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SHARP ESTIMATES OF THE SOLUTIONS TO B ÉZOUT'S POLYNOMIAL EQUATION AND A CORONA THEOREM
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In this paper, we obtain estimates for the solutions to the classical Bézout equation that are analogous to Carleson's solution to the corona theorem for the bounded analytic functions on the open unit disk. As an application, we extend some results of Luo and obtain a corona theorem for the multipliers of a class of de Branges-Rovnyak spaces.

Moreover, if A and B are not both constant polynomials, then R and S are uniquely determined by the degree condition in (1.1) and will be called the minimal solutions of (1.2). The proof of Bézout's theorem often presented to algebra students uses a version of the classical Euclidean algorithm for polynomials (noting of course that the lack of common roots for A and B implies that the greatest common divisor of A and B is the constant polynomial one). A result of Sylvester (see Theorem 2.1 below) gives an explicit formula for the minimal solutions R and S in terms of a certain matrix equation involving the Sylvester resultant.

Inspired by Carleson's corona theorem (see the discussion below), one central goal of this paper is to estimate the coefficients of the polynomials S and R. To understand what we mean by this, consider the following example. Throughout this paper, we will use (1.3) p := max

0 j n |p j |
for the norm of a polynomial p(z) = n j=0 p j z j . Example 1.4. If n ∈ N and 0 < δ < 1, set A(z) = z n and B(z) = z -δ. One can work out the corresponding minimal polynomials R and S that satisfy (1.1) and (1.2) to be R(z) = 1 δ n and S(z) = -

1 δ n n-1 j=0
δ n-1-j z j .

Then A = B = 1, |B(0)| = δ, and R = S = 1 δ n . Notice how n is the maximal order of the zeros of A, which in this case is a single zero at the origin of order n, while the condition |B(0)| = δ can be interpreted as a lower bound for B at the zero of A.

Our main theorem proves that the type of phenomenon presented in Example 1.4 always occurs. To state this result, let C[z] denote the vector space of polynomials in the complex variable z with coefficients in C, and for N ∈ N, let P N be the finite dimensional subspace

P N = {p ∈ C[z] : deg p N }.
Theorem 1.5. Let A ∈ P N be of the form

A(z) = n j=1 (z -α j ) m j ,
where α 1 , α 2 , . . . , α n ∈ C are distinct and N = n j=1 m j 1. Fix K ∈ N. There is a C > 0, depending only on A and K, such that if B ∈ P K satisfies (a) B 1, and (b) |B(α j )| δ > 0 for all 1 j n, then the minimal solutions R and S of the Bézout equation (1.2) satisfy

(1.6) ( R 2 + S 2 ) 1 2
C δ max m j . Theorem 4.2 below extends this result to multiple polynomials A and B 1 , . . . , B L . Moreover, as shown in Example 1.4, the estimate in (1.6) is sharp in that the exponent max{m j : 1 j n} on δ can not be lowered. It seems rather surprising to us that such estimates are lacking in the literature.

The statement of Theorem 1.5 is asymmetric in the polynomials A and B: A is fixed (and determines the constant C), while B is chosen freely in the finite dimensional space P K . As we will see in Corollary 2.8 below, the formula for the solutions of the Bézout equation involving the Sylvester determinant, given in Section 2, can be used to obtain a more symmetric result for the coefficient estimates. However, the estimate from the symmetric version can be much less precise in terms of the exponent on δ than the asymmetric one presented in Theorem 1.5.

Theorem 1.5 is connected to a related problem, known as the corona problem [START_REF] Douglas | of Fields Institute Communications[END_REF] for H ∞ , the space of bounded analytic functions on the open unit disk D = {z ∈ C : |z| < 1} endowed with the standard norm f ∞ := sup z∈D |f (z)|. In a way, the corona theorem can be viewed as a Bézout theorem for H ∞ . In 1962, Carleson [START_REF] Carleson | Interpolations by bounded analytic functions and the corona problem[END_REF] answered a conjecture proposed by Kakutani [START_REF] Kakutani | Concrete representation of abstract (M )-spaces. (A characterization of the space of continuous functions[END_REF] in 1941 and proved that if (f j ) N j=1 is a finite sequence in H ∞ which satisfies

0 < δ N j=1 |f j (z)| 2 1 2
1 for all z ∈ D, then there is a finite sequence

(g j ) N j=1 in H ∞ such that N j=1 f j (z)g j (z) = 1 for all z ∈ D and N j=1 |g j (z)| 2 1 2
C for all z ∈ D.

In the above, the constant C initially depends only on δ and N . Further investigations have shown that C = C(δ) can be chosen to only depend on δ. Various estimates of C(δ) were explored in [START_REF] Lars | Generators for some rings of analytic functions[END_REF][START_REF] Vadim | Estimates in the Carleson corona theorem, ideals of the algebra H ∞ , a problem of Sz.-Nagy[END_REF][START_REF] Uchiyama | Corona theorems for countably many functions and estimates for their solutions[END_REF]. The latter paper of Uchiyama contains the sharpest known estimate

(1.7) C(δ) C 1 δ 2 log 1 δ ,
where C is an absolute constant. On the other hand, Treil [START_REF] Treil | Estimates in the corona theorem and ideals of H ∞ : a problem of T. Wolff[END_REF] proved that one can do no better than

C 1 δ 2 log log 1 δ .
Carleson's corona theorem has been generalized in many directions. For example, Tolokonnikov [START_REF] Vadim | Estimates in the Carleson corona theorem, ideals of the algebra H ∞ , a problem of Sz.-Nagy[END_REF] and Rosenblum [START_REF] Rosenblum | A corona theorem for countably many functions[END_REF] independently proved a version of Carleson's theorem for an infinite sequence (f j ) ∞ j=1 of H ∞ functions. There are also many generalizations of the corona theorem to matrix and operator-valued functions that are important to control theory and similarity problems. For example, Nikolski's book [21, Ch.9, Sec. 2] relates the operator-valued corona problem to one-sided invertibility of Toeplitz operators.

Another direction of inquiry stems from the fact that H ∞ is the multiplier algebra for the Hardy-Hilbert space H 2 (see Section 5) which inspires one to prove corona type theorems for sequences in the multiplier algebra of other reproducing kernel Hilbert space of analytic functions [START_REF] Luo | Some Aspects of Function Theory for Dirichlet-type Spaces[END_REF][START_REF] Luo | Corona Theorem for the Dirichlet-Type Space[END_REF][START_REF] Tavan | A corona theorem for multipliers on Dirichlet space[END_REF]. A particular class of such reproducing kernel Hilbert spaces, which has received quite a lot of attention over the past several decades, arises from the de Branges-Rovnyak spaces H (b) [START_REF] Sarason | Sub-Hardy Hilbert spaces in the unit disk[END_REF][START_REF] Fricain | The theory of H(b) spaces[END_REF][START_REF] Fricain | The theory of H(b) spaces[END_REF]. These spaces are an important class of linear submanifolds of the classical Hardy space H 2 that appear when modeling certain Hilbert space contractions. In Theorem 6.5 we use our Bézout estimates to obtain a corona theorem for the multiplier algebras of de Branges-Rovnyak spaces H (b) in the case where b is any rational function (but not a finite Blaschke product) in the closed unit ball of H ∞ . Our results are related to those from [START_REF] Luo | Some Aspects of Function Theory for Dirichlet-type Spaces[END_REF][START_REF] Luo | Corona Theorem for the Dirichlet-Type Space[END_REF].

THE CLASSICAL B ÉZOUT THEOREM

2.1. Bézout's formula and the Sylvester matrix. The next theorem gives a useful formula for the solution to the Bézout problem involving the Sylvester matrix (see [16, p. 200] or [4, p. 77]).

Theorem 2.1. If

A(z) = N j=0 A j z j and B(z) = K j=0 B j z j
are not both constant polynomials, and have no common zeros, then there are unique polynomials

R(z) = K-1 j=0 R j z j and S(z) = N -1 j=0 S j z j such that (2.2) RA + SB ≡ 1.
The coefficients R 0 , . . . , R K-1 and S 0 , . . . , S N -1 are solutions to the system

(2.3) Sx = e,
where S is the 

(N + K) × (K + N ) matrix S :=                       A 0 0 • • • 0 B 0 0 • • • 0 A 1 A 0 0 • • • B 1 B 0 • • • 0 A 2 A 1 . . . 0 B
0 A N • • • . . . 0 B K • • • . . . 0 0 . . . . . . 0 0 . . . . . . . . . . . . . . . A N 0 0 0 B K                       , K N x = [R 0 , R 1 , . . . , R K-1 , S 0 , S 1 , . . . , S N -1 ] T ,
and e = [1, 0, 0, . . . , 0] T .

Moreover, if α 1 , . . . , α N are the roots of A and β 1 , . . . , β K are those for B, counted with multiplicities, then

(2.4) det S = A K N B N K N i=1 K j=1 (α i -β j ).
In particular,

(2.5) | det S| = |B K | N |A(β 1 ) • • • A(β K )| = |A N | K |B(α 1 ) • • • B(α N )|. Example 2.6. Let δ > 0. If A(z) = z 2 = 0 + 0z + 1z 2 and B(z) = z -δ, then S =   0 -δ 0 0 1 -δ 1 0 1   and   R 0 S 0 S 1   = S -1   1 0 0   =   1 δ 2 -1 δ -1 δ 2   .
Thus,

R(z) = 1 δ 2 and S(z) = - 1 δ - 1 δ 2 z which is the n = 2 case from Example 1.4.

Remark 2.7.

(a) Requiring that A and B are not both constant polynomials ensures the uniqueness of the solutions R and S to (2.2). We will tacitly make this nontriviality assumption in the sequel. (b) From the identity 1 = RA + SB = RA + (S/c)(cB), it follows that if we replace B by cB (c = 0), then S gets replaced by S/c, while R does not change. We will use this rescaling several times. (c) As a consequence of the formulas (2.3) and (2.4), along with Cramer's rule, the coefficients of the polynomials R and S are continuous functions of the roots of A, B, as long as A and B do not have any common roots.

Theorem 2.1 yields the following estimate of the coefficients of the polynomials R, S stated in a manner similar to Carleson's corona theorem presented in the introduction. 

min{|A(β j )|, |B(α i )|, 1 i N, 1 j K} = δ > 0.
Then

(2.9) ( R 2 + S 2 ) 1 2 √ 2(N + K -1)! min{|A N | K δ N , |B K | N δ K } .
Proof. Apply Cramer's rule to the system (2.3). For each coefficient of R and S, the determinant in the numerator of the formula is a homogeneous function, with (N + K -1)! terms, in the coefficients of A and B. By assumption, the latter are all smaller in modulus than 1. The denominator det S can be estimated using (2.5).

Compared to Theorem 1.5, the estimate given in (2.9) may be rather rough as seen in the following example.

Example 2.10. Fix 0 < η < 1 and define

A(z) = z(z -1) and B(z) = (z -η)(z -1 + η). Then δ = min{|A(η)|, |A(1 -η)|, |B(0)|, |B(1)|} = η(1 -η).
A computation using the identity B(z) = A(z) + η(1 -η) leads to

R(z) = - 1 δ and S(z) = 1 δ . Hence ( R 2 + S 2 ) 1 2 = √ 2δ -1
, as expected from Theorem 1.5, while the right hand side of (2.9) yields ( R 2 + S 2 )

1 2 6 √ 2δ -2 .
2.2. Bézout formula and interpolation. Important to our proof of Theorem 1.5 is the following alternate way of finding the solutions R and S to (1.2) via interpolation. In standard Lagrange interpolation, one is given distinct complex numbers x 1 , . . . , x t (nodes) and complex numbers y 1 . . . , y t (targets) and asked to produce a p ∈ P t-1 such that p(x j ) = y j for all 1 j t. This unique polynomial p ∈ P t-1 is given by the formula

(2.11) p(x) = y 1 δ 1 (x) + y 2 δ 2 (x) + • • • + y t δ t (x),
where

δ j (x) = t i=1;i =j (x -x i ) t i=1;i =j (x j -x i )
.

Hermite interpolation extends Lagrange interpolation to include specifying derivatives. Lemma 2.12 (Hermite interpolation). Let x 1 , . . . , x t ∈ C be distinct, 1 , 2 , . . . , t ∈ N, and for each 1 j t, let y 0 j , . . . , y j -1

j ∈ C. (a) If L = 1 + • • • + t ,
then there is a unique p ∈ P L-1 , such that

p (k) (x j ) = y k j
for all 0 k j -1 and 1 j t. (b) If x j and j are fixed, one can write

p = p 1 + • • • + p t ,
where for each 1 j t, the polynomial p j and its coefficients depend linearly on (y k j ) j -1 k=0 ∈ C j . In fact, p

(k) j (x j ) = y k j for all 0 k j -1, while, if i = j, then p (k) j (x i ) = 0 for all 0 k i -1.
Let α 1 , α 2 , . . . , α I denote the distinct roots of A with corresponding multiplicities µ 1 , µ 2 , . . . , µ I and β 1 , β 2 , . . . , β J denote the distinct roots of B with corresponding multiplicities ν 1 , ν 2 , . . . , ν J . Below, the roots α j and β j are no longer counted with multiplicities (different from the notation from Theorem 2.1). Also recall that

N = deg A = I i=1 µ j and K = deg B = J j=1 ν j .
Corollary 2.13. With the notation above, define:

-R ∈ P K-1 with the property that, for each 1 j J,

(2.14) R(β j )A(β j ) = 1, (RA) (k) (β j ) = 0 for 1 k ν j -1;
-S ∈ P N -1 with the property that, for each 1 i I,

(2.15) S(α i )B(α i ) = 1, (SB) ( ) (α i ) = 0 for 1 µ i -1.
Then,

(a) R, S are the minimal solutions of Bézout's equation (2.2). (b) One can decompose R as R = J j=1 R j ,
where the coefficients of the polynomials R j are rational functions of A(β j ), . . . , A (ν j -1) (β j ), with denominator (A(β j )) ν j = 0. (c) Similarly, one can decompose S as

S = I i=1 S i ,
where the coefficients of the polynomials S i are rational functions of

B(α i ), . . . , B (µ i -1) (α i ), with denominator (B(α i )) µ i = 0.
Proof. (a) The values of RA + SB, and its derivatives up to µ j -1 at α j and up to ν j -1 at β j , coincide with those of the constant function 1. From Lemma 2.12 it follows that (2.2) holds.

(b) By Lemma 2.12, one can write R = J j=1 R j , where the coefficients of the polynomials R j are linear functions (with coefficients depending on β j ) of the prescribed values at β j of R and its first ν j -1 derivatives. Using Leibnitz's formula and induction on k, the defini-

tion of R implies that R (k) (β j ) is a rational function of A(β j ), . . . , A (k) (β j ),
with denominator (A(β j )) k+1 . This last value is different from zero, since we are always assuming that A and B have no common zeros.

A similar argument yields (c).

PROOF OF THEOREM 1.5

The proof requires some preliminary set up. For p(z) = K j=0 p j z j ∈ P K , we defined the norm p = max

0 j K |p j | in (1.
3) and used it in the statement of Theorem 1.5. We will also need these two norms on P K : Since P K is a finite dimensional vector space, all norms on P K are equivalent. Hence there is a D > 0, depending on K, such that

(3.2) 1 √ D p p , p √ D p for all p ∈ P K .
As a consequence, if T , T , T denote the corresponding operator norms of a linear transformation T : P K → P K , where P K is endowed with the respective norms p , p , and p , then

(3.3) T D T and T D T .
The statement and proof of Theorem 1.5 contains constants that will depend on A ∈ P N . To define these constants, we proceed as follows. Recall that α 1 , . . . , α n are the zeros of A with corresponding multiplicities m 1 , . . . , m n . Fix positive constants ρ and c 1 , c 2 , . . . , c n such that

(3.4) |z -α j | 2ρ =⇒ |A(z)| c j |z -α j | m j . If B j = {z : |z -α j | ρ}, fix η such that (3.5) 0 < η inf |A(z)| : z / ∈ n j=1 B j .
Since A is a monic polynomial of degree N , we can choose M > 0 such that

(3.6) |w| M =⇒ |A(w)| 1 2 |w| N .
We can also assume that 0 < ρ, η, c j < 1 for all 1 j n and that M > 1. From (3.6) it follows that M |α i | for all 1 i n.

Since Theorem 1.5 needs to hold for all B ∈ P K , we assume from now on that deg B = k K. By Remark 2.7(c), we may suppose that B has simple roots β 1 , . . . , β k and extend the estimate (1.6) by continuity if B has roots of higher multiplicity. Thus, we use the notation

(3.7) B(z) = B 0 + • • • + B k z k = B k (z -β 1 ) • • • (z -β k ), β i = β j .
To summarize, we have fixed positive numbers D (depending only on K) and ρ, η, M, c j (depending only on A). This notation will be used below without further comment. Our proof of Theorem 1.5 begins with a few preliminary lemmas. Lemma 3.8. Suppose p ∈ P K and p(u

) = 0. If q(z) = p(z) z -u , then q D p .
Proof. For at least one of the norms • or • from (3.1), depending on the position of u with respect to the circle |z| = 2, multiplication by (z -u) -1 on the subspace {p ∈ P N : p(u) = 0} is a contraction. The conclusion is now a consequence of (3.3).

The next result follows from Theorem 2.1 and Cramer's rule.

Lemma 3.9.

Suppose B k = 1. (a)
The coefficients of R are quotients ∆ i / det S, where ∆ i is obtained from det S by replacing one of the first k columns with a column consisting of 0s, except a 1 in the first position.

(b) | det S| = |A(β 1 ) • • • A(β k )|.
(c) For each 1 i k, ∆ i is a polynomial, with coefficients depending on A, of degree at most N in the coefficients of B. (d) Alternatively, using Viète's formulas which relate polynomial coefficients to sums of products of its roots, ∆ i is a polynomial, again with coefficients depending on A, of separate degree at most N in each of the roots β 1 , . . . , β k .

The proof of Theorem 1.5 will depend on the position of the roots β 1 , . . . , β k of B. We begin with a simple case.

Lemma 3.10.

There is a C > 0, depending only on A and K, such that if

|β i | M for all 1 i k, then R C.
Proof. Using Remark 2.7(b), we can assume that B k = 1. By Lemma 3.9, the coefficients of R are quotients ∆ i / det S, where ∆ i is a polynomial, again with coefficients depending on A and K, of separate degree at most N in each of the roots β 1 , . . . , β k . On the other hand, the definition of M from (3.6) implies that

| det S| = |A(β 1 ) • • • A(β k )| 1 2 K |β 1 | N . . . |β k | N . From here it follows that |∆ i |/| det S| C for some C > 0 depending only on A and K.
The next lemma is central to the proof of Theorem 1.5. Otherwise, there is some 1 j k with |β j | < M , and then the assumption of the lemma implies that |β i | M + ρ for all 1 i k. Viète's formulas ensure there is some M 1 > 0, depending only on A and K, such that

|B i /B k | M 1 for all 1 i k. Recall from (3.7) that B(z) = B 0 + B 1 z + • • • + B k z k and define B := B B k .
Observe that the leading coefficient of B is 1, while the other coefficients of B have modulus at most M 1 . So condition (a) in the statement of Theorem 1.5 is replaced by

B M 1 , while (b) is satisfied by B, since the condition B 1 implies that |B k | 1.
On the other hand, we know from Remark 2.7(b) that R does not change. Therefore, in the rest of the proof of the lemma, we will assume that B k = 1.

We will consider two cases: a) Suppose that β i ∈ j B j for all 1 i k. As stated in Lemma 3.9, the coefficients of R are obtained as quotients ∆ i / det S. Since ∆ i is a polynomial of degree at most N , with coefficients depending on A, in the coefficients of B, which are all in modulus at most M 1 , there is some constant

C > 0 such that |∆ i | CM N 1 .
On the other hand, (3.5) implies that

| det S| = k i=1 |A(β i )| η k η K . Therefore, R CM N 1 η K , with no dependence on δ. b) If a)
is not true, then there exists some j such that all β i satisfy |β i -α j | 2ρ. By condition (3.4) above, and our earlier assumption that 0 < c j < 1 for all 1 j n, we conclude that

| det S| = |A(β 1 ) • • • A(β k )| c k j k i=1 |β i -α j | m j = c k j |B(α j )| m j c k j δ m j c K j δ m j .
For the numerators ∆ i , we use the same estimate as in case a) to obtain

R CM N 1 c K j δ m j
We are finally ready for the proof of Theorem 1.5. The coefficients of the polynomials R and S are estimated separately.

Estimating S. From Corollary 2.13, one can decompose S as S = n i=1 S i , where the coefficients of S i are rational functions in B and its derivatives up to m i -1 evaluated at α i , and the denominator of

S i is B(α i ) m i . Since |B(α i )| δ, it follows that |B(α i )| m i δ m i .
Since for all 0 m i -1 and 0 i n, the linear functionals q → q ( ) (α i ) are bounded on P K , the terms appearing in the numerator can be bounded by a fixed polynomial in the norm of B, and the latter is at most 1. Thus, S satisfies the estimate in (1.6).

Estimating R. Here the situation becomes more complicated. We will prove the required estimate by induction on k = deg B. The constant C will change at each step, but this is not an issue since we only require at most k K induction steps.

If k = 0, then B = c is a constant, and applying condition (ii) at any root of A (which has degree at least 1) yields that |c| δ. Then (1.6) is satisfied with R ≡ 0, S ≡ 1/c, and C = 1. In fact, in this case, we may replace δ max m j by δ.

If k = 1, we can apply Lemma 3.11 since the condition on the β j is automatically satisfied. We now pass to the induction step from k -1 to k, where k 2. We will now take some extra care in denoting the k simple roots β 1 , β 2 , . . . , β k of B. First, we can assume that β 1 is the smallest in absolute value; then |β 1 | < M , since otherwise we apply Lemma 3.10 to complete the proof. Second, we can assume there exists a root, that we will call β k , such that |β 1 -β k | > ρ/2. Otherwise, for any 1 i, j k,

|β i -β j | |β i -β 1 | + |β 1 -β j | ρ 2 + ρ 2 = ρ
in which case we can apply Lemma 3.11 to complete the proof. The remaining roots will, of course, be labeled β 2 , . . . , β k-1 .

Since the roots of B are simple, Corollary 2.13 says that R is the unique polynomial of degree at most k -1 that satisfies R(β i ) = 1/A(β i ) for i = 1, . . . , k. Applying (2.11), a direct calculation shows that

(3.12) R(z) = z -β k β 1 -β k r(z) - z -β 1 β 1 -β k s(z),
where r and s are the interpolation polynomials corresponding to the targets 1/A(β i ) and the nodes β 1 , . . . , β k-1 and β 2 , . . . , β k respectively. Since r and s have degree k -2, we will apply the induction hypothesis to these polynomials. To obtain a bound for the norm of R, it is enough to estimate the norm of the two terms in the right hand side of (3.12). We will do this in detail only for the first term since the bound on the second follows in a similar way. We separate our discussion into two cases. (a):

|β k | 2M : Let B := B D(z -β k )
and note that Lemma 3.8 implies that B B 1. On the other hand, since

|β k -α i | 2M + M = 3M for all i, | B(α i )| δ 3DM .
Since r is an interpolation polynomial corresponding to the nodes β 1 , . . . , β k-1 and the targets

1 A(β 1 ) , 1 A(β 2 ) , . . . , 1 A(β k-1 )
, Corollary 2.13 implies that r is the polynomial of degree at most k -2 that satisfies the Bézout equation

Ar + B S ≡ 1
for some S with deg S < deg A. Now apply the induction hypothesis to obtain the estimate

r C δ 3DM max m j = C(3DM )) max m j δ max m j . When |z| = 1 we have |z -β k | |β 1 -β k | (2M + 1)2 ρ .
Therefore, applying (3.3),

z -β k β 1 -β k r(z) 2D 2M + 1 ρ r 2 CD(2M + 1)(3DM )) max m j ρδ max m j .
This ends the proof of case (a). (b):

|β k | > 2M .
Instead of B, we now consider the polynomial

B := β k B 2D(z -β k ) ,
and we view the polynomial r as satisfying the Bézout equation

Ar + B S ≡ 1
for some polynomial S with deg S < deg A. For any |z| = 1 we have, remembering that M > 1 and writing

β k z -β k = z z -β k -1, that (3.13) β k z -β k 1 2M -1 + 1 = 2M 2M -1 2.
Therefore, multiplication by

β k 2(z -β k )
is a contraction operator in the norm • , and from (3.3) it follows that B 1. On the other hand, since

|α i | M and |β k | > 2M , we have β k α i -β k |β k | |β k | + M |β k | 3 2 |β k | = 2 3 , whence | B(α i )| = |β k ||B(α i )| 2D|α i -β k | 1 3D |B(α i )| δ 3D .
We now apply the induction hypothesis to obtain the bound r C(3D) max m j δ max m j .

Moreover, under the assumptions of this case, since |β 1 | < M and |β k | 2M , we see that

|β 1 -β k | |β k | -M |β k | 2 and thus 1 |β 1 -β k | 1 M and β k β 1 -β k 2.
It now follows that

z -β k β 1 -β k 1 M + 2 = 2M + 1 M for all |z| = 1.
Therefore, applying (3.3) yields

z -β k β 1 -β k r(z) D 2M + 1 M r CD(2M + 1)(3D) max m j +1 M δ max m j .
This ends the proof of case (b), concluding the induction argument needed to estimate the coefficients of R. The proof of the theorem is now complete. We remind the reader that Example 1.4 shows that the exponent in δ from the estimate (1.6) is best possible.

EXTENSION TO SEVERAL POLYNOMIALS

Extending Theorem 1.5 to several polynomials involves the plank theorem [START_REF] Bang | A solution of the "plank problem[END_REF]. Lemma 4.1. For vectors v 1 , v 2 , . . . , v n in a Hilbert space H that satisfy v i H 1 for all 1 i n, there exists a unit vector y ∈ H such that

| v i , y H | 1 √ n for all 1 i n.
Here is our extension of Theorem 1.5 to several polynomials. 

L j=1 |B j (α i )| 2 δ 2 > 0 for all 1 i n,
then there is an R ∈ P K-1 , and S 1 , . . . , S L ∈ P N -1 , such that

(4.3) RA + S 1 B 1 + • • • + S L B L ≡ 1, and 
(4.4) R 2 + L j=1 S j 2 1 2 C δ max m i . Proof. Consider the vectors v 1 , . . . , v n ∈ C L defined by v i = 1 δ (B 1 (α i ), B 2 (α i ), . . . , B L (α i ))
and note that v i C L 1 for all 1 i n. Lemma 4.1 produces a unit vector y = (y 1 , . . . , y L ) ∈ C L such that

1 √ n | v i , y C L | = 1 δ L j=1
B j (α i )y j for all 1 i n.

If B(z) = L j=1 y j B j (z), it follows that |B(α i )| δ √ n δ √ N .
Furthermore,

B L j=1 |y j | 2 1 2 L j=1 B j 2 1 2
1.

Theorem 1.5 produces an R ∈ P K-1 and an S ∈ P N -1 that satisfy the conditions (4.5)

RA + SB ≡ 1 and ( R 2 + S 2 ) 1 2 C √ N max m i δ max m i .
The Bézout identityRA + SB ≡ 1 can be written as

RA + L j=1 ȳj SB j ≡ 1.
Moreover, if we define S j = ȳj S, then (4.3) holds along with

R 2 + L j=1 S j 2 = R 2 + L j=1 |y j | 2 S 2 = R 2 + S 2 .
The estimate in (4.4) now follows from the estimate in (4.5).

Remark 4.6. In Theorem 1.5 the polynomials R, S are uniquely determined by the degree condition from (1.1). However, Theorem 4.2 only yields the existence of some polynomials R and S 1 , . . . , S L that satisfy the desired estimates.

DE BRANGES-ROVNYAK SPACES

The second main theorem of this paper (Theorem 6.5) extends results from [START_REF] Luo | Corona Theorem for the Dirichlet-Type Space[END_REF] and establishes a corona theorem for the multipliers of certain de Branges-Rovnyak spaces. In fact, this corona theorem is what originally drew us to investigate coefficient estimates of Bézout's identity. In this section we present some of the basics of de Branges-Rovnyak spaces [START_REF] Fricain | The theory of H(b) spaces[END_REF][START_REF] Fricain | The theory of H(b) spaces[END_REF][START_REF] Sarason | Sub-Hardy Hilbert spaces in the unit disk[END_REF], along with some additional results which seem to be interesting on their own. The next section will contain our corona theorem.

Denote

ball(H ∞ ) := b ∈ H ∞ : b ∞ = sup z∈D |b(z)| 1 .
For b ∈ ball(H ∞ ), the de Branges-Rovnyak space H (b) is the reproducing kernel Hilbert space associated with the positive definite kernel (5.1)

k b λ (z) = 1 -b(z)b(λ) 1 -λz , λ, z ∈ D.
It is known that H (b) is contractively contained in the well-studied Hardy space H 2 of analytic functions f on D for which

f H 2 := sup 0<r<1 T |f (rξ)| 2 dm(ξ) 1 2 < ∞,
where m is normalized Lebesgue measure on the unit circle T = {ξ ∈ C : |ξ| = 1} [START_REF] Peter | Theory of H p spaces[END_REF][START_REF] Garnett | Bounded analytic functions[END_REF]. For f ∈ H 2 , the radial limit lim r→1 -f (rξ) =: f (ξ) exists for m-almost every ξ ∈ T and (5.2)

f H 2 = T |f (ξ)| 2 dm(ξ) 1 2 .
Furthermore, Parseval's theorem says that if

f (z) = ∞ k=0 a k z k be- longs to H 2 , then (5.3) f 2 H 2 = ∞ k=0 |a k | 2 .
Though H (b) is contractively contained in H 2 , it is generally not closed in the H 2 norm. In fact, for the b explored in this section,

H (b) is dense in H 2 .
Throughout this section, we will assume that b ∈ ball(H ∞ ) is a rational function that is not a finite Blaschke product. We exclude the finite Blaschke products from our discussion since we will be exploring a corona theorem for the multiplier algebra of H (b). When b is a finite Blaschke product, H (b) becomes the usual model space H 2 bH 2 and in that case it is well-known that the multiplier algebra of H (b) is formed just by the constant functions [START_REF] Garcia | Introduction to model spaces and their operators[END_REF]. Thus, when b is a finite Blaschke product, any corona theorem concerning the multipliers of H (b) becomes a triviality.

Although, for a general b ∈ ball(H ∞ ) the contents of H (b) seem mysterious, when b ∈ ball(H ∞ ) is a rational function (and not a finite Blaschke product) the description of H (b) is quite explicit. For such a b there exists a unique nonconstant rational function a with no zeros on D such that a(0) > 0 and |a(ξ

)| 2 + |b(ξ)| 2 = 1 for all |ξ| = 1.
This function a is called the Pythagorean mate of b. In fact, one can obtain a from the Fejér-Riesz theorem (see [START_REF] Fricain | Concrete examples of H (b) spaces[END_REF]). Let ξ 1 , . . . , ξ n denote the distinct roots of a on T, with corresponding multiplicities m 1 , . . . , m n , and define the polynomial a 1 by (5.4)

a 1 (z) := n j=1 (z -ξ j ) m j .
Results from [START_REF] Costara | Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?[END_REF][START_REF] Fricain | Concrete examples of H (b) spaces[END_REF] show that H (b) has an explicit description as (5.7)

a 1 f + p 2 b := f 2 H 2 + p 2 H 2 .
It is important to note that • b is only equivalent to the original norm corresponding to the kernel in (5.1), and its scalar product as well as the reproducing kernels and the adjoints of operators defined 1 -|z| 2 for all z ∈ D, we see that for fixed 1 k n and for each f ∈ H (b) we have (5.9)

f (ξ k ) = lim r→1 -f (rξ k ) = p(ξ k ),
where f = a 1 f + p with f ∈ H 2 and p ∈ P N -1 . In the spirit of (5.8), the next lemma (interesting in its own right and useful later) yields more precise information on the boundary behavior of H (b) functions. In particular, it shows that H (b) functions admit tangential limits in suitable approach regions at each point ξ k (see Remark 5.13 below).

Lemma 5.10. For each fixed 1 k n, there is a c k > 0, depending only on b, such that for each f ∈ H (b), η > 0, and z ∈ D, we have

|f (z)| 2 (1 + η)|f (ξ k )| 2 + c k 1 + 1 η |z -ξ k | 2 1 -|z| 2 f 2 b .
Proof. For fixed 1 k n, remembering from (5.4) that ξ k is a root of a 1 , we define the polynomial a # (z) by

a # k (z) := a 1 (z) z -ξ k .
Write f ∈ H (b) as f = a 1 f + p as in (5.6). By (5.9) we have f (ξ k ) = p(ξ k ), and so

f (z) = (z -ξ k )a # k (z) f (z) + (p(z) -p(ξ k )) + p(ξ k ) = (z -ξ k ) a # k (z) f (z) + p(z) -p(ξ k ) z -ξ k + p(ξ k ) = (z -ξ k )f k (z) + f (ξ k ),
where

(5.11) f k (z) = a # k (z) f (z) + p(z) -p(ξ) z -ξ k ∈ H 2 .
Given η > 0, for any a, b > 0 we have

2ab ηa 2 + 1 η b 2
and so

|f (z)| 2 |(z -ξ k )f k (z) + f (ξ k )| 2 |f (ξ k )| 2 + |z -ξ k | 2 |f k (z)| 2 + 2|(z -ξ k )f k (z)||f (ξ k )| (1 + η)|f (ξ k )| 2 + 1 + 1 η |z -ξ k | 2 |f k (z)| 2 (1 + η)|f (ξ k )| 2 + 1 + 1 η |z -ξ k | 2 1 -|z| 2 f k 2 H 2 .
In the last inequality above, note the use of (5.8).

To finish the proof, it suffices to show there exists a c k > 0, depending only on b and k, such that (5.12)

f k 2 H 2 c k f 2 b . The definition of f k from (5.11) says that f k 2 H 2 2 a # k f 2 H 2 + p -p(ξ k ) z -ξ k 2 H 2 2 a # k ∞ f 2 H 2 + p -p(ξ k ) z -ξ k 2 H 2 .
Since the map p(z) → p(z) -p(ξ k ) z -ξ k is a linear transformation from P N -1 to itself and P N -1 is a finite dimensional space (and hence all norms on P N -1 are equivalent), this map is continuous and hence there is a constant c k > 0 such that

p -p(ξ k ) z -ξ k 2 H 2 c k p 2 H 2
for all p ∈ P N -1 .

Thus,

f k 2 H 2 2( a # k 2 ∞ f 2 H 2 + c k p 2 H 2 ) c k ( f 2 H 2 + p 2 H 2 ) = c k f 2 b , where c k = 2 max( a # k 2 ∞ , c k ).
This verifies (5.12) and thus completes the proof. Remark 5.13. In the spirit of the above proof, one can write

f (z) = (z -ξ k ) m k a † k (z) f (z) + p(z), where a † k (z) = j =k (z -ξ j ) m j ,
to prove that each f ∈ H (b) admits a boundary limit at ξ k in the approach regions

z ∈ D : |z -ξ k | 2m k 1 -|z| c , c > 1,
which are larger than the standard nontangential (Stolz) regions For general H (b) spaces, the multiplier algebra M(H (b)) lacks a complete description [START_REF] Benjamin | Multipliers of de Branges spaces[END_REF][START_REF] Lotto | Multipliers of de Branges-Rovnyak spaces[END_REF][START_REF] Lotto | Multipliers of de Branges-Rovnyak spaces. II. In Harmonic analysis and hypergroups[END_REF]. In our case, where b ∈ ball(H ∞ ) is rational and not a finite Blaschke product, things again become much simpler. Indeed, [9, Proposition 3.1] says that 

z ∈ D : |z -ξ k | 1 -|z| c , c > 1.
ϕ = a 1 ϕ + r, where ϕ ∈ H 2 , r ∈ P N -1 , and a 1 ϕ ∈ H ∞ .
In particular, it follows easily from (5.6) that every polynomial is a multiplier of H (b) (this is also a consequence of more general facts from [24, Ch. IV]). Since all norms on the finite dimensional space P N -1 are equivalent, we fix a C 1 > 0 that satisfies

(5.16) max{ p , p M(H (b)) } C 1 p b = C 1 p H 2 , p ∈ P N -1 .

A CORONA THEOREM FOR DE BRANGES-ROVNYAK SPACES

Our corona theorem for M(H (b)) will be stated in terms of column multipliers. For a sequence Φ = (ϕ j ) j 1 of functions in M(H (b)), define the column multiplier (6.1)

M Φ : H (b) → ∞ j=1 H (b), M Φ f = (ϕ j f ) j 1 .
When M Φ is bounded, its adjoint is given by 

M * Φ = (M * ϕ 1 , M * ϕ 2 , . . . ). As is standard, ∞ j=1 H (b) := (f j ) j 1 : f j ∈ H (b), ∞ j=1 f j 2 b < ∞ with (f j ) j 1 ∞ j=1 H (b) := ∞ j=1 f j 2 b 1 2 (recall the norm • b on H (b) from (5. 7 
(a) C 2 := ∞ j=1 ϕ j 2 b 1 2 < ∞, and (b) 
C 3 := sup z∈D ∞ j=1 |ϕ j (z)| 2 1 2 < ∞. Furthermore, max(C 2 , C 3 ) M Φ √ 2 max(C 3 , C 1 C 2 )
, where C 1 was defined in (5.16).

Proof. Suppose that M Φ is a bounded operator. Since 1 ∈ H (b) and (5.7) shows that 1 b = 1, we conclude that

C 2 2 = ∞ j=1 ϕ j 2 b = M Φ 1 2 ∞ j=1 H (b) M Φ 2 • 1 2 b = M Φ 2 .
This proves (a). To prove (b), let N ∈ N and (γ j ) j 1 be a complex sequence such that γ j = 0 when j N + 1. For every z ∈ D and N ∈ N, it follows from (5.14) that

M * Φ ((γ j k b z ) j 1 ) = N j=1 M * ϕ j (γ j k b z ) = N j=1 γ j ϕ j (z) k b z ,
and so

N j=1 γ j ϕ j (z) k b z b M * Φ (γ j k b z ) j 1 N j=1 H (b) = M Φ N j=1 |γ j | 2 1 2 k b z b . Therefore, N j=1 γ j ϕ j (z) M Φ N j=1 |γ j | 2 1 2
for all N ∈ N.

Since the inequality above is true for any (γ j ) j 1 , the Riesz representation theorem implies that

N j=1 |ϕ j (z)| 2 M Φ 2 for all z ∈ D.
The inequality above is true for all N , which proves (b). Conversely, assume that conditions (a) and (b) are satisfied. For any f ∈ H (b) we have

M Φ f 2 ∞ j=1 H (b) = ∞ j=1 ϕ j f 2 b .
From (5.6) we can write f = a 1 f + p, with f ∈ H 2 and p ∈ P N -1 . The definition of the norm on H (b) from (5.7) yields

ϕ j f 2 b = a 1 f ϕ j + ϕ j p 2 b 2( a 1 f ϕ j 2 b + ϕ j p 2 b ) = 2( f ϕ j 2 H 2 + ϕ j p 2 b ). Hence, (6.3) M Φ f 2 ∞ j=1 H (b) 2 ∞ j=1 f ϕ j 2 H 2 + ∞ j=1 ϕ j p 2 b .
To estimate the first sum on the right hand side of (6.3), we can use (5.2) and Fubini's theorem to obtain Thus, continuing the estimate from (6.4), we obtain

∞ j=1 f ϕ j 2 H 2 = ∞ j=1 T |ϕ j (ζ)| 2 | f (ζ)| 2 dm(ζ) = T ∞ j=1 |ϕ j (ζ)| 2 | f (ζ)| 2 dm(ζ).
∞ j=1 f ϕ j 2 H 2 C 2 3 T | f (ζ)| 2 dm(ζ) = C 2 3 f 2 H 2 .
To estimate the second term on the right hand side of (6.3), observe that

ϕ j p b p M(H (b)) ϕ j b C 1 p H 2 ϕ j b ,
where C 1 is defined by (5.16). Therefore,

∞ j=1 ϕ j p 2 b C 2 1 p 2 H 2 ∞ j=1 ϕ j 2 b = C 2 1 C 2 2 p 2 H 2 .
It follows from (6.3) that

M Φ f 2 ∞ j=1 H (b) 2 C 2 3 f 2 H 2 + C 2 1 C 2 2 p 2 H 2 . Since f 2 b = f 2 H 2 + p 2 H 2 (see (5.7)), we see that M Φ f 2 ∞ j=1 H (b) 2 max(C 2 3 , C 2 1 C 2 2 ) f 2 b .
Therefore, M Φ is bounded and

M Φ √ 2 max(C 3 , C 1 C 2 )
, which finishes the proof of the lemma.

Here is the second main result of this paper, a corona theorem for M(H (b)). We remind the reader that for rational b ∈ ball(H ∞ ) (and not a finite Blaschke product), there exists a Pythagorean mate a to which we can associate the polynomial a 1 (z) = n j=1 (z -ξ j ) m j as explained in (5.4). Proof. We begin by decomposing each ϕ j ∈ M(H (b)) as (6.6)

ϕ j = a 1 ϕ j + p j , ϕ j ∈ H 2 , p j ∈ P N -1 ,
where a 1 is the polynomial associated with the Pythagorean mate of b as defined by (5.4). Furthermore, (6.7) a 1 ϕ j ∈ H ∞ for all j 1.

Conditions (i), (ii), and Lemma 6.2 imply that (6.8)

δ 2 ∞ j=1 |ϕ j (z)| 2 1 for all z ∈ D.
Apply Lemma 5.10 to see that for fixed 1 k n there is a c k > 0, depending only on b, such that for every η > 0, every z ∈ D, and every j 1,

|ϕ j (z)| 2 (1 + η)|ϕ j (ξ k )| 2 + 1 + 1 η c k |z -ξ k | 2 1 -|z| 2 ϕ j 2 b .
By summing over j in the previous inequality, it follows from Lemma 6.2 that

δ 2 (1 + η) ∞ j=1 |ϕ j (ξ k )| 2 + 1 + 1 η c k |z -ξ k | 2 1 -|z| 2 ∞ j=1 ϕ j 2 b (1 + η) ∞ j=1 |ϕ j (ξ )| 2 + 1 + 1 η c k |z -ξ k | 2 1 -|z| 2 .
In the above, note the use of the fact that M Φ 1 and so C 2 1. Now let z → ξ k radially to see that the second term above goes to zero and thus

δ 2 (1 + η) ∞ j=1 |ϕ j (ξ k )| 2 . Letting η → 0 + yields δ 2 ∞ j=1 |ϕ j (ξ k )| 2 .
The estimate in (6.8) and Fatou's lemma yield

∞ j=1 |ϕ j (ξ k )| 2 1. Finally, use p j (ξ k ) = ϕ j (ξ k ) to obtain δ 2 ∞ j=1 |p j (ξ k )| 2 1.
In particular, for every 1 k n there exists an k ∈ N such that

∞ j= k +1 |p j (ξ k )| 2 δ 2 2 .
Define L = max{ k : 1 k n}. Then for every 1 k n, we have

L j=1 |p j (ξ k )| 2 = ∞ j=1 |p j (ξ k )| 2 - ∞ j=L+1 |p j (ξ k )| 2 δ 2 - ∞ j= k +1 |p j (ξ k )| 2 δ 2 - δ 2 2 = δ 2 2 > 0.
On the other hand, by assumption (i) and Lemma 6.2,

∞ j=1 ϕ j 2 b = C 2 2 M Φ 2 1,
whence the norm (5.7) implies that ∞ j=1 p j H 2 1. Using the constant C 1 defined in (5.16), we see that

L j=1 p j 2 C 2 1 L j=1 p j 2 H 2 C 2 1 ∞ j=1 p j 2 H 2 C 2 1 .
From now on, all constants will be denoted by C and may change from line to line. Now apply Theorem 4.2 with K = N -1, A = a 1 , and B j = p j for 1 j L, to produce a q ∈ P N -2 and q 1 , . . . , q L ∈ P N -1 such that

qa 1 + q 1 p 1 + • • • + q L p L ≡ 1 and q 2 H 2 + L j=1 q j 2 H 2 1 2 C δ max m i (6.9)
for some C > 0, depending only on a 1 and hence depending only on b. (Since all norms on P N -1 are equivalent, we may replace the norm used in (4.4) by the H 2 -norm). We set q k ≡ 0 for all k L + 1.

By Tolokonnikov's theorem [START_REF] Vadim | Estimates in the Carleson corona theorem, ideals of the algebra H ∞ , a problem of Sz.-Nagy[END_REF] (mentioned in the introduction), there is a universal C > 0 and a sequence (e

j ) j 1 in H ∞ such that ∞ j=1 ϕ j (z)e j (z) = 1 for all z ∈ D, sup z∈D ∞ j=1 |e j (z)| 2 1 2 C 1 δ 2 log 1 δ (6.10)
For each j 1 define (6.11) b j := q j + 1 -L k=1 ϕ k q k e j .

We will now show that (b j ) j 1 is the required sequence satisfying conditions (a) and (b). First we check that b j ∈ M(H (b)) for all j 1. Using (6.6) and (6.9), one obtains

1 - L k=1 ϕ k q k e j = 1 - L k=1 q k (a 1 ϕ k + p k ) e j = 1 - L k=1 q k p k -a 1 L k=1 q k ϕ k e j = a 1 q - L k=1 q k ϕ k e j .
Therefore (6.11) can be written as (6.12) b j = a 1 q -L k=1 q k ϕ k e j + q j .

Since q j ∈ P N -1 and q -L k=1 q k ϕ k ∈ H 2 , this is precisely the decomposition of b j from (5.6). Therefore, b j ∈ H (b) and it follows from (6.7) that b j ∈ H ∞ . Thus, from (5.15)

, b j ∈ H (b) ∩ H ∞ = M(H (b)).
Second, we observe that

∞ j=1 b j ϕ j = ∞ j=1 q j + 1 - L k=1 ϕ k q k e j ϕ j = ∞ j=1 ϕ j q j + 1 - L k=1 ϕ k q k ∞ j=1 e j ϕ j = ∞ j=1 ϕ j q j + 1 - L k=1 ϕ k q k • 1 (by (6.10)) = L j=1 ϕ j q j + 1 - L k=1 ϕ k q k = 1.
Thus (a) is proved.

In order to prove (b) of Theorem 6.5, we need to show that M B satisfies inequalities (a) and (b) in Lemma 6.2. Apply (5.7) and (6.12) to obtain (6.13)

∞ j=1 b j 2 b = ∞ j=1 q j 2 H 2 + ∞ j=1 q - L k=1 q k ϕ k e j 2 H 2
. By (6.9), the first term on the right hand side of the above is bounded by C δ 2 max m j . To bound the second term, we have

∞ j=1 q - L k=1 q k ϕ k e j 2 H 2 = T ∞ j=1 q(ζ) - L k=1 q k (ζ) ϕ k (ζ) 2 |e j (ζ)| 2 dm(ζ) = T q(ζ) - L k=1 q k (ζ) ϕ k (ζ) 2 ∞ j=1 |e j (ζ)| 2 dm(ζ) C δ 2 log 1 δ 2 T q(ζ) - L k=1 q k (ζ) ϕ k (ζ) 2 dm(ζ) by (6.10) = C δ 2 log 1 δ 2 q - L k=1 q k ϕ k 2 H 2 2 C δ 2 log 1 δ 2 q 2 H 2 + L k=1 q k ϕ k 2 H 2 .
Again (6.9) yields q 2 H 2 C δ 2 max m j . On the other hand, (5.7) implies that ϕ k H 2 ϕ k b , which, together with the Cauchy-Schwarz inequality, yield

L k=1 q k ϕ k 2 H 2 L k=1 q k ϕ k H 2 2 L k=1 q k ∞ ϕ k b 2 C L k=1 q k H 2 ϕ k b 2 C L k=1 q k 2 H 2 L k=1 ϕ k 2 b .
Using (6.9) once more, we see that the first factor in the last formula is bounded above by C δ 2 max m j , while, by condition (i) in the statement of the theorem and Lemma 6.2, the second factor is bounded above by 1. Consequently,

∞ j=1 q - L k=1 q k ϕ k e j 2 H 2 C δ 2 max m j 1 δ 2 log 1 δ 2 .
Returning to (6.13), it follows that (6.14)

∞ j=1 b j 2 b C δ 2 max m j 1 + 1 δ 2 log 1 δ 2 .
proving the inequality (a) in Lemma 6.2 is satisfied.

In order to prove (b), fix z ∈ D. From the definition of b j from (6.11), we see that (note that q j ≡ 0 for all j > L). Finally, using condition (b) in Lemma 6.2 (valid for M Φ by assumption) as well as (6.9), we see 

L k=1 q k 2 ∞ 1 2 1 + C L k=1 |ϕ k (z)| 2 1 2 L k=1 q k 2 H 2 1 2 1 + C δ max m j .
Gathering up all the last estimates and plugging them into (6.15) yields (6.16)

∞ j=1 |b j (z)| 2 C δ 2 max m j 1 + 1 δ 2 log 1 δ 2 .
Together, (6.14) and (6.16) show that M B satisfies conditions (a) and (b) in Lemma 6.2. It is therefore a bounded operator whose norm satisfies (6.17)

M B C δ max m j 1 + 1 δ 2 log 1 δ ,
for some constant C > 0, which ends the proof of the theorem.

If b ∞ < 1, it is known that H (b) = H 2 , with an equivalent norm. Furthermore, in this case the Pythagorean mate a will have no zeros and so the exponent on δ in (6.17) will be max m j = 0. This corresponds to the estimate

M B C(1 + 1 δ 2 log 1 δ )
which is the Uchiyama estimate from (1.7). Of course, Uchiyama's result was used in our proof.

FINAL REMARKS

As noted in the introduction, Theorem 6.5 is related to some of the results in [START_REF] Luo | Some Aspects of Function Theory for Dirichlet-type Spaces[END_REF][START_REF] Luo | Corona Theorem for the Dirichlet-Type Space[END_REF]. Here is how one makes the connection. If µ is a finite positive Borel measure on T and P µ is its Poisson integral P µ (z) := where dA is area measure. In [START_REF] Costara | Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?[END_REF], Costara and Ransford proved that a de Branges-Rovnyak space H (b), where b ∈ ball(H ∞ ) is rational and not a finite Blaschke product, coincides (with equivalent norms) with a D µ space if and only if the zeros on T of the Pythagorean mate a of b are simple, that is, with our notation from (5.4), when all the zeros of a 1 are simple. If this happens, then the support of µ is precisely this set of (simple) zeros.

For this class of D µ spaces, Luo [START_REF] Luo | Some Aspects of Function Theory for Dirichlet-type Spaces[END_REF] proved a corona theorem, including estimates of the norm of the solutions. This turns out to be, when translated in the context of de Branges spaces, the particular case of Theorem 6.5 when m j = 1 for all 1 j n. One sees that our Theorem 6.5 covers the general case when the roots of a on T have arbitrary multiplicities, where H (b) no longer coincides with a D(µ) space. It should also be noted that part of the argument in the proof of Theorem 6.5 is similar to an argument from [START_REF] Luo | Some Aspects of Function Theory for Dirichlet-type Spaces[END_REF]Theorem 3.2.4].

Finally, note that in [START_REF] Luo | Corona Theorem for the Dirichlet-Type Space[END_REF] Luo obtained a general corona theorem for harmonically weighted Dirichlet spaces D µ .
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(5. 5 )

 5 H (b) = a 1 H 2 P N -1 , where N = m 1 + • • • + m n and above denotes the algebraic direct sum in that a 1 H 2 ∩ P N -1 = {0}. Moreover, if f ∈ H (b) is decomposed with respect to (5.5) as (5.6) f = a 1 f + p, where f ∈ H 2 and p ∈ P N -1 , an equivalent norm on H (b) (to the natural one induced by the positive definite kernel k b λ (z) above) is

  on H (b) will be different. With the norm • b and the corresponding inner product in mind, we need to introduce a new notation for the associated reproducing kernels, different from (5.1), namely k b λ (note the bold face). By the term reproducing kernel we mean that k b λ ∈ H (b) for all λ ∈ D and f, k b λ b = f (λ) for all f ∈ H (b) and λ ∈ D.Using (5.6) and the standard estimate that any g ∈ H

  Let M(H (b)) := {ϕ ∈ H (b) : ϕH (b) ⊆ H (b)} denote the multiplier algebra of H (b). Standard results for multiplier algebras, true for any reproducing kernel Hilbert space of analytic functions, say that if ϕ ∈ M(H (b)), then ϕ ∈ H ∞ , and the multiplication operator M ϕ f = ϕf is bounded on H (b) and satisfies (5.14) M * ϕ k b λ = ϕ(λ)k b λ for all λ ∈ D.

(5. 15 )

 15 M(H (b)) = H (b) ∩ H ∞ , and (5.5) implies that ϕ ∈ M(H (b)) if and only if

(6. 4 ) 2 3 2 3 2 3

 4222 From the facts that ϕ j (rζ) → ϕ j (ζ) for almost every ζ ∈ T as r → 1 -, andN j=1 |ϕ j (rξ)| 2 C for all N ∈ N, one sees that N j=1 |ϕ j (ξ)| 2 Cfor almost every ξ ∈ T and every N ∈ N.Now let N → ∞ to conclude that ∞ j=1 |ϕ j (ξ)| 2 Cfor almost every ξ ∈ T.

Theorem 6 . 5 .max m j 1

 651 Let b ∈ ball(H ∞ ) be rational, but not a finite Blaschke product. Suppose that Φ = (ϕ j ) j 1 is a sequence in M(H (b)) that satisfies the conditions (i) M Φ 1, and(ii) 0 < δ 2 ∞ j=1 |ϕ j (z)| 2 for all z ∈ D.Then there is a sequenceB = (b j ) j 1 in M(H (b)) such that(a)∞ j=1 ϕ j (z)b j (z) = 1 for all z ∈ D, and (b) M B C δ 0 depends only on b.

  |b j (z)| 2 2 |q j (z)| 2 + 1 -L k=1 ϕ k (z)q k (z) 2 |e j (z)| 2 ,

T 1 -

 1 |z| 2 |z -ξ| 2 dµ(ξ), z ∈ D, the harmonically weighted Dirichlet space D µ , introduced by Richter [22], is the space of f ∈ H 2 satisfying D |f (z)| 2 P µ (z)dA(z) < ∞,
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