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SHARP ESTIMATES OF THE SOLUTIONS TO BÉZOUT’S
POLYNOMIAL EQUATION AND A CORONA THEOREM

EMMANUEL FRICAIN, ANDREAS HARTMANN, WILLIAM T. ROSS,
AND DAN TIMOTIN

ABSTRACT. In this paper, we obtain estimates for the solutions
to the classical Bézout equation that are analogous to Carleson’s
solution to the corona theorem for the bounded analytic functions
on the open unit disk. As an application, we extend some results
of Luo and obtain a corona theorem for the multipliers of a class
of de Branges–Rovnyak spaces.

1. INTRODUCTION

A well-known theorem of Étienne Bézout (1730-1783) says that if
A,B belong to C[z] and have no common roots, then there are R, S ∈
C[z] with

(1.1) degR 6 degB − 1 and degS 6 degA− 1,

such that

(1.2) A(z)R(z) +B(z)S(z) = 1 for all z ∈ C.

Moreover, if A and B are not both constant polynomials, then R and
S are uniquely determined by the degree condition in (1.1) and will
be called the minimal solutions of (1.2).

The proof of Bézout’s theorem often presented to algebra students
uses a version of the classical Euclidean algorithm for polynomials
(noting of course that the lack of common roots for A and B implies
that the greatest common divisor of A and B is the constant poly-
nomial one). A result of Sylvester (see Theorem 2.1 below) gives an
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explicit formula for the minimal solutions R and S in terms of a cer-
tain matrix equation involving the Sylvester resultant.

Inspired by Carleson’s corona theorem (see the discussion below),
one central goal of this paper is to estimate the coefficients of the
polynomials S and R. To understand what we mean by this, con-
sider the following example. Throughout this paper, we will use

(1.3) ‖p‖ := max
06j6n

|pj|

for the norm of a polynomial p(z) =
∑n

j=0 pjz
j .

Example 1.4. If n ∈ N and 0 < δ < 1, set A(z) = zn and B(z) = z − δ.
One can work out the corresponding minimal polynomials R and S

that satisfy (1.1) and (1.2) to be

R(z) =
1

δn
and S(z) = − 1

δn

n−1∑
j=0

δn−1−jzj.

Then ‖A‖ = ‖B‖ = 1, |B(0)| = δ, and

‖R‖ = ‖S‖ =
1

δn
.

Notice how n is the maximal order of the zeros of A, which in this
case is a single zero at the origin of order n, while the condition
|B(0)| = δ can be interpreted as a lower bound for B at the zero
of A.

Our main theorem proves that the type of phenomenon presented
in Example 1.4 always occurs. To state this result, let C[z] denote the
vector space of polynomials in the complex variable z with coeffi-
cients in C, and forN ∈ N, let PN be the finite dimensional subspace
PN = {p ∈ C[z] : deg p 6 N}.

Theorem 1.5. Let A ∈PN be of the form

A(z) =
n∏
j=1

(z − αj)mj ,

where α1, α2, . . . , αn ∈ C are distinct and N =
∑n

j=1mj > 1. Fix K ∈ N.
There is a C > 0, depending only on A and K, such that if B ∈ PK

satisfies
(a) ‖B‖ 6 1, and
(b) |B(αj)| > δ > 0 for all 1 6 j 6 n,
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then the minimal solutions R and S of the Bézout equation (1.2) satisfy

(1.6) (‖R‖2 + ‖S‖2)
1
2 6

C

δmaxmj
.

Theorem 4.2 below extends this result to multiple polynomials A
and B1, . . . , BL. Moreover, as shown in Example 1.4, the estimate in
(1.6) is sharp in that the exponent max{mj : 1 6 j 6 n} on δ can not
be lowered. It seems rather surprising to us that such estimates are
lacking in the literature.

The statement of Theorem 1.5 is asymmetric in the polynomials A
and B: A is fixed (and determines the constant C), while B is chosen
freely in the finite dimensional space PK . As we will see in Corol-
lary 2.8 below, the formula for the solutions of the Bézout equation
involving the Sylvester determinant, given in Section 2, can be used
to obtain a more symmetric result for the coefficient estimates. How-
ever, the estimate from the symmetric version can be much less pre-
cise in terms of the exponent on δ than the asymmetric one presented
in Theorem 1.5.

Theorem 1.5 is connected to a related problem, known as the corona
problem [6] for H∞, the space of bounded analytic functions on the
open unit disk D = {z ∈ C : |z| < 1} endowed with the standard
norm ‖f‖∞ := supz∈D |f(z)|. In a way, the corona theorem can be
viewed as a Bézout theorem for H∞. In 1962, Carleson [2] answered
a conjecture proposed by Kakutani [15] in 1941 and proved that if
(fj)

N
j=1 is a finite sequence in H∞ which satisfies

0 < δ 6
( N∑
j=1

|fj(z)|2
) 1

2
6 1 for all z ∈ D,

then there is a finite sequence (gj)
N
j=1 in H∞ such that

N∑
j=1

fj(z)gj(z) = 1 for all z ∈ D

and ( N∑
j=1

|gj(z)|2
) 1

2
6 C for all z ∈ D.

In the above, the constant C initially depends only on δ and N . Fur-
ther investigations have shown that C = C(δ) can be chosen to only
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depend on δ. Various estimates of C(δ) were explored in [14, 25, 28].
The latter paper of Uchiyama contains the sharpest known estimate

(1.7) C(δ) 6 C
1

δ2
log

1

δ
,

whereC is an absolute constant. On the other hand, Treil [26] proved
that one can do no better than

C
1

δ2
log log

1

δ
.

Carleson’s corona theorem has been generalized in many direc-
tions. For example, Tolokonnikov [25] and Rosenblum [23] inde-
pendently proved a version of Carleson’s theorem for an infinite se-
quence (fj)

∞
j=1 of H∞ functions. There are also many generalizations

of the corona theorem to matrix and operator-valued functions that
are important to control theory and similarity problems. For exam-
ple, Nikolski’s book [21, Ch.9, Sec. 2] relates the operator-valued
corona problem to one-sided invertibility of Toeplitz operators.

Another direction of inquiry stems from the fact that H∞ is the
multiplier algebra for the Hardy–Hilbert space H2 (see Section 5)
which inspires one to prove corona type theorems for sequences in
the multiplier algebra of other reproducing kernel Hilbert space of
analytic functions [19, 20, 27]. A particular class of such reproduc-
ing kernel Hilbert spaces, which has received quite a lot of attention
over the past several decades, arises from the de Branges–Rovnyak
spaces H (b) [24, 10, 11]. These spaces are an important class of lin-
ear submanifolds of the classical Hardy space H2 that appear when
modeling certain Hilbert space contractions. In Theorem 6.5 we use
our Bézout estimates to obtain a corona theorem for the multiplier
algebras of de Branges–Rovnyak spaces H (b) in the case where b is
any rational function (but not a finite Blaschke product) in the closed
unit ball of H∞. Our results are related to those from [19, 20].

2. THE CLASSICAL BÉZOUT THEOREM

2.1. Bézout’s formula and the Sylvester matrix. The next theorem
gives a useful formula for the solution to the Bézout problem involv-
ing the Sylvester matrix (see [16, p. 200] or [4, p. 77]).
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Theorem 2.1. If

A(z) =
N∑
j=0

Ajz
j and B(z) =

K∑
j=0

Bjz
j

are not both constant polynomials, and have no common zeros, then there
are unique polynomials

R(z) =
K−1∑
j=0

Rjz
j and S(z) =

N−1∑
j=0

Sjz
j

such that

(2.2) RA+ SB ≡ 1.

The coefficientsR0, . . . , RK−1 and S0, . . . , SN−1 are solutions to the system

(2.3) Sx = e,

where S is the (N +K)× (K +N) matrix

S :=



A0 0 · · · 0 B0 0 · · · 0

A1 A0 0 · · · B1 B0 · · · 0

A2 A1

. . . 0 B2 B1

. . . 0
...

...
. . . A0

...
...

. . . B0

...
...

... A1

...
...

... B1

AN
...

. . .
... BK

...
...

...

0 AN · · ·
... 0 BK · · ·

...

0 0
. . .

... 0 0
. . .

...
...

...
. . . AN 0 0 0 BK



,

︸ ︷︷ ︸
K

︸ ︷︷ ︸
N

x = [R0, R1, . . . , RK−1, S0, S1, . . . , SN−1]T ,

and
e = [1, 0, 0, . . . , 0]T .
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Moreover, if α1, . . . , αN are the roots of A and β1, . . . , βK are those for B,
counted with multiplicities, then

(2.4) detS = AKNB
N
K

N∏
i=1

K∏
j=1

(αi − βj).

In particular,

(2.5) | detS| = |BK |N |A(β1) · · ·A(βK)| = |AN |K |B(α1) · · ·B(αN)|.

Example 2.6. Let δ > 0. If

A(z) = z2 = 0 + 0z + 1z2 and B(z) = z − δ,

then

S =

0 −δ 0

0 1 −δ
1 0 1


and R0

S0

S1

 = S−1

1

0

0

 =

 1
δ2

−1
δ

− 1
δ2

 .
Thus,

R(z) =
1

δ2
and S(z) = −1

δ
− 1

δ2
z

which is the n = 2 case from Example 1.4.

Remark 2.7.
(a) Requiring that A and B are not both constant polynomials

ensures the uniqueness of the solutions R and S to (2.2). We
will tacitly make this nontriviality assumption in the sequel.

(b) From the identity 1 = RA+ SB = RA+ (S/c)(cB), it follows
that if we replaceB by cB (c 6= 0), then S gets replaced by S/c,
while R does not change. We will use this rescaling several
times.

(c) As a consequence of the formulas (2.3) and (2.4), along with
Cramer’s rule, the coefficients of the polynomialsR and S are
continuous functions of the roots of A,B, as long as A and B

do not have any common roots.

Theorem 2.1 yields the following estimate of the coefficients of the
polynomials R, S stated in a manner similar to Carleson’s corona
theorem presented in the introduction.
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Corollary 2.8. With the notation above, let ‖A‖, ‖B‖ 6 1, and

min{|A(βj)|, |B(αi)|, 1 6 i 6 N, 1 6 j 6 K} = δ > 0.

Then

(2.9) (‖R‖2 + ‖S‖2)
1
2 6

√
2(N +K − 1)!

min{|AN |KδN , |BK |NδK}
.

Proof. Apply Cramer’s rule to the system (2.3). For each coefficient
of R and S, the determinant in the numerator of the formula is a
homogeneous function, with (N + K − 1)! terms, in the coefficients
of A and B. By assumption, the latter are all smaller in modulus
than 1. The denominator detS can be estimated using (2.5). �

Compared to Theorem 1.5, the estimate given in (2.9) may be rather
rough as seen in the following example.

Example 2.10. Fix 0 < η < 1 and define

A(z) = z(z − 1) and B(z) = (z − η)(z − 1 + η).

Then

δ = min{|A(η)|, |A(1− η)|, |B(0)|, |B(1)|} = η(1− η).

A computation using the identity B(z) = A(z) + η(1− η) leads to

R(z) = −1

δ
and S(z) =

1

δ
.

Hence (‖R‖2 +‖S‖2)
1
2 =
√

2δ−1, as expected from Theorem 1.5, while
the right hand side of (2.9) yields (‖R‖2 + ‖S‖2)

1
2 6 6

√
2δ−2.

2.2. Bézout formula and interpolation. Important to our proof of
Theorem 1.5 is the following alternate way of finding the solutionsR
and S to (1.2) via interpolation. In standard Lagrange interpolation,
one is given distinct complex numbers x1, . . . , xt (nodes) and com-
plex numbers y1 . . . , yt (targets) and asked to produce a p ∈ Pt−1

such that p(xj) = yj for all 1 6 j 6 t. This unique polynomial
p ∈Pt−1 is given by the formula

(2.11) p(x) = y1δ1(x) + y2δ2(x) + · · ·+ ytδt(x),

where

δj(x) =

∏t
i=1;i 6=j(x− xi)∏t
i=1;i 6=j(xj − xi)

.



8 FRICAIN, HARTMANN, ROSS, AND TIMOTIN

Hermite interpolation extends Lagrange interpolation to include
specifying derivatives.

Lemma 2.12 (Hermite interpolation). Let x1, . . . , xt ∈ C be distinct,
`1, `2, . . . , `t ∈ N, and for each 1 6 j 6 t, let y0

j , . . . , y
`j−1
j ∈ C.

(a) If L = `1 + · · ·+ `t, then there is a unique p ∈PL−1, such that

p(k)(xj) = ykj for all 0 6 k 6 `j − 1 and 1 6 j 6 t.

(b) If xj and `j are fixed, one can write

p = p1 + · · ·+ pt,

where for each 1 6 j 6 t, the polynomial pj and its coefficients
depend linearly on (ykj )

`j−1
k=0 ∈ C`j . In fact,

p
(k)
j (xj) = ykj for all 0 6 k 6 `j − 1,

while, if i 6= j, then

p
(k)
j (xi) = 0 for all 0 6 k 6 `i − 1.

Let α1, α2, . . . , αI denote the distinct roots of A with corresponding
multiplicities µ1, µ2, . . . , µI and β1, β2, . . . , βJ denote the distinct roots
of B with corresponding multiplicities ν1, ν2, . . . , νJ . Below, the roots
αj and βj are no longer counted with multiplicities (different from
the notation from Theorem 2.1). Also recall that

N = degA =
I∑
i=1

µj and K = degB =
J∑
j=1

νj.

Corollary 2.13. With the notation above, define:
– R ∈PK−1 with the property that, for each 1 6 j 6 J ,

(2.14) R(βj)A(βj) = 1, (RA)(k)(βj) = 0 for 1 6 k 6 νj − 1;

– S ∈PN−1 with the property that, for each 1 6 i 6 I ,

(2.15) S(αi)B(αi) = 1, (SB)(`)(αi) = 0 for 1 6 ` 6 µi − 1.

Then,
(a) R, S are the minimal solutions of Bézout’s equation (2.2).
(b) One can decompose R as

R =
J∑
j=1

Rj,
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where the coefficients of the polynomials Rj are rational functions
of A(βj), . . . , A

(νj−1)(βj), with denominator (A(βj))
νj 6= 0.

(c) Similarly, one can decompose S as

S =
I∑
i=1

Si,

where the coefficients of the polynomials Si are rational functions of
B(αi), . . . , B

(µi−1)(αi), with denominator (B(αi))
µi 6= 0.

Proof. (a) The values of RA + SB, and its derivatives up to µj − 1 at
αj and up to νj − 1 at βj , coincide with those of the constant function
1. From Lemma 2.12 it follows that (2.2) holds.

(b) By Lemma 2.12, one can write R =
∑J

j=1Rj , where the coef-
ficients of the polynomials Rj are linear functions (with coefficients
depending on βj) of the prescribed values at βj ofR and its first νj−1

derivatives. Using Leibnitz’s formula and induction on k, the defini-
tion of R implies that R(k)(βj) is a rational function of

A(βj), . . . , A
(k)(βj),

with denominator (A(βj))
k+1. This last value is different from zero,

since we are always assuming that A and B have no common zeros.
A similar argument yields (c). �

3. PROOF OF THEOREM 1.5

The proof requires some preliminary set up. For p(z) =
∑K

j=0 pjz
j ∈

PK , we defined the norm

‖p‖ = max
06j6K

|pj|

in (1.3) and used it in the statement of Theorem 1.5. We will also
need these two norms on PK :

(3.1) ‖p‖′ := max
|z|=1
|p(z)| and ‖p‖′′ := max

|z|=3
|p(z)|.

Since PK is a finite dimensional vector space, all norms on PK are
equivalent. Hence there is a D > 0, depending on K, such that

(3.2)
1√
D
‖p‖ 6 ‖p‖′, ‖p‖′′ 6

√
D‖p‖ for all p ∈PK .



10 FRICAIN, HARTMANN, ROSS, AND TIMOTIN

As a consequence, if ‖T‖, ‖T‖′ , ‖T‖′′ denote the corresponding oper-
ator norms of a linear transformation T : PK → PK , where PK is
endowed with the respective norms ‖p‖, ‖p‖′ , and ‖p‖′′ , then

(3.3) ‖T‖ 6 D‖T‖′ and ‖T‖ 6 D‖T‖′′.

The statement and proof of Theorem 1.5 contains constants that
will depend on A ∈ PN . To define these constants, we proceed as
follows. Recall that α1, . . . , αn are the zeros of A with corresponding
multiplicities m1, . . . ,mn. Fix positive constants ρ and c1, c2, . . . , cn
such that

(3.4) |z − αj| 6 2ρ =⇒ |A(z)| > cj|z − αj|mj .

If Bj = {z : |z − αj| 6 ρ}, fix η such that

(3.5) 0 < η 6 inf
{
|A(z)| : z /∈

n⋃
j=1

Bj

}
.

Since A is a monic polynomial of degree N , we can choose M > 0

such that

(3.6) |w| >M =⇒ |A(w)| > 1
2
|w|N .

We can also assume that 0 < ρ, η, cj < 1 for all 1 6 j 6 n and that
M > 1. From (3.6) it follows that M > |αi| for all 1 6 i 6 n.

Since Theorem 1.5 needs to hold for all B ∈PK , we assume from
now on that degB = k 6 K. By Remark 2.7(c), we may suppose
that B has simple roots β1, . . . , βk and extend the estimate (1.6) by
continuity if B has roots of higher multiplicity. Thus, we use the
notation

(3.7) B(z) = B0 + · · ·+Bkz
k = Bk(z − β1) · · · (z − βk), βi 6= βj.

To summarize, we have fixed positive numbersD (depending only
on K) and ρ, η,M, cj (depending only on A). This notation will be
used below without further comment. Our proof of Theorem 1.5 be-
gins with a few preliminary lemmas.

Lemma 3.8. Suppose p ∈PK and p(u) = 0. If q(z) =
p(z)

z − u
, then

‖q‖ 6 D‖p‖.
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Proof. For at least one of the norms ‖·‖′ or ‖·‖′′ from (3.1), depending
on the position of u with respect to the circle |z| = 2, multiplication
by (z − u)−1 on the subspace {p ∈ PN : p(u) = 0} is a contraction.
The conclusion is now a consequence of (3.3). �

The next result follows from Theorem 2.1 and Cramer’s rule.

Lemma 3.9. Suppose Bk = 1.
(a) The coefficients of R are quotients ∆i/ detS, where ∆i is obtained

from detS by replacing one of the first k columns with a column
consisting of 0s, except a 1 in the first position.

(b) | detS| = |A(β1) · · ·A(βk)|.
(c) For each 1 6 i 6 k, ∆i is a polynomial, with coefficients depending

on A, of degree at most N in the coefficients of B.
(d) Alternatively, using Viète’s formulas which relate polynomial coef-

ficients to sums of products of its roots, ∆i is a polynomial, again
with coefficients depending on A, of separate degree at most N in
each of the roots β1, . . . , βk.

The proof of Theorem 1.5 will depend on the position of the roots
β1, . . . , βk of B. We begin with a simple case.

Lemma 3.10. There is a C > 0, depending only on A and K, such that if
|βi| >M for all 1 6 i 6 k, then ‖R‖ 6 C.

Proof. Using Remark 2.7(b), we can assume that Bk = 1.
By Lemma 3.9, the coefficients of R are quotients ∆i/ detS, where

∆i is a polynomial, again with coefficients depending on A and K,
of separate degree at most N in each of the roots β1, . . . , βk. On the
other hand, the definition of M from (3.6) implies that

| detS| = |A(β1) · · ·A(βk)| >
1

2K
|β1|N . . . |βk|N .

From here it follows that |∆i|/| detS| 6 C for someC > 0 depending
only on A and K. �

The next lemma is central to the proof of Theorem 1.5.

Lemma 3.11. Let B ∈PK with ‖B‖ 6 1, degB = k 6 K, and B has k
distinct zeros β1, β2, . . . , βk. If |βi− βj| 6 ρ for all 1 6 i, j 6 k, then there
is a C > 0, depending only on A and K, such that

‖R‖ 6 C

δmaxmj
.
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Proof. If |βi| > M for all 1 6 i 6 k, apply Lemma 3.10 to obtain the
conclusion.

Otherwise, there is some 1 6 j 6 k with |βj| < M , and then the
assumption of the lemma implies that |βi| 6 M + ρ for all 1 6 i 6 k.
Viète’s formulas ensure there is some M1 > 0, depending only on A
and K, such that |Bi/Bk| 6 M1 for all 1 6 i 6 k. Recall from (3.7)
that B(z) = B0 +B1z + · · ·+Bkz

k and define

B̃ :=
B

Bk

.

Observe that the leading coefficient of B̃ is 1, while the other coeffi-
cients of B̃ have modulus at most M1. So condition (a) in the state-
ment of Theorem 1.5 is replaced by ‖B̃‖ 6 M1, while (b) is satisfied
by B̃, since the condition ‖B‖ 6 1 implies that |Bk| 6 1. On the
other hand, we know from Remark 2.7(b) that R does not change.
Therefore, in the rest of the proof of the lemma, we will assume that
Bk = 1.

We will consider two cases:

a) Suppose that βi 6∈
⋃
j Bj for all 1 6 i 6 k. As stated in

Lemma 3.9, the coefficients of R are obtained as quotients
∆i/ detS. Since ∆i is a polynomial of degree at most N , with
coefficients depending on A, in the coefficients of B, which
are all in modulus at most M1, there is some constant C > 0

such that |∆i| 6 CMN
1 . On the other hand, (3.5) implies that

| detS| =
k∏
i=1

|A(βi)| > ηk > ηK .

Therefore,

‖R‖ 6 CMN
1

ηK
,

with no dependence on δ.
b) If a) is not true, then there exists some j such that all βi sat-

isfy |βi − αj| 6 2ρ. By condition (3.4) above, and our earlier
assumption that 0 < cj < 1 for all 1 6 j 6 n, we conclude
that

| detS| = |A(β1) · · ·A(βk)| > ckj

k∏
i=1

|βi − αj|mj
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= ckj |B(αj)|mj > ckj δ
mj > cKj δ

mj .

For the numerators ∆i, we use the same estimate as in case a)
to obtain

‖R‖ 6 CMN
1

cKj δ
mj

�

We are finally ready for the proof of Theorem 1.5. The coefficients
of the polynomials R and S are estimated separately.

Estimating S. From Corollary 2.13, one can decompose S as S =∑n
i=1 Si, where the coefficients of Si are rational functions in B and

its derivatives up to mi − 1 evaluated at αi, and the denominator of
Si is B(αi)

mi . Since |B(αi)| > δ, it follows that |B(αi)|mi > δmi .
Since for all 0 6 ` 6 mi−1 and 0 6 i 6 n, the linear functionals q 7→

q(`)(αi) are bounded on PK , the terms appearing in the numerator
can be bounded by a fixed polynomial in the norm of B, and the
latter is at most 1. Thus, S satisfies the estimate in (1.6).

Estimating R. Here the situation becomes more complicated. We
will prove the required estimate by induction on k = degB. The
constant C will change at each step, but this is not an issue since we
only require at most k 6 K induction steps.

If k = 0, thenB = c is a constant, and applying condition (ii) at any
root of A (which has degree at least 1) yields that |c| > δ. Then (1.6)
is satisfied with R ≡ 0, S ≡ 1/c, and C = 1. In fact, in this case, we
may replace δmaxmj by δ.

If k = 1, we can apply Lemma 3.11 since the condition on the βj is
automatically satisfied. We now pass to the induction step from k−1

to k, where k > 2. We will now take some extra care in denoting the
k simple roots β1, β2, . . . , βk of B. First, we can assume that β1 is
the smallest in absolute value; then |β1| < M , since otherwise we
apply Lemma 3.10 to complete the proof. Second, we can assume
there exists a root, that we will call βk, such that |β1 − βk| > ρ/2.
Otherwise, for any 1 6 i, j 6 k,

|βi − βj| 6 |βi − β1|+ |β1 − βj| 6
ρ

2
+
ρ

2
= ρ

in which case we can apply Lemma 3.11 to complete the proof. The
remaining roots will, of course, be labeled β2, . . . , βk−1.
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Since the roots of B are simple, Corollary 2.13 says that R is the
unique polynomial of degree at most k − 1 that satisfies R(βi) =

1/A(βi) for i = 1, . . . , k. Applying (2.11), a direct calculation shows
that

(3.12) R(z) =
z − βk
β1 − βk

r(z)− z − β1

β1 − βk
s(z),

where r and s are the interpolation polynomials corresponding to
the targets 1/A(βi) and the nodes β1, . . . , βk−1 and β2, . . . , βk respec-
tively. Since r and s have degree k − 2, we will apply the induction
hypothesis to these polynomials. To obtain a bound for the norm of
R, it is enough to estimate the norm of the two terms in the right
hand side of (3.12). We will do this in detail only for the first term
since the bound on the second follows in a similar way.

We separate our discussion into two cases.
(a): |βk| 6 2M : Let

B̃ :=
B

D(z − βk)
and note that Lemma 3.8 implies that ‖B̃‖ 6 ‖B‖ 6 1. On the other
hand, since |βk − αi| 6 2M +M = 3M for all i,

|B̃(αi)| >
δ

3DM
.

Since r is an interpolation polynomial corresponding to the nodes
β1, . . . , βk−1 and the targets

1

A(β1)
,

1

A(β2)
, . . . ,

1

A(βk−1)
,

Corollary 2.13 implies that r is the polynomial of degree at most k−2

that satisfies the Bézout equation

Ar + B̃S̃ ≡ 1

for some S̃ with deg S̃ < degA.
Now apply the induction hypothesis to obtain the estimate

‖r‖ 6 C(
δ

3DM

)maxmj
=
C(3DM))maxmj

δmaxmj
.

When |z| = 1 we have

|z − βk|
|β1 − βk|

6
(2M + 1)2

ρ
.
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Therefore, applying (3.3),∥∥∥∥ z − βkβ1 − βk
r(z)

∥∥∥∥ 6 2D
2M + 1

ρ
‖r‖

6 2
CD(2M + 1)(3DM))maxmj

ρδmaxmj
.

This ends the proof of case (a).
(b): |βk| > 2M . Instead of B̃, we now consider the polynomial

B̂ :=
βkB

2D(z − βk)
,

and we view the polynomial r as satisfying the Bézout equation

Ar + B̂Ŝ ≡ 1

for some polynomial Ŝ with deg Ŝ < degA. For any |z| = 1 we have,
remembering that M > 1 and writing

βk
z − βk

=
z

z − βk
− 1,

that

(3.13)
∣∣∣∣ βk
z − βk

∣∣∣∣ 6 1

2M − 1
+ 1 =

2M

2M − 1
6 2.

Therefore, multiplication by

βk
2(z − βk)

is a contraction operator in the norm ‖ · ‖′, and from (3.3) it follows
that ‖B̂‖ 6 1. On the other hand, since |αi| 6 M and |βk| > 2M , we
have ∣∣∣∣ βk

αi − βk

∣∣∣∣ > |βk|
|βk|+M

>
|βk|
3
2
|βk|

=
2

3
,

whence

|B̂(αi)| =
|βk||B(αi)|
2D|αi − βk|

>
1

3D
|B(αi)| >

δ

3D
.

We now apply the induction hypothesis to obtain the bound

‖r‖ 6 C(3D)maxmj

δmaxmj
.
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Moreover, under the assumptions of this case, since |β1| < M and
|βk| > 2M , we see that

|β1 − βk| > |βk| −M >
|βk|
2

and thus
1

|β1 − βk|
6

1

M
and

∣∣∣∣ βk
β1 − βk

∣∣∣∣ 6 2.

It now follows that∣∣∣∣ z − βkβ1 − βk

∣∣∣∣ 6 1

M
+ 2 =

2M + 1

M
for all |z| = 1.

Therefore, applying (3.3) yields∥∥∥∥ z − βkβ1 − βk
r(z)

∥∥∥∥ 6 D
2M + 1

M
‖r‖

6
CD(2M + 1)(3D)maxmj+1

Mδmaxmj
.

This ends the proof of case (b), concluding the induction argument
needed to estimate the coefficients of R. The proof of the theorem is
now complete. �

We remind the reader that Example 1.4 shows that the exponent
in δ from the estimate (1.6) is best possible.

4. EXTENSION TO SEVERAL POLYNOMIALS

Extending Theorem 1.5 to several polynomials involves the plank
theorem [1].

Lemma 4.1. For vectors v1,v2, . . . ,vn in a Hilbert spaceH that satisfy

‖vi‖H > 1 for all 1 6 i 6 n,

there exists a unit vector y ∈ H such that

|〈vi,y〉H| >
1√
n

for all 1 6 i 6 n.

Here is our extension of Theorem 1.5 to several polynomials.

Theorem 4.2. Let A ∈PN be of the form

A(z) =
n∏
j=1

(z − αj)mk ,
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where α1, α2, . . . , αn are distinct and N =
∑n

j=1mj > 1. Fix K ∈
N. Then there is a C > 0, depending only on A and K, such that, if
B1, . . . , BL ∈PK satisfy the conditions

(a)
L∑
j=1

‖Bj‖2 6 1 and

(b)
L∑
j=1

|Bj(αi)|2 > δ2 > 0 for all 1 6 i 6 n,

then there is an R ∈PK−1, and S1, . . . , SL ∈PN−1, such that

(4.3) RA+ S1B1 + · · ·+ SLBL ≡ 1,

and

(4.4)
(
‖R‖2 +

L∑
j=1

‖Sj‖2
) 1

2
6

C

δmaxmi
.

Proof. Consider the vectors v1, . . . ,vn ∈ CL defined by

vi =
1

δ
(B1(αi), B2(αi), . . . , BL(αi))

and note that ‖vi‖CL > 1 for all 1 6 i 6 n. Lemma 4.1 produces a
unit vector y = (y1, . . . , yL) ∈ CL such that

1√
n
6 |〈vi,y〉CL| = 1

δ

∣∣∣ L∑
j=1

Bj(αi)yj

∣∣∣ for all 1 6 i 6 n.

If B(z) =
∑L

j=1 yjBj(z), it follows that

|B(αi)| >
δ√
n
>

δ√
N
.

Furthermore,

‖B‖ 6
( L∑
j=1

|yj|2
) 1

2
( L∑
j=1

‖Bj‖2
) 1

2
6 1.

Theorem 1.5 produces an R ∈ PK−1 and an S ∈ PN−1 that satisfy
the conditions

(4.5) RA+ SB ≡ 1 and (‖R‖2 + ‖S‖2)
1
2 6

C
√
N

maxmi

δmaxmi
.
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The Bézout identityRA+ SB ≡ 1 can be written as

RA+
L∑
j=1

ȳjSBj ≡ 1.

Moreover, if we define Sj = ȳjS, then (4.3) holds along with

‖R‖2 +
L∑
j=1

‖Sj‖2 = ‖R‖2 +
L∑
j=1

|yj|2‖S‖2 = ‖R‖2 + ‖S‖2.

The estimate in (4.4) now follows from the estimate in (4.5). �

Remark 4.6. In Theorem 1.5 the polynomials R, S are uniquely de-
termined by the degree condition from (1.1). However, Theorem 4.2
only yields the existence of some polynomials R and S1, . . . , SL that
satisfy the desired estimates.

5. DE BRANGES–ROVNYAK SPACES

The second main theorem of this paper (Theorem 6.5) extends re-
sults from [20] and establishes a corona theorem for the multipli-
ers of certain de Branges–Rovnyak spaces. In fact, this corona the-
orem is what originally drew us to investigate coefficient estimates
of Bézout’s identity. In this section we present some of the basics of
de Branges–Rovnyak spaces [10, 11, 24], along with some additional
results which seem to be interesting on their own. The next section
will contain our corona theorem.

Denote

ball(H∞) :=
{
b ∈ H∞ : ‖b‖∞ = sup

z∈D
|b(z)| 6 1

}
.

For b ∈ ball(H∞), the de Branges–Rovnyak space H (b) is the reproduc-
ing kernel Hilbert space associated with the positive definite kernel

(5.1) kbλ(z) =
1− b(z)b(λ)

1− λz
, λ, z ∈ D.

It is known that H (b) is contractively contained in the well-studied
Hardy space H2 of analytic functions f on D for which

‖f‖H2 :=
(

sup
0<r<1

∫
T
|f(rξ)|2dm(ξ)

) 1
2
<∞,
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wherem is normalized Lebesgue measure on the unit circle T = {ξ ∈
C : |ξ| = 1} [7, 13]. For f ∈ H2, the radial limit limr→1− f(rξ) =: f(ξ)

exists for m-almost every ξ ∈ T and

(5.2) ‖f‖H2 =
(∫

T
|f(ξ)|2dm(ξ)

) 1
2
.

Furthermore, Parseval’s theorem says that if f(z) =
∑∞

k=0 akz
k be-

longs to H2, then

(5.3) ‖f‖2
H2 =

∞∑
k=0

|ak|2.

Though H (b) is contractively contained in H2, it is generally not
closed in the H2 norm. In fact, for the b explored in this section,
H (b) is dense in H2.

Throughout this section, we will assume that b ∈ ball(H∞) is a
rational function that is not a finite Blaschke product. We exclude
the finite Blaschke products from our discussion since we will be ex-
ploring a corona theorem for the multiplier algebra of H (b). When
b is a finite Blaschke product, H (b) becomes the usual model space
H2 	 bH2 and in that case it is well-known that the multiplier al-
gebra of H (b) is formed just by the constant functions [12]. Thus,
when b is a finite Blaschke product, any corona theorem concerning
the multipliers of H (b) becomes a triviality.

Although, for a general b ∈ ball(H∞) the contents of H (b) seem
mysterious, when b ∈ ball(H∞) is a rational function (and not a finite
Blaschke product) the description of H (b) is quite explicit. For such
a b there exists a unique nonconstant rational function a with no ze-
ros on D such that a(0) > 0 and |a(ξ)|2 + |b(ξ)|2 = 1 for all |ξ| = 1.
This function a is called the Pythagorean mate of b. In fact, one can ob-
tain a from the Fejér–Riesz theorem (see [8]). Let ξ1, . . . , ξn denote the
distinct roots of a on T, with corresponding multiplicitiesm1, . . . ,mn,
and define the polynomial a1 by

(5.4) a1(z) :=
n∏
j=1

(z − ξj)mj .

Results from [3, 8] show that H (b) has an explicit description as

(5.5) H (b) = a1H
2 uPN−1,
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where N = m1 + · · · + mn and u above denotes the algebraic direct
sum in that a1H

2 ∩PN−1 = {0}. Moreover, if f ∈ H (b) is decom-
posed with respect to (5.5) as

(5.6) f = a1f̃ + p, where f̃ ∈ H2 and p ∈PN−1,

an equivalent norm on H (b) (to the natural one induced by the pos-
itive definite kernel kbλ(z) above) is

(5.7) ‖a1f̃ + p‖2
b := ‖f̃‖2

H2 + ‖p‖2
H2 .

It is important to note that ‖ · ‖b is only equivalent to the original
norm corresponding to the kernel in (5.1), and its scalar product as
well as the reproducing kernels and the adjoints of operators defined
on H (b) will be different. With the norm ‖·‖b and the corresponding
inner product in mind, we need to introduce a new notation for the
associated reproducing kernels, different from (5.1), namely kbλ (note
the bold face). By the term reproducing kernel we mean that kbλ ∈
H (b) for all λ ∈ D and

〈f,kbλ〉b = f(λ) for all f ∈H (b) and λ ∈ D.

Using (5.6) and the standard estimate that any g ∈ H2 satisfies

(5.8) |g(z)| 6
‖g‖2

H2

1− |z|2
for all z ∈ D,

we see that for fixed 1 6 k 6 n and for each f ∈H (b) we have

(5.9) f(ξk) = lim
r→1−

f(rξk) = p(ξk),

where f = a1f̃ + p with f̃ ∈ H2 and p ∈ PN−1. In the spirit of (5.8),
the next lemma (interesting in its own right and useful later) yields
more precise information on the boundary behavior of H (b) func-
tions. In particular, it shows that H (b) functions admit tangential
limits in suitable approach regions at each point ξk (see Remark 5.13
below).

Lemma 5.10. For each fixed 1 6 k 6 n, there is a ck > 0, depending only
on b, such that for each f ∈H (b), η > 0, and z ∈ D, we have

|f(z)|2 6 (1 + η)|f(ξk)|2 + ck

(
1 +

1

η

) |z − ξk|2
1− |z|2

‖f‖2
b .
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Proof. For fixed 1 6 k 6 n, remembering from (5.4) that ξk is a root
of a1, we define the polynomial a#(z) by

a#
k (z) :=

a1(z)

z − ξk
.

Write f ∈ H (b) as f = a1f̃ + p as in (5.6). By (5.9) we have f(ξk) =

p(ξk), and so

f(z) = (z − ξk)a#
k (z)f̃(z) + (p(z)− p(ξk)) + p(ξk)

= (z − ξk)
(
a#
k (z)f̃(z) +

p(z)− p(ξk)
z − ξk

)
+ p(ξk)

= (z − ξk)fk(z) + f(ξk),

where

(5.11) fk(z) = a#
k (z)f̃(z) +

p(z)− p(ξ)
z − ξk

∈ H2.

Given η > 0, for any a, b > 0 we have

2ab 6 ηa2 +
1

η
b2

and so

|f(z)|2 6 |(z − ξk)fk(z) + f(ξk)|2

6 |f(ξk)|2 + |z − ξk|2|fk(z)|2 + 2|(z − ξk)fk(z)||f(ξk)|

6 (1 + η)|f(ξk)|2 +
(

1 +
1

η

)
|z − ξk|2|fk(z)|2

6 (1 + η)|f(ξk)|2 +
(

1 +
1

η

) |z − ξk|2
1− |z|2

‖fk‖2
H2 .

In the last inequality above, note the use of (5.8).
To finish the proof, it suffices to show there exists a ck > 0, de-

pending only on b and k, such that

(5.12) ‖fk‖2
H2 6 ck‖f‖2

b .

The definition of fk from (5.11) says that

‖fk‖2
H2 6 2

(
‖a#

k f̃‖
2
H2 +

∥∥∥p− p(ξk)
z − ξk

∥∥∥2

H2

)
6 2
(
‖a#

k ‖∞‖f̃‖
2
H2 +

∥∥∥p− p(ξk)
z − ξk

∥∥∥2

H2

)
.
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Since the map

p(z) 7→ p(z)− p(ξk)
z − ξk

is a linear transformation from PN−1 to itself and PN−1 is a finite
dimensional space (and hence all norms on PN−1 are equivalent),
this map is continuous and hence there is a constant c̃k > 0 such that∥∥∥p− p(ξk)

z − ξk

∥∥∥2

H2
6 c̃k‖p‖2

H2 for all p ∈PN−1.

Thus,

‖fk‖2
H2 6 2(‖a#

k ‖
2
∞‖f̃‖2

H2 + c̃k‖p‖2
H2)

6 ck(‖f̃‖2
H2 + ‖p‖2

H2)

= ck‖f‖2
b ,

where ck = 2 max(‖a#
k ‖2
∞, c̃k). This verifies (5.12) and thus completes

the proof. �

Remark 5.13. In the spirit of the above proof, one can write

f(z) = (z − ξk)mka†k(z)f̃(z) + p(z),

where
a†k(z) =

∏
j 6=k

(z − ξj)mj ,

to prove that each f ∈ H (b) admits a boundary limit at ξk in the
approach regions{

z ∈ D :
|z − ξk|2mk

1− |z|
6 c
}
, c > 1,

which are larger than the standard nontangential (Stolz) regions{
z ∈ D :

|z − ξk|
1− |z|

6 c
}
, c > 1.

Let
M(H (b)) := {ϕ ∈H (b) : ϕH (b) ⊆H (b)}

denote the multiplier algebra of H (b). Standard results for multiplier
algebras, true for any reproducing kernel Hilbert space of analytic
functions, say that if ϕ ∈ M(H (b)), then ϕ ∈ H∞, and the multipli-
cation operator Mϕf = ϕf is bounded on H (b) and satisfies

(5.14) M∗
ϕk

b
λ = ϕ(λ)kbλ for all λ ∈ D.
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For general H (b) spaces, the multiplier algebra M(H (b)) lacks a
complete description [5, 17, 18]. In our case, where b ∈ ball(H∞)

is rational and not a finite Blaschke product, things again become
much simpler. Indeed, [9, Proposition 3.1] says that

(5.15) M(H (b)) = H (b) ∩H∞,

and (5.5) implies that ϕ ∈M(H (b)) if and only if

ϕ = a1ϕ̃+ r, where ϕ̃ ∈ H2, r ∈PN−1, and a1ϕ̃ ∈ H∞.

In particular, it follows easily from (5.6) that every polynomial is a
multiplier of H (b) (this is also a consequence of more general facts
from [24, Ch. IV]). Since all norms on the finite dimensional space
PN−1 are equivalent, we fix a C1 > 0 that satisfies

(5.16) max{‖p‖, ‖p‖M(H (b))} 6 C1‖p‖b = C1‖p‖H2 , p ∈PN−1.

6. A CORONA THEOREM FOR DE BRANGES–ROVNYAK SPACES

Our corona theorem for M(H (b)) will be stated in terms of col-
umn multipliers. For a sequence Φ = (ϕj)j>1 of functions in M(H (b)),
define the column multiplier

(6.1) MΦ : H (b)→
∞⊕
j=1

H (b), MΦf = (ϕjf)j>1.

When MΦ is bounded, its adjoint is given by M∗
Φ = (M∗

ϕ1
,M∗

ϕ2
, . . . ).

As is standard,
∞⊕
j=1

H (b) :=
{

(fj)j>1 : fj ∈H (b),
∞∑
j=1

‖fj‖2
b <∞

}
with

‖(fj)j>1‖⊕∞j=1 H (b) :=

(
∞∑
j=1

‖fj‖2
b

) 1
2

(recall the norm ‖ · ‖b on H (b) from (5.7)). The next lemma general-
izes [19, Lemma 3.2.3].

Lemma 6.2. MΦ is a bounded (column) operator if and only if

(a) C2 :=
( ∞∑
j=1

‖ϕj‖2
b

) 1
2
<∞, and
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(b) C3 := sup
z∈D

( ∞∑
j=1

|ϕj(z)|2
) 1

2
<∞.

Furthermore, max(C2, C3) 6 ‖MΦ‖ 6
√

2 max(C3, C1C2), where C1 was
defined in (5.16).

Proof. Suppose that MΦ is a bounded operator. Since 1 ∈ H (b)

and (5.7) shows that ‖1‖b = 1, we conclude that

C2
2 =

∞∑
j=1

‖ϕj‖2
b = ‖MΦ1‖2⊕∞

j=1 H (b) 6 ‖MΦ‖2 · ‖1‖2
b = ‖MΦ‖2.

This proves (a). To prove (b), let N ∈ N and (γj)j>1 be a complex
sequence such that γj = 0 when j > N + 1. For every z ∈ D and
N ∈ N, it follows from (5.14) that

M∗
Φ((γjk

b
z)j>1) =

N∑
j=1

M∗
ϕj

(γjk
b
z) =

( N∑
j=1

γjϕj(z)
)
kbz,

and so ∣∣∣ N∑
j=1

γjϕj(z)
∣∣∣‖kbz‖b 6 ‖M∗

Φ‖‖(γjkbz)j>1‖⊕N
j=1 H (b)

= ‖MΦ‖
( N∑
j=1

|γj|2
) 1

2‖kbz‖b.

Therefore,∣∣∣ N∑
j=1

γjϕj(z)
∣∣∣ 6 ‖MΦ‖

( N∑
j=1

|γj|2
) 1

2
for all N ∈ N.

Since the inequality above is true for any (γj)j>1, the Riesz represen-
tation theorem implies that

N∑
j=1

|ϕj(z)|2 6 ‖MΦ‖2 for all z ∈ D.

The inequality above is true for all N , which proves (b).
Conversely, assume that conditions (a) and (b) are satisfied. For

any f ∈H (b) we have

‖MΦf‖2⊕∞
j=1 H (b) =

∞∑
j=1

‖ϕjf‖2
b .
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From (5.6) we can write f = a1f̃ +p, with f̃ ∈ H2 and p ∈PN−1. The
definition of the norm on H (b) from (5.7) yields

‖ϕjf‖2
b = ‖a1f̃ϕj + ϕjp‖2

b

6 2(‖a1f̃ϕj‖2
b + ‖ϕjp‖2

b)

= 2(‖f̃ϕj‖2
H2 + ‖ϕjp‖2

b).

Hence,

(6.3) ‖MΦf‖2⊕∞
j=1 H (b) 6 2

( ∞∑
j=1

‖f̃ϕj‖2
H2 +

∞∑
j=1

‖ϕjp‖2
b

)
.

To estimate the first sum on the right hand side of (6.3), we can use
(5.2) and Fubini’s theorem to obtain

∞∑
j=1

‖f̃ϕj‖2
H2 =

∞∑
j=1

∫
T
|ϕj(ζ)|2|f̃(ζ)|2 dm(ζ)

=

∫
T

∞∑
j=1

|ϕj(ζ)|2|f̃(ζ)|2 dm(ζ).(6.4)

From the facts that ϕj(rζ)→ ϕj(ζ) for almost every ζ ∈ T as r → 1−,
and

N∑
j=1

|ϕj(rξ)|2 6 C2
3 for all N ∈ N,

one sees that
N∑
j=1

|ϕj(ξ)|2 6 C2
3 for almost every ξ ∈ T and every N ∈ N.

Now let N →∞ to conclude that
∞∑
j=1

|ϕj(ξ)|2 6 C2
3 for almost every ξ ∈ T.

Thus, continuing the estimate from (6.4), we obtain
∞∑
j=1

‖f̃ϕj‖2
H2 6 C2

3

∫
T
|f̃(ζ)|2 dm(ζ) = C2

3‖f̃‖2
H2 .

To estimate the second term on the right hand side of (6.3), observe
that

‖ϕjp‖b 6 ‖p‖M(H (b))‖ϕj‖b 6 C1‖p‖H2‖ϕj‖b,
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where C1 is defined by (5.16). Therefore,
∞∑
j=1

‖ϕjp‖2
b 6 C2

1‖p‖2
H2

( ∞∑
j=1

‖ϕj‖2
b

)
= C2

1C
2
2‖p‖2

H2 .

It follows from (6.3) that

‖MΦf‖2⊕∞
j=1 H (b) 6 2

(
C2

3‖f̃‖2
H2 + C2

1C
2
2‖p‖2

H2

)
.

Since ‖f‖2
b = ‖f̃‖2

H2 + ‖p‖2
H2 (see (5.7)), we see that

‖MΦf‖2⊕∞
j=1 H (b) 6 2 max(C2

3 , C
2
1C

2
2)‖f‖2

b .

Therefore, MΦ is bounded and ‖MΦ‖ 6
√

2 max(C3, C1C2), which
finishes the proof of the lemma. �

Here is the second main result of this paper, a corona theorem for
M(H (b)). We remind the reader that for rational b ∈ ball(H∞) (and
not a finite Blaschke product), there exists a Pythagorean mate a to
which we can associate the polynomial a1(z) =

∏n
j=1(z − ξj)

mj as
explained in (5.4).

Theorem 6.5. Let b ∈ ball(H∞) be rational, but not a finite Blaschke
product. Suppose that Φ = (ϕj)j>1 is a sequence in M(H (b)) that satisfies
the conditions

(i) ‖MΦ‖ 6 1, and

(ii) 0 < δ2 6
∞∑
j=1

|ϕj(z)|2 for all z ∈ D.

Then there is a sequence B = (bj)j>1 in M(H (b)) such that

(a)
∞∑
j=1

ϕj(z)bj(z) = 1 for all z ∈ D, and

(b) ‖MB‖ 6
C

δmaxmj

(
1 +

1

δ2
log

1

δ

)
,

where C > 0 depends only on b.

Proof. We begin by decomposing each ϕj ∈M(H (b)) as

(6.6) ϕj = a1ϕ̃j + pj, ϕ̃j ∈ H2, pj ∈PN−1,

where a1 is the polynomial associated with the Pythagorean mate of
b as defined by (5.4). Furthermore,

(6.7) a1ϕ̃j ∈ H∞ for all j > 1.



BÉZOUT’S EQUATION 27

Conditions (i), (ii), and Lemma 6.2 imply that

(6.8) δ2 6
∞∑
j=1

|ϕj(z)|2 6 1 for all z ∈ D.

Apply Lemma 5.10 to see that for fixed 1 6 k 6 n there is a ck > 0,
depending only on b, such that for every η > 0, every z ∈ D, and
every j > 1,

|ϕj(z)|2 6 (1 + η)|ϕj(ξk)|2 +
(

1 +
1

η

)
ck
|z − ξk|2

1− |z|2
‖ϕj‖2

b .

By summing over j in the previous inequality, it follows from Lemma
6.2 that

δ2 6 (1 + η)
∞∑
j=1

|ϕj(ξk)|2 +
(

1 +
1

η

)
ck
|z − ξk|2

1− |z|2
∞∑
j=1

‖ϕj‖2
b

6 (1 + η)
∞∑
j=1

|ϕj(ξk)|2 +
(

1 +
1

η

)
ck
|z − ξk|2

1− |z|2
.

In the above, note the use of the fact that ‖MΦ‖ 6 1 and so C2 6 1.
Now let z → ξk radially to see that the second term above goes to
zero and thus

δ2 6 (1 + η)
∞∑
j=1

|ϕj(ξk)|2.

Letting η → 0+ yields

δ2 6
∞∑
j=1

|ϕj(ξk)|2.

The estimate in (6.8) and Fatou’s lemma yield
∞∑
j=1

|ϕj(ξk)|2 6 1.

Finally, use pj(ξk) = ϕj(ξk) to obtain

δ2 6
∞∑
j=1

|pj(ξk)|2 6 1.

In particular, for every 1 6 k 6 n there exists an `k ∈ N such that
∞∑

j=`k+1

|pj(ξk)|2 6
δ2

2
.
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Define L = max{`k : 1 6 k 6 n}. Then for every 1 6 k 6 n, we
have

L∑
j=1

|pj(ξk)|2 =
∞∑
j=1

|pj(ξk)|2 −
∞∑

j=L+1

|pj(ξk)|2

> δ2 −
∞∑

j=`k+1

|pj(ξk)|2

> δ2 − δ2

2
=
δ2

2
> 0.

On the other hand, by assumption (i) and Lemma 6.2,
∞∑
j=1

‖ϕj‖2
b = C2

2 6 ‖MΦ‖2 6 1,

whence the norm (5.7) implies that
∑∞

j=1 ‖pj‖H2 6 1. Using the con-
stant C1 defined in (5.16), we see that

L∑
j=1

‖pj‖2 6 C2
1

L∑
j=1

‖pj‖2
H2 6 C2

1

∞∑
j=1

‖pj‖2
H2 6 C2

1 .

From now on, all constants will be denoted by C and may change
from line to line.

Now apply Theorem 4.2 with K = N − 1, A = a1, and Bj = pj for
1 6 j 6 L, to produce a q ∈PN−2 and q1, . . . , qL ∈PN−1 such that

qa1 + q1p1 + · · ·+ qLpL ≡ 1 and(
‖q‖2

H2 +
L∑
j=1

‖qj‖2
H2

) 1
2
6

C

δmaxmi

(6.9)

for some C > 0, depending only on a1 and hence depending only
on b. (Since all norms on PN−1 are equivalent, we may replace the
norm used in (4.4) by the H2-norm). We set qk ≡ 0 for all k > L+ 1.

By Tolokonnikov’s theorem [25] (mentioned in the introduction),
there is a universal C > 0 and a sequence (ej)j>1 in H∞ such that

∞∑
j=1

ϕj(z)ej(z) = 1 for all z ∈ D,

(
sup
z∈D

∞∑
j=1

|ej(z)|2
) 1

2
6 C

1

δ2
log

1

δ

(6.10)
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For each j > 1 define

(6.11) bj := qj +
(

1−
L∑
k=1

ϕkqk

)
ej.

We will now show that (bj)j>1 is the required sequence satisfying
conditions (a) and (b).

First we check that bj ∈ M(H (b)) for all j > 1. Using (6.6)
and (6.9), one obtains(

1−
L∑
k=1

ϕkqk

)
ej =

(
1−

L∑
k=1

qk(a1ϕ̃k + pk)
)
ej

=
(

1−
L∑
k=1

qkpk − a1

L∑
k=1

qkϕ̃k

)
ej

= a1

(
q −

L∑
k=1

qkϕ̃k

)
ej.

Therefore (6.11) can be written as

(6.12) bj = a1

(
q −

L∑
k=1

qkϕ̃k

)
ej + qj.

Since qj ∈PN−1 and q−
∑L

k=1 qkϕ̃k ∈ H2, this is precisely the decom-
position of bj from (5.6). Therefore, bj ∈ H (b) and it follows from
(6.7) that bj ∈ H∞. Thus, from (5.15), bj ∈H (b) ∩H∞ = M(H (b)).

Second, we observe that
∞∑
j=1

bjϕj =
∞∑
j=1

(
qj +

(
1−

L∑
k=1

ϕkqk
)
ej

)
ϕj

=
∞∑
j=1

ϕjqj +
(

1−
L∑
k=1

ϕkqk

) ∞∑
j=1

ejϕj

=
∞∑
j=1

ϕjqj +
(

1−
L∑
k=1

ϕkqk

)
· 1 (by (6.10))

=
L∑
j=1

ϕjqj +
(

1−
L∑
k=1

ϕkqk

)
= 1.

Thus (a) is proved.
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In order to prove (b) of Theorem 6.5, we need to show that MB

satisfies inequalities (a) and (b) in Lemma 6.2. Apply (5.7) and (6.12)
to obtain

(6.13)
∞∑
j=1

‖bj‖2
b =

∞∑
j=1

‖qj‖2
H2 +

∞∑
j=1

∥∥∥(q − L∑
k=1

qkϕ̃k

)
ej

∥∥∥2

H2
.

By (6.9), the first term on the right hand side of the above is bounded

by
C

δ2 maxmj
. To bound the second term, we have

∞∑
j=1

∥∥∥(q − L∑
k=1

qkϕ̃k

)
ej

∥∥∥2

H2

=

∫
T

∞∑
j=1

∣∣q(ζ)−
L∑
k=1

qk(ζ)ϕ̃k(ζ)
∣∣2|ej(ζ)|2 dm(ζ)

=

∫
T

∣∣q(ζ)−
L∑
k=1

qk(ζ)ϕ̃k(ζ)
∣∣2( ∞∑

j=1

|ej(ζ)|2
)
dm(ζ)

6
(C
δ2

log
1

δ

)2
∫
T

∣∣q(ζ)−
L∑
k=1

qk(ζ)ϕ̃k(ζ)
∣∣2 dm(ζ) by (6.10)

=
(C
δ2

log
1

δ

)2∥∥∥q − L∑
k=1

qkϕ̃k

∥∥∥2

H2

6 2
(C
δ2

log
1

δ

)2(
‖q‖2

H2 +
∥∥∥ L∑
k=1

qkϕ̃k

∥∥∥2

H2

)
.

Again (6.9) yields ‖q‖2
H2 6

C

δ2 maxmj
. On the other hand, (5.7) implies

that ‖ϕ̃k‖H2 6 ‖ϕk‖b, which, together with the Cauchy–Schwarz in-
equality, yield∥∥∥ L∑

k=1

qkϕ̃k

∥∥∥2

H2
6
( L∑
k=1

‖qkϕ̃k‖H2

)2

6
( L∑
k=1

‖qk‖∞‖ϕk‖b
)2

6 C
( L∑
k=1

‖qk‖H2‖ϕk‖b
)2

6 C
( L∑
k=1

‖qk‖2
H2

)( L∑
k=1

‖ϕk‖2
b

)
.
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Using (6.9) once more, we see that the first factor in the last formula

is bounded above by
C

δ2 maxmj
, while, by condition (i) in the statement

of the theorem and Lemma 6.2, the second factor is bounded above
by 1. Consequently,

∞∑
j=1

∥∥∥(q − L∑
k=1

qkϕ̃k

)
ej

∥∥∥2

H2
6

C

δ2 maxmj

( 1

δ2
log

1

δ

)2

.

Returning to (6.13), it follows that

(6.14)
∞∑
j=1

‖bj‖2
b 6

C

δ2 maxmj

(
1 +

1

δ2
log

1

δ

)2

.

proving that the inequality (a) in Lemma 6.2 is satisfied.
In order to prove (b), fix z ∈ D. From the definition of bj from

(6.11), we see that

|bj(z)|2 6 2
(
|qj(z)|2 +

∣∣1− L∑
k=1

ϕk(z)qk(z)
∣∣2|ej(z)|2

)
,

whence
(6.15)
∞∑
j=1

|bj(z)|2 6 2
∞∑
j=1

|qj(z)|2 + 2
∣∣1− L∑

k=1

ϕk(z)qk(z)
∣∣2( ∞∑

j=1

|ej(z)|2
)
.

From (6.10) we obtain the estimate

∞∑
j=1

|ej(z)|2 6
(C
δ2

log
1

δ

)2

,

while from (6.9) we have the estimate

∞∑
j=1

|qj(z)|2 =
L∑
j=1

|qj(z)|2 6
L∑
j=1

‖qj‖2
∞ 6 C

L∑
j=1

‖qj‖2
H2 6

C

δ2 maxmj

(note that qj ≡ 0 for all j > L). Finally, using condition (b) in
Lemma 6.2 (valid for MΦ by assumption) as well as (6.9), we see
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that

∣∣1− L∑
k=1

ϕk(z)qk(z)
∣∣ 6 1 +

L∑
k=1

|ϕk(z)qk(z)|

6 1 +
( L∑
k=1

|ϕk(z)|2
) 1

2
( L∑
k=1

|qk(z)|2
) 1

2

6 1 +
( L∑
k=1

|ϕk(z)|2
) 1

2
( L∑
k=1

‖qk‖2
∞

) 1
2

6 1 + C
( L∑
k=1

|ϕk(z)|2
) 1

2
( L∑
k=1

‖qk‖2
H2

) 1
2

6 1 +
C

δmaxmj
.

Gathering up all the last estimates and plugging them into (6.15)
yields

(6.16)
∞∑
j=1

|bj(z)|2 6 C

δ2 maxmj

(
1 +

1

δ2
log

1

δ

)2

.

Together, (6.14) and (6.16) show that MB satisfies conditions (a)
and (b) in Lemma 6.2. It is therefore a bounded operator whose norm
satisfies

(6.17) ‖MB‖ 6
C

δmaxmj

(
1 +

1

δ2
log

1

δ

)
,

for some constant C > 0, which ends the proof of the theorem. �

If ‖b‖∞ < 1, it is known that H (b) = H2, with an equivalent norm.
Furthermore, in this case the Pythagorean mate a will have no zeros
and so the exponent on δ in (6.17) will be maxmj = 0. This corre-
sponds to the estimate

‖MB‖ 6 C(1 +
1

δ2
log

1

δ
)

which is the Uchiyama estimate from (1.7). Of course, Uchiyama’s
result was used in our proof.
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7. FINAL REMARKS

As noted in the introduction, Theorem 6.5 is related to some of the
results in [19, 20]. Here is how one makes the connection. If µ is a
finite positive Borel measure on T and Pµ is its Poisson integral

Pµ(z) :=

∫
T

1− |z|2

|z − ξ|2
dµ(ξ), z ∈ D,

the harmonically weighted Dirichlet space Dµ, introduced by Richter
[22], is the space of f ∈ H2 satisfying∫

D
|f ′(z)|2Pµ(z)dA(z) <∞,

where dA is area measure. In [3], Costara and Ransford proved that
a de Branges–Rovnyak space H (b), where b ∈ ball(H∞) is rational
and not a finite Blaschke product, coincides (with equivalent norms)
with a Dµ space if and only if the zeros on T of the Pythagorean
mate a of b are simple, that is, with our notation from (5.4), when all
the zeros of a1 are simple. If this happens, then the support of µ is
precisely this set of (simple) zeros.

For this class of Dµ spaces, Luo [19] proved a corona theorem, in-
cluding estimates of the norm of the solutions. This turns out to be,
when translated in the context of de Branges spaces, the particular
case of Theorem 6.5 when mj = 1 for all 1 6 j 6 n. One sees that our
Theorem 6.5 covers the general case when the roots of a on T have
arbitrary multiplicities, where H (b) no longer coincides with aD(µ)

space. It should also be noted that part of the argument in the proof
of Theorem 6.5 is similar to an argument from [19, Theorem 3.2.4].

Finally, note that in [20] Luo obtained a general corona theorem
for harmonically weighted Dirichlet spaces Dµ.

REFERENCES

[1] Thøger Bang. A solution of the “plank problem.”. Proc. Amer. Math. Soc.,
2:990–993, 1951.

[2] Lennart Carleson. Interpolations by bounded analytic functions and the
corona problem. Ann. of Math. (2), 76:547–559, 1962.

[3] Constantin Costara and Thomas Ransford. Which de Branges-Rovnyak
spaces are Dirichlet spaces (and vice versa)? J. Funct. Anal., 265(12):3204–
3218, 2013.



34 FRICAIN, HARTMANN, ROSS, AND TIMOTIN

[4] David A. Cox, John Little, and Donal O’Shea. Using algebraic geometry, vol-
ume 185 of Graduate Texts in Mathematics. Springer, New York, second edition,
2005.

[5] Benjamin Mark Davis and John E. McCarthy. Multipliers of de Branges
spaces. Michigan Math. J., 38(2):225–240, 1991.

[6] Ronald G. Douglas, Steven G. Krantz, Eric T. Sawyer, Sergei Treil, and Brett D.
Wick, editors. The corona problem, volume 72 of Fields Institute Communications.
Springer, New York; Fields Institute for Research in Mathematical Sciences,
Toronto, ON, 2014. Connections between operator theory, function theory,
and geometry.

[7] Peter L. Duren. Theory of Hp spaces. Academic Press, New York, 1970.
[8] Emmanuel Fricain, Andreas Hartmann, and William T. Ross. Concrete exam-

ples of H (b) spaces. Comput. Methods Funct. Theory, 16(2):287–306, 2016.
[9] Emmanuel Fricain, Andreas Hartmann, and William T. Ross. Multipliers be-

tween range spaces of co-analytic Toeplitz operators. Acta Sci. Math. (Szeged),
85(1-2):215–230, 2019.

[10] Emmanuel Fricain and Javad Mashreghi. The theory ofH(b) spaces. Vol. 1, vol-
ume 20 of New Mathematical Monographs. Cambridge University Press, Cam-
bridge, 2016.

[11] Emmanuel Fricain and Javad Mashreghi. The theory ofH(b) spaces. Vol. 2, vol-
ume 21 of New Mathematical Monographs. Cambridge University Press, Cam-
bridge, 2016.

[12] Stephan Ramon Garcia, Javad Mashreghi, and William T. Ross. Introduction to
model spaces and their operators, volume 148 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2016.

[13] John B. Garnett. Bounded analytic functions, volume 96 of Pure and Applied
Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers],
New York-London, 1981.
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