
HAL Id: hal-03655737
https://hal.science/hal-03655737

Submitted on 29 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polarized Linear Logic with Fixpoints
Thomas Ehrhard, Farzad Jafarrahmani, Alexis Saurin

To cite this version:
Thomas Ehrhard, Farzad Jafarrahmani, Alexis Saurin. Polarized Linear Logic with Fixpoints. [Tech-
nical Report] IRIF (UMR_8243) - Institut de Recherche en Informatique Fondamentale. 2022. �hal-
03655737�

https://hal.science/hal-03655737
https://hal.archives-ouvertes.fr

Polarized Linear Logic with Fixpoints

Thomas Ehrhard1,2 Farzad Jafarrahmani3 Alexis Saurin4

IRIF, Université Paris Cité, CNRS & INRIA, Paris, France

Abstract

We introduce and study µLLP, which can be viewed both as an extension of Laurent’s Polarized Linear Logic, LLP, with
least and greatest fixpoints, and as a polarized version of Baelde’s Linear Logic with fixpoints (µMALL and µLL). We take
advantage of the implicit structural rules of µLLP to introduce a term syntax for this language, in the spirit of the classical
lambda-calculus and of system L in the style of Curien, Herbelin and Munch-Maccagnoni. We equip this language with a
deterministic reduction semantics as well as a denotational semantics based on the notion of non-uniform totality spaces and
the notion of categorical model for linear logic with fixpoint introduced by Ehrhard and Jafarrahmani. We prove an adequacy
result for µLLP between these operational and denotational semantics, from which we derive a normalization property for
µLLP thanks to the properties of the totality interpretation.

Keywords: linear logic, least and greatest fixed points, classical lambda-calculus, categorical semantics, relational semantics

1 Introduction

One major feature of Linear Logic (LL) is that it gives a very clear and clean status to the polarity of
formulas and connectives. Logical LL constants and connectives are organized in positive/negative dual
pairs 0/⊤, ⊕/&, 1/⊥ and ⊗/` which are De Morgan dual pairs swapped by linear negation ()⊥. From
a proof-search point of view, negative constants and connectives are characterized by the reversibility of
the associated sequent calculus inference rules and positive ones by the focusing property, see [5]. From a
Curry-Howard point of view polarization is also extremely meaningful. Positive formulas P , stable under
the positive connectives and containing the positive constants as well as all the formulas of shape !A, are
equipped with a canonical proof of P ⊸ !P . This implies that the negative formulas (the P⊥’s) have
structural rules. This crucial property offers two ways to embed classical logic into LL (call-by-name and
call-by-value) and each of these embeddings equip classical logic with an operationally meaningful cut-
elimination 5 . This canonical proof P ⊸ !P means that positive types are discardable and duplicable, that
is, have an associated let construct, in other words, positive types are data-types (see [29] for discussions
on this programming viewpoint, notably in connection with call-by-push-value [26,27]). This version of LL
which features two dual classes of positive and negative formulas exchanged by linear negation is called

1 General thanks to everyone who should be thanked.
2 Email: ehrhard@irif.fr
3 Email: Farzad.Jafar-Rhamani@irif.fr
4 Email: Alexis.Saurin@irif.fr
5 Gentzen’s cut-elimination has the dramatic property that given any two proofs of a given formula there is a proof
of the same formula which reduces to the two given proofs. In other words, in this setting, any two proofs of the
same formula are equal up to cut-elimination.

mailto:ehrhard@irif.fr
Farzad.Jafar-Rhamani@irif.fr
alexis.saurin@irif.fr

Ehrhard, Jafarrahmani, Saurin

Polarized Linear Logic (LLP) and has been introduced and studied in [24], together with translations
from the λµ-calculus [31] to LLP, a sequent calculus, a theory of proof-nets, translations to LL as well as
a denotational semantics [25] which is based on the idea of representing positive formulas as objects of
the Eilenberg-Moore category of the !-comonad of a categorical model of LL as suggested in [20]. In this
system the exponential connectives allow to move from one polarity to the other one: if N is negative !N
is positive and if P is positive ?P is negative.

So LLP can be considered as a kind of “classical λ-calculus” (in the sense that the structural rules are
kept implicit) where the fine-grained LL resource-handling associated with the exponentials is nevertheless
available. In the single-sided version of LLP that we use in this paper, there are two kinds of sequents: those
which have only negative formula (called negative sequents) and those which have negative formulas and
exactly one positive formula (called positive sequents) 6 . Various proof-term systems have been introduced
to account for LLP-like formalisms in a syntactic way that is closer to the λ-calculus than the usual proof
systems such as sequent calculus or proof-nets, such systems are often called system L see for instance [11,29]
and are based on the distinction between three kinds of expressions: (i) negative terms, (ii) positive terms
and (iii) commands which are pairings (applications) of a negative term to a positive term representing
logical cuts.

Many other polarized calculi have been considered in the literature, ranging from strictly logically-
oriented calculi to more programming-oriented calculi. On the programming side of this spectrum, one
can refer to Abel et al’s copatterns [2,3,33], which account for the definition of codata by observations and
which revealed to be flexible enough to be integrated to various programming environment even with rich
type-systems, as well as Ariola and Downen computational calculi developed on system L [15,16,17] which
allow for the combination of various evaluation strategies. On the logical side, one can refer to Zeilberger’s
polarized calculi [34,28,35], directly inspired by Andreoli’s focusing, or Baelde et al’s polarized calculus
for µMALL [8] which follows a slightly different tradition on polarity [21]. On more related works from
a categorical models point of view, one can mention [23], [22] and [1]. However, those models are more
related to the proof-search paradigm and they deal with reversibility and focalization. And we emphasize
on the fact that what we will provide as model of κµLLP is related to the Curry-Howard paradigm, that
is to say it deals with structural rules (i.e.,negative formulas have canonical contraction and weakening
rules).

In many of the above-mentioned works, polarities are instrumental in shaping the dual computational
behaviour of inductive versus coinductive types: while inductive data is positive in nature, coinductive
data is negative. This observation was made formal from a proof-theoretic point of view in the line of
work initiated by Baelde’s thesis and his follow up works [6,7,9] that the least fixpoint is a positive logical
construct while the greatest fixpoint is negative: in linear logic with fixpoints, the fixpoint operators satisfy
the focusing property, both in the finitary setting with Park’s rules and in the non-wellfounded and circular
setting.

In this paper, following the Curry-Howard-Lambek approach to the linear logic with least and greatest
fixpoints µLL initiated in [18], we study µLLP, an extension of LLP with least and greatest fixpoints (we
refer to [6,18] for a general introduction to µLL and the associated literature), by introducing and studying
a system L calculus for a polarized version of µLL. The search for a maximal syntactic simplicity guided
our design of this calculus, see Figure 2 where we use the Greek letter κ for the name binder instead of the
more traditional µ/µ̃ which would lead to confusions with the standard notation associated with least and
greatest fixpoints (µ/ν). Related to this syntactical simplicity is that a negative term or a command can
be typed by a negative or a positive sequent so that there are actually five kinds of typing judgments and
this partitioning is taken into account by the semantics. The polarization of fixpoints means that least
fixpoints allow to define data-types (integers, lists, trees etc.) while greatest fixpoints allow to define co-
data-types, that is types of data-consumers 7 . We refer to [3] for a detailed discussion of the computational
duality between data- and co-data-types. As in [7,18] we use the two-premise Park’s rule for introducing
greatest fixpoints so that our terms are finite trees.

The typed calculus introduced in that way is called κµLLP. It features natural construction rules

6 This simple dichotomy relies on the fact that, in LLP, the introduction of an !-connective is possible only on a
negative sequent which corresponds to the fact that in LL promotion requires the context to have only ?-formulas.
7 This strongly suggests that lists and streams are not of the same nature, streams are not data but data consumers.

2

Ehrhard, Jafarrahmani, Saurin

associated with the positive connectives and constants (pairing for ⊗, injections for ⊕ etc). It has a
positive promotion construct s! for putting a negative term s in a box (or thunk) which can be used as a
piece of data and a negative dereliction der(p) which allows to open such a box. Just as the λµ-calculus,
κµLLP has names α, β . . . associated with the negative formulas of a sequent 8 . Since at most one positive
formula can occur in an LLP sequent, we need only one variable that we denote as •. There are several
binders for names: one general binder κα.c which allows to select a negative formula in the context, and
the other ones are associated with ⊥, ` and Park’s rule. All these binders produce a negative term whose
type is a negative formula made active for further uses. There is also a binder κ̃.c associated with the
unique variable • which produces a positive term. One crucial feature of • is that it can occur only linearly
in a command or negative term. Again, this is due to the fact that all the formulas in the context of a
promotion must be negative. Notice also that • cannot occur free in a positive term due to the fact that
a positive sequent has exactly one positive formula. All these binders apply to commands which are cuts
s ⋆ p between a negative term s and a positive term p. Our operational semantics provides only reduction
relations for commands and can be seen as describing the interactions between positive constructors and
negative destructors. One specific critical command is κα.c ⋆ κ̃.d which could a priori lead to c [κ̃.d/α] or
d [κα.c/•]; we choose the second option (see Remark 2.9) making our reduction semantics deterministic;
we are actually defining a kind of abstract machine whose states are commands s⋆p where s is the program
and p is the stack (there are no environments because substitutions are executed immediately).

Our goal in this paper is twofold. On the one hand, we provide a categorical semantics of κµLLP

building on [18]. Given a model (L,
−→
L) (simply denoted as L) of µLL (in the sense of that paper) the main

idea is standard: interpret a closed positive formula P as an object of the Eilenberg-Moore category L!.
This requires however to deal also with open positive formulas: we take them into account introducing
in Section 4 the notion of positive functors which are strong functors (as specified by L) equipped with a
distributive law wrt. the comonad !, they are a functorial generalization of the notion of !-coalgebra. We
illustrate this semantics in the concrete models Rel and Nuts used in [18].

On the other hand, we also prove some form of normalization (cut-elimination) for κµLLP. This turned
out to be surprisingly difficult. The solution came from understanding that proving a termination property
with respect to the relational semantics — saying very roughly that if a command has a non-empty
relational semantics its reduction terminates — would be possible because the points of the relational
model are finite trees on which induction is possible. Concretely this means that we associate sets of
terms to points of the relational models and these sets are easily defined by induction. To make this
proof of normalization more natural we also provide a presentation of the relational semantics of κµLLP
as an intersection typing system. To derive from this relational normalization a standard normalization
property, it is enough to prove that, in sufficiently many meaningful situations, when c ⊢ α : N , the
command c has a non-empty relational semantics. We do that for N = ?nat where nat is a type of integers
defined as a least fixpoint formula. The model Nuts of non-uniform totality spaces gives us precisely this
information: any total subset of the relational interpretation of ?nat is non-empty and hence, in particular,
the interpretation of c is non-empty.

2 The syntax

Remark 2.1 In this paper we present various deduction systems by means of inference rules. It is essential
to keep in mind that, for all of these systems, we consider only finite deduction trees. Of course in other
µLL-based logical systems [10,14,19,32] such as µMALL∞, some of these finite trees would be unfolded into
infinite deduction trees (satisfying suitable global conditions), but such infinite deductions will never be
considered here.

We assume to be given an infinite set of literals denoted ζ, ξ, Positive formulas P,Q, . . . and
negative formulas M,N, . . . are given in Figure 1. Linear negation is defined as usual by induction on
formulas, it turns positive formulas into negative ones and conversely. The main cases are (ζ+)⊥ = ζ−,
(ζ−)⊥ = ζ+, (µζ.P)⊥ = νζ.P⊥ and (νζ.N)⊥ = µζ.N⊥.

8 Indeed in the λµ-calculus all formulas are negative and the names are associated with the formulas occurring on
the right side of a sequent whereas variables are associated with formulas on the left.

3

Ehrhard, Jafarrahmani, Saurin

P,Q, · · · := ζ+ | 1 | P ⊗Q | 0 | P ⊕Q | µζ.P | !N

M,N, · · · := ζ− | ⊥ | M `N | ⊤ | M &N | νζ.N | ?P

Fig. 1. Syntax of formulas

Remark 2.2 With each literal ζ are associated two distinct variables ζ+ and ζ− which are formulas (a
literal is not a formula). In the formula µζ.P , only the occurrences of ζ+ are bound and dually for νζ.N
which binds only ζ−. Although not strictly necessary, we adopt the convention that for a given literal
ζ it is never the case that both ζ+ and ζ− occur in a given formula. This property can be enforced by
α-renaming for closed formulas.

An important operation is substitution of formulas in formulas, it is defined in the obvious way (per-
forming as usual α-renaming of type variables when needed). More precisely we define by induction on a
negative or positive formula A:

• substitution of a positive formula P for a positive variable ζ+ in A, written A [P/ζ+]

• and substitution of a negative formula N for a negative variable ζ− in A, written A [N/ζ−],

both formulas having the same polarity as A. We use fv(A) for the set of free variable of the type A.

Lemma 2.3 One has A [P/ζ+]
⊥
= A⊥ [

P⊥/ζ−
]
and A [N/ζ−]

⊥
= A⊥ [

N⊥/ζ+
]
.

The proof is a simple induction on A. We shall quite often deal with formulas A where pairwise
distinct positive variables ζ+1 , . . . , ζ+k are substituted by P1, . . . , Pk and pairwise distinct negative variables

ξ−1 , . . . , ξ
−
n are substituted by N1, . . . , Nn in parallel. Again the definition is a straightforward induction

on A but the use of such parallel substitutions can lead to quite heavy notations. We use letters such
as π, ρ to denote such type valuations π = (N1/ξ

−
1 , . . . , Nn/ξ

−
n , P1/ζ

+
1 , . . . , Pk/ζ

+
k) and write A [π] rather

than A
[
N1/ξ

−
1 , . . . , Nn/ξ

−
n , P1/ζ

+
1 , . . . , Pk/ζk

]
. We set π⊥ = (N⊥

1 /ξ+1 , . . . , N
⊥
n /ξ+n , P

⊥
1 /ζ−1 , . . . , P⊥

k /ζ−k).

We use dom(π) for the domain of π which is the set {ζ+1 , . . . , ζ+k , ξ−1 , . . . , ξ
−
n }. We use π · (P/ζ+) and

π · (N/ζ−) to denote extensions of such valuations (assuming of course that ζ+, ζ− /∈ dom(π)). We say
that π is closed if all formulas Pi, Nj are closed.

The syntax of terms is given in Figure 2. There are three kinds of terms: (i) positive terms denoted
p, q, . . . , (ii) negative terms denoted s, t, . . . and (iii) commands (or processes) denoted c, d,

A negative context is a sequence N = (α1 : N1, . . . , αn : Nn) and a positive context is a sequence
P = (α1 : N1, . . . , αn : Nn, P). We use Γ or N [, P] for contexts which are negative or positive.

Typing rules are provided in the same figure. Notice that there are actually five kinds of typing
judgments:

• Positive term in a negative context ⊢ N | p : P ;

• negative term in a positive context ⊢ N , P | t : N ;

• command in a positive context c ⊢ N , P ;

• negative term in a negative context ⊢ N | t : N ;

• and command in a negative context c ⊢ N .

(This distinction will be crucial when dealing with the semantics.) It is also important to observe that in
all of these judgments, all formulas are closed. One major difference wrt. the λ-calculus is that we put
the context on the right side of the ⊢ symbol, which means that in our setting the formulas of the context
are negated wrt. what they would be in a λ-calculus with context on the left. This is why a name α is a
positive term and appears with a negative type in the context (see e.g. rule (t-n)).

Remark 2.4 The expression • should be considered as a variable, the unique variable of negative type.
Because of this uniqueness we do not need to mention it in the context and N , P should be read as N , • : P .

Lemma 2.5 If α does not occur in negative context N , the following holds. If c ⊢ N [, P] then c ⊢ N , α :
N [, P]. If ⊢ N [, P] | t : M then ⊢ N , α : N [, P] | t : M . If ⊢ N | p : P then ⊢ N , α : N | p : P .

4

Ehrhard, Jafarrahmani, Saurin

p, q, . . . := α | () | (p1, p2) | ini(p) | κ̃.c | fd(p) | t!

s, t, . . . := • | ⟨⟩ | ⟨t1, t2⟩ | κα.c | κ⊥.c | κ(α1, α2).c | κN,ζα.(c ; s) | der(p)

c, d, . . . := t ⋆ p

(t-n)
⊢ N , α : P⊥ | α : P

(t-1)
⊢ N | () : 1

⊢ N | p1 : P1 ⊢ N | p2 : P2
(t-⊗)

⊢ N | (p1, p2) : P1 ⊗ P2

⊢ N | p : Pi i ∈ {1, 2}
(t-⊕)

⊢ N | ini(p) : P1 ⊕ P2

c ⊢ N , P
(t-κ̃)

⊢ N | κ̃.c : P
⊢ N | p : P [µζ.P/ζ+]

(t-µ)
⊢ N | fd(p) : µζ.P

⊢ N | t : N
(t-!)

⊢ N | t! : !N
(t-•)

⊢ N , P | • : P⊥

(t-⊤)
⊢ Γ | ⟨⟩ : ⊤

⊢ Γ | t1 : N1 ⊢ Γ | t2 : N2
(t-&)

⊢ Γ | ⟨t1, t2⟩ : N1 &N2

c ⊢ N , α : N [, P]
(t-κ)

⊢ N [, P] | κα.c : N
c ⊢ Γ

(t-⊥)
⊢ Γ | κ⊥.c : ⊥

c ⊢ N , α1 : N1, α2 : N2[, P]
(t-`)

⊢ N [, P] | κ(α1, α2).c : N1 `N2

c ⊢ N , P, α : R⊥ [
P⊥/ζ−

]
⊢ N [, Q] | s : P⊥

(t-ν)
⊢ N [, Q] | κR⊥,ζα.(c ; s) : νζ.R

⊥

⊢ N | p : P
(t-?)

⊢ N | der(p) : ?P
⊢ N [, P] | t : N ⊢ N | p : N⊥

(t-cut)
t ⋆ p ⊢ N [, P]

Fig. 2. Syntax of terms and typing rules

In other words, we can use freely weakening on negative formulas in the context. Assume that ⊢ N , P |
s : N . We have ⊢ N , α : N | α : N⊥ and hence s ⋆ α ⊢ N , α : N,P so that ⊢ N , α : N | κ̃.(s ⋆ α) : P , we
shall often use this kind of change of active formula.

2.1 Substitution of terms in terms

Substitution for a variable α and for • are defined in the obvious way.

Lemma 2.6 Assume that ⊢ N | p : P .

• If c ⊢ N , α : P⊥[, Q] then c [p/α] ⊢ N [, Q],

• if ⊢ N , α : P⊥[, Q] | t : N then ⊢ N [, Q] | t [p/α] : N
• and if ⊢ N , α : P⊥ | q : Q then ⊢ N | q [p/α] : Q.

Lemma 2.7 Assume that ⊢ N [, Q] | t : N .

• If c ⊢ N , N⊥ then c [t/•] ⊢ N [, Q] and

• if ⊢ N , N⊥ | s : M then ⊢ N [, Q] | s [t/•] : M .

As a particular case of (t-ν), if c ⊢ N , P, α : R⊥ [
P⊥/ζ−

]
then ⊢ N , P | κR⊥,ζα.(c ; •) : νζ.R⊥ since

⊢ N , P | • : P⊥. We use (t-ν1) for this most important derived rule and use the notation κR⊥,ζα.c =
κR⊥,ζα.(c ; •).

2.2 Substitution of terms in formulas

Assume that ⊢ N , P | s : N , let Q be a positive formula and let ζ be a variable. Let also π be a type
valuation such that ζ+, ζ− /∈ dom(π). Then we define two negative terms Q [π, s/ζ+] and Q [π, s/ζ−] in

5

Ehrhard, Jafarrahmani, Saurin

s ⋆ κ̃.c → c [s/•] κα.c ⋆ p → c [p/α] if p /∈ κ̃

⟨s1, s2⟩ ⋆ ini(p) → si ⋆ p κ(α1, α2).c ⋆ (p1, p2) → c [p1/α1, p2/α2]

κ⊥.c ⋆ () → c der(p) ⋆ s! → s ⋆ p

κR⊥,ζα.(c ; s) ⋆ fd(p) → (R
[
κR⊥,ζα.c/ζ

+
]
⋆ p) [κα.(c [s/•])/•]

Fig. 3. Reduction of commands

such a way that

⊢ N , Q
[
π, P/ζ+

]
| Q

[
π, s/ζ+

]
: Q⊥

[
π⊥, N/ζ−

]
⊢ N , Q

[
π,N/ζ−

]
| Q

[
π, s/ζ−

]
: Q⊥

[
π⊥, P/ζ+

]
.

In the first case (called positive substitution) we assume that fv(Q) ⊆ dom(π) ∪ {ζ+} and in the second
case (negative substitution), that fv(Q) ⊆ dom(π) ∪ {ζ−}. The definition is by induction on Q. We give
only the most interesting cases, the others are in Appendix 6.1.

▷ Assume that Q = µξ.R and let us set RP = R [P/ζ+] and RN = R
[
N⊥/ζ+

]
. Let ρ = π ·(µξ.RP [π] /ξ+).

By inductive hypothesis we have defined t = R [ρ, s/ζ+] with ⊢ N , RP [ρ] | t : R⊥
N

[
ρ⊥

]
. We have ⊢ N , α :

R⊥
N

[
ρ⊥

]
| κ̃.(t ⋆ α) : RP [ρ]. Notice that, due to the definition of ρ, we have RS [ρ] = RS [π] [µξ.RP [π] /ξ+]

for S = P,N . It follows that ⊢ N , α : R⊥
N

[
ρ⊥

]
| fd(κ̃.(t ⋆ α)) : µξ.RP [π]. Therefore (• ⋆ fd(κ̃.(t ⋆ α))) ⊢

N , µξ.RP [π] , α : R⊥
N

[
ρ⊥

]
= (RN [π] [µξ.RP [π] /ξ+])⊥ so we define (µξ.R) [π, s/ζ+] as κR⊥

N [π⊥],ζα.(• ⋆

fd(κ̃.(t ⋆ α))) by (t-ν1).

▷ Assume last that Q = !R⊥. By inductive hypothesis we have defined t = R
[
π⊥, s/ζ−

]
which satisfies

⊢ N , R
[
π⊥, N/ζ−

]
| t : R⊥ [π, P/ζ+]. It follows that ⊢ N , α : R⊥ [π, P/ζ+] | κ̃.(t ⋆ α) : R

[
π⊥, N/ζ−

]
and

hence ⊢ N , α : R⊥ [π, P/ζ+] | der(κ̃.(t⋆α)) : ?R
[
π⊥, N/ζ−

]
so that ⊢ N , β : ?R

[
π⊥, N/ζ−

]
| κα.(der(κ̃.(t⋆

α)) ⋆ β) : R⊥ [π, P/ζ+]. Next we obtain ⊢ N , β : ?R
[
π⊥, N/ζ−

]
| κα.(der(κ̃.(t ⋆ α)) ⋆ β)! : !R⊥ [π, P/ζ+] so

that ⊢ N , !R⊥ [π, P/ζ+] | κβ.(• ⋆ κα.(der(κ̃.(t ⋆ α)) ⋆ β)!) : ?R
[
π⊥, N/ζ−

]
and we define !R⊥ [π, s/ζ+] as

the term κβ.(• ⋆ κα.(der(κ̃.(t ⋆ α)) ⋆ β)!).
In the same induction we define completely similarly the negative substitution Q [π, s/ζ−].

2.3 Reduction relation

We equip commands with a deterministic rewriting relation → specified in Figure 3. We use κ̃ for the set
of all positive terms of shape κ̃.c. The reduction of κR⊥,ζα.(c ; s) ⋆ fd(p) deserves some typing. We must

have ⊢ N | p : R [µζ.R/ζ+] so that ⊢ N | fd(p) : µζ.R, c ⊢ N , P, α : R⊥ [
P⊥/ζ−

]
and ⊢ N [, Q] | s : P⊥ so

⊢ N [, Q] | κR⊥,ζα.(c ; s) : νζ.R
⊥ by (t-ν) and hence κR⊥,ζα.(c ; s) ⋆ fd(p) ⊢ N [, Q].

We also have ⊢ N , P | κR⊥,ζα.c : νζ.R⊥ by (t-ν1). By positive substitution we get ⊢ N , R [P/ζ+] |
R
[
κR⊥,ζα.c/ζ

+
]
: R⊥ [

νζ.R⊥/ζ−
]
and hence R

[
κR⊥,ζα.c/ζ

+
]
⋆ p ⊢ N , R [P/ζ+]. Observe last that ⊢

N , P | κα.c : R⊥ [
P⊥/ζ−

]
thus ⊢ N [, Q] | κα.(c [s/•]) : R⊥ [

P⊥/ζ−
]
so that

(R
[
κQ⊥,ζα.c/ζ

+
]
⋆ p) [κα.(c [s/•])/•] ⊢ N [, Q].

As a special case of this reduction rule we have the following one that we shall often use:
κR⊥,ζα.c ⋆ fd(p) → (R

[
κR⊥,ζα.c/ζ

+
]
⋆ p) [κα.c/•].

Theorem 2.8 If c ⊢ Γ and c → c′ then c′ ⊢ Γ.

The proof is an easy verification, using Lemmas 2.6 and 2.7.
We use SN for the set of all c’s which are normalizing for this reduction relation.

6

Ehrhard, Jafarrahmani, Saurin

a, b, · · · := ∗ | (j, ζ) | (a, b) | (i, a) | [a1, . . . , an] | σ(a) with j ∈ I and i ∈ {1, 2}

sz(∗) = sz (j, ζ) = 1 sz(a, b) = sz(a) + sz(b) sz (i, a) = sz(σ(a)) = 1 + sz(a) sz([a1, . . . , an]) = 1 +
n∑

i=1

sz(ai)

(p-var)
(j, ζ) : ζ

(p-1)
∗ : 1

a : P b : Q ∀ξ(rgξa ∩ rgξb = ∅)
(p-⊗)

(a, b) : P ⊗Q

(ai : N
⊥)ni=1 ∀ξ ∀i ̸= i′(rgξai ∩ rgξai′ = ∅)

(p-!)
[a1, · · · , an] : !N

a : Pi
(p-⊕)

(i, a) : P1 ⊕ P2

a : P [µζ.P/ζ+]
(p-µ)

σ(a) : µζ.P

k ∈ N
(s-1)

∗ 1̃ k[∗]
ai P̃i [a

i
1, . . . , a

i
n] for i = 1, 2

(s-⊗)
(a1, a2) P̃1 ⊗ P2 [(a

1
1, a

2
1), . . . (a

1
n, a

2
n)]

k =
⊎n

i=1 Ji (aj : N
⊥)kj=1

(s-!)
[a1, . . . , ak] !̃N [[aj | j ∈ Ji] | i = 1, . . . , n]

i ∈ {1, 2} a P̃i [a1, . . . , an]
(s-⊕)

(i, a) P̃1 ⊕ P2 [((i, a1), . . . , (i, an))]

a ˜R [µζ.R/ζ+] [aj | j ∈ J]
(s-µ)

σ(a) µ̃ζ.R [σ(aj) | j ∈ J]

Fig. 4. Syntax, size, typing rules and structural relation for points

Remark 2.9 Our choice of reducing the “critical pair” κα.c⋆ κ̃.d to d [κα.c/•] and not to c [κ̃.d/α] will be
essential in our proof of normalization. However this choice is not as critical as in classical systems such
as system L [11] or the λµ-calculus [31,30]: our denotational semantics is compatible with both choices.

Lemma 2.10 If c ⊢ N , P , c → c′ and ⊢ N | s : P⊥ then c [s/•] → c′ [s/•]. If c ⊢ N , α : P⊥[, Q], c → c′

and ⊢ N | p : P with p /∈ κ̃ then c [p/α] → c′ [p/α].

The proof is a simple inspection of the reduction rules.

2.4 The example of integers

We define a type of integers as nat = µζ.(1⊕ ζ+). We set 0 = fd(in1()) so that ⊢ N | 0 : nat and given a
positive term p such that ⊢ N | p : nat we set suc p = fd(in2(p)) so that ⊢ N | suc p : nat. Let p, t and s
be such that ⊢ N | p : P , ⊢ N , P | t : P⊥ and ⊢ N [, Q] | s : P⊥. Then ⊢ N , P | ⟨κ⊥.(• ⋆ p), t⟩ : ⊥ & nat⊥

and we set it(p, t ; s) = κ⊥&ζ−,ζα.((⟨κ⊥.(• ⋆ p), t⟩ ⋆ α) ; s) so that ⊢ N [, Q] | it(p, t ; s) : nat⊥ and it(p, t ; s)
should be understood as iterating the function t with p as initial value and s as continuation. Indeed one
can check that (1 ⊕ ζ+) [u/ζ+] = ⟨κα.(• ⋆ in1 α), κα.(• ⋆ in2(κ̃.(u ⋆ α)))⟩ from which it follows by simple
computations that it(p, t ; s) ⋆ 0 →∗ s ⋆ p and it(p, t ; s) ⋆ suc q →∗ it(p, t ; t [s/•]) ⋆ q.

3 An intersection typing system

3.1 The syntax of points

Let I be an infinite and countable set of indices (we can take I = N). The syntax of relational types
or points is given in Figure 4, as well as the size sz(a) of a point, which is an integer ≥ 1. Given a
point a and a literal ξ, we define a finite subset rgξ(a) of I as follows: rgξ∗ = ∅, rgξ(a, b) = rgξa ∪ rgξb,
rgξ(j, ξ) = {j}, rgξ(j, ζ) = ∅ if ζ ̸= ξ, rgξ(i, a) = rgξa, rgξ[a1, . . . , an] =

⋃n
i=1 rgξai and rgξσ(a) = rgξa. We

give a typing system for these points in Figure 4. Its main purpose is to enforce that, when a : P , given
a literal ζ, the indices of I associated with ζ in a are pairwise distinct. Given a0 : R, a literal ζ and a

family of points
−→
b = (bj)j∈rgζa0 such that bj : P for all j and such that for any literal ξ the sets rgξbj

are pairwise disjoint and disjoint from rgξa
0 (when these disjointness conditions hold we say that the pair

(a0,
−→
b) is adapted) then we define in the obvious way the point a0{bj/(j, ζ)}j∈J for J = rgζa

0 such that

7

Ehrhard, Jafarrahmani, Saurin

(ai P̃i [])i∈n\{j}
(i-n)

⊢ Φ | αj : aj : Pj

(ai P̃i [])
n
i=1

(i-1)
⊢ Φ | () : ∗ : 1

(⊢ (αi : a
j
i : P

⊥
i)ni=1 | pj : bj : Qj)j=1,2 (ai P̃i [a

1
i , a

2
i])

n
i=1

(i-⊗)
⊢ Φ | (p1, p2) : (b1, b2) : Q1 ⊗Q2

⊢ Φ | p : a : Qi
(i-⊕)

⊢ Φ | ini(p) : (i, a) : Q1 ⊕Q2

c ⊢ Φ, a : P
(i-κ̃)

⊢ Φ | κ̃.c : a : P

⊢ Φ | p : a : P [µζ.P/ζ+]
(i-µ)

⊢ Φ | fd(p) : σ(a) : µζ.P

(⊢ (αi : a
j
i : P

⊥
i)ni=1 | s : bj : N)j∈J (ai P̃i [a

j
i | j ∈ J])ni=1

(i-!)
⊢ Φ | s! : [bj | j ∈ J] : !N

(ai P̃i [])
n
i=1

(i-•)
⊢ Φ, a : P | • : a : P⊥

c ⊢ Φ, α : a : N [, b : P]
(i-κ)

⊢ Φ[, b : P] | κα.c : a : N

c ⊢ Φ, α1 : a1 : N1, α2 : a2 : N1[, b : P]
(i-`)

⊢ Φ[, b : P] | κ(α1, α2).c : (a1, a2) : N1 `N2

c ⊢ Φ[, a : P]
(i-⊥)

⊢ Φ[, a : P] | κ⊥.c : ∗ : ⊥
⊢ Φ[, a : P] | si : b : Ni ⊢ N [, P] | s3−i : N3−i

(i-&)
⊢ Φ[, a : P] | ⟨s1, s2⟩ : (i, b) : N1 &N2

⊢ Φ | p : a : P
(i-?)

⊢ Φ | der(p) : [a] : ?P

⊢ (αi : a
1
i : P

⊥
i)[, a : P] | s : b : P⊥ ⊢ (αi : a

2
i :) | p : b : P (ai P̃i [a

1
i , a

2
i])

n
i=1

(i-cut)
(t ⋆ p) ⊢ Φ[, a : P]

Fig. 5. Point deduction system — the rule (i-ν) is given in the body of Section 3.2.

a0{bj/(j, ζ)}j∈J : R [P/ζ+]. One proves easily that, for any literal ξ

rgξa
0{bj/(j, ζ)}j∈J = rgξa

0 ⊎
⊎

j∈rgζa0
rgξbj . (1)

Crucially, this point substitution is in some sense reversible.

Lemma 3.1 Let R and P be positive formulas and let ζ be a literal. Let a be a point such that a : R [P/ζ+].
Let J ⊆ I be an infinite set. There is a point a0 such that a0 : R and rgζa

0 ⊆ J and there is a family of

points
−→
b = (bj)j∈rgζa0 such that bj : P for all j ∈ rgζa

0, (a0,
−→
b) is adapted and a = a0{bj/(j, ζ)}j∈rgζa0.

Given a closed positive type P , we define a binary relation P̃ between points a and multisets of points
[a1, . . . , an]) where a, a1, . . . , an : P . The definition is provided as a deduction system in Figure 4. Notice
that in each of the deduction rules the sum of the sizes of the points occurring on the left in the premises
is strictly smaller than the size of the point occurring on the left in the conclusion. So the size of such a
deduction tree is upper-bounded by the size of the point occurring on the left in its conclusion.

3.2 The point typing system

A negative point typing context is a sequence Φ = (α1 : a1 : N1, . . . , αk : ak : Nk) where the αi’s are
pairwise distinct and ai : N

⊥
i for each i. A positive point typing context is a sequence Φ, a : P with a : P .

In these rules we use Φ to denote the context (αi : ai : P
⊥
i)ni=1 and N for the ordinary typing context

(αi : P
⊥
i)ni=1. All rules but (i-ν) are given in Figure 5. Notice that there are two instances of the rules

(i-⊕) and (i-&), one for i = 1 and one for i = 2. We give now the lacking (i-ν) inference rule: if h : Q,
d : R, (bl : P)l∈L where L = rgζd, and

• ⊢ (αi : a
′′
i : P⊥

i)ni=1[, h : Q] | s : b : P⊥

• c ⊢ (αi : a
′
i : P

⊥
i)ni=1, b : P, α : d{bl/(l, ζ)}l∈L : R⊥ [

P⊥/ζ−
]

• (⊢ (αi : a
l
i : P

⊥
i)ni=1, bl : P | κR⊥,ζα.c : fl : νζ.R

⊥)l∈L

8

Ehrhard, Jafarrahmani, Saurin

• ai P̃i [a
′
i, a

′′
i] + [ali | l ∈ L] for i = 1, . . . , n

then ⊢ Φ[, h : Q] | κR⊥,ζα.(c ; s) : σ(d){fl/(l, ζ)}l∈L : νζ.R⊥.

Upon taking s = • we obtain the following derived rule (i-ν1) (with the same notations as above). If

• c ⊢ (αi : a
′
i : P

⊥
i)ni=1, b : P, α : d{bl/(l, ζ)}l∈L : R⊥ [

P⊥/ζ−
]

• (⊢ (αi : a
l
i : P

⊥
i)ni=1, bl : P | κR⊥,ζα.c : fl : νζ.R

⊥)l∈L

• ai P̃i [a
′
i] + [ali | l ∈ L] for i = 1, . . . , n

then ⊢ Φ, b : P | κR⊥,ζα.c : σ(d){fl/(l, ζ)}l∈L : νζ.R⊥.

3.3 Interpretation of points

Given a set P of positive terms p such that ⊢| p : P , we set P• = {c | c ⊢ P and ∃p ∈ (P \ κ̃) c →∗ • ⋆ p}
and P κ̃ = P ∪ {κ̃.c | c ∈ P•} so that any p ∈ P κ̃ satisfies ⊢| p : P . We set ‚ = SN. Given a : P we define
‚(a : P) = |a|P • and we set |a|P = ∥a∥κ̃P where

• ∥ ∗ ∥1 = {()}
• ∥(a1, a2)∥P1⊗P2 = {(p1, p2) | pi ∈ |ai|Pi for i = 1, 2}
• ∥(i, a)∥P1⊕P2 = {ini(p) | p ∈ |a|Pi} for i = 1, 2

• ∥[aj | j ∈ J]∥!N = {t! | ∀j ∈ J ∀p ∈ |aj |N⊥ t ⋆ p ∈ ‚} – notice that in that formula ⊢| t : N .

• ∥σ(a)∥µζ.P = {fd(p) | p ∈ |a|P [µζ.P/ζ+]}.

Notice that ∥a∥P = |a|P \ κ̃ since ∥a∥P ∩ κ̃ = ∅. As an auxiliary notion, given a : P and b : N⊥ we set
|b|N (a : P) = {s | ⊢ P | s : N and ∀p ∈ |b|N⊥ s ⋆ p ∈ ‚(a : P)}. We will also use |b|N for the set of s such
that ⊢| s : N and ∀p ∈ |b|N⊥ s ⋆ p ∈ ‚.

Lemma 3.2 Let a : P , b : Q and s be such that ⊢ P | s : Q⊥. If ∀p ∈ ∥b∥Q s ⋆ p ∈ ‚(a : P) then
s ∈ |b|Q⊥(a : P).

Lemma 3.3 If a P̃ [a1, . . . , an]. Then ∥a∥P ⊆ ∥ai∥P and |a|P ⊆ |ai|P for 1 ≤ i ≤ n.

Lemma 3.4 Let P be a closed positive formula and let a : P . If b : P , one has a P̃ [b] iff a = b. Let

(bj : P)j∈J , (Jk)k∈K be such that
⊎

k∈K Jk = J . Then one has a P̃ [bj | j ∈ J] iff there is (ck : P)k∈K such

that a P̃ [ck | k ∈ K] and ck P̃ [bj | j ∈ Jk] for each k ∈ K.

Proof. Straightforward induction on the size of a. 2

Upon taking K = J = ∅ this implies in particular ∃e : P e P̃ []. Such an e is called a coneutral point

of P . By Lemma 3.4, if a P̃ [e, b] and e is coneutral then a = b, and if a : P there is a coneutral e such

that a P̃ [e, a] (which depends generally on a). Coneutral points are generally not unique: for instance in
1⊕ 1, both (1, ∗) and (2, ∗) are coneutral.

Lemma 3.5 Let Q be a positive formula, η a literal, π a closed type valuation such that all free type

variables of Q, but possibly η+, η−, are in dom(π). Let d : Q [π], assume that ⊢ (αi : a
j
i : Ni)

n
i=1, bj : P |

s : cj : N for each j ∈ rgηd. If (ai : N
⊥
i)ni=1 are such that for all i ∈ n one has ai Ñ⊥

i [aji | j ∈ rgηd] then

⊢ (αi : ai : Ni), d{bj/(j, η)}j∈rgηd : Q [π, P/η+] | Q [π, s/η+] : d{cj/(j, η)}j∈rgηd : Q⊥ [
π⊥, N/η−

]
and

⊢ (αi : ai : Ni), d{cj/(j, η)}j∈rgηd : Q [π,N/η−] | Q [π, s/η−] : d{bj/(j, η)}j∈rgηd : Q⊥ [
π⊥, P/η+

]
.

Lemma 3.6 Let Q be a positive formula, η a literal, π a closed type valuation such that all free type
variables of Q, but possibly η+, η−, are in dom(π) and let d : Q [π]. If s ∈ |cj |N (bj : P) for all j ∈ J = rgηd

then Q [π, s/η+] ∈ |d(−→c)|Q⊥[π⊥,N/η−](d(
−→
b) : Q [π, P/η+]) where d(

−→
b) = d{bj/(j, η)}j∈rgηd and similarly

for d(−→c). And we have Q [π, s/η−] ∈ |d(
−→
b)|Q⊥[π⊥,P/η+](d(

−→c) : Q [π,N/η−]).

9

Ehrhard, Jafarrahmani, Saurin

3.4 Example: the integers

We continue the example initiated in Section 2.4. There is a bijection from N to the points a : nat which
maps 0 to 0 = σ(1, ∗) and n+ 1 to n+ 1 = σ(2, n). With these notations the following rules are derivable
in the point typing system.

• If (ai Ñi [])
n
i=1 then ⊢ (αi : ai : Pi)

n
i=1 | 0 : 0 : nat.

• If ⊢ Φ | p : k : nat then ⊢ Φ | suc p : k + 1 : nat.

• If ⊢ (αi : a
1
i : Ni)

n
i=1 | p : a : P , ⊢ (αi : a

2
i : Ni)

n
i=1[, b : Q] | a : s : P⊥ and (ai Ñ⊥

i [a1i , a
2
i])

n
i=1 then

⊢ (αi : ai : Ni)
n
i=1[, b : Q] | it(p, t ; s) : 0 : nat⊥.

• If ⊢ (αi : a
1
i : Ni)

n
i=1[, b : Q] | s : a : P⊥, ⊢ (αi : a

2
i : Ni)

n
i=1, a : P | t : a′ : P⊥, ⊢ (αi : a

3
i : Ni)

n
i=1, a

′ : P |
it(p, t ; •) : n : nat⊥ and (ai Ñ⊥

i [a1i , a
2
i , a

3
i])

n
i=1 then ⊢ (αi : ai : Ni)

n
i=1[, b : Q] | it(p, t ; s) : n+ 1 : nat⊥.

3.5 Interpretation Theorem

Using the previous lemmas it is not very hard to relate the point typing system with normalization.

Theorem 3.7 Let Φ = (αi : ai : P
⊥
i)ni=1 be a point context and let a : P , let pi ∈ |ai|Pi for i = 1, . . . , n.

(i) If c ⊢ Φ then c[pi/αi]
n
i=1 ∈ ‚.

(ii) If c ⊢ Φ, a : P then c[pi/αi]
n
i=1 ∈ ‚(a : P).

(iii) If ⊢ Φ | s : b : N then s[pi/αi]
n
i=1 ∈ |b|N .

(iv) If ⊢ Φ, a : P | t : b : N then t[pi/αi]
n
i=1 ∈ |b|N (a : P).

(v) If ⊢ Φ | p : a : P then p[pi/αi]
n
i=1 ∈ |a|P .

3.6 Application: a normalization property

Anticipating on Section 5, we explain now how one can use Theorem 3.7, combined with the Nuts
denotational semantics of Section 5.1, to prove “normalization” properties for κµLLP commands. More
precisely we show that the reduction of programs of type integer in κµLLP terminates but of course many
more applications are possible. We explain first why the type of such a program should be ?nat and not
nat.

Imagine that we want to encode in κµLLP a typed λ-calculus extended with primitive recursion on
some data types, in the spirit of Gödel’s T; we shall simply call this system T. This calculus will have
two kinds of types: data-types which are associated with positive formulas of κµLLP and function types
σ ⇒ τ . In T there will be at least a data-type of integers ι associated with nat and possibly other ones, for
instance a type of binary trees with leaves labeled by natural numbers associated with µζ.(nat⊕ (ζ ⊗ ζ)).
We would like to use the Girard encoding (σ ⇒ τ)− = !σ− ⊸ τ− where as usual A ⊸ B = A⊥ ` B. In
other words (σ ⇒ τ)− = ?(σ−)⊥ ` τ−. The polarity constraints of κµLLP require σ− to be negative, this
prevents us from setting simply ι− = nat since nat is positive. For benefiting from the structural rules
available for free on all negative formulas in κµLLP we introduce also a positive translation defined by
ι+ = nat (and similarly for all data-types of T) and σ+ = !σ− if σ is not a data-type and then the negative
translation can be defined by ι− = ?nat (and similarly for all data-types) and (σ ⇒ τ)− = (σ+)⊥`τ−. For
instance ((ι ⇒ ι) ⇒ ι)− = ?(nat⊗ !nat⊥)` ?nat. A closed term of type ι of T will therefore be translated
into a κµLLP negative term t such that ⊢| t : ?nat and we can form c = t ⋆ α. Now we explain how we can
extract effectively a value ∈ N from such a c which satisfies c ⊢ ?nat.

First we define two mutually recursive partial functions val (on terms p such that ⊢| p : nat) and val⊕

(on terms q such that ⊢| q : 1⊕ nat) with values in N. If ⊢| p : nat then

• if p = fd(q) then we have ⊢| q : 1⊕ nat and we take val p = val⊕ q;

• else if p = κ̃.c then if c →∗ • ⋆ p0 ∈ ‚ (that is p0 /∈ κ̃) then ⊢| p0 : nat and we take val p = val p0.

And if ⊢| q : 1⊕ nat then

10

Ehrhard, Jafarrahmani, Saurin

• if q = in1 r then if r = () or if r = κ̃.c and c →∗ • ⋆ (), then val⊕ q = 0;

• if q = in2 p
′ then we have ⊢| p′ : nat and we take val⊕ q = 1 + val p′;

• if q = κ̃.c and c →∗ •⋆q0 ∈ ‚ (that is q0 /∈ κ̃) then we have ⊢| q0 : 1⊕nat and we take val⊕ q = val⊕ q0.

Lemma 3.8 If ⊢| p : nat and p ∈ |n|nat for some n ∈ N then val p is defined and has n as value.

The proof is a straightforward application of the definition of |n|nat. This lemma means that when we
know that p ∈ |n|nat for some n we can extract algorithmically the value of n from p.

Then we extend κµLLP with a constant ◦ which is a new command, typed by ◦ ⊢ N where N is an
arbitrary negative context 9 . We also extend the point typing system with the rule ◦ ⊢ (αi : ai : Ni)

n
i=1

under the proviso that ai Ñ⊥
i [] for all i ∈ n. The benefit of this extension is that now ‚ contains closed

commands.
We have ⊢| () : 1, ⊢ 1 | • : ⊥ and ⊢| κ⊥.◦ : ⊥. Therefore ⊢| rd = it((), • ;κ⊥.◦) : nat⊥. This negative

term is a “reader of integer” which behaves as follows: rd ⋆0 →∗ ◦ and rd ⋆ suc p →∗ rd ⋆p. By induction on
n ∈ N it is not hard to check that ∀n ∈ N ⊢| rd : n : nat⊥. Let m = [n1, . . . , nk] : ?nat, we have therefore

⊢| rd! : m : !nat⊥ and hence rd! ∈ ∥m∥!nat⊥ by Theorem 3.7.

If c ⊢ α : m = [n1, . . . , nk] : ?nat then by Theorem 3.7 we have c
[
rd!/α

]
∈ ‚. By Lemma 2.10 this

implies that the reduction of c terminates, so that c →∗ t ⋆ α where ⊢ α : m1 : ?nat | t : m2 : ?nat, t is not
of shape κβ.d and m = m1 +m2. So we must have t = der(p) with ⊢ α : m1 : ?nat | p : n : nat for some

n ∈ N and m2 = [n]. So by Theorem 3.7 we have p
[
rd!/α

]
∈ |n|nat and hence by Lemma 3.8 val p = n. As

a whole we have described an algorithm which, under the assumption that c ⊢ α : m : ?nat for some m,
produces an integer n that we denote as valα c, and we have m = m1 + [n].

By the results of Section 4 and 5 we know that the interpretation of JcK?nat in Rel belongs to T (J?natK)
where J?natK is the interpretation of ?nat in Nuts (that is JcK?nat is total in the interpretation of that
type). As explained in Section 5.4 Jnat⊥K = (N, {N}) and hence T (J!nat⊥K) = {Mfin(N)}. Therefore
JcK?nat ∩Mfin(N) ̸= ∅ that is JcK?nat ̸= ∅ so by Theorem 5.13 there is m : ?nat such that c ⊢ α : m : ?nat.

Assume c ⊢ ?nat and c does not contain ◦. By the considerations above the integer n = valα c is
well defined (and we have given an algorithm to compute it consisting in executing κµLLP commands).
Moreover c ⊢ α : m1 + [n] : ?nat for some m1 : ?nat. Using the model RelW introduced in [4] (it is
a variation on the relational model where each object is a set E equipped with a function E → Z) it is
possible to prove that, because c does not contain ◦, one has m1 = []. So we actually have c ⊢ α : [n] : ?nat,
that is, the value obtained by execution coincides with the value provided by the semantics.

4 Categorical semantic of κµLLP

We use the following conventions: The identity morphism on an object A is written as A, and we very
often simply write Id for the sake of readability, when the object can easily be retrieved from the context.
AlgA(F) (resp. CoalgA(F)) is the category of algebra (resp. co-algbera) of the endofunctor F on A. Other
notations are based on [18].

Let (L,
−→
L = (Ln)n∈N) be a categorical model of µLL in the sense of [18], Definition 7. We recall that L

is a categorical model of LL and that the elements F of Ln are strong functors Ln → L, that is F is a pair

(F, F̂) where F : Ln → L is a functor, and F̂
A,

−→
B

∈ L(!A ⊗ F(
−→
B),F(!A ⊗

−→
B)) is a natural transformation,

called strength, satisfying monoidality and compatibility with dig, see [18] Figure 1. Some additional
closedness properties must be satisfied by the Ln’s, see [18], Definition 7.

Definition 4.1 A (n, p)− positive functor P is a pair (P, P̃) where P ∈ Ln+p and P̃−→
A,

−→
B

∈

L(P(
−→
A,

−→
!B), !P(

−→
A,

−→
B)) is a natural transformation called the distributive law of P. It is assumed moreover

that the diagrams of Figure 6 commute, expressing the compatibility of P̃ with der, dig, and P̂.

9 This may seem surprising at first sight but remember that weakening is freely available for all negative formulas.
So the real meaning of this rule is ◦ ⊢ which is the familiar 0-ary mix rule of LL. It is easy to check that all properties
of κµLLP proven so far are still valid for this extension.

11

Ehrhard, Jafarrahmani, Saurin

P(
−→
A,

−→
!B) !P(A,B)

P(
−→
A,

−→
B)

P̃−→
A,

−→
B

P(
−→
A ,der−→

B
)

derP(A,B)

P(
−→
A,

−→
!B) !P(

−→
A,

−→
B)

P(
−→
A, !!

−→
B)

!P(
−→
A,

−→
!B) !!P(

−→
A,

−→
B)

P̃−→
A,

−→
B

P(
−→
A ,dig−→

B
)

digP(−→A,
−→
B)

P̃−→
A,

−→
!B

!P̃−→
A,

−→
B

!!C ⊗ P(
−→
A,

−→
!B) P(!!C ⊗

−→
A, !!C ⊗

−→
!B)

!!C ⊗ !P(
−→
A,

−→
B) P(!C ⊗

−→
A, !(!C ⊗

−→
B))

!(!C ⊗ P(
−→
A,

−→
B)) !P(!C ⊗

−→
A, !C ⊗

−→
B)

P̂
!C,(

−→
A,

−→
B)

!!C⊗P̃−→
A,

−→
B

P(der!C⊗
−→
A ,µ2

!C,
−→
B
)

µ2

!C,P(−→A,
−→
B)

P̃
!C⊗

−→
A,!C⊗

−→
B

!P̂
C,(

−→
A,

−→
B)

Fig. 6. Compatibility of P̃ with der, dig, and P̂

Lemma 4.2 Any (n, p)− positive functor P induces a functor P+ : Ln × (L!)p → L!.

As a consequence of Lemma 4.2, a (0, 0)− positive functor P induces an object of L!, and and in that

case P̃ = hP.
We write X,Y, · · · for objects of the category L!, and A,B, · · · for those of L. We recall that L[Z] is

the Kleisli category of the comonad (fcZ ,WZ ,CZ) where fcZ : L → L is the functor which maps an object
A to Z⊗A and a morphism f to Z⊗f , and WZ , CZ are weakening and contraction morphism respectively.

Given a strong functor F ∈ Lk and object Z = (Z, hZ) ∈ L!, one can extend F to a functor F[Z] :

L[Z]k → L[Z]. On objects, one sets F[Z](
−→
A) = F(

−→
A). And given a morphism

−→
f ∈ L[Z]k(

−→
A1,

−→
A2), we

define F[Z](
−→
f) as (F(

−→
f)) ◦ (F(derZ ⊗

−→
A1) ◦ ((F̂Z,

−→
A1

) ◦ (hZ ⊗ F(A1))):

Lemma 4.3 Let P = (P, P̃) be a positive functor and f ∈ L!(Z ⊗ X,Y). If P is a (n, p + 1)− positive
functor, then

P[Z](
−→
Id ,

−→
Id , f) ∈ L!(Z ⊗ P+(

−→
A,

−→
Y1, X),P+(

−→
A,

−→
Y1, Y)). And if P is a (n+ 1, p)− positive functor, then

P[Z](f⊥,
−→
Id ,

−→
Id) ∈ L!(Z ⊗ P+((Y)⊥,

−→
A,

−→
Y1),P+((X)⊥,

−→
A,

−→
Y1)).

4.1 Operations on positive functors

4.1.1 LL operations on positive functors
Given a (n, p)− positive functor P, strong functors F1, · · · ,Fn in Lk, and (n′, p′)− positive functors
Q1, · · · ,Qp such that n′ + p′ = k, one can define a (n′, p′)− positive functor
R = P ◦ (F1, · · · ,Fn,Q1, · · · ,Qp): the strong functor R is just P ◦ (F1, · · · ,Fn,Q1, · · · ,Qp) as [18]. The

distributive law is defined as follows, and satisfies commutations of Fig. 6.

12

Ehrhard, Jafarrahmani, Saurin

R(
−→
A,

−→
!B) = P((Fi(

−→
A,

−→
!B))ni=1, (Qi(

−→
A,

−→
!B))pi=1)

P((Fi(
−→
A,

−→
B))ni=1, (!Qi(

−→
A,

−→
B))pi=1)

!P((Fi(
−→
A,

−→
B))ni=1, (Qi(

−→
A,

−→
B))pi=1) = !R(

−→
A,

−→
B)

P((Fi(
−→
A ,der−→

B
))ni=1

,(Q̃i)
p
i=n+1)

P̃
(Fi(

−→
A,

−→
B))n

i=1
,Qi(

−→
A,

−→
B)

The bifunctor ⊗ can be turned into a (0, 2)− positive functor: the distributive law is µ2
A,B ∈ L(!A ⊗

!B, !(A⊗B)), and it satisfies commutations of Fig. 6.
The bifunctor ⊕ can be turned into a (0, 2)− positive functor: the distributive law is [π1, π2] ∈ L(!A⊕

!B, !(A⊕B)), and it satisfies commutations of Fig. 6.
The functor ! is a (1, 0)− positive functor: the distributive law is digA ∈ L(!A, !!A), and satisfies

commutations of Fig. 6.
Let P be a (n, p)− positive functor. One can define the De Morgan dual of it, denoted as P⊥, as a

strong functor: P⊥ = P⊥ and the last term is just P⊥.

4.1.2 Fixpoint of positive functors
Let P be a (n, p + 1)− positive functor. We must define a (n, p)−positive functor µP. We set µP = µP.
The distr. law µ̃P must be a natural transf. µ̃P−→

A,
−→
B

∈ L(µP(
−→
A,

−→
!B), !µP(

−→
A,

−→
B)). To define it, we first

notice that (!µP(
−→
A,

−→
B), P̃−→

A,(
−→
B,µP(

−→
A,

−→
B))

) is an object of CoalgL(P−→
A,

−→
B
). So, by the universal property of

µP(
−→
A,

−→
!B), there is a unique morphism µ̃P−→

A,
−→
B

such that the following diagram commutes:

P(
−→
A,

−→
!B,µP(

−→
A,

−→
!B)) P(

−→
A,

−→
!B, !µP(

−→
A,

−→
B))

µP(
−→
A,

−→
!B) !µP(

−→
A,

−→
B) !P(

−→
A,

−→
B,µP(

−→
A,

−→
B))

P(
−→
A ,

−→
!B,µ̃P−→

A,
−→
B
)

≃ P̃−→
A,(

−→
B ,µP(−→A,−→B))

µ̃P−→
A,

−→
B ≃

Lemma 4.4 Given a strong functor F ∈ Lk+1 and an object Z = (Z, hZ) in L!, there is a unique functor

µ(F[Z]) : L[Z]k → L[Z] such that µ(F[Z])(
−→
A) is the initial object of the category AlgL[Z](F−→

A
) for any

object
−→
A ∈ Lk, and µ(F[Z])(

−→
f) is the unique morphism satisfying commutation of the following diagram

for any
−→
f ∈ L[Z]k(

−→
B1,

−→
B2):

µ(F[Z])(
−→
B1) µ(F[Z])(

−→
B2)

F−→
B1

(µ(F[Z])(
−→
B1)) F−→

B1
(µ(F[Z])(

−→
B2)) F−→

B2
(µ(F[Z])(

−→
B2))

µ(F[Z])(
−→
f)

F−→
B1

(µ(F[Z])(
−→
f))

≃

F(
−→
f ,Id)

≃

where the composition is considered in category L[Z].

Lemma 4.5 Given a morphism g ∈ L[Z](Q(Y), Y) where Q is a (0, 1)− positive functor, there is a unique

morphism g̃ ∈ L[Z](µQ, Y) such that g̃ ∈ AlgL[Z](Q[Z])(µQ, Y).

Lemma 4.6 Given a (0, 1)− positive functor Q, and a morphism g ∈ L!(Z ⊗Q+(Y), Y), then there is a
unique morphism g̃ ∈ L!(Z ⊗ (µQ)+, Y) such that g̃ ∈ AlgL[Z](Q[Z])(µQ, Y).

13

Ehrhard, Jafarrahmani, Saurin

4.2 Interpretation of proofs and formulas

Definition 4.7 (
−→
ζ−,

−→
ξ+) = (ζ−1 , . . . , ζ−n , ξ+1 , . . . , ξ

+
p) is adapted to P (resp. N) if (

−→
ζ−,

−→
ξ+) is repetition-free

and all the free variables of P (resp. N) appear in that list.

Given a positive formula P with an adapted list (
−→
ζ−,

−→
ξ+) = (ζ−1 , . . . , ζ−n , ξ+1 , . . . , ξ

+
p), its interpreted is

a (n, p)− positive functor JP K−→
ζ−,

−→
ξ+
. If n = p = 0 we simply write JP K.

For a negative formula N with an adapted list (
−→
ζ−,

−→
ξ+) = (ζ−1 , . . . , ζ−n , ξ+1 , . . . , ξ

+
p), we define its inter-

pretation JNK−→
ζ−,

−→
ξ+

as (JN⊥K−→
ζ−,

−→
ξ+
)⊥.

One can define JP K−→
ζ−,

−→
ξ+

in the obvious way by induction on formulas and using the construction in

the section 4.1: JP1 ⊗ P2K−→
ζ−,

−→
ξ+

= ⊗ ◦ (JP1K−→
ζ−,

−→
ξ+
, JP2K−→

ζ−,
−→
ξ+
), JP1 ⊕ P2K−→

ζ−,
−→
ξ+

= ⊕ ◦ (JP1K−→
ζ−,

−→
ξ+
, JP2K−→

ζ−,
−→
ξ+
),

J!NK−→
ζ−,

−→
ξ+

= ! ◦ (JN⊥K−→
ζ−,

−→
ξ+
)⊥, and JµZ.P K−→

ζ−,
−→
ξ+

= µ(JP K−→
ζ−,

−→
ξ+,Z

).

Lemma 4.8 Let A be a formula and π be a type valuation N1/ξ
−
1 , . . . , Nn/ξ

−
n , P1/ζ

+
1 , . . . , Pk/ζ

+
k . Then

JA [π]K = JAK−→
ζ+,

−→
ξ+

◦ (JN1K, · · · , JNnK, JP1K, · · · , JPkK).

We define the interpretation of terms, as usual, by induction on proofs based on Figure 2. As we have
different judgments, we must have different ways of interpreting terms which is explained as follows:

• if ⊢ N | p : P , then JpK+N ∈ L!(JN⊥K, JP K);
• if ⊢ N , P | t : N , then JtK+N ,P ∈ L!(JN⊥K ⊗ JN⊥K, JP K);

• if c ⊢ N , P , then JcK+N ,P ∈ L!(JN⊥K, JP K);

• if ⊢ N | t : N , then JtKN ∈ L(JN⊥K ⊗ JN⊥K,⊥);

• if c ⊢ N , then JcKN ∈ L(JN⊥K,⊥).

We only give the details of the interpretation of κN,ζα.(c ; s), and the other cases are defined in 6.13.

By induction hypothesis, we know that JcK+N ,P,N[P⊥/ζ−]
∈ L!(JN⊥K ⊗ JN⊥ [P/ζ+]K, JP K), and JsK+N ∈

L!(JN⊥K ⊗ JP K, JQK).
By Lemma 4.8, JN⊥ [P/ζ+]K = (JN⊥Kζ+) ◦ (JP K). So, we have JcK+N ,P,N[P⊥/ζ−]

∈ L!(JN⊥K ⊗

JN⊥Kζ+(JP K), JP K). Hence, by Lemma 4.6, we have a morphism ˜JcK+N ,P,N[P⊥/ζ−]
∈ L!(JN⊥K ⊗

µJN⊥Kζ+ , JP K). And by the interpretation of formula, we know that Jµζ+.N⊥K = µJN⊥Kζ+ . So, we

have ˜JcK+N ,P,N[P⊥/ζ−]
∈ L!(JN⊥K ⊗ Jµζ+.N⊥K, JP K). Notice that ˜JcK+N ,P,N[P⊥/ζ−]

is a unique morphism by

lemma 4.6, so, we just take the following morphism of category L! as JκN,ζα.(c ; s)K+N ,Q:

JN⊥K ⊗ Jµζ+.N⊥K JN⊥K ⊗ JN⊥K ⊗ Jµζ+.N⊥K

JQK JN⊥K ⊗ JP K

CJN⊥K⊗Id

Id⊗ ˜JcK+
N ,P,N[P⊥/ζ−]

JsK+N ,Q

4.3 Soundness

We first state the substitution lemmas (Lemmas 4.9, 4.10 & 4.11).

Lemma 4.9 Assume that ⊢ N | p : P .

14

Ehrhard, Jafarrahmani, Saurin

If c ⊢ N , α : P⊥, then

JN⊥K JN⊥K ⊗ JN⊥K

⊥ JN⊥K ⊗ JP K

CJN⊥K

Jc[p/α]KN Id⊗JpK+N

JcKN ,P⊥

If c ⊢ N , α : P⊥, Q, then

JN⊥K JN⊥K ⊗ JN⊥K

JQK JN⊥K ⊗ JP K

CJN⊥K

Jc[p/α]K+N Id⊗JpK+N

JcK+
N ,P⊥,Q

If ⊢ N , α : P⊥ | t : N , then

JN⊥K ⊗ JN⊥K JN⊥K ⊗ JN⊥K ⊗ JN⊥K

⊥ JN⊥K ⊗ JP K ⊗ JN⊥K

CJN⊥K⊗Id

Jt[p/α]KN Id⊗JpK+N⊗Id

cur−1(JtKN ,P)

If ⊢ N , α : P⊥, Q | t : N , then

JN⊥K ⊗ JN⊥K JN⊥K ⊗ JN⊥K ⊗ JN⊥K

JQK JN⊥K ⊗ JP K ⊗ JN⊥K

CJN⊥K⊗Id

Jt[p/α]K+N Id⊗JpK+N⊗Id

JtK+
N ,P⊥,Q

if ⊢ N , α : P⊥ | q : Q, then

JN⊥K JN⊥K ⊗ JN⊥K

JQK JN⊥K ⊗ JP K

CJN⊥K

Jq[p/α]K+N Id⊗JpK+N

JqK+
N ,P⊥

Lemma 4.10 Assume that ⊢ N , Q | t : N .

If c ⊢ N , N⊥, then

JN⊥K JN⊥K ⊗ JN⊥K

JQK JN⊥K ⊗ JN⊥K

CJN⊥K

Jc[t/•]K+N ,Q
Id⊗JcK+

N ,N⊥

JtK+N ,Q

If ⊢ N , N⊥ | s : M , then

JN⊥K ⊗ JM⊥K JN⊥K ⊗ JN⊥K ⊗ JM⊥K

JQK JN⊥K ⊗ JN⊥K

CJN⊥K⊗Id

Js[t/•]K+N ,Q
Id⊗JsK+

N ,N⊥

JtK+N ,Q

Lemma 4.11 Assume that ⊢ N | t : N .

15

Ehrhard, Jafarrahmani, Saurin

If c ⊢ N , N⊥, then

JN⊥K JN⊥K ⊗ JN⊥K

⊥ JN⊥K ⊗ JN⊥K

CJN⊥K

Jc[t/•]KN Id⊗JcK+
N ,N⊥

JtKN

If ⊢ N , N⊥ | s : M , then

JN⊥K ⊗ JM⊥K JN⊥K ⊗ JN⊥K ⊗ JM⊥K

⊥ JN⊥K ⊗ JN⊥K

CJN⊥K⊗Id

Js[t/•]KN Id⊗JsK+
N ,N⊥

JtKN

The following lemma relates syntactic functoriality (section 2.2) and the semantical one (Lemma 4.3).

Lemma 4.12 Assume that ⊢ N , P | s : N , let Q be a positive formula and let ζ be a variable. Let also π
be a type valuation such that ζ+, ζ− /∈ dom(π). Then

JQ [π, s/ζ+]K+N ,Q[π,P/ζ+]
= JQKdom(π),ζ+ [JN⊥K](

−→
Id ,

−→
Id , JsK+N ,P)

JQ [π, s/ζ−]K+N ,Q[π,N/ζ−]
= JQKdom(π),ζ− [JN⊥K]((JsK+N ,P)

⊥,
−→
Id ,

−→
Id)

As a direct conclusion of Lemma 4.3 and Lemma 4.12, we can have the following corollary:

Corollary 4.13 Assume that ⊢ N , P | s : N , let Q be a positive formula and let ζ be a variable. Let also
π be a type valuation such that ζ+, ζ− /∈ dom(π). Then

JQ [π, s/ζ+]K+N ,Q[π,P/ζ+]
∈ L!(JN⊥K ⊗ JQKdom(π),ζ+

+(
−−→
JNK,

−−→
JP K, JN⊥K), JQKdom(π),ζ+

+(
−−→
JNK,

−−→
JP K, JP K))

JQ [π, s/ζ−]K+N ,Q[π,N/ζ−]
∈ L!(JN⊥K ⊗ JQKdom(π),ζ+

+(JP K⊥,
−−→
JNK,

−−→
JP K), JQKdom(π),ζ+

+(JN⊥K⊥,
−−→
JNK,

−−→
JP K))

Lemma 4.14 If c → d, then either JcKN = JdKN or JcK+N ,P = JdK+N ,P depending on the typing derivation
of c and d.

Theorem 4.15 If c →⋆ d, then either JcKN = JdKN or JcK+N ,P = JdK+N ,P depending on the typing derivation
of c and d.

Proof. By induction on the length of reductions from c to d, and using Lemma 4.14. 2

5 Two concrete models of κµLLP

We recall briefly the main definitions concerning the models Rel and Nuts, more details can be found
in [18].

5.1 Sets and relations as a model of κµLLP

The category Rel has sets as objects, and given sets E and F , Rel(E,F) = P(E × F). Identity is the
diagonal relation and composition is the usual composition of relations, denoted by simple juxtaposition.
If t ∈ Rel(E,F) and u ⊆ E then t · u = {b ∈ F | ∃a ∈ u (a, b) ∈ t}.

This category is a well-known model of LL in which 1 = ⊥ = {∗}, E⊗F = (E ⊸ F) = E`F = E×F
so that (E)⊥ = E. As to the additives, 0 = ⊤ = ∅ and &i∈I Ei = ⊕i∈I Ei = ∪i∈I {i} × Ei. The
exponentials are given by !E = ?E = Mfin(E) (finite multisets of elements of E). For the additives and
multiplicatives, the operations on morphisms are defined in the obvious way. Let us be more specific about
the exponentials. Given s ∈ Rel(E,F), !s ∈ Rel(!E, !F) is !s = {([a1, . . . , an], [b1, . . . , bn]) | ∀i (ai, bi) ∈
s}, der(E) ∈ Rel(!E,E) is given by der(E) = {([a], a) | a ∈ E} and digE ∈ Rel(!E, !!E) is given by
digE = {(m1 + · · · + mn, [m1, . . . ,mn]) | ∀i mi ∈ Mfin(E)}. Last m0 ∈ Rel(1, !⊤) is m0 = {(∗, [])} and

16

Ehrhard, Jafarrahmani, Saurin

m2
E,F ∈ Rel(!E ⊗ !F, !(E & F)) is given by

m2
E,F = {(([a1, . . . , ak], [b1, . . . , bl]), [(1, a1), . . . , (1, ak),

(2, b1), . . . , (bl)]) | a1, . . . , ak ∈ E and b1, . . . , bl ∈ F} .

Weakening wE ∈ Rel(!E, 1) and contrE ∈ Rel(!E, !E ⊗ !E) are given by wE = {([], ∗)} and contrE =
{(m1 +m2, (m1,m2)) | mi ∈ Mfin(E) for i = 1, 2}.

5.1.1 Positive functors on Rel

A functor F : Reln → Rel is locally continuous if, for all
−→
E ,

−→
F ∈ Reln and all directed D ⊆ Reln(

−→
E ,

−→
F),

F(∪D) = ∪{F(−→s) | −→s ∈ D}.

Definition 5.1 An n-ary variable set is a strong functor F : Reln → Rel such that F is locally continuous
and and maps inclusions to inclusions.

Definition 5.2 A positive n+p-ary variable set is a (n, p)− positive functor P : Reln+p → Rel such that
P is an n+ p-ary variable set.

5.2 Non-uniform totality spaces as a model of κµLLP

5.2.1 Basic definitions.
Let E be a set and let T ⊆ P(E). We define T ⊥ = {u′ ⊆ E | ∀u ∈ T u ∩ u′ ̸= ∅}. If S ⊆ T ⊆ P(E) then
(T)⊥ ⊆ S⊥. We also have T ⊆ T ⊥⊥ and therefore T ⊥⊥⊥ = T ⊥. One nice feature of this duality is:

Lemma 5.3 Let T ⊆ P(E), then T ⊥⊥ = ↑T = {v ⊆ E | ∃u ∈ T u ⊆ v}.

A non-uniform totality space (NUTS) is a pair X = (|X|, T (X)) where |X| is a set and T (X) ⊆ P(|X|)
satisfies T (X) = T (X)⊥⊥, that is T (X) = ↑T (X). Of course we set X⊥ = (|X|, T (X)⊥). We define four
basic NUTS: 0 = (∅, ∅), ⊤ = (∅, {∅}) and 1 = ⊥ = ({∗} , {{∗}}). Given NUTS X1 and X2 we define a
NUTS X1 ⊗X2 by |X1 ⊗X2| = |X1| × |X2| and T (X1 ⊗X2) = ↑ {u1 × u2 | ui ∈ T (Xi) for i = 1, 2}. And
then we define X ⊸ Y = (X ⊗ Y ⊥)⊥ .

Lemma 5.4 t ∈ T (X ⊸ Y) ⇔ ∀u ∈ T (X) t · u ∈ T (Y).

We define the category Nuts whose objects are the NUTS and Nuts(X,Y) = T (X ⊸ Y), composition
being defined as the usual composition in Rel (relational composition) and identities as the diagonal
relations. Lemma 5.4 shows that we have indeed defined a category.

5.2.2 Multiplicative structure

Lemma 5.5 Let t ⊆ |X| × |Y |. One has t ∈ Nuts(X,Y) iff (t)⊥ = {(b, a) | (a, b) ∈ t} ∈ Nuts(Y ⊥, X⊥).

Lemma 5.6 Let t ⊆ |X1 ⊗X2 ⊸ Y |. One has t ∈ Nuts(X1 ⊗ X2, Y) iff for all u1 ∈ T (X1) and u2 ∈
T (X2) one has t · (u1 ⊗ u2) ∈ T (Y).

Lemma 5.7 The bijection α|X1|,|X2|,|Y | is an isomorphism from (X1 ⊗X2) ⊸ Y to X1 ⊸ (X2 ⊸ Y).

We turn now ⊗ into a functor, its action on morphisms being defined as in Rel. Let ti ∈ Nuts(Xi, Yi)
for i = 1, 2, we have t1 ⊗ t2 ∈ Nuts(X1 ⊗ X2, Y1 ⊗ Y2) by Lemma 5.6 and by the equation
(t1 ⊗ t2) · (u1 ⊗ u2) = (t1 · u1)⊗ (t2 · u2). This functor is monoidal, with unit 1 and symmetric monoidality
isomorphisms λ, ρ, γ and α defined as in Rel.

The SMC category Nuts is closed, with X ⊸ Y as internal hom object from X to Y , and evaluation
morphism ev = {(((a, b), a), b | a ∈ |X| and b ∈ |Y |} which indeed belongs to Nuts((X ⊸ Y) ⊗X,Y) by
Lemma 5.6. This category Nuts is also *-autonomous with dualizing object ⊥ = 1.

17

Ehrhard, Jafarrahmani, Saurin

5.2.3 Additive structure.
Let (Xi)i∈I be an at most countable family of objects of Nuts. We define X = &i∈I Xi by |X| =
∪i∈I {i} × |Xi| and T (X) = {u ⊆ |X| | ∀i ∈ I πi · u ∈ T (Xi)}.

It is clear that T (X) = ↑T (X) and hence X is an object of Nuts. By definition of X and by

Lemma 5.4 we have ∀i ∈ I πi ∈ Nuts(X,Xi). Given
−→
t = (ti)i∈I with ∀i ∈ I ti ∈ Nuts(Y,Xi), we have

⟨−→t ⟩ ∈ Nuts(Y,X) as easily checked (using Lemma 5.4 again). It follows that (&i∈I Xi, (πi)i∈I) is the
cartesian product of the Xi’s in Nuts. This shows that the category Nuts has all countable products and
hence is cartesian. Since it is *-autonomous, the category Nuts is also cocartesian. Notice that the final
object is ⊤ = (∅, {∅}) and that 0 = ⊤⊥ = (∅, ∅).

5.2.4 Exponential.
It is an extension of the multiset exponential of Rel with totality. We set |!X| = Mfin(|X|) and

T (!X) = {Mfin(u) | u ∈ T (X)}⊥⊥ = ↑ {Mfin(u) | u ∈ T (X)}.

Remark 5.8 A formula is interpreted as exactly the same set in Rel and Nuts (with the additional
totality structure in Nuts of course). Similarly a proof is interpreted as the same set in both models;
Nuts gives us additionally that this set is total.

5.2.5 Variable non-uniform totality spaces (VNUTS)
Let E be a set, we use Tot(E) for the set of all totality candidates on E, that is, of all subsets T of P(E)
such that T = T ⊥⊥ (remember that T ⊥ = {u′ ⊆ E | ∀u ∈ T u ∩ u′ ̸= ∅}). In other words T ∈ Tot(E)
means that ↑T by Lemma 5.3. Ordered by ⊆, this set Tot(E) is a complete lattice.

Definition 5.9 Let n ∈ N, an n-ary VNUTS is a pair X = (|X |, T (X)) where |X | : Reln → Rel is a

variable set |X | = (|X |, |̂X |) and T (X) is an operation which with each n-tuple
−→
A of objects of Nuts

associates T (X)(
−→
A) ∈ Tot(|X |(|

−→
A |)) in such a way that

1 for any
−→
t ∈ Nutsn(

−→
A,

−→
B), the element |X |(−→t) of

Rel(|X |(|
−→
A |), |X |(|

−→
B |)) belongs to Nuts(X (

−→
A),X (

−→
B))

(where X (
−→
A) denotes the NUTS (|X |(|

−→
A |), T (X)(

−→
A))

2 and for any
−→
B ∈ Obj(Nutsn) and any A ∈ Obj(Nuts) one has |̂X ||A|,|

−→
B | ∈ Nuts(!A⊗X (

−→
B),X (!A⊗

−→
B))..

Definition 5.10 Let n, p ∈ N, an n+ p-ary positive VNUTS is a pair P = (|P|, T (P)) such that

1 |P| is an n+ p-ary positive variable set,

2 X = (|P|, T (P)) is an n+ p-ary VNUTS, and

3 for any
−→
A,

−→
B ∈ Obj(Nutsn) one has

|̃P||−→A |,|
−→
B | ∈ Nuts(|P|(

−→
A, !

−→
B), !(|P|(

−→
A,

−→
B))).

Lemma 5.11 Any n + p-ary positive VNUTS P : Nutsn+p → Nuts induces a (n, p)− positive functor
P : Nutsn+p → Nuts which satisfies

• |P(
−→
A,

−→
B)| = |P|(|

−→
A |, |

−→
B |),

• T (P(
−→
A,

−→
B)) = T (P)(

−→
A,

−→
B),

• P(−→t) = |P|(−→t) ∈ Nuts(P(
−→
A1,

−→
B1),P(A2,

−→
B2))

for
−→
t ∈ Nutsn+p((

−→
A1,

−→
B1), (A2,

−→
B2)),

• P̂
A,

−→
B

= |̂P||A|,|
−→
B |

• and P̃−→
A,

−→
B

= |̃P||−→A |,|
−→
B |

and P can be retrieved from P.

18

Ehrhard, Jafarrahmani, Saurin

5.3 Rel and the point typing system

In Section 3 we have introduced a point typing system. The points of this typing system are essentially
the same thing as points of the relational model, the only difference being that a point a : P contains the
σb construct at places corresponding to occurrences of µ or ν type constructs in P . It is easy to see that
there is a bijective correspondence between the a : P and the a′ ∈ JP K in Rel. To simplify notations we
consider this correspondence as the identity function.

Lemma 5.12 Let P be a closed positive formula. Then a P̃ [a1, · · · , an] iff (a, [a1, · · · , an]) ∈ hJP K.

Theorem 5.13 Let Φ = (α1 : a1 : N1, . . . , αk : ak : Nk) be a negative point typing context and let
N = (α1 : N1, . . . , αn : Nn) . Then

• (a1, · · · , an, b) ∈ JtKRel
N iff ⊢ Φ | t : b : N

• (a1, · · · , an, c, b) ∈ JtKRel
N ,P iff ⊢ Φ, c : P | t : b : N

• (a1, · · · , an, b) ∈ JqKRel
N iff ⊢ Φ | q : b : P

• (a1, · · · , an) ∈ JcKRel
N iff c ⊢ Φ

• (a1, · · · , an, b) ∈ JcKRel
N ,P iff c ⊢ Φ, b : P

The proof of Theorem 5.13 is a simple verification, and it uses Lemma 5.12.

5.4 Examples of nat

As we can see in [18], the interpretation of nat in Nuts is a totality space (N, {u ⊆ N | u ̸= ∅}). So,
Jnat⊥K = (N, {N}). Hence J!(nat⊥)K = (Mfin(N), {Mfin(N)}), since {Mfin(N)} = ↑ {Mfin(u) | u ∈ {N}}.
The inductive definition of hnat means this set is the least one satisfying

• (0, k[0]) ∈ hnat for any k ∈ N, and
• If (n, [n1, · · · , nk]) ∈ hnat,
then (n+ 1, [n1 + 1, · · · , nk + 1]) ∈ hnat.

Hence we have hnat = {(n, k[n]) | k, n ∈ N}.

Conclusion

We have decomposed the proof of termination results for κµLLP (such as in Section 3.6) in two steps: first
a normalization result for a non-idempotent intersection typing system in the style of [12,13,4] and then
a purely semantical result: non-uniform totality spaces are a denotational model of κµLLP where proofs
have the same interpretation as in Rel.

This approach was particularly useful here since, due to the presence of the κ̃ construct and the
alternation of polarities in κµLLP, we have not (yet) been able to define a direct realizability interpretation
of κµLLP formulas as sets of terms. In some sense we have handled denotationally the logically complex part
of this intended realizability semantics. One can also see our construction as a realizability interpretation
of formulas graded by the points of the relational model.

This method does not seem to say anything interesting about formulas which have an empty interpre-
tation in Rel. This drawback is not so dramatic since, as explained in the conclusion of [18], no finite
information (of type nat typically) can be extracted internally to κµLLP from proofs of such formulas.
Nevertheless the problem of proving some form of normalization for them is an interesting challenge.

Another goal for further work will be to analyze the expressive power of κµLLP as a programming
language. It seems clear that we can embed faithfully a version of Gödel’s T in κµLLP but we can
certainly do much more.

A further direction of work will consist in investigating a related polarized calculus for the circular
setting: while the construction κN,ζα.c would be much simplified, the challenge will be to account for the
global validity condition.

19

Ehrhard, Jafarrahmani, Saurin

References

[1] Polarized category theory, modules, and game semantics., Theory and Applications of Categories [electronic only] 18
(2007), 4–101 (en).

[2] Andreas Abel and Brigitte Pientka, Well-founded recursion with copatterns and sized types, J. Funct. Program. 26 (2016),
e2.

[3] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer, Copatterns: programming infinite structures by
observations, POPL, ACM, 2013, pp. 27–38.

[4] Shahin Amini and Thomas Ehrhard, On classical pcf, linear logic and the MIX rule, 24th EACSL Annual Conference
on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany (Stephan Kreutzer, ed.), LIPIcs, vol. 41,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 582–596.

[5] Jean-Marc Andreoli, Logic programming with focusing proofs in linear logic, Journal of Logic and Computation 2 (1992),
no. 3, 297–347.

[6] David Baelde, A linear approach to the proof-theory of least and greatest fixed points, Ph.D. thesis, Ecole polytechnique,
2008.

[7] , Least and greatest fixed points in linear logic, ACM Trans. Comput. Log. 13 (2012), no. 1, 2:1–2:44.

[8] David Baelde, Amina Doumane, and Alexis Saurin, Least and greatest fixed points in ludics, CSL, LIPIcs, vol. 41, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 549–566.

[9] , Infinitary proof theory: the multiplicative additive case, CSL, LIPIcs, vol. 62, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016, pp. 42:1–42:17.

[10] , Infinitary Proof Theory: the Multiplicative Additive Case, 25th EACSL Annual Conference on Computer Science
Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France (Jean-Marc Talbot and Laurent Regnier, eds.), LIPIcs,
vol. 62, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 42:1–42:17.

[11] Pierre-Louis Curien and Hugo Herbelin, The duality of computation, ICFP, ACM, 2000, pp. 233–243.

[12] Daniel de Carvalho, Execution time of lambda-terms via denotational semantics and intersection types, CoRR
abs/0905.4251 (2009).

[13] , Execution time of λ-terms via denotational semantics and intersection types, MSCS 28 (2018), no. 7, 1169–1203.

[14] Amina Doumane, On the infinitary proof theory of logics with fixed points, Ph.D. thesis, Université de Paris, 2017.

[15] Paul Downen and Zena M. Ariola, The duality of construction, ESOP, Lecture Notes in Computer Science, vol. 8410,
Springer, 2014, pp. 249–269.

[16] , Beyond polarity: Towards a multi-discipline intermediate language with sharing, CSL, LIPIcs, vol. 119, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp. 21:1–21:23.

[17] , A computational understanding of classical (co)recursion, PPDP, ACM, 2020, pp. 5:1–5:13.

[18] Thomas Ehrhard and Farzad Jafar-Rahmani, Categorical models of linear logic with fixed points of formulas, LICS, IEEE,
2021, pp. 1–13.

[19] Jérôme Fortier and Luigi Santocanale, Cuts for circular proofs: semantics and cut-elimination, Computer Science Logic
2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy (Simona Ronchi Della Rocca, ed.), LIPIcs, vol. 23, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 248–262.

[20] Jean-Yves Girard, A new constructive logic: Classical logic, Math. Struct. Comput. Sci. 1 (1991), no. 3, 255–296.

[21] Jean-Yves Girard, Locus solum, Math. Struct. Comput. Sci. 11 (2001), 301–506.

[22] Masahiro Hamano and Philip Scott, A categorical semantics for polarized mall, Annals of Pure and Applied Logic 145
(2007), no. 3, 276–313.

[23] Masahiro Hamano and Philip J. Scott, On geometry of interaction for polarized linear logic, CoRR abs/1503.00886
(2015).

[24] Olivier Laurent, Etude de la polarisation en logique, Thèse de doctorat, Université Aix-Marseille II, March 2002.

[25] Olivier Laurent and Laurent Regnier, About translations of classical logic into polarized linear logic, LICS, IEEE Computer
Society, 2003, pp. 11–20.

20

Ehrhard, Jafarrahmani, Saurin

[26] Paul Blain Levy, Call-by-push-value: A functional/imperative synthesis, Semantics Structures in Computation, vol. 2,
Springer, 2004.

[27] , Call-by-push-value: Decomposing call-by-value and call-by-name, High. Order Symb. Comput. 19 (2006), no. 4,
377–414.

[28] Daniel R. Licata, Noam Zeilberger, and Robert Harper, Focusing on binding and computation, LICS, IEEE Computer
Society, 2008, pp. 241–252.

[29] Guillaume Munch-Maccagnoni, Syntax and models of a non-associative composition of programs and proofs. (syntaxe et
modèles d’une composition non-associative des programmes et des preuves), Ph.D. thesis, Paris Diderot University, France,
2013.

[30] C.-H. Luke Ong and Charles A. Stewart, A curry-howard foundation for functional computation with control, POPL,
ACM Press, 1997, pp. 215–227.

[31] Michel Parigot, Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction, LPAR, Lecture Notes
in Computer Science, vol. 624, Springer, 1992, pp. 190–201.

[32] Luigi Santocanale, A Calculus of Circular Proofs and Its Categorical Semantics, Foundations of Software Science and
Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings (Mogens Nielsen and
Uffe Engberg, eds.), Lecture Notes in Computer Science, vol. 2303, Springer-Verlag, 2002, pp. 357–371.

[33] Anton Setzer, Andreas Abel, Brigitte Pientka, and David Thibodeau, Unnesting of copatterns, RTA-TLCA, Lecture Notes
in Computer Science, vol. 8560, Springer, 2014, pp. 31–45.

[34] Noam Zeilberger, Focusing and higher-order abstract syntax, POPL, ACM, 2008, pp. 359–369.

[35] , Polarity and the logic of delimited continuations, LICS, IEEE Computer Society, 2010, pp. 219–227.

6 Appendix

6.1 Definition of substitution of terms in formulas

▷ If Q = ζ+ then Q [π, s/ζ+] = s.

▷ If Q = ζ+i ∈ dom(π) then Q [π, s/ζ+] = • with ⊢ N , Pi | • : P⊥
i .

▷ If Q = 1 we set Q [π, s/ζ+] = • with ⊢ N , 1 | • : ⊥.

▷ Assume Q = Q1 ⊗ Q2. Let si = Qi [π, s/ζ
+]. By inductive hypothesis we have ⊢ N , Qi [π, P/ζ

+] |
si : Q⊥

i

[
π⊥, N/ζ−

]
so that ⊢ N , αi : Q⊥

i

[
π⊥, N/ζ−

]
| κ̃.(si ⋆ αi) : Qi [π, P/ζ

+] for i = 1, 2. Hence

⊢ N , α1 : Q⊥
1

[
π⊥, N/ζ−

]
, α2 : Q⊥

2

[
π⊥, N/ζ−

]
| (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2)) : (Q1 ⊗ Q2) [π, P/ζ

+]. So we

have • ⋆ (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2)) ⊢ N , α1 : Q⊥
1

[
π⊥, N/ζ−

]
, α2 : Q⊥

2

[
π⊥, N/ζ−

]
, (Q1 ⊗ Q2) [π, P/ζ

+]

and ⊢ N , Q [π, P/ζ+] | κ(α1, α2).(• ⋆ (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2))) : Q⊥ [
π⊥, N/ζ−

]
. Hence we set (Q1 ⊗

Q2) [π, s/ζ
+] = κ(α1, α2).(• ⋆ (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2))).

▷ Assume Q = 0. We have ⊢ N , 0 | ⟨⟩ : ⊤ and we set ⊤ [π, s/ζ+] = ⟨⟩.
▷ If Q = Q1 ⊕ Q2, we use the same notations as for ⊗. We have ⊢ N , αi : Q

⊥
i

[
π⊥, N/ζ−

]
| κ̃.(si ⋆ αi) :

Qi [π, P/ζ
+] hence ⊢ N , αi : Q⊥

i

[
π⊥, N/ζ−

]
| ini(κ̃.(si ⋆ αi)) : (Q1 ⊕ Q2) [π, P/ζ

+]. So ⊢ N , (Q1 ⊕
Q2) [π, P/ζ

+] | καi.(•⋆ ini(κ̃.(si ⋆αi))) : Q
⊥
i

[
π⊥, N/ζ−

]
so we set (Q1⊕Q2) [π, s/ζ

+] = ⟨κα1.(•⋆ in1(κ̃.(s1 ⋆
α1))), κα2.(• ⋆ in2(κ̃.(s2 ⋆ α2)))⟩.
▷ Assume that Q = µξ.R and let us set RP = R [P/ζ+] and RN = R

[
N⊥/ζ+

]
. Let ρ = π ·(µξ.RP [π] /ξ+).

By inductive hypothesis we have defined t = R [ρ, s/ζ+] with ⊢ N , RP [ρ] | t : R⊥
N

[
ρ⊥

]
. We have ⊢ N , α :

R⊥
N

[
ρ⊥

]
| κ̃.(t ⋆ α) : RP [ρ]. Notice that, due to the definition of ρ, we have RS [ρ] = RS [π] [µξ.RP [π] /ξ+]

for S = P,N . It follows that ⊢ N , α : R⊥
N

[
ρ⊥

]
| fd(κ̃.(t ⋆ α)) : µζ.RP [π]. Therefore (• ⋆ fd(κ̃.(t ⋆ α))) ⊢

N , µξ.RP [π] , α : R⊥
N

[
ρ⊥

]
= (RN [π] [µξ.RP [π] /ξ+])⊥ so we define (µξ.R) [π, s/ζ+] as κR⊥

N [π⊥],ζα.(• ⋆

fd(κ̃.(t ⋆ α))) by (t-ν1).

21

Ehrhard, Jafarrahmani, Saurin

▷ Assume last that Q = !R⊥. By inductive hypothesis we have defined t = R
[
π⊥, s/ζ−

]
which satisfies

⊢ N , R
[
π⊥, N/ζ−

]
| t : R⊥ [π, P/ζ+]. It follows that ⊢ N , α : R⊥ [π, P/ζ+] | κ̃.(t ⋆ α) : R

[
π⊥, N/ζ−

]
and

hence ⊢ N , α : R⊥ [π, P/ζ+] | der(κ̃.(t⋆α)) : ?R
[
π⊥, N/ζ−

]
so that ⊢ N , β : ?R

[
π⊥, N/ζ−

]
| κα.(der(κ̃.(t⋆

α)) ⋆ β) : R⊥ [π, P/ζ+]. Next we obtain ⊢ N , β : ?R
[
π⊥, N/ζ−

]
| κα.(der(κ̃.(t ⋆ α)) ⋆ β)! : !R⊥ [π, P/ζ+] so

that ⊢ N , !R⊥ [π, P/ζ+] | κβ.(• ⋆ κα.(der(κ̃.(t ⋆ α)) ⋆ β)!) : ?R
[
π⊥, N/ζ−

]
and we define !R⊥ [π, s/ζ+] as

the term κβ.(• ⋆ κα.(der(κ̃.(t ⋆ α)) ⋆ β)!).
In the same induction we define the negative substitution Q [π, s/ζ−]; this is done as follows.

▷ If Q is a variable, it cannot be ζ− since Q is positive and we must have Q = ζ+i . It follows that

Q [π,N/ζ−] = Pi and Q⊥ [
π⊥, P/ζ+

]
= P⊥

i so that we set Q [π, s/ζ−] = •. The cases Q = 1 and Q = 0
are similar.

▷ Assume Q = Q1 ⊗ Q2. Let si = Qi [π, s/ζ
−] so that ⊢ N , Qi [π,N/ζ−] | si : Q⊥

i

[
π⊥, P/ζ+

]
. It

follows that ⊢ N , αi : Q⊥
i

[
π⊥, P/ζ+

]
| κ̃.(si ⋆ αi) : Qi [π,N/ζ−] for i = 1, 2. Hence ⊢ N , α1 :

Q⊥
1

[
π⊥, P/ζ+

]
, α2 : Q⊥

2

[
π⊥, P/ζ+

]
| (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2)) : (Q1 ⊗ Q2) [π,N/ζ−]. So we set

(Q1 ⊗ Q2) [π, s/ζ
+] = κ(α1, α2).(• ⋆ (κ̃.(s1 ⋆ α1), κ̃.(s2 ⋆ α2))). The other cases are similarly analogous

to the definition of the positive substitution.

6.2 Proof of Lemma 3.1

Proof. By induction on a assuming that we have a derivation of a : R [P/ζ+]. We consider several cases,
according to the shape of R.

▷ If R = ζ+ we choose j ∈ J and set a0 = (j, ζ), bj = a.

▷ If R = ξ+ ̸= ζ+ we must have a = (j, ξ) and we set a0 = a. In that case we have rgζa
0 = ∅ and so we

have no bk’s to define.

▷ If R = 1 we must have a = ∗ and we take a0 = a. As before rgζa
0 = ∅ and so we have no bk’s to define.

▷ If R is R1 ⊗ R2 so that a = (a1, a2) with ai : Ri [P/ζ
+] for i = 1, 2. Let J1, J2 ⊆ J be disjoint and

infinite. By inductive hypothesis, for i = 1, 2, we can find a0i : R with rgζa
0
i ⊆ Ji as well as families

−→
b(i) = (b(i)j)j∈rgζa0i

such that ∀j b(i)j : P , (a0i ,
−→
b(i)) is adapted and ai = a0i {b(i)j/(j, ζ)}j∈rgζa0i . For

j ∈ rgζa
0 = rgζa

0
1 ⊎ rgζa

0
2 we set bj = b(i)j where i ∈ {1, 2} is uniquely determined by j ∈ rgζa

0
i , defining−→

b = (bj)j∈rgζa0 . Let ξ be a literal, j, j′ ∈ rgξa
0 with j ̸= j′ and let K = rgξbj ∩ rgξbj′ . If j, j′ ∈ rgξa

0
i for

i = 1 or i = 2 then K = ∅ since (a0i ,
−→
b(i)) is adapted. If j ∈ rgξa

0
i and j′ ∈ rgξa

0
3−i then K = ∅ because

we know that rgξbj ⊆ rgξai: this is due to the fact that, by inductive hypothesis ai = a0i {bk/(k, ζ)}k∈rgζa0i .
Similarly rgξbj′ ⊆ rgξa3−i and moreover rgξai ∩ rgξa3−i = ∅ because a : R1 [P/ζ

+] ⊗ R2 [P/ζ
+]. For the

same reason, if j ∈ rgζa
0
i we have rgξb(i)j ∩ rgξa

0
3−i = ∅. It follows that the pair (a0,

−→
b) is adapted.

The fact that a = a0{bj/(j, ζ)}j∈rgζa0 is an immediate consequence of the inductive hypothesis. The case

R = !R0 (and hence a = [a1, . . . , an]) is dealt with similarly (applying the inductive hypothesis to the ai’s)
and the case R = R1 ⊕ R2 is straightforward: we have a = (i, a0) with a0 : Ri [P/ζ

+] for i = 1 or i = 2
and the inductive hypothesis directly applies to a0.

▷ Last if that R = µξ.Q with ξ ̸= ζ and ξ does not occur in P , so that a = σ(a0) and that we have a
derivation of a0 : R′ where R′ = Q [P/ζ+] [µξ.Q [P/ζ+]/ξ+] = Q [R/ξ+] [P/ζ+]. By inductive hypothesis
applied to a0 there is a00 : Q [R/ξ+] and a family (cj)j∈rgξ(a00) satisfying the required properties wrt. a0.

We take a0 = σ(a00) so that rgζa
0 = rgζa

0
0 and we set bj = cj for each j in that set. 2

6.3 Proof of Lemma 3.2

Proof. Let p = κ̃.c ∈ |b|Q. This means that c →∗ • ⋆ q with q ∈ |b|Q \ κ̃ = ∥b∥Q. It follows that
s ⋆ p → c [s/•] →∗ (• ⋆ q) [s/•] = s ⋆ q ∈ ‚(a : P) (notice that • cannot occur free in q since q is a typed

22

Ehrhard, Jafarrahmani, Saurin

positive term). It follows that s ⋆ p ∈ ‚(a : P). 2

6.4 Proof of Lemma 3.3

Proof. By induction on the derivation of a P̃ [a1, . . . , an] we prove that ∥a∥P ⊆ ∥ai∥P which implies the
announced inclusions. If the derivation consists of (s-1) then we have P = 1 and ∀i a = ai = ∗ so that the
statement obviously holds. If the derivation ends with (s-⊗) then P = P1 ⊗ P2, a = (a1, a2), ai = (a1i , a

2
i)

and aj P̃j [aj1, . . . , a
j
n] for j = 1, 2. The inductive hypothesis gives ∥aj∥Pj ⊆ ∥aji∥Pj for j = 1, 2 and for

each i whence the anounced inclusion by definition of ∥(a1, a2)∥P1⊗P2 . The case where the last rule is
(s-⊕) is similar. If the last rule is (s-!) then P = !N , a = [b1, . . . , bk], ai = [bj | j ∈ Ji] with k =

⊎n
i=1 Ji.

Let p ∈ ∥a∥P so that p = s! with ∀j ∈ k∀q ∈ |bj |N⊥ s ⋆ q ∈ ‚. So a fortiori for each i ∈ n one has
∀j ∈ Ji∀q ∈ |bj |N⊥ s ⋆ q ∈ ‚, that is p ∈ ∥ai∥P . Assume that the last rule is (s-µ) so that P = µζ.Q,

a = σ(b), ai = σ(bi) for i ∈ n and we have b ˜Q [P/ζ+] [bi, . . . , bn]. Let p ∈ |a|P , which means that p = fd(q)
with q ∈ |b|Q[P/ζ+]. For i ∈ n we have q ∈ ∥bi∥Q[P/ζ+] by inductive hypothesis and hence p ∈ ∥ai∥P . 2

6.5 Proof of Lemma 3.5

Proof. By induction on the pairs (Q, d), ordered lexicographically, following the definition of substitution
of terms in formulas in Section 2.2. It is important to notice that the universal quantification on π is part
of the statement we prove by induction. We set J = rgηd.

▷ If Q = 1 then d = ∗, J = ∅, Q [π, s/η+] = •, d{bj/(j, η)}j∈J = d{cj/(j, η)}j∈J = ∗ and (ai P̃i [])
n
i=1. We

have ⊢ (αi : ai : Ni)
n
i=1, ∗ : 1 | • : ∗ : ⊥ as required. The case Q = ζ+ ̸= η+ is similar.

▷ If Q = η+, d = (j, η) for some j ∈ I then J = {j} and hence d{bk/(k, η)}k∈J = bj and d{ck/(k, η)}k∈J =

cj . Moreover we have (aji P̃i [ai])
n
i=1 so that aji = ai for each i ∈ n by Lemma 3.4. We have Q [π, s/η+] = s

and the first conclusion is identical to the typing assumption on s. Since Q [π, s/η−] = • the second
conclusion is obtained as in the previous cases.

▷ If Q = Q1 ⊗ Q2 then d = (d1, d2) with (dk : Qk [π])k=1,2. Let K = {1, 2} and Jk = rgηdk for k ∈ K

so that J = J1 ⊎ J2. By Lemma 3.4, for each i ∈ n and k ∈ K there is a(k)i : N
⊥
i such that (a(k)i Ñ⊥

i

[aji | j ∈ Jk])
n
i=1 for k ∈ K and (ai Ñ⊥

i [a(1)i, a(2)i])
n
i=1. By inductive hypothesis we have ⊢ (αi : a(k)i :

Ni)
n
i=1, dk{bj/(j, η)}j∈Jk : Q [π, P/η+] | Qk [π, s/η

+] : dk{cj/(j, η)}j∈Jk : Q⊥ [
π⊥, N/η−

]
for k ∈ K. Pick

some coneutral (ei : N
⊥
i)ni=1 and fk : Qk

[
π,N⊥/η+

]
, we have ⊢ (αi : ei : Ni)

n
i=1, βk : dk{cj/(j, η)}j∈Jk :

Q⊥
k

[
π⊥, N/η−

]
, β3−k : f3−k : Q⊥

3−k

[
π⊥, N/η−

]
| βk : dk{cj/(j, η)}j∈Jk : Qk

[
π,N⊥/η+

]
. Since

(a(k)i Ñ⊥
i [ei, a(k)i])

n
i=1 we get sk ⋆ βk ⊢ (αi : a(k)i : Ni)

n
i=1, dk{bj/(j, η)}j∈Jk : Qk [π, P/η

+] , βk :

dk{cj/(j, η)}j∈Jk : Q⊥
k

[
π⊥, N/η−

]
, β3−k : f3−k : Q⊥

3−k

[
π⊥, N/η−

]
where sk = Qk [π, s/η

+] and conse-

quently ⊢ (αi : a(k)i : Ni)
n
i=1, βk : dk{cj/(j, η)}j∈Jk : Q⊥

k

[
π⊥, N/η−

]
, β3−k : f3−k : Q⊥

3−k

[
π⊥, N/η−

]
|

κ̃.(sk ⋆ βk) : dk{bj/(j, η)}j∈Jk : Q [π, P/η+]. Using the fact that (ai Ñ⊥
i [a(1)i, a(2)i])

n
i=1 and the coneu-

trality of f1, f2 we get ⊢ (αi : ai : Ni)
n
i=1, β1 : d1{cj/(j, η)}j∈J1 : Q⊥

1

[
π⊥, N/η−

]
, β2 : d2{cj/(j, η)}j∈J2 :

Q⊥
2

[
π⊥, N/η−

]
| (κ̃.(s1⋆β1), κ̃.(s2⋆β2)) : (d1{bj/(j, η)}j∈J1 , d2{bj/(j, η)}j∈J2) : Q [π, P/η+]. Since we have

d{bj/(j, η)}j∈J = (d1{bj/(j, η)}j∈J1 , d2{bj/(j, η)}j∈J2) and similarly for d{cj/(j, η)}j∈J , we finally get
⊢ (αi : ai : Ni)

n
i=1, d{bj/(j, η)}j∈J : Q [π, P/η+] | κ(β1, β2).(• ⋆ (κ̃.(s1 ⋆ β1), κ̃.(s2 ⋆ β2))) : d{cj/(j, η)}j∈J :

Q⊥ [
π⊥, N/η−

]
as contended. The case Q = Q1 ⊕Q2 is similar. The second conclusion is obtained in the

same way. The case Q = Q1 ⊕Q2 is similar.

▷ Assume that Q = !R⊥, so that d = [dk | k ∈ K] with dk : R
[
π⊥]. For k ∈ K let Jk = rgηdk so that

J =
⊎
Jk. By Lemma 3.4, for each i ∈ n and k ∈ K there is a(k)i : N

⊥
i such that (a(k)i Ñ⊥

i [aji | j ∈ Jk])
n
i=1

for k ∈ K and (ai Ñ⊥
i [a(k)i | k ∈ K])ni=1. By inductive hypothesis, for each k ∈ K we have ⊢ (αi : a(k)i :

Ni)
n
i=1, dk{cj/(j, η)}j∈Jk : R [π,N/η−] | t : dk{bj/(j, η)}j∈Jk : R⊥ [

π⊥, P/η+
]
, where t = R [π, s/η−], so

⊢ (αi : a(k)i : Ni)
n
i=1, β : dk{bj/(j, η)}j∈Jk : R⊥ [

π⊥, P/η+
]
| κ̃.(t ⋆ β) : dk{cj/(j, η)}j∈Jk : R [π,N/η−].

23

Ehrhard, Jafarrahmani, Saurin

So ⊢ (αi : a(k)i : Ni)
n
i=1, β : dk{bj/(j, η)}j∈Jk : R⊥ [

π⊥, P/η+
]
| der(κ̃.(t ⋆ β)) : [dk{cj/(j, η)}j∈Jk] :

?R [π,N/η−] and hence ⊢ (αi : a(k)i : Ni)
n
i=1, γ : [dk{bj/(j, η)}j∈Jk] : ?R [π,N/η−] | κβ.(der(κ̃.(t ⋆ β)) ⋆

γ) : dk{cj/(j, η)}j∈Jk : R⊥ [
π⊥, P/η+

]
. Since (ai Ñ⊥

i [a(k)i | k ∈ K])ni=1 and [dk{cj/(j, η)}j∈Jk | k ∈
K] ˜!R⊥ [π⊥, N⊥/η+] [[dk{cj/(j, η)}j∈Jk] | k ∈ K] we have ⊢ (αi : ai : Ni)

n
i=1, γ : [dk{bj/(j, η)}j∈Jk | k ∈

K] : ?R [π,N/η−] | κβ.(der(κ̃.(t ⋆ β)) ⋆ γ)! : [dk{cj/(j, η)}j∈Jk | k ∈ K] : !R⊥ [
π⊥, P/η+

]
and therefore we

have ⊢ (αi : ai : Ni)
n
i=1, [dk{cj/(j, η)}j∈Jk | k ∈ K] : !R⊥ [

π⊥, P/η+
]
| κγ.(• ⋆ κβ.(der(κ̃.(t ⋆ β)) ⋆ γ)!) :

[dk{bj/(j, η)}j∈Jk | k ∈ K] : ?R [π,N/η−] as required. The second conclusion is dealt with similarly.

▷ Assume that Q = µζ.R. We set RP = R [P/η+] and RN = R
[
N⊥/η+

]
. We have d = σ(d0) with

d0 : R [π] [Q [π] /ζ+]. By Lemma 3.1 we can find f : R [π] as well as a family (dl : Q [π])l∈L where
L = rgζf such that d0 = f{dl/(l, ζ)}l∈L. Let J = rgηd, we have J = J ′ ⊎

⊎
l∈L Jl where J ′ = rgηf and

Jl = rgηdl for each l ∈ L. By Lemma 3.4 we can find a′i, a
l
i : N

⊥
i such that ai Ñ⊥

i [a′i] + [ali | l ∈ L] and

a′i Ñ
⊥
i [aji | j ∈ J ′] and ali Ñ

⊥
i [aji | j ∈ Jl], for all i = 1, . . . , n. Let l ∈ L. We set fl = dl{bj/(j, η)}j∈Jl and

gl = dl{cj/(j, η)}j∈Jl . By inductive hypothesis (since sz dl ≤ sz d0 < sz d) we have, for all l ∈ L,

⊢ (αi : a
l
i : Ni)

n
i=1, fl : µζ.RP [π] |

Q
[
π, s/η+

]
: gl : νζ.R

⊥
N

[
π⊥

]
(2)

Let ρ = π · (µζ.RP [π] /ζ+). Notice that all the free variables of R, but possibly η+, η− are in dom(ρ). Let
d1 = f{fl/(l, ζ)}l∈L so that d1 : R [ρ] since f : R [π] and fl : µζ.RP [π]. Notice that rgηd

1 = J ′. We apply

the inductive hypothesis to (R, d1) and get ⊢ (αi : a
′
i : Ni)

n
i=1, d

1{bj/(j, η)}j∈J ′ : R [ρ, P/η+] | R [ρ, s/η+] :

d1{cj/(j, η)}j∈J ′ : R⊥ [
ρ⊥, N/η−

]
. Notice that R [ρ, P/ζ+] = RP [π] [µζ.RP [π]/ζ+] and R

[
ρ,N⊥/ζ+

]
=

RN⊥ [π] [µζ.RP [π]/ζ+] so that

• ⋆ fd(κ̃.(R
[
ρ, s/η+

]
⋆ α)) ⊢ (αi : a

′
i : Ni)

n
i=1,

σ(d1{bj/(j, η)}j∈J ′) : µζ.RP [π],

α : d1{cj/(j, η)}j∈J ′ : RN [π]⊥
[
(µζ.RP [π])⊥/ζ−

]
(3)

We have

σ(d1{bj/(j, η)}j∈J ′) = d{bj/(j, η)}j∈J
d1{cj/(j, η)}j∈J ′

= f{cj/(j, η)}j∈J ′{fl/(l, ζ)}l∈L

hence by (2) and (3) applying rule (i-ν1) and using also the fact that ai Ñ⊥
i [a′i]+[ali | l ∈ L], we get ⊢ (αi :

ai : Ni)
n
i=1, d{bj/(j, η)}j∈J : µζ.RP [π] | µζ.R [π, s/η+] : σ(f){cj/(j, η)}j∈J ′{gl/(l, ζ)}l∈L : νζ.(RN [π])⊥

and notice that σ(f){cj/(j, η)}j∈J ′{gl/(l, ζ)}l∈L = d{cj/(j, J)}j∈rgηd since gl = dl{cj/(j, η)}j∈Jl and d =

σ(f){dl/(l, ζ)}l∈L; the announced statement is proven. For the second conclusion we proceed similarly. 2

6.6 Proof of Lemma 3.6

Proof. By induction on the pairs (Q, d), ordered lexicographically, following the definition of substitution
of terms in formulas in Section 2.2.

▷ The cases Q = 1 and Q = η+ are trivial.

▷ If Q = Q1 ⊗ Q2 then d = (d1, d2) with (dk : Qk [π])k=1,2 and J = J1 ⊎ J2 where Jk = rgηdk and by

inductive hypothesis we have sk = Qk [π, s/η
+] ∈ |gk|Nk

(fk : Pk) where fk = dk(
−→
b), Nk = Q⊥

k

[
π⊥, N/η−

]
,

gk = dk(
−→c) and Pk = Qk [π, P/η

+] for k = 1, 2. It suffices to prove that t ∈ |(g1, g2)|N1`N2((f1, f2) :

24

Ehrhard, Jafarrahmani, Saurin

P1 ⊗ P2) where t = κ(β1, β2).(• ⋆ (κ̃.(s1 ⋆ β1), κ̃.(s2 ⋆ β2))). We use Lemma 3.2 so let qk ∈ |gk|Q⊥
k

for

k = 1, 2, we have t ⋆ (q1, q2) → (• ⋆ (κ̃.(s1 ⋆ q1), κ̃.(s2 ⋆ q2))). We have sk ⋆ qk ∈ ‚(fk : Pk) and hence
(κ̃.(s1 ⋆ q1), κ̃.(s2 ⋆ q2)) ∈ ∥(f1, f2)∥P1⊗P2 so that • ⋆ (κ̃.(s1 ⋆ q1), κ̃.(s2 ⋆ q2)) ∈ ‚((f1, f2) : P1 ⊗ P2) and
hence t ⋆ (q1, q2) ∈ ‚((f1, f2) : P1 ⊗ P2). The case Q = Q1 ⊕Q2 is similar.

▷ If Q = !R⊥ then d = [d1, . . . , dk] with J =
⊎k

l=1 Jl where Jl = rgηdl for each l ∈ k. By inductive

hypothesis s′ = R
[
π⊥, s/η−

]
∈ |dl(

−→
b)|R⊥[π,P/η+](dl(

−→c) : R
[
π⊥, N/η−

]
) for each l ∈ k and we must

prove that t ∈ |[dl(−→c) | l ∈ L]|?R[π⊥,N/η−]([dl(
−→
b) | l ∈ L] : !R⊥ [π, P/η+]) where t = !R⊥ [π, s/η+] =

κβ.(• ⋆ (κα.(der(κ̃.(s′ ⋆ α)) ⋆ β))!) where s′ = R
[
π⊥, s/η−

]
and for this we apply Lemma 3.2. Let s1 ∈⋂

l∈L |dl(−→c)|R⊥[π,N⊥/η+], it suffices to prove that t ⋆ s1
! ∈ ‚([dl(

−→
b) | l ∈ L] : !R⊥ [π, P/η+]). We have

t ⋆ s1
! → • ⋆ (κα.(der(κ̃.(s′ ⋆ α)) ⋆ s1

!))
!
so it is sufficents to prove (κα.(der(κ̃.(s′ ⋆ α)) ⋆ s1

!))
! ∈ |[dl(

−→
b) |

l ∈ L]|!R⊥[π,P/η+], and hence it is enough to prove that κα.(der(κ̃.(s′ ⋆ α)) ⋆ s1
!) ∈

⋂
l∈L |dl(

−→
b)|R⊥[π,P/η+].

So let q ∈
⋃

l∈L |d(
−→
b)|R[π⊥,P⊥/η−], it suffices to prove that (der(κ̃.(s′ ⋆ q)) ⋆ s1

!) ∈ ‚. Let l ∈ L, since

s′ ∈ |dl(
−→
b)|R⊥[π,P/η+](dl(

−→c) : R
[
π⊥, N/η−

]
) we have s′ ⋆ q ∈ ‚(dl(

−→c) : R
[
π⊥, N/η−

]
) and hence

κ̃.(s′ ⋆ q) ∈ |dl(−→c)|R[π⊥,N/η−] and this holds for all l ∈ L, that is κ̃.(s′ ⋆ q) ∈
⋃

l∈L |dl(−→c)|R[π⊥,N/η−]. Since

s1 ∈
⋂

l∈L |dl(−→c)|R⊥[π,N⊥/η+] it follows that s1 ⋆ κ̃.(s
′ ⋆ q) ∈ ‚, hence der(κ̃.(s′ ⋆ q)) ⋆ s1

! ∈ ‚ as expected

since der(κ̃.(s′ ⋆ q)) ⋆ s1
! → s1 ⋆ κ̃.(s

′ ⋆ q).

▷ Assume that Q = µζ.R. We set RP = R [P/η+] and RN = R
[
N⊥/η+

]
, QP = Q [P/η+] and QN =

Q
[
N⊥/η+

]
, and also t = Q [π, s/η+]. We also use ρ = π · (QP [π] /ζ+). We have d = σ(d0) with

d0 : R [π] [Q [π] /ζ+]. By Lemma 3.1 we can find f : R [π] as well as a family (dl : Q [π])l∈L where
L = rgζf such that d0 = f{dl/(l, ζ)}l∈L. Let J = rgηd, we have J = J ′ ⊎

⊎
l∈L Jl where J ′ = rgηf

and Jl = rgηdl for each l ∈ L. By inductive hypothesis applied to (Q, dl) (since sz dl ≤ sz d0 < sz d)

we have t ∈ |gl|Q⊥
N [π⊥](fl : QP [π]) where fl = dl(

−→
b) and gl = dl(

−→c) for each l ∈ L, since sz dl ≤
sz d0 < sz d. Notice that f(−→c){gl/(l, ζ)}l∈L = d0(−→c) by definition of the gl’s. We must prove that

t ∈ |d(−→c)|Q⊥
N [π⊥](d(

−→
b) : QP [π]) so let p ∈ ∥d(−→c)∥QN [π], it suffices to prove that t ⋆ p ∈ ‚(d(

−→
b) : QP [π]).

We have p = fd(q) with q ∈ |d0(−→c)|RN [π,QN [π]/ζ+]. We have (see Section 2.2) t = Q [π, s/η+] = κQ⊥
N [π⊥],ζα.c

where c = • ⋆ fd(κ̃.(s′ ⋆ α)) where s′ = R [ρ, s/η+]. So t ⋆ p → (RN [π, t/ζ+] ⋆ q) [κα.c/•].
Notice that f(−→c) = f{cj/(j, η)}j∈J ′ satistfies f(−→c) : RN [π] and hence by inductive hypothesis applied

to (R, f(−→c)) we have that RN [π, t/ζ+] belongs to the set
|f(−→c){gl/(l, ζ)}l∈L|R⊥

N [π⊥,Q⊥
N [π⊥]/ζ−](f(

−→c){fl/(l, ζ)}l∈L :

RN [π,QP [π] /ζ+]) since we have seen that t ∈ |gl|Q⊥
N [π⊥](fl : QP [π]) for each l ∈ L. Since

q ∈ |d0(−→c)|RN [π,QN [π]/ζ+] and d0(−→c) = f(−→c){gl/(l, ζ)}l∈L it follows that c′ = RN [π, t/ζ+] ⋆

q ∈ ‚(f(−→c){fl/(l, ζ)}l∈L : RN [π,QP [π] /ζ+]) which means c′ →∗ • ⋆ r for some r ∈
∥f(−→c){fl/(l, ζ)}l∈L∥RN [π,QP [π]/ζ+] and therefore c′ [κα.c/•] →∗ κα.c ⋆ r = κα.(• ⋆ fd(κ̃.(s′ ⋆ α))) ⋆ r →
• ⋆ fd(κ̃.(s′ ⋆ r)).

Notice next that f ′ = f{fl/(l, ζ)}l∈L : R [π,QP [π] /ζ+] = R [ρ]. Hence by ind. hyp. applied to (R, f ′)

and since f ′(−→c) = f(−→c){fl/(l, ζ)}l∈L we have s′ ∈ |f ′(−→c)|R⊥[ρ⊥,N/η−](f
′(
−→
b) : R [ρ, P/η+]) and hence

s′ ⋆r ∈ ‚(f ′(
−→
b) : R [ρ, P/η+]). Notice that f ′(

−→
b) = d0(

−→
b) and hence we have κ̃.(s′ ⋆r) ∈ |d0(

−→
b)|R[ρ,P/η+]

and therefore, by definition of ρ, fd(κ̃.(s′⋆r)) ∈ ∥d(
−→
b)∥QP [π]. So we have •⋆fd(κ̃.(s′⋆r)) ∈ ‚(d(

−→
b) : QP [π])

and hence t ⋆ p ∈ ‚(d(
−→
b) : QP [π]) as contended.

▷ The second statement of the lemma is proved similarly in the same induction of course since the case
Q = !R⊥ (change of polarity) for a given statement uses the other one as an inductive hypothesis. 2

25

Ehrhard, Jafarrahmani, Saurin

6.7 Proof of Theorem 3.7

Proof. By induction on the point derivation δ for c, t and p. To increase readibility we use c′ for c[pi/αi]
n
i=1

and similarly for s and p. In the induction, we use the notations introduced in the statement of the theorem
to avoid boring sentences introducing new symbols. But one has to keep in mind that the satement proven
by induction contains the universal quantification on the pi’s.

▷ δ consists of (i-n) so that we are in case (v) with p = αj for some j ∈ n, and a = aj . In that case we
have p′ = pj and the expected conclusion follows from ∥aj∥Pj ⊆ |aj |Pj .

▷ δ consists of (i-1) so that we are in case (v) with p = () and a = ∗We have p′ = () so that p′ ∈ ∥∗∥1 ⊆ |∗|1.
▷ δ ends with a (i-⊗) so that we are in case (v) with p = (q1, q2), a = (b1, b2) and we have subderivations

δj of ⊢ (αi : a
j
i : P

⊥
i)ni=1 | qj : bj : Qj for j ∈ 2 and moreover ai P̃i [a

1
i , a

2
i] for all i ∈ n. For each i ∈ n we

know that pi ∈ ∥ai∥Pi and hence by Lemma 3.3 we have pi ∈ ∥aji∥Pi for each i ∈ n and j ∈ 2. Hence by
inductive hypothesis qj

′ ∈ |bj |Qj so that p′ = (q1
′, q2

′) ∈ ∥(b1, b2)∥Q1⊗Q2 ⊆ |(b1, b2)|Q1⊗Q2 .

▷ δ ends with a left (i-⊕) the case of a right (i-⊕) being of course completely similar. We are in case (v)
and P = Q1 ⊕Q2, p = in1(q) and a = (1, b) and we have a subderivation δ1 of ⊢ Φ | q : b : Q1 so that by
inductive hypothesis q′ ∈ |b|Q1 and hence p′ = in1(q

′) ∈ ∥(1, b)∥Q1⊕Q2 ⊆ |(1, b)|Q1⊕Q2 .

▷ δ ends with a (i-κ̃). We are in case (v) with p = κ̃.c and we have a subderivation δ1 of δ which has
c ⊢ Φ, a : P as conclusion. By inductive hypothesis we have c′ ∈ ‚(a : P) = |a|P • = ∥a∥P • and hence
p′ = κ̃.c′ ∈ |a|P as required.

▷ δ ends with (i-µ) so that we are in case (v) with P = µζ.Q, p = fd(q) and a = σ(b) and δ has a
subderivation δ1 whose conclusion is ⊢ Φ | q : b : Q [P/ζ+]. By inductive hypothesis we have q′ ∈ |b|Q[P/ζ+]

and hence p′ = fd(q′) ∈ ∥σ(b)∥µζ.Q ⊆ |a|P .
▷ δ ends with (i-!) so that we are in case (v) with P = !N , p = s! and a = [bj | j ∈ J] and δ has a

subderivation δj of ⊢ (αi : a
j
i : P

⊥
i) | s : bj : N for each j ∈ J and moreover we have ai P̃i [a

j
i | j ∈ J] for

each i ∈ n. Since ∥ai∥Pi ⊆ ∥aji∥Pi for each i ∈ n and j ∈ J we have s′ ∈ |bj |N by inductive hypothesis

applied to δj for each j ∈ J and hence p′ = (s′)! ∈ ∥[bj | j ∈ J]∥!N ⊆ |a|P .

▷ δ is (i-•) so that we are in case (iv) with N = P⊥, s = •, b = a and ai P̃i [] for each i ∈ n. We have
s′ = • so that for all p ∈ ∥a∥P we have s′ ⋆ p ∈ ‚(a : P) which means that s′ ∈ |a|P⊥(a : P) as required.

▷ δ ends with a left (i-&) (the case of a right (i-&) is of course completely similar) and we are in case (iii) with
N = N1&N2, a = (1, a1), s = ⟨s1, s2⟩ and we have a subderivation δ1 whose conclusion is ⊢ Φ | s1 : a1 : N1.
The other subderivation δ2 makes sure that s2 is well typed in the typing system of Figure 2. Let
p ∈ ∥(1, a1)∥N⊥

1 ⊕N⊥
2
that is p = in1(p1) with p1 ∈ |a1|N⊥

1
. We have s′ ⋆p = ⟨s1′, s2′⟩⋆ in1(p1) → s1

′ ⋆p1 ∈ ‚
by inductive hypothesis and hence s′ ∈ |a|N .

▷ δ ends with a left (i-&) (the case of a right (i-&) is of course completely similar) and we are in case
(iv) with N = N1 & N2, b = (1, b1), s = ⟨s1, s2⟩ and we have a subderivation δ1 whose conclusion is
⊢ Φ, a : P | s1 : b1 : N1. The other subderivation δ2 makes sure that s2 is well typed in the typing
system of Figure 2. Let p ∈ ∥(1, b1)∥N⊥

1 ⊕N⊥
2

that is p = in1(p1) with p1 ∈ |b1|N⊥
1
. We have s′ ⋆ p =

⟨s1′, s2′⟩ ⋆ in1(p1) → s1
′ ⋆ p1 ∈ ‚(a : P) by inductive hypothesis and hence s′ ∈ |b|N (a : P).

▷ δ ends with (i-κ) and we are in case (iii) with s = κα.c and we have a subderivation δ1 whose conclusion
is c ⊢ Φ, α : a : N . Let p ∈ ∥a∥N⊥ we have s′ ⋆ p → c′ [p/α] ∈ ‚ by inductive hypothesis. It follows that
s′ ∈ |a|N .

▷ δ ends with (i-κ) and we are in case (iv) with s = κα.c and we have a subderivation δ1 whose conclusion
is c ⊢ Φ, a : Pα : b : N . Let p ∈ ∥b∥N⊥ we have s′ ⋆ p → c′ [p/α] ∈ ‚(a : P) by inductive hypothesis. It
follows that s′ ∈ |b|N (a : P) as required.

▷ δ ends with (i-⊥) and we are in case (iii) with N = ⊥, a = ∗, s = κ⊥.c and δ has a subderivation δ1
whose conclusion is c ⊢ Φ. We have s′ ⋆ () = κ⊥.c

′ ⋆ () → c′ and since, by inductive hypothesis, c′ ∈ ‚, if
follows that s′ ∈ | ∗ |⊥.

26

Ehrhard, Jafarrahmani, Saurin

▷ δ ends with (i-⊥) and we are in case (iv) with N = ⊥, b = ∗, s = κ⊥.c and δ has a subderivation δ1 whose
conclusion is c ⊢ Φ. We have s′ ⋆ () = κ⊥.c

′ ⋆ () → c′ and since, by inductive hypothesis, c′ ∈ ‚(a : P), if
follows that s′ ∈ | ∗ |⊥(a : P).

▷ δ ends with (i-`) and we are in case (iii) with N = N1 `N2, a = (a1, a2), s = κ(α1, α2).c and we have
a subderivation δ1 whose conclusion is c ⊢ Φ, α1 : a1 : N1, α2 : a2 : N2. Let p ∈ ∥(a1, a2)∥N⊥

1 ⊗N⊥
2
, that is

p = (q1, q2) with qj ∈ |aj |N⊥
j

for j ∈ 2. We have s′ ⋆ p → c′[q1/α1, q2/α2] ∈ ‚ by inductive hypothesis. It

follows that s′ ∈ |a|N .

▷ δ ends with (i-`) and we are in case (iv) with N = N1 `N2, b = (b1, b2), s = κ(α1, α2).c and we have
a subderivation δ1 whose conclusion is c ⊢ Φ, α1 : b1 : N1, α2 : b2 : N2, a : P . Let p ∈ ∥(b1, b2)∥N⊥

1 ⊗N⊥
2
,

that is p = (q1, q2) with qj ∈ |bj |N⊥
j

for j ∈ 2. We have s′ ⋆ p → c′[q1/α1, q2/α2] ∈ ‚(a : P) by inductive

hypothesis. It follows that s′ ∈ |b|N (a : P).

▷ δ ends with (i-?) so that we are in case (iii) (notice that there no case (iv) for this rule) with N = ?Q,
a = [b], s = der(p) and δ has a subderivation δ1 whose conclusion is ⊢ Φ | p : b : Q. Let p ∈ ∥[b]∥!Q⊥ , that

is p = t! where t ∈ |b|Q⊥ . We have s′ ⋆ p → t ⋆ p′ ∈ ‚ since p′ ∈ |b|Q by inductive hypothesis.

▷ δ ends with (i-cut) and we are in case (i) with c = s ⋆ p and δ has two subderivations δ1 and δ2 with

conclusions ⊢ (αi : a
1
i : P⊥

i)ni=1 | s : b : Q⊥ and ⊢ (αi : a
2
i : P⊥

i)ni=1 | p : b : Q and ai P̃i [a
1
i , a

2
i] for all

i ∈ n so that by Lemma 3.3 we have pi ∈ |aji |Pi for all i ∈ n and j ∈ 2. By inductive hypothesis we have
s′ ∈ |b|Q⊥ and p′ ∈ |b|Q so that c′ = s′ ⋆ p′ ∈ ‚.

▷ δ ends with (i-cut) and we are in case (ii) with c = s ⋆ p and δ has two subderivations δ1 and δ2 with

conclusions ⊢ (αi : a
1
i : P⊥

i)ni=1, a : P | s : b : Q⊥ and ⊢ (αi : a
2
i : P⊥

i)ni=1 | p : b : Q and ai P̃i [a
1
i , a

2
i] for all

i ∈ n so that by Lemma 3.3 we have pi ∈ |aji |Pi for all i ∈ n and j ∈ 2. By inductive hypothesis we have
s′ ∈ |b|Q⊥(a : P) and p′ ∈ |b|Q so that c′ = s′ ⋆ p′ ∈ ‚(a : P).

▷ δ ends with (i-ν), remember that this rule is given at the beginning of Section 3.2. Assume that
we are in case (iv) with N = νζ.R⊥, s = κR⊥,ζα.(c ; t), we have a point d : R, a subderivation δ′′

of δ whose conclusion is ⊢ (αi : a′′i : P⊥
i), a : P | t : h : Q⊥, a subderivation δ′ of δ whose con-

clusion is c ⊢ (αi : a′i : P⊥
i), h : Q,α : d{hl/(l, η)}l∈L : R⊥ [

Q⊥/ζ−
]
, and for each l ∈ L = rgζd

we have a subderivation δl of δ whose conclusion is ⊢ (αi : ali : P⊥
i)ni=1, hl : Q | u : fl : νζ.R⊥

where u = κR⊥,ζα.c = κR⊥,ζα.(c ; •). With these notations we have b = σ(d){fl/(l, ζ)}l∈L. Moreover

ai P̃i [a
′
i, a

′′
i] + [ali | l ∈ L] so that by Lemma 3.3 we have pi ∈ |ali|Pi for all i ∈ n and l ∈ L, and pi ∈ |a′i|Pi ,

pi ∈ |a′′i |Pi for all i ∈ n. Let p ∈ ∥b∥N⊥ so that p = fd(q) with q ∈ |d{fl/(l, ζ)}l∈L|R[N⊥/ζ+]. Then we have

s′⋆p → (R [u′/ζ+]⋆q) [κα.c′ [t′/•] /•]. By inductive hypothesis applied to the δl’s we have u
′ ∈ |fl|N (hl : Q)

for each l ∈ L and hence by Lemma 3.6, R [u′/ζ+] ∈ |d{fl/(l, ζ)}l∈L|R[N/ζ−](d{hl/(l, ζ)}l∈L : R [Q/ζ+]),
therefore:
R [u′/ζ+] ⋆ q ∈ ‚(d{hl/(l, ζ)}l∈L : R [Q/ζ+]) which means that R [u′/ζ+] ⋆ q →∗ • ⋆ r with r ∈
∥d{hl/(l, ζ)}l∈L∥R[Q/ζ+]. It follows that (R [u′/ζ+] ⋆ q) [κα.c′ [t′/•] /•] →∗ κα.c′ [t′/•] ⋆ r → c′ [r/α] [t′/•]
since r /∈ κ̃, r is closed and t′ has no free names. By inductive hypothesis applied to δ′ (with sub-
stituting positive terms the pi’s and r which satisfies r ∈ |d{hl/(l, ζ)}l∈L|R[Q/ζ+] as required) we have

c′ [r/α] ∈ ‚(h : Q) and hence κ̃.(c′ [r/α]) ∈ |h|Q. We also have t′ ∈ |h|Q⊥(a : P) by inductive hypothesis
and hence t′ ⋆ κ̃.(c′ [r/α]) ∈ ‚(a : P) so that c′ [r/α] [t′/•] ∈ ‚(a : P) and hence s′ ⋆ p ∈ ‚(a : P). Since
this holds for all p ∈ ∥b∥N⊥ we have proven that s′ ∈ |b|N (a : P) as required.

▷ δ ends with (i-ν) and we are in case (iii) with N = νζ.R⊥, s = κR⊥,ζα.(c ; t), we have a point d : R,

a subderivation δ′′ of δ whose conclusion is ⊢ (αi : a
′′
i : P⊥

i) | t : h : Q⊥, a subderivation δ′ of δ whose
conclusion is c ⊢ (αi : a′i : P⊥

i), h : Q,α : d{hl/(l, η)}l∈L : R⊥ [
Q⊥/ζ−

]
, and for each l ∈ L = rgζd

we have a subderivation δl of δ whose conclusion is ⊢ (αi : ali : P⊥
i)ni=1, hl : Q | u : fl : νζ.R⊥ where

u = κR⊥,ζα.c = κR⊥,ζα.(c ; •). With these notations we have b = σ(d){fl/(l, ζ)}l∈L. Moreover ai P̃i

[a′i, a
′′
i] + [ali | l ∈ L] so that by Lemma 3.3 we have pi ∈ |ali|Pi for all i ∈ n and l ∈ L, and pi ∈ |a′i|Pi ,

pi ∈ |a′′i |Pi for all i ∈ n. Let p ∈ ∥b∥N⊥ so that p = fd(q) with q ∈ |d{fl/(l, ζ)}l∈L|R[N⊥/ζ+]. Then we have

27

Ehrhard, Jafarrahmani, Saurin

s′⋆p → (R [u′/ζ+]⋆q) [κα.c′ [t′/•] /•]. By inductive hypothesis applied to the δl’s we have u
′ ∈ |fl|N (hl : Q)

for each l ∈ L and hence, by Lemma 3.6, R [u′/ζ+] ∈ |d{fl/(l, ζ)}l∈L|R[N/ζ−](d{hl/(l, ζ)}l∈L : R [Q/ζ+]),

therefore R [u′/ζ+] ⋆ q ∈ ‚(d{hl/(l, ζ)}l∈L : R [Q/ζ+]) which means that R [u′/ζ+] ⋆ q →∗ • ⋆ r with
r ∈ ∥d{hl/(l, ζ)}l∈L∥R[Q/ζ+]. It follows that (R [u′/ζ+]⋆q) [κα.c′ [t′/•] /•] →∗ κα.c′ [t′/•]⋆r → c′ [r/α] [t′/•]
since r /∈ κ̃, r is closed and t′ is closed. By inductive hypothesis applied to δ′ (with substituting positive
terms the pi’s and r which satisfies r ∈ |d{hl/(l, ζ)}l∈L|R[Q/ζ+] as required) we have c

′ [r/α] ∈ ‚(h : Q) and

hence κ̃.(c′ [r/α]) ∈ |h|Q. We also have t′ ∈ |h|Q⊥ by inductive hypothesis and hence t′ ⋆ κ̃.(c′ [r/α]) ∈ ‚
so that c′ [r/α] [t′/•] ∈ ‚ and hence s′ ⋆ p ∈ ‚. Since this holds for all p ∈ ∥b∥N⊥ we have proven that
s′ ∈ |b|N as required. 2

6.8 Proof of Lemma 4.2

Proof.
Given (

−→
A,

−→
Y) ∈ Ln × (L!)p where

−→
Y = (

−→
Y , h−→

Y
), we define P+(

−→
A,

−→
Y) as P(

−→
A,

−→
Y) and hP′(

−→
A,

−→
Y)

as the

following composition of morphisms in L:

P(
−→
A,

−→
Y) P(

−→
A,

−→
!Y) !P(

−→
A, Y)

P(−→A ,−→hY) P̃−→
A,Y

Let (f1, f2) ∈ (Ln × (L!)p)((
−→
A1,

−→
Y1), (

−→
A2,

−→
Y2)), we define P+(f1, f2) ∈ L!(P+(

−→
A1,

−→
Y1),P+(

−→
A2,

−→
Y2)) as

P(f1, f2). And the following diagram commutes which shows that P(f1, f2) is indeed a morphism in L!.

P(
−→
A1,

−→
Y1) P(

−→
A2,

−→
Y2)

P(
−→
A1,

−→
!Y1) P(

−→
A2,

−→
!Y2)

!P(
−→
A1,

−→
Y1) !P(

−→
A2,

−→
Y2)

P(f1,f2)

P(
−→
A1
,h−→

Y1
) P(

−→
A2
,h−→

Y2
)

P̃−→
A1,

−→
Y1

P̃−→
A2,

−→
Y2

!P(f1,f2)
2

6.9 Proof of Lemma 4.3

Proof.
The first item hold because of commutation of the following diagram :

Z ⊗ P(
−→
A,

−→
Y 1, X) P(

−→
A,

−→
Y 1, Y)

!(Z ⊗ P(
−→
A,

−→
Y 1, Y)) !P(

−→
A,

−→
Y 1, Y)

P[Z](
−→
Id,

−→
Id,f)

h
Z⊗P+(

−→
A,

−→
Y1,X)

hP+(
−→
A,

−→
Y1,Y)

!(P[Z](f⊥,
−→
Id ,

−→
Id))

And the second item is similar to the first one.
2

6.10 Proof of Lemma 4.4

Proof.
Since F ∈ Lk+1, there is a functor µF : Lk → L
such that µF(

−→
A) is the initial object of the category AlgL(F−→

A
) for any object A ∈ L.

28

Ehrhard, Jafarrahmani, Saurin

Now, by the construction above, one can extend µF to a functor (µF)[Z] : L[Z]k → L[Z]. We take

(µF)[Z] as the unique functor µ(F[Z]). Let us take an object A ∈ L. We have (µF)[Z](
−→
A) = µF(

−→
A).

We need to show that µF(
−→
A) is the initial object of the cateogry AlgL[Z](F−→

A
). First, one can see that

(µF(
−→
A), h) is an object of AlgL[Z](F−→

A
) where h is the following:

Z ⊗ F−→
A
(µF(

−→
A)) F−→

A
(µF(

−→
A)) µF(

−→
A)

WZ⊗Id ≃

So, let us take an object (B, g) of AlgL[Z](F−→
A
) where g ∈ L[Z](F−→

A
(B), B) = L(Z ⊗ F−→

A
(B), B). We

need to provide a morphism g̃ ∈ AlgL[Z](F−→
A
)(µF(

−→
A), B). Having a morphism g̃ ∈ L(Z ⊗ µF(

−→
A), B) is

equivalent to have morphism cur′(g̃) ∈ L(µF(
−→
A), Z ⊸ B). Since µF(

−→
A) is the initial object of AlgL(F−→

A
),

it is enough to have a morphism g′ ∈ L(F−→
A
(Z ⊸ B), Z ⊸ B) in order to have cur′(g̃). And this is

equivalent to provide morphism cur′−1(g′) ∈ L(Z ⊗ F−→
A
(Z ⊸ B), B) which is as follows:

Z ⊗ F−→
A
(Z ⊸ B) Z ⊗ Z ⊗ F−→

A
(Z ⊸ B)

Z ⊗ F−→
A
(!Z ⊗ (Z ⊸ B)) Z ⊗ !Z ⊗ F−→

A
(Z ⊸ B)

Z ⊗ F−→
A
(Z ⊗ (Z ⊸ B)) Z ⊗ F−→

A
(B)

B

CZ⊗Id

Id⊗hZ⊗Id

Id⊗F−→
A
(derZ⊗Id)

Id⊗F̂−→
A

Id⊗F−→
A
(ev)

g

So, g̃ is cur′−1(g̃′), and it satisfies the following diagram:

Z ⊗ µF(
−→
A) B

Z ⊗ F−→
A
(µF(

−→
A))

Z ⊗ Z ⊗ F−→
A
(µF(

−→
A)) Z ⊗ F−→

A
(B)

g̃

≃

CZ⊗Id

Id⊗F−→
A
[Z](g̃)

g (4)

One can see that the following diagram is just unfolding of Diagram 4:

29

Ehrhard, Jafarrahmani, Saurin

Z ⊗ µF(
−→
A) B

Z ⊗ Z ⊗ F−→
A
(µF(

−→
A))

Z ⊗ F−→
A
(µF(

−→
A)) Z ⊗ F−→

A
(B)

Z ⊗ Z ⊗ F−→
A
(µF(A)) Z ⊗ F−→

A
(Z ⊗ µF(

−→
A))

Z ⊗ !Z ⊗ F−→
A
(µF(A)) Z ⊗ F−→

A
(!Z ⊗ µF(A))

g̃

Id⊗(WZ⊗≃)

CZ⊗Id

CZ⊗Id

g

Id⊗hZ Id

Id⊗F−→
A
(g̃)

Id⊗F̂−→
A

Id⊗F−→
A
(derZ⊗Id)

2

6.11 Proof of Lemma 4.5

Proof.
By Lemma 4.4, we know that there is a unique object µ(Q[Z]) ∈ L[Z] which is (µQ)[Z]. We also

know that µQ is the initial object in AlgL(Q), since Q ∈ L. And (µQ)[Z] is same as µQ (considering
µQ, equivalently, as µQ : 1 → L). So, to define morphism g̃ ∈ L[Z](µ(Q[Z]), Y), one need to provide a
morphism g in L[Z](Q[Z](Y), Y) which is as follows:

Z ⊗Q[Z](Y) = Z ⊗Q(Y) Y
g

2

6.12 Proof of Lemma 4.6

Proof.
By definition, we have µQ+ = µQ = µQ = µQ. The following diagram commutes which shows that g̃

is indeed a co-algebra morphism.

!Z ⊗ µQ Y

!(!Z ⊗ µQ) !Y

g̃

h!Z⊗µQ hY

!g̃

30

Ehrhard, Jafarrahmani, Saurin

Z
⊗

µ
Q

Y

Z
⊗

Q
(µ

Q
)

Z
⊗

Z
⊗

Q
(µ

Q
)

Z
⊗

!Z
⊗

Q
(µ

Q
)

Z
⊗

Q
(!
Z

⊗
µ
Q
)

Z
⊗

Q
(Z

⊗
µ
Q
)

Z
⊗

Q
(Y

)

!Z
⊗

Q
(!
µ
Q
)

!Z
⊗

!Z
⊗

Q
(!
µ
Q
)

!Z
⊗

!!
Z

⊗
Q
(!
µ
Q
)

!Z
⊗

Q
(!
!Z

⊗
!µ

Q
)

!Z
⊗

Q
(!
Z

⊗
!µ

Q
)

!Z
⊗

Q
(!
Y
)

!Z
⊗

!µ
Q

!Z
⊗

!(
Q
(µ

Q
))

!Z
⊗

!Z
⊗

!Q
(µ

Q
)

!Z
⊗

!!
Z

⊗
!Q

(µ
Q
)

!Z
⊗

Q
(!
(!
Z

⊗
µ
Q
))

!Z
⊗

Q
(!
(Z

⊗
µ
Q
))

!Z
⊗

!Q
(Y

)

!Z
⊗

!(
Z

⊗
Q
(µ

Q
))

!Z
⊗

!(
!Z

⊗
Q
(µ

Q
))

!Z
⊗

!(
Q
(!
Z

⊗
µ
Q
))

!Z
⊗

!(
Q
(Z

⊗
µ
Q
))

!(
Z

⊗
Q
(µ

Q
))

!(
Z

⊗
Z

⊗
Q
(µ

Q
))

!(
Z

⊗
!Z

⊗
Q
(µ

Q
))

!(
Z

⊗
Q
(!
Z

⊗
µ
Q
))

!(
Z

⊗
Q
(Z

⊗
µ
Q
))

!(
Z

⊗
Q
(Y

))

!(
Z

⊗
µ
Q
)

!Y

g̃

h
Z

⊗
h
µ

Q
+

h
Y

≃

C
Z

⊗
Id

h
Z

⊗
Q
(
h
µ

Q
)

Id
⊗

h
Z

⊗
Id

h
Z

⊗
h
Z

⊗
Q
(
h
µ

Q
)

Id
⊗

Q̂

h
Z

⊗
d
ig
Z

⊗
Q
(
h
µ

Q
)

Id
⊗

Q
(
d
er
Z

⊗
Id
)

h
Z

⊗
Q
(
d
ig
Z

⊗
h
µ

Q
)

Id
⊗

Q
(
g̃
)

h
Z

⊗
Q
(
h
Z

⊗
h
µ

Q
)

g

h
Z

⊗
Q
(
h
Y

)

Id
⊗

Q̃

W
Z

⊗
Id

Id
⊗

Id
⊗

Q̃

Id
⊗

!h
Z

⊗
Id

Id
⊗

Id
⊗

Q̃

Id
⊗

Q̂

Id
⊗

Q
(
µ
2 !Z

,µ
Q
)

Id
⊗

Q
(
d
er
!Z

⊗
Id
)

Id
⊗

Q
(
µ
2 Z

,µ
Q
)

Id
⊗

Q̃

µ
2 Z

,µ
Q

µ
2 Z

,µ
Q

µ
2 Z

,Q
(
µ

Q
)W
Z

⊗
Id

Id
⊗

µ
2 Z

,Q
(
µ

Q
)

Id
⊗

!h
Z

⊗
Id

Id
⊗

µ
2 !Z

,Q
(
µ

Q
)

Id
⊗

Q̃

Id
⊗

Q
(
!(
d
er
Z

⊗
Id
)
)

Id
⊗

Q̃

Id
⊗

Q
(
!g̃

)

µ
2 Z

,Q
(
Y

)

µ
2 Z

,(
Z

⊗
Q
(
µ

Q
)
)Id
⊗

!(
h
Z

⊗
Id
)

µ
2 Z

,!
Z

⊗
Q
(
µ

Q
)

µ
2 Z

,Q
(
!Z

⊗
µ

Q
)

Id
⊗

!(
Q
(
d
er
Z

⊗
Id
)
)

µ
2 Z

,Q
(
Z

⊗
µ

Q
)

Id
⊗

!(
Q
(
g̃
)
)

!(
C
Z

⊗
Id
)

!(
Id

⊗
h
Z

⊗
Id
)

!(
Id

⊗
Q̂
)

!(
Id

⊗
Q
(
d
er
Z

⊗
Id
)
)

!(
Id

⊗
Q
(
g̃
)
)

!g

!g̃

≃

F
ig
.
7
.
P
ro
o
f
o
f
L
em

m
a
4
.6

31

Ehrhard, Jafarrahmani, Saurin

2

6.13 Interpretation of proofs

JαK+N ,P⊥ : JN⊥K ⊗ JP K JP K
WJN⊥K⊗JP K

J()K+N : JN⊥K J1K
WJN⊥K

J(p1, p1)K+N : JN⊥K JN⊥K ⊗ JN⊥K JP1 ⊗ P2K
CJN⊥K Jp1K+N⊗Jp2K+N

Jini(p)K+N : JN⊥K JP1K P1 ⊕ P2
JpK+N πi

Jκ̃.cK+N : JN⊥K JP K
JcK+N ,P

Jfd(p)K+N : JN⊥K JP [µζ.P/ζ+]K ≃ Jµζ.P K
JpK+N

Jt!K+N : JN⊥K !JN⊥K

!JNK = J!NK

hJN⊥K

!(Jcur(t)JN⊥K⊗JN⊥K,⊥KN)

J•K+N ,P : JN⊥K ⊗ JP K JP K
WN⊥⊗JP K

J⟨⟩K+N ,P : JN K ⊗ 0 ≃ 0 JP K
Init0,P

J⟨⟩KN : JN K ⊗ 0 ≃ 0 ⊥
Init0,⊥

J⟨t1, t2⟩K+N ,P : JN K ⊗ (JN⊥
1 K ⊕ JN⊥

2 K) JP K
[Jt1K+N ,P ,Jt2K+N ,P]

J⟨t1, t2⟩KN : JN K ⊗ (JN⊥
1 K ⊕ JN⊥

2 K) ⊥[Jt1KN ,Jt2KN]

Jκα.cK+N ,P : JN⊥K ⊗ JN⊥K JP K
JcK+N ,N,P

Jκα.cKN : JN⊥K ⊗ JN⊥K ⊥
JcKN ,N

Jκ⊥.cK+N ,P : JN⊥K ⊗ 1 ≃ JN⊥K JP K
JcK+N ,P

Jκ⊥.cKN : JN⊥K ⊗ 1 ≃ JN⊥K JP K
JcKN

Jκ(α1, α2).cK+N ,P : JN⊥K ⊗ (JN⊥
1 K ⊗ JN⊥

2 K) JP K
JcK+N ,N1,N2,P

Jκ(α1, α2).cKN : JN⊥K ⊗ (JN⊥
1 K ⊗ JN⊥

2 K) ⊥
JcKN ,N1,N2

Jder(p)KN : JN⊥K ⊗ J!P⊥K ⊥
cur−1((derJP⊥K)

⊥◦JpK+N),

32

Ehrhard, Jafarrahmani, Saurin

Jt ⋆ pK+N ,P : JN⊥K JN⊥K ⊗ JN⊥K

JP K JN⊥K ⊗ JN⊥K

CJN⊥K

JN⊥K⊗JpK+N

JtK+N ,P

Jt ⋆ pKN : JN⊥K JN⊥K ⊗ JN⊥K

⊥ JN⊥K ⊗ JN⊥K

CJN⊥K

JN⊥K⊗JpK+N

JtKN

6.14 Proof of Lemma 4.14

Proof. We prove it by case analysis of c and d based on the reduction system in Figure 3.

▷ If we have s ⋆ κ̃.c → c [s/•]:

Js ⋆ κ̃.cKN = ((JsKN) ◦ (Id⊗Jκ̃.cK+N)) ◦ (CJN⊥K)

= ((JsKN) ◦ (Id⊗JcK+N)) ◦ (CJN⊥K)

= Jc [s/•]KN by Lemma 4.11

▷ If we have κα.c ⋆ p → c [p/α]:

Jκα.c ⋆ pKN = ((Jκα.cKN) ◦ (Id⊗JpK+N)) ◦ (CJN⊥K)

= ((JcKN ,P⊥) ◦ (Id⊗JpK+N)) ◦ (CJN⊥K)

= Jc [p/α]KN by Lemma 4.9

▷ If we have ⟨s1, s2⟩ ⋆ ini(p) → si ⋆ p:

J⟨s1, s2⟩ ⋆ ini(p)KN = ((J⟨s1, s2⟩KN) ◦ (Id⊗Jini(p)K+N)) ◦ (CJN⊥K)

= (([Js1KN , Js2KN]) ◦ (
Id⊗((πi) ◦ (JpK+N)))) ◦ (CJN⊥K)

= ((JsiKN) ◦ (
Id⊗JpK+N)) ◦ (CJN⊥K) since L is co-cartesian

= Jsi ⋆ pKN

▷ If we have κ(α1, α2).c ⋆ (p1, p2) → c [p1/α1, p2/α2]:

33

Ehrhard, Jafarrahmani, Saurin

Jκ(α1, α2).c ⋆ (p1, p2)KN = ((Jκ(α1, α2).cKN) ◦ (
Id⊗J(p1, p2)K+N)) ◦ (CJN⊥K)

= ((JcKN ,P⊥
1 ,P⊥

2
) ◦ (Id⊗((Jp1K+N ⊗ Jp2K+N) ◦ (

CJN⊥K)))) ◦ (CJN⊥K) by Diagram (5)

= (((JcKN ,P⊥
1 ,P⊥

2
) ◦ ((Id⊗ Id⊗Jp1K+N ⊗WJP2K) ◦ (

CJN⊥⊗P2K))) ◦ (Id⊗Jp2K+N)) ◦ (CJN⊥K)

= ((J(c [p1/α1])KN2) ◦ (Id⊗Jp2K+N)) ◦ (CJN⊥K)

= J(c [p1/α1]) [p2/α2]KN
= Jc [p1/α1, p2/α2]KN

JN⊥K JN⊥K ⊗ JN⊥K

JN⊥K ⊗ JN⊥K ⊗ JN⊥K

JN⊥K ⊗ JN⊥K

JN⊥K ⊗ JP2K JN⊥K ⊗ JP1K ⊗ JP2K

JN⊥K ⊗ JP2K ⊗ JN⊥K ⊗ JP2K ⊥

JN⊥K ⊗ JP2K ⊗ JP1K

CJ(N)⊥K

CJN⊥K

IdJN⊥K ⊗CJN⊥K

IdJN⊥K ⊗Jp1K+N⊗Jp2K+N

IdJN⊥K ⊗Jp2K+N

CJN⊗P2K JcKN ,P⊥
1 ,P⊥

2

Id⊗ Id⊗Jp1K+N⊗WJP2K JcKN ,P⊥
1 ,P⊥

2

(5)

▷ If we have κ⊥.c ⋆ () → c:

Jκ⊥.c ⋆ ()KN = ((Jκ⊥.cKN) ◦ (Id⊗J()K)) ◦ (CJN⊥K)

= ((JcKN) ◦ (Id⊗J()K)) ◦ (CJN⊥K)

= ((JcKN) ◦ (Id⊗WJN⊥K)) ◦ (CJN⊥K)

= (JcKN) ◦ (Id) = JcKN

If we have der(p) ⋆ s! → s ⋆ p:

Jder(p) ⋆ s!KN = ((Jder(p)KN) ◦ (Id⊗Js!K+N)) ◦ (CJN⊥K)

= ((cur−1((derJP⊥K)
⊥ ◦ JpK+N)) ◦ ((Id⊗

(!(Jcur(s)JN⊥K⊗JP K,⊥KN)) ◦ (hJN⊥K)))) ◦ (CJN⊥K)

= ((JsKN) ◦ (Id⊗JpK+N)) ◦ (CJN⊥K) by Diagram 6

34

Ehrhard, Jafarrahmani, Saurin

JN⊥K JN⊥K ⊗ JN⊥K

JN⊥K ⊗ JN⊥K JN⊥K ⊗ !JN⊥K

JN⊥K ⊗ JP K JN⊥K ⊗ J!P⊥K

⊥

CJN⊥K

CJN⊥K Id⊗hJN⊥K

Id⊗JpK+N Id⊗!(Jcur(s)JN⊥K⊗JP K,⊥KN)

JsKN
cur−1((derJP⊥K)

⊥◦JpK+N)

(6)

▷ If we have κQ⊥,ζα.c ⋆ fd(p) → (Q
[
κQ⊥,ζα.c/ζ

+
]
⋆ p) [κα.c/•]: See Figure 8

2

35

Ehrhard, Jafarrahmani, Saurin

Jκ
R

⊥
,ζ
α
.(
c
;s
)
⋆
fd
(p
)K

+ N
,Q

=
((

Jκ
R

⊥
,ζ
α
.(
c
;s
)K

+ N
,P

)
◦
(I
d
⊗

Jf
d
(p
)K

+ N
))

◦
(C

JN
⊥

K)

=
((
((

Js
K+ N

,Q
)
◦
(I
d
⊗

˜
Jc

K+ N
,P

,Q
⊥
[P

⊥
/
ζ
−
])
)
◦
(C

JN
⊥

K
⊗

Id
))

◦
(I
d
⊗

Jp
K+ N

))
◦
(C

JN
⊥

K)

=
((
(J
cK

+ N
,P

,Q
⊥
[P

⊥
/
ζ
−
])

◦
((
Id

⊗
(J
Q

K ζ
+
[J
N

⊥
K]
(

˜
Jc

K+ N
,P

,Q
⊥
[P

⊥
/
ζ
−
])
))

◦
(C

JN
⊥

K
⊗

Id
))
)
◦
(I
d
⊗

Jp
K+ N

))
◦
(C

JN
⊥

K)
b
y
L
em

m
a
4
.4

=
((

Jc
K+ N

,P
,Q

⊥
[P

⊥
/
ζ
−
])

◦
(I
d
⊗
((
(J
Q

K ζ
+
[J
N

⊥
K]
(

˜
Jc

K+ N
,P

,Q
⊥
[P

⊥
/
ζ
−
])
)
◦
(I
d
⊗

Jp
K+ N

))
◦
(C

JN
⊥

K)
))
)
◦
(C

JN
⊥

K)

=
((
((

Js
K+ N

,Q
)◦
(I
d
⊗

Jc
K+ N

,P
,Q

⊥
[P

⊥
/
ζ
−
]⊗

W
JQ

[P
/
ζ
+
]K
))
◦(
C

JN
⊥

K⊗
Id
))
◦(
Id

⊗
((

JQ
K ζ

+
[J
N

⊥
K]
(

˜
Jc

K+ N
,P

,Q
⊥
[P

⊥
/
ζ
−
])
)◦
(I
d
⊗

Jp
K+ N

))
◦(
C

JN
⊥

K)
J(
Q

[κ
Q

⊥
,ζ
α
.c
/
ζ
+
] ⋆

p
)K

+ N
,P

))
◦(
C

JN
⊥

K)

=
((
((

Js
K+ N

,Q
)◦
(I
d
⊗

Jc
K+ N

,P
,Q

⊥
[P

⊥
/
ζ
−
]⊗

W
JQ

[P
/
ζ
+
]K
))
◦(
C

JN
⊥

K⊗
Id
))
◦(
Id

⊗
((

JQ
K ζ

+
[J
N

⊥
K]
(J
κ
Q

⊥
,ζ
α
.c

K+ N
,P

))
◦(
Id

⊗
Jp

K+ N
))
◦(
C

JN
⊥

K)
J(
Q

[κ
Q

⊥
,ζ
α
.c
/
ζ
+
] ⋆

p
)K

+ N
,P

))
◦(
C

JN
⊥

K)

=
((
((

Js
K+ N

,Q
)◦
(I
d
⊗

Jc
K+ N

,P
,Q

⊥
[P

⊥
/
ζ
−
]⊗

W
JQ

[P
/
ζ
+
]K
))
◦(
C

JN
⊥

K⊗
Id
))
◦(
Id

⊗
((

JQ
K ζ

+
[J
N

⊥
K]
(J
κ
Q

⊥
,ζ
α
.c

K+ N
,P

))
◦(
Id

⊗
Jp

K+ N
))
◦(
C

JN
⊥

K)
J(
Q

[κ
Q

⊥
,ζ
α
.c
/
ζ
+
] ⋆

p
)K

+ N
,P

))
◦(
C

JN
⊥

K)

=
((
((

Js
K+ N

,Q
)◦
(I
d
⊗

Jc
K+ N

,P
,Q

⊥
[P

⊥
/
ζ
−
]⊗

W
JQ

[P
/
ζ
+
]K
))
◦(
C

JN
⊥

K⊗
Id
))
◦(
Id

⊗
((

JQ
[κ

Q
⊥
,ζ
α
.c
/
ζ
+
] K+ N

,Q
⊥
[P

⊥
/
ζ
−
])
◦(
Id

⊗
Jp

K+ N
))
◦(
C

JN
⊥

K)
J(
Q

[κ
Q

⊥
,ζ
α
.c
/
ζ
+
] ⋆

p
)K

+ N
,P

))
◦(
C

JN
⊥

K)

=
((
((

Js
K+ N

,Q
)
◦
(I
d
⊗

Jc
K+ N

,P
,Q

⊥
[P

⊥
/
ζ
−
]
⊗

W
JQ

[P
/
ζ
+
]K
))

◦
(C

JN
⊥

K⊗
Id
))

◦
(I
d
⊗

J(
Q

[κ
Q

⊥
,ζ
α
.c
/
ζ
+
] ⋆

p
)K

+ N
,P

))
◦
(C

JN
⊥

K)
b
y
L
em

m
a
4
.1
2

=
((

Jκ
α
.(
c
[s
/
•]
)K

+ N
,Q

)
◦
(I
d
⊗

J(
Q

[κ
Q

⊥
,ζ
α
.c
/
ζ
+
] ⋆

p
)K

+ N
,Q

⊥
[P

⊥
/
ζ
−
])
)
◦
(C

JN
⊥

K)

=
J(
Q

[κ
Q

⊥
,ζ
α
.c
/
ζ
+
] ⋆

p
)
[κ
α
.(
c
[s
/
•]
)/
•]

K+ N
,Q

b
y
L
em

m
a
4
.1
0

F
ig
.
8
.
P
re
se
rv
a
ti
o
n
o
f
κ
R

⊥
,ζ
α
.(
c
;s
)
⋆
fd
(p
)
re
d
u
ct
io
n
b
y
se
m
a
n
ti
c

36

	Introduction
	The syntax
	Substitution of terms in terms
	Substitution of terms in formulas
	Reduction relation
	The example of integers

	An intersection typing system
	The syntax of points
	The point typing system
	Interpretation of points
	Example: the integers
	Interpretation Theorem
	Application: a normalization property

	Categorical semantic of LLP
	Operations on positive functors
	Interpretation of proofs and formulas
	Soundness

	Two concrete models of LLP
	Sets and relations as a model of LLP
	Non-uniform totality spaces as a model of LLP
	Rel and the point typing system
	Examples of nat

	References
	Appendix
	Definition of substitution of terms in formulas
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Theorem 3.7
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Lemma 4.6
	Interpretation of proofs
	Proof of Lemma 4.14

