimates

u i ε,η L ∞ ((0,T )×R) ≤ u i 0 L ∞ (R) , (1.11) 
∂ x u i ε,η L ∞ ((0,T );L 1 (R)) ≤ ∂ x u i 0 L 1 (R) , (1.12 
)

∂ t u i ε,η L ∞ ((0,T );W -1,1 (R)) ≤ 1 + λ i L ∞ ((0,T )×R×K 0 ) u i 0 BV (R) , (1.13) 
where

W -1,1 (R) is the dual of W 1,∞ (R), and 
K 0 = d i=1 -u i 0 L ∞ (R) , u i 0 L ∞ (R) . (1.14)
ii) Sub-and super-solutions of (1.1) Let u ε,η be the unique solution of (1.7) constructed in (i). Then the upper and lower relaxed semi-limits u = u i i=1,...,d and u = u i i=1,...,d , are respectively discontinuous viscosity suband super-solutions of system (1.1).

iii) Convergence

Assume that the solution u i ε,η of (1.7) satisfies (1.11), (1.12) and (1.13) for i = 1, . . . , d. Then, up to the extract of a subsequence, the function u i ε,η converges, as ε and η tend to zero, to a function

u i ∈ L ∞ (0, T ) × R ∩ L ∞ (0, T ); BV (R) ∩ C [0, T ); L 1 loc (R) , (1.15) 
strongly in C [0, T ); L 1 loc (R) . Moreover, u i satisfies, for all T > 0 and for i = 1, . . . , d, the following inequalities

u i L ∞ ((0,T )×R) u i 0 L ∞ (R) , (1.16 
)

u i L ∞ ((0,T );BV (R)) u i 0 BV (R) , (1.17) 
and the following equality

u i (t, •) = u i (t, •) = u i (t, •), except at most on a countable set in R, for all t ∈ [0, T ). (1.18)
Our second result relies on the supposition that system (1.1) is quasi-monotone. This means that the velocities verify the following condition

λ j (t, x, s) -λ j (t, x, r) ≥ 0 for all vectors r = (r i ) i=1,...,d , s = (s i ) i=1,...,d such that r j -s j = max i∈{1,...,d} (r i -s i ) ≥ 0. (H)
Theorem 1.2 (Existence and uniqueness of a continuous solution to (1.1)).

Suppose that (1.2), (1.4), (1.5), (1.6) and (H) hold. Then, there exists a unique continuous viscosity solution of (1.1) satisfying (1.16) and (1.17).

Unique continuous solution for dislocations' dynamics

Now, we present an application of Theorem 1.2 to a nonlinear system that appears in the modeling of the dynamics of dislocations densities in materials.

A dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of its atoms.

Here, we are interested in a particular 1D model initially proposed in 2D dimensions by Groma and Balogh [START_REF] Groma | Link between the individual and continuum approaches of the description of the collective behavior of dislocations[END_REF][START_REF]Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation[END_REF], in order to describe the dynamics of dislocations densities. This 2D model is written in a specific geometry, where the dislocations are considered as points in the plane (x 1 , x 2 ), propagating to the left and to the right, following two Burger's vectors ±b = ±(1, 0).

In the 1D sub-model, we suppose that the dislocations densities depend only on the variable x = x 1 + x 2 , which transforms the 2D model into a 1D model. We refer the reader to El Hajj and Forcadel [START_REF] Hajj | A convergent scheme for a non-local coupled system modelling dislocations densities dynamics[END_REF]Lemma 3.1] for more details about the modeling.

More precisely, we consider the following system

         ∂ t ρ + (x, t) = -(ρ + -ρ -)(x, t) + α 1 0 (ρ + -ρ -)(y, t)dy + a(t) ∂ x ρ + (x, t) in R × (0, T ), ∂ t ρ -(x, t) = (ρ + -ρ -)(x, t) + α 1 0 (ρ + -ρ -)(y, t)dy + a(t) ∂ x ρ -(x, t) in R × (0, T ), (1.19) 
where ρ + , ρ -are the unknown scalars, that we denote for simplicity by ρ ± . These two functions, ρ + and ρ -, are respectively the representations of the left-propagating and rightpropagating dislocations. Their spatial derivatives ∂ x ρ + , ∂ x ρ -represent the dislocations densities of +, -type respectively. The constant α depends on the elastic coefficients and the material size, while the function a(t) represents the exterior strain field. The initial conditions associated to system (1.19) are defined as follows

ρ ± (0, x) = ρ ± 0 (x) = P ± 0 (x) + a 0 x on R, (1.20) 
where P ± 0 are 1-periodic functions. In particular, ρ + 0 -ρ - 0 is 1-periodic. The use of the periodic boundary conditions is a way of regarding what is going on in the interior of the material away from its boundary, assuming the material understudy is made up entirely of small and similar subsets.

Remark 1.1. Mathematically speaking, we could have just considered periodic initial conditions, without the linear part in (1.20). However, the use of periodic plus linear conditions is totally physical, as the dislocations densities are considered to be non-decreasing functions in this model.

Applying Theorem 1.2 to the local case (α = 0) of system (1.19) yields the following result, where we note that the set T = R/Z is the [0, 1) periodic interval.

Theorem 1.3 (Existence and uniqueness of a continuous solution).

Assume that α = 0, and suppose that the functions P ± 0 introduced in (1.20) verify

P ± 0 ∈ C(T) ∩ BV (T), (1.21) 
and the function a satisfies

a ∈ C[0, T ). (1.22)
Then, there exists a unique continuous viscosity solution of system (1. [START_REF]Uniqueness results for diagonal hyperbolic systems with large and monotone data[END_REF])- (1.20).

The proof of this theorem derives naturally from Theorem 1.2, since system (1.19) verifies condition (H) in the case where α = 0.

Organization of the paper

This paper is organized as follows: in Section 2, we prove the existence of a discontinuous viscosity solution result, that was announced in Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2, where we show by the means of a comparison principle, the continuity and the uniqueness of the solution constructed in Theorem 1.1, under certain extra conditions. Finally in Section 4, we present an application of Theorem 1.2 to the dynamics of dislocations, presented in Theorem 1.3.

Existence of a discontinuous solution

In this section, we prove the existence of a discontinuous viscosity solution of (1.1), that was announced in Theorem 1.1. First, we recall in the following subsection a well-known compactness lemma, along with the definition of discontinuous viscosity solutions for system (1.1).

Some useful results

We first recall Simon's Compactness Lemma. 

f (X) = lim sup Y →X f (Y ) and f (X) = lim inf Y →X f (Y ) for X ∈ R n . (2.1)
For a vector u = (u 1 , . . . , u d ) locally bounded on [0, T ) × R for all T > 0, we write u = ((u 1 ) , . . . , (u d ) ) and u = ((u 1 ) , . . . , (u d ) ). Also we define U : (0, T ) × R → 2 R d , the graph closure of u, by

U (t, x) = {r ∈ R d : there is a sequence {(t n , x n )} ⊂ (0, T ) × R such that (t n , x n ) -→ n→+∞ (t, x) and u(t n , x n ) → r}.
It should be remarked that U (t, x) is closed; i.e., for all sequence {r m } ⊂ R d , if r m ∈ U (t, x) and r m -→ m→+∞ r for some r ∈ R d , then r ∈ U (t, x).

Definition 2.1. (Discontinuous viscosity sub-solution, super-solution and solution) Assume that λ i is locally bounded on (0, T ) × R × R d and u 0 = (u i 0 ) i=1,...,d is locally bounded on R. Let u = (u i ) i=1,...,d be a locally bounded function defined on [0, T ) × R.

(1) (Discontinuous viscosity sub-solution)

We call u a discontinuous viscosity sub-solution of (1.1) if it satisfies

(i) (u i ) (0, x) ≤ (u i 0 ) (x)
, for all i = 1, . . . , d and x ∈ R.

(ii) If whenever φ ∈ C 1 ((0, T ) × R), i = 1, . . . , d and (u i ) -φ attains its local maximum at (t 0 , x 0 ) ∈ (0, T ) × R, then we have

min ∂ t φ(t 0 , x 0 ) -(λ i ) (t 0 , x 0 , r)|∂ x φ(t 0 , x 0 )| : r ∈ U (t 0 , x 0 ), r i = (u i ) (t 0 , x 0 ) ≤ 0. (2.2)
(2) (Discontinuous viscosity super-solution) Similarly, we call u a discontinuous viscosity super-solution of (1.1) if it satisfies

(i) (u i ) (0, x) ≥ (u i 0 ) (x)
, for all i = 1, . . . , d and x ∈ R.

(ii) If whenever φ ∈ C 1 ((0, T ) × R), i = 1, . . . , d and (u i ) -φ attains its local minimum at (t 0 , x 0 ) ∈ (0, T ) × R, then we have max ∂ t φ(t 0 , x 0 ) -(λ i ) (t 0 , x 0 , r)|∂ x φ(t 0 , x 0 )| : r ∈ U (t 0 , x 0 ), r i = (u i ) (t 0 , x 0 ) ≥ 0. (2.3)
(3) (Discontinuous viscosity solution) Finally, we call u a discontinuous viscosity solution of (1.1) if it is both a discontinuous viscosity sub-solution and super-solution of (1.1).

Noting that the minimum and the maximum in (2.2) and (2.3) are attained, since the sets

r ∈ R d : r ∈ U (t 0 , x 0 ), r i = (u i ) (t 0 , x 0 ) and r ∈ R d : r ∈ U (t 0 , x 0 ), r i = (u i ) (t 0 , x 0 )
are non-empty and compact and moreover (λ i ) and (λ i ) are upper and lower semi-continuous, respectively.

Proof of Theorem 1.1

We proceed in three steps.

Step 1. (Proof of (i)):

The proof of Theorem 1.1-(i) is a classic application of the Fixed Point Theorem in Banach spaces. We will explain briefly what we will do. First, we regularize the non-linear term [START_REF] Boudjerada | Global existence results for eikonal equation with BV initial data[END_REF], by replacing it with the smooth function β δ (∂ x u i ε,η ), where β δ is defined as

|∂ x u i ε,η |, in (1.
β δ (x) = x 2 + δ 2 for all 0 < δ ≤ 1. (2.4)
Then, we truncate the function β δ by plugging in the function This brings us to consider for all 0 < δ ≤ 1 , i = 1, . . . , d, and for u ε,η,δ = (u i ε,η,δ ) i=1,...,d , the following problem

ψ δ (•) = φ( √ δ •), (2.5 
   ∂ t u i ε,η,δ (t, x) -η∂ 2 xx u i ε,η,δ (t, x) = λ i ε (t, x, u ε,η,δ )ψ δ (x)β δ (∂ x u i ε,η,δ (t, x)) on (0, T ) × R, u i ε,η,δ (0, x) = u i 0,ε (x) x ∈ R, (2.6 
) where for all i = 1, . . . , d, we have

u i 0,ε ∈ C ∞ (R) ∩ L ∞ (R), ∂ x u i 0,ε ∈ L p (R) for all 1 ≤ p ≤ +∞, (2.7) 
and

λ i ε ∈ W 1,∞ ((0, T ) × R × K) ∩ C ∞ ((0, T ) × R × R d ), for all compact K ⊂ R. (2.8)
Next, we will write (2.6) in its integral form, for all i = 1, . . . , d, as follows

u i ε,η,δ (t, x) = G η (t) u i 0,ε (x) + t 0 G η (t -s) λ i ε (s, •, u ε,η,δ (s, •))ψ δ (•)β δ (∂ x u i ε,η,δ (s, •)) (x)ds, where G η (t, x) = 1 √ 4πηt e -x 2
4ηt is the standard heat kernel. In other words, we consider the following problem

   u ε,η,δ (t, x) = (u i ε,η,δ (t, x)) i=1,...,d , u ε,η,δ (0, x) = u 0,ε (x) = (u i 0,ε (x)) i=1,...,d , u ε,η,δ (t, x) = G η (t) u 0,ε (x) + B(u ε,η,δ )(t, x), (2.9) 
where, for r(t, x) = (r i (t, x)) i=1,...,d , we have

B(r)(t, x) = t 0 G η (t-s)    β δ (∂ x r 1 (s, •))ψ δ (•) • • • 0 . . . . . . . . . 0 • • • β δ (∂ x r d (s, •))ψ δ (•)         λ 1 ε (s, •, r(s, •)) λ 2 ε (s, •, r(s, •)) . . . λ d ε (s, •, r(s, •))      (x)ds.
We introduce, for T > 0, the following three Banach spaces

X = r = (r i ) i=1,...,d ∈ (L ∞ (R)) d ; ∂ x r i ∈ L 1 (R) , (2.10) equipped with the norm r X = d i=1 r i L ∞ (R) + d i=1 ∂ x r i L 1 (R)
, and

X T = r = (r i ) i=1,...,d ∈ (L ∞ ((0, T ) × R)) d ; ∂ x r i ∈ L ∞ ((0, T ); L 1 (R)) , equipped with the norm r X T = d i=1 r i L ∞ ((0,T )×R) + d i=1 ∂ x r i L ∞ ((0,T );L 1 (R))
, and lastly

Y T = r ∈ X T ; r X T ≤ v 0 X + 1 .
Then, we define the mapping

T : Y T → Y T r → T (r) = G η (•) v 0 + B(r).
We prove that this mapping is well-defined and is a contraction on Y T * for a certain T * > 0. This enables us to apply the Fixed Point Theorem in order to say that there exists a unique fixed point which is the unique solution of (2.9). Moreover, we can prove that there exists a constant ξ δ p depending on

u i 0,ε L ∞ (R) , ∂ x u i 0,ε L p (R)
, and T * such that

∂ x u i ε,η,δ L ∞ ((0,T * );L p (R)) ≤ ξ δ p for all 1 ≤ p ≤ +∞. (2.11)
Then, by using L p -regularity of parabolic equations and the fact that β δ and λ i ε are regular, we can show by classical Bootstrap arguments that

u ε,η,δ ∈ (C ∞ ((0, T * ) × R)) d ∩(W 1,∞ ((0, T * ) × R)) d ∩ Y T * .
After that, we can prove via the maximum principle for parabolic equations (see Lieberman [31, Theorem 2.10]) that the smooth solution u i ε,η,δ verifies

u i ε,η,δ L ∞ ((0,T * )×R) ≤ T * δ Λ i + u i 0 L ∞ (R) for all i = 1, . . . , d, (2.12) 
where

Λ i = λ i L ∞ ((0,T )×R× K 0 ) , (2.13) 
with

K 0 = d i=1 -1 -u i 0 L ∞ (R) , u i 0 L ∞ (R) + 1 .
Then, using the compactness lemma by Simon, inherited from (2.11) and (2.12), we will be able to pass to the limit as δ → 0, and prove the existence of (1.7). Estimate (1.11) comes from passing to the limit as δ → 0 is (2.12). The proof of the BV estimate (1.12) and the time derivative estimate (1.13) can be found in [START_REF] Hajj | Continuous solution for a non-linear eikonal system[END_REF]. Finally, using (1.11) and (1.12) we will be able to prove the global in time existence of a solution u ε,η to (1.7) belonging to the space

(C([0, T )); W 1,∞ (R)) d for T > 0.
We refer to [20, Theorem 5.1] for the complete proof of this step.

Step 2. (Proof of (ii)):

We have to prove that the upper and lower relaxed semi-limits u and u of u ε,η verify the conditions of discontinuous viscosity sub-and super-solutions, given in Definition 2.1, respectively. We introduce the finite speed propagation property, valid on the smooth solutions of (1.7). Indeed, under assumptions (1.2) and (1.4), if u ε,η = (u i ε,η ) i=1,...,d is the unique solution of (1.7), given by Theorem 1.1-(i), then u i ε,η satisfies, for all h ≥ 0, the following estimate 

R G η (t, y) min |z-(x-y)|≤Λt u i ε,η (h, z)dy ≤ u i ε,η (t + h, x) ≤ R G η (t,
u i 0,ε (x) ≤ max |x-x0|≤c+ε u i 0 (x)
, where c > 0, allows us to give sense to the initial data, as it is precised in Definition 2.1 ( 1)-(i) and ( 2)-(i). See [1, Section 5] for more details. However, to give meaning to the system, in other words, to prove Definition 2.1 ( 1)-(ii) and ( 2)-(ii), we use the stability results of discontinuous viscosity solutions, along with the following properties

λ i (t, x, r) ≤ (λ i ) (t, x, r) and (λ i ) (t, x, r) ≤ λ i (t, x, r) for all (t, x, r) ∈ [0, T ) × R × R d ,
where

λ i (t, x, r) = lim sup ε-→0 (s,y,w)-→(t,x,r) λ i ε (s, y, w), and λ i (t, x, r) = lim inf ε-→0 (s,y,w)-→(t,x,r) λ i ε (s, y, w).
We refer the reader also to [1, Section 5] for a complete elaboration of the preceding information.

Step 3. (Proof of (iii)):

We proceed as in [1, Section 6]. Indeed, for u ε,η = u i ε,η i=1,...,d being the solution of (1.7), constructed in Theorem 1.1-(i), and from estimates (1.11), (1.12), (1.13) and Simon's Lemma, we can extract a subsequence, denoted by (u i (εn,ηn) K 0 ) (εn,ηn) K 0 , that converges strongly in L ∞ ((0, T ); L 1 (K 0 )) to some limit u i , as n → +∞. By a standard diagonalization procedure, we can extract a subsequence (u i εn,ηn ) εn,ηn (independent of i and K) that converges to the limit u i strongly in C([0, T ); L 1 (K)) for all compact K ⊂ R. Now, thanks to estimates (1.11) and (1.12) we can extract a subsequence, still denoted by (u i εn,ηn ) εn,ηn , satisfying the following convergences

u i εn,ηn -→ u i , strongly in C([0, T ); L 1 (K)), for all compact K ⊂ R, u i εn,ηn -→ u i , weakly- in L ∞ ((0, T ) × R), u i εn,ηn -→ u i , weakly- in L ∞ ((0, T ); BV (R)).
Taking the lim inf in estimates (1.11), (1.12) and using the lower semi-continuity of

• L ∞ (R) and | • | BV (R)
, we can prove that u i satisfies (1.15), (1.16) and (1.17). The proof of (1.18) is based on the Finite Speed Propagation Property (2.14) and the BV estimate (1.12), in particular, the discontinuity of BV functions in dimension one. See [1, Section 7] for more details.

Unique continuous solution

In this section, we give the proof of Theorem 1.2. We will first show that the discontinuous viscosity sub-solution u and super-solution u, given by Theorem 1.1, are continuous under assumptions (1.2), (1.4), (1.5), (1.6) and (H). We already have u i ≤ u i for every i = 1, . . . , d, from the definition of upper and lower relaxed semi-limits (see (1.9) and (1.10)). Then, by the use of the comparison principle, we will be able to show that we also have u i ≥ u i for every i = 1, . . . , d, which proves that the solution u is indeed continuous. Thus, we present the following proposition.

Proposition 3.1. Assume (1.2), (1.4), (1.5), (1.6) and (H) hold. Let u = (u i ) i=1,...,d and u = (u i ) i=1,...,d be respectively discontinuous viscosity sub-and super solutions of (1.1), in the sense of Definition 2.1, where the functions u i satisfy max i∈{1,...,d}

u i L ∞ (T×(0,T )) ≤ M 0 . (3.1) 
Then, if u i (•, 0) ≤ u i (•, 0) in R we get u i ≤ u i in R × [0, T ) for every i = 1, . . . , d.
Proof of Proposition 3.1: Let us denote by

M sup = max i∈{1,...,d} sup R×[0,T ] V i -V i ,
where V i (x, t) = u i (x, t)e -γt and V i (x, t) = u i (x, t)e -γt . We remark that V i and V i are respectively discontinuous viscosity sub-and super-solutions of the equation

∂ t V i = -γV i + λ i (t, x, u)|∂ x V i |. (3.2) 
It is sufficient to prove that M sup ≤ 0. Let us suppose by contradiction that M sup > 0. We proceed in two steps.

Step 1. (Doubling the variables):

We duplicate the variables by considering, for all , β, η and α positives ψ(

= V i (x, t) -V i (y, s) - |x -y| 2 2 - |t -s| 2 2β - η T -t -α(|x| 2 + |y| 2 ). x, y, t, s, i) 
We note that ψ(•,

•, •, •, •) is a locally bounded function in R 2 × [0, T ) 2 × {1, . . . , d}.
We can think that the maximum of ψ noted M ( , β, α, η, γ) = sup (x,y)∈R 2 ,(t,s)∈[0,T ] 2 i∈{1,...,d} ψ(x, y, t, s, i), is similar with M sup . The idea is justified by the following lemma.

Lemma 3.1. Let (x, y, t, s, k) be a maximum of ψ. If we define M = lim Proof of Lemma 3.1: Using the fact that V i and V i are bounded for every i ∈ {1, . . . , d}, we deduce that

(h,k)→(0,0) M k h , where M k h = sup |x-y|,|t-s|≤h |x|,|y|≤ 1 √ k V i (x, t) -V i (y, s) , then the following properties hold 1. α|x| 2 , α|y| 2 ≤ 2M 0 . 2. lim β→0 |t -s| = lim →0 |x -y| = 0. 3. t < T -η 2M0 < T . 4. lim inf α→0 lim inf →0 lim inf β→0 lim inf η→0 V i (x, t) -V i (y, s) = lim sup α→0 lim sup →0 lim sup β→0 lim sup η→0 V i (x, t) -V i (y, s) = M .

lim inf

lim |x|,|y|→∞ ψ(x, y, t, s, i) = -∞,
and so the function ψ reaches a maximum at a point (x, y, t, s, i) ∈ R 2 × (0, T ) 2 × {1, . . . , d}.

We know that M sup = max k∈{1,...,d}

sup

R×[0,T ] V i -V i > 0, then there exists (x * , t * , i * ) ∈ (0, 1) × (0, T ) × {1, . . . , d}, such that V i * (x * , t * ) -V i * (x * , t * ) > 0.
Then, we have ψ(x * , x * , t * , t * , i * ) ≤ M ( , β, α, η),

which implies 0 < V i * (x * , t * ) -V i * (x * , t * ) ≤ M ( , β, α, η) + η T -t * + 2α|x * | 2 , 0 < M ( , β, α, η, γ) + η T -t * + 2α|x * | 2 .
Then, for η and α small enough, we get M ( , β, α, η, γ) > 0.

(3.3)

We then deduce α(|x|

2 + |y| 2 ) < V i (x, t) -V i (y, s) ≤ 2M 0 ,
where we have used (3.1) for the second inequality. Multiplying the previous inequality by α yields (1) and lim α→0 α|x| = lim α→0 α|y| = 0.

In the same way, we have |x -y|

2 2 + |t -s| 2 2β < 2M 0 (3.4)
and so lim

→0 |x -y| 2 = lim β→0 |t -s| = 0.
We also deduce that

η T -t < V i (x, t) -V i (y, s) ≤ 2M 0 , Which leads to t < T - η 2M 0 < T.

Now we prove (4). We recall that M

k h = sup |x-y|,|t-s|≤h |x|,|y|≤ 1 √ k V i (x, t) -V i (y, s) . Let (x h,k n , y h,k n , t h,k n , s h,k n ) be such that V i (x h,k n , t h,k n ) -V i (y h,k n , s h,k n ) ≥ M k h - 1 n , with |x h,k n -y h,k n |, |t h,k n -s h,k n | ≤ h and |x h,k n |, |y h,k n | ≤ 1 √ k .
We then have

M k h - 1 n - h 2 2 - h 2 2β - η T -t h n - 2α k ≤ V i (x h,k n , t h,k n ) -V i (y h,k n , s h,k n ) - |x h,k n -y h,k n | 2 2 - |t h,k n -s h,k n | 2 2β - η T -t h,k n -α |x h,k n | 2 + |y h,k n | 2 ≤ M ( , β, η, α, γ) ≤ V i (x, t) -V i (y, s).
We pass to the limit infimum and limit supremum in the following order: η → 0, h → 0, β → 0, → 0, α → 0 and lastly k → 0. Thus, using the fact that the function V i (x, t) -V i (y, s) is upper semi-continuous and so M k h has a limit, we get

M - 1 n ≤ lim inf α→0 lim inf →0 lim inf β→0 lim inf η→0 V i (x, t) -V i (y, s) ≤ lim sup α→0 lim sup →0 lim sup β→0 lim sup η→0 V i (x, t) -V i (y, s) ≤ lim sup α→0 lim sup →0 lim sup β→0            sup |x-y|≤ √ 4 M0 |t-s|≤ √ 4βM0 |x|,|y|≤ 2M 0 α V i (x, t) -V i (y, s)            ≤ lim h →0 k →0     sup |x-y|,|t-s|≤h |x|,|y|≤ 1 √ k V i (x, t) -V i (y, s)     ≤ M , for some h , k such that √ 4 M 0 , √ 4βM 0 ≤ h and k ≤ α 2M 0
, where we have used (3.4) and Lemma 3.1-(1) in the third line. Then, by passing to the limit as n → +∞, we deduce (4).

In the same way we can prove ( 5) and [START_REF] Bianchini | Vanishing viscosity solutions of nonlinear hyperbolic systems[END_REF].

Finally, to prove (7), we suppose for example t = 0. From (1), we can see that x, y, t, s are uniformly bounded with respect to η, β, and . Then we have, up to the extract of a subsequence lim (x, y, t, s) = (ẑ, ẑ, τ , τ ), lim ( ,β,η)→(0,0,0)

i = i = î. (3.5)
Passing to the limit as η → 0, β → 0 then → 0, and using the fact that V i and V i are upper and lower semi-continuous functions respectively, we get

lim sup →0 lim sup β→0 lim sup η→0 V i (x, 0) -V i (y, s) ≤ V î(ẑ, 0) -V î(ẑ, 0) = u î(ẑ, 0) -u î(ẑ, 0) = 0. (3.6)
The last equality is valid since we have

u i 0 (•) = (u i 0 ) (•) ≤ u i (•, 0) ≤ u i (•, 0) ≤ u i (•, 0) ≤ (u i 0 ) (•) = u i 0 (•)
for every i = 1, . . . , d, using the fact that u i and u i are discontinuous viscosity sub-and super-solutions of (1.1) respectively. This means that u i (•, 0) = u i (•, 0) = u i 0 . Then, from (3.6) we deduce that M ≤ 0. However, M > 0 (see Lemma 3.1-( 5)) and for , β, η, α small, we get a contradiction. A similar proof can be made if we consider the case where s = 0.

Step 2. (Obtaining a contradiction): We take , β, α and η small enough such that t > 0 and s > 0 (see Lemma 3.1-( 7)). We can remark that the function

(x, t) → V i (x, t) -V i (y, s) + |x -y| 2 2 + |t -s| 2 2β + η T -t + α(|x| 2 + |y| 2 )
reaches a maximum at (t, x). By using the test-function

φ 1 (x, t) = V i (y, s) + |x -y| 2 2 + |t -s| 2 2β + η T -t + α(|x| 2 + |y| 2 ),
and the fact that u = (u i ) i=1,...,d is a sub-solution of (1.1) and that λ i is continuous for every i = 1, . . . , d, we deduce that

min γV i (t, x) + (t -s) β + η (T -t) 2 -λ i (t, x, r(t, x)) (x -y) + 2αx : r ∈ U (t, x), r i = u i (t, x) ≤ 0.
Then we get

γV i (t, x) + (t -s) β + η (T -t) 2 -λ i (t, x, r 1 (t, x)) (x -y) + 2αx ≤ 0, (3.7) 
for some r 1 = (r j 1 ) j=1,...,d such that r i 1 (t, x) = u i (t, x).

On the other hand, we deduce that the function

(s, y) → V i (s, y) -V i (t, x) - |x -y| 2 2 - |t -s| 2 2β - η T -t -α(|x| 2 + |y| 2 )
reaches a minimum at (s, y). By using the test-function

φ 2 (s, y) = V i (t, x) - |x -y| 2 2 - |t -s| 2 2β - η T -t -α(|x| 2 + |y| 2 ),
and the fact that u = (u i ) i=1,...,d is a super-solution of (1.1), we deduce that max γV i (s, y) + (t -s) β -λ i (s, y, r(s, y)) (x -y) -2αy : r ∈ U (s, y), r i = u i (s, y) ≥ 0.

Then we get

γV i (s, y) + (t -s) β -λ i (s, y, r 2 (s, y)) (x -y) -2αy ≥ 0, (3.8) 
for some r 2 = (r j 2 ) j=1,...,d such that r i 2 (s, y) = u i (s, y).

By subtracting (3.8) from (3.7), we deduce that

γ(V i (t, x) -V i (s, y)) -λ i (t, x, r 1 (t, x)) (x -y) + 2αx + λ i (s, y, r 2 (s, y)) (x -y) -2αy ≤ 0. (3.9)
As we have done in (3.5), we can extract a subsequence such that lim (β,η)→(0,0) (x, y, t, s) = ( x, y, τ , τ ), lim

(β,η)→(0,0) i = i = i
Sending η → 0 then β → 0 in (3.9), we obtain

γ lim inf β→0 lim inf η→0 V i (t, x) -V i (s, y) -λ i ( τ , x, r 1 ( τ , x)) x -y + 2α x + λ i ( τ , y, r 2 ( τ , y)) x -y -2α y ≤ 0. (3.10) 
By adding and subtracting the terms λ i ( τ , x, r 2 ( τ , y)) x-y + 2α x and λ i ( τ , y, r 2 ( τ , y)) x-y + 2α x to inequality (3.10), we get

γ lim inf β→0 lim inf η→0 V i (t, x) -V i (s, y) + λ i ( τ , x, r 2 ( τ , y)) -λ i ( τ , x, r 1 ( τ , x))
x -y + 2α x + λ i ( τ , y, r 2 ( τ , y))

x -y -2α y -x -y + 2α x + λ i ( τ , y, r 2 ( τ , y)) -λ i ( τ , x, r 2 ( τ , y))

x -y + 2α x ≤ 0.

(3.11)

From (3.3), we can see that

V i (t, x) -V i (s, y) ≥ 0.
Thus we have

0 ≤ V i (t, x) -V i (s, y) ≤ lim sup β→0 lim sup η→0 V i (t, x) -V i (s, y) = V i ( τ , x) -V i ( τ , y) = e -γ τ u i ( τ , x) -u i ( τ , y) ≤ u i ( τ , x) -u i ( τ , y).
Then by applying (H) in the first line of (3.11), we get γ lim inf β→0 lim inf η→0 V i (t, x) -V i (s, y) + λ i ( τ , y, r 2 ( τ , y))

x -y -2α y -x -y + 2α x + λ i ( τ , y, r 2 ( τ , y)) -λ i ( τ , x, r 2 ( τ , y))

x -y + 2α x ≤ 0.

Finally, using (1.6), we obtain

γ lim inf β→0 lim inf η→0 V i (t, x) -V i (s, y) -2αΛ i (| x| + | y|) -M 1 | x -y| 2 -2αM 1 | x|| x -y| ≤ 0.
Passing to the limit as → 0 then α → 0, we get according to (1), ( 2), ( 4) and ( 6) in Lemma 3.1 γM ≤ 0, which contradicts our supposition. Hence, we obtain the continuity of the solution. 

Application to dislocations dynamics

In this section, we present an application of the results proven in the previous sections to a system modeling the dynamics of dislocations densities. In other words, we will prove Theorem 1.3.

Let us mention some previous results for system (1.19). In El Hajj [START_REF] Hajj | Well-posedness theory for a nonconservative Burgers-type system arising in dislocation dynamics[END_REF], basing on an energy estimate, the global existence and uniqueness of a non-decreasing solution in W 1,2 loc (R×(0, T )) has been obtained. However, without any monotony assumptions on the initial data, El Hajj and Forcadel proved in [START_REF] Hajj | A convergent scheme for a non-local coupled system modelling dislocations densities dynamics[END_REF] the existence and uniqueness of a Lipschitz solution, using the notion of viscosity solutions. They also proposed a convergent numerical scheme and proved a Crandall-Lions error type estimate between the continuous solution and its numerical approximation. Moreover, we can point out the result done by El Hajj and Boudjerada in [START_REF] Boudjerada | Global existence results for eikonal equation with BV initial data[END_REF], who were able to prove the global existence of discontinuous viscosity BV solutions for scalar one dimensional nonlinear and nonlocal eikonal equations, including in particular the case d = 1 in system (1.1), where the velocity does not contain the solution. This result has been extended to a more general nonlinear (2 × 2) system in El Hajj et al. [START_REF] Hajj | Global BV solution for a non-local coupled system modeling the dynamics of dislocation densities[END_REF]. Further more, in El Hajj, Oussaily [START_REF] Hajj | Existence and Uniqueness of Continuous Solution for a Nonlocal Coupled System Modeling the Dynamics of Dislocation Densities[END_REF], the global existence of a continuous viscosity solution has been presented, which was based on an entropy estimate and under a control on the gradient of the solution.

We omit the proof of the existence to system (1. [START_REF]Uniqueness results for diagonal hyperbolic systems with large and monotone data[END_REF]), and we refer the reader to El Hajj et al. [START_REF] Hajj | Global BV solution for a non-local coupled system modeling the dynamics of dislocation densities[END_REF], where the global existence of a discontinuous viscosity solution has been obtained under (1.20) and assuming we have the following conditions

P ± 0 ∈ L ∞ (T) ∩ BV (T), a ∈ L ∞ (0, T ). (4.1) 
Proof of Theorem 1.3: It suffices to prove that system (1.19) satisfies the quasi-monotony condition (H) when α = 0. We denote, for ρ = (ρ + , ρ -), by λ + (t, x, ρ) = ρ + (t, x) -ρ -(t, x) + a(t), and λ -(t, x, ρ) = -(ρ + (t, x) -ρ -(t, x)) + a(t).

Let r = (r + , r -) and s = (s + , s -) be two vectors such that r j -s j = max k∈{+,-} (r k -s k ) ≥ 0. We have λ j (t, x, r) -λ j (t, x, s) = j r + -r -+ a(t) -j s + -s -+ a(t)

= j (r + -s + ) -(r --s -)

= sign (r + -s + ) -(r --s -) (r + -s + ) -(r --s -) = (r + -s + ) -(r --s -) ≥ 0.

This ends the proof.

Theorem 1 . 1 (

 11 Existence of a discontinuous viscosity solution to (1.1)).

Lemma 2 . 1 .

 21 (Simon's Lemma[START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] Corollary 4]) Let X, B and Y be three Banach spaces, where X → B with compact embedding and B → Y with continuous embedding. If (θ n ) n is a sequence uniformly bounded in L ∞ ((0, T ); X) and(∂ t θ n ) n is uniformly bounded in L r ((0, T ); Y ) where r > 1, then, (θ n ) n is relatively compact in C((0, T ); B).Next, we are going to recall the definition of discontinuous viscosity solutions for system (1.1) introduced by Ishii in [24, Definition 2.1]. We denote by f and f the respective upper and lower semi-continuous envelopes of a locally bounded function f defined on an open domain in R n and given by

  ) where φ ∈ C ∞ (R) is a cut-off function taking values in [0, 1], supported by the interval [-2, 2] and φ(x) ≡ 1 on [-1, 1].

M 7 .

 7 ( , β, α, η, γ) = lim sup α→0 lim sup →0 lim sup β→0 lim sup η→0 M ( , β, α, η, γ) = M . t, s are positive if , β, α and η are sufficiently small.

Remark 3 . 1 .

 31 Under the same conditions of Proposition 3.1, we can obtain the uniqueness of the solution by proving the following Comparison Principleif u i (•, 0) ≤ v i (•, 0) in R we get that u i ≤ v i in R × [0, T ) for every i ∈ {1, . . . , d},where u = (u i ) i=1,...,d and v = (v i ) i=1,...,d are two bounded continuous viscosity solutions of (1.1).

( ,β,η)→(0,0,0)