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Abstract

The careless activity of drivers in logistics transportation is a primary reason inside the vehicle during road accidents. This
research aims to reduce the number of accidents caused by a failure of the driver in logistics transportation by incorporating
an autonomous system. We propose a convolutional neural network -based architecture to recognize and classify different
positions which cause road accidents. The proposed system is evaluated with the State Farm Distracted Driver Database,
which included examples illustrating ten different driving positions like reaching behind and talking to the passenger, making
up, safe driving, talking on the phone, clothing, checking right/left hand, right/left hand, and running the radio. The proposed
approach has also been tested against recent algorithms and evaluated. Our model has obtained 98.98% accuracy compared
to other types of approaches with different descriptors and classification techniques

Keywords Autonomous system - Logistics transportation - Convolutional neural network - Deep learning - Safety measures

1 Introduction

Hundreds of road accidents occur in the world every day,
resulting in many lives, damage to property, and injury (Lu
et al. 2019a, c). Consequently, this issue has created signifi-
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cant problems for communities around the world and forced
the mobile industry to develop a solution that reduces the
occurrence of traffic accidents through innovation and growth
and allocates vast resources to put an end to this challenging
situation (Hu et al. 2018; Yadav et al. 2019). Over the past
decade, the automotive industry and its various products have
undergone fascinating progress through the introduction of
artificial intelligence in mobile devices, making it easier for
cars to drive efficiently and securely and preventing loss of
life as a result of a simple mistake of withdrawing attention
(Valiente et al. 2019, 2020).

Artificial intelligence (AI) plays an essential role in solv-
ing different types of complex real-world problems including
autonomous vehicles (Malik et al. 2021), bio-metrics (You-
nis and Abuhammad 2021), healthcare (Albahli et al. 2019)
(Jin et al. 2020; Albahli et al. 2021), industrial applica-
tions (Gheisari et al. 2021; Gao et al. 2020a), renewable
energy (Gao et al. 2020b, ¢), and optimization applications
(Raufetal. 2020). Deep learning algorithms, especially CNN
(Meraj et al. 2019), have been used in different computer
vision-based algorithms (Younis 2021), including transporta-
tion patterns of drivers. Driver’s behavior is the most
important factor leading to serious traffic accidents, like eat-
ing, talking on the phone, omissions, using makeup, or
anything that distracts the driver while driving (Bichicchi
et al. 2020; Xing et al. 2020). The driver’s behavior has been
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addressed to identify and prevent damage in several tradi-
tional and modern ways toreduce traffic accidents. However,
one of the most important ways that have emerged in the
last decade and have been in great demand is deep learning
(Shahverdy et al. 2020; Duan et al. 2020).

Deep learning studies these behaviors effectively through
approaches that mimic the work and intelligence of the
human brain and may outweigh it in some cases, which
has shown remarkable results compared to all other meth-
ods (Kuutti et al. 2020; Shin et al. 2019). One of the most
important deep learning algorithms is CNN which has shown
excellent vision computers that outperform all previous
methods. The reason is that this method very much mim-
ics the brain’s work of learning, recognizing, and classifying
things employing a black box, unlike other methods, which
makes it the strongest. It receives the image, extracts the
essential features automatically, and then works to classify
the images according to these features (Huang et al. 2020;
Rauf et al. 2019). The thing that controls the accuracy of this
method is their architecture ranging from inputs to outputs,
and itis the most critical element that determines the success
of this method (Khan and Ahmed 2020). The summary table
of previous studies that used the Distracted Driver dataset is
given in Table 1.

This study’s ultimate objective is as follows:

— To propose multilayer CNN-based recolonization system
for reducing the road accidents.

— To include different drive poses illustrating ten different
driving positions like reaching behind and talking to the
passenger, making up, safe driving, talking on the phone,
clothing, checking right/left hand, right/left hand, and
running the radio.

— To minimize the subsequent deaths, classify, and recog-
nize different places, which constitute significant causes
of road accidents.

— Toevaluate the proposed recognition system on real-word
traffic datasets.

The remaining parts of the manuscript are composed as
follows: In Sect. 3, we elaborated on proposed CNN and
the different parameters adopted, and the flow architecture
of the proposed algorithm. Section 4 talks about the experi-
mentation performed and the parameter setting along with the
empirical environment. The results obtained by comparing
the proposed architecture with other models are presented in
Sect. 5, while Sect. 6 contains the conclusion of the research.

2 Related work

This addressed problem is solved with a great deal of study
and experiments. The works can be divided into two groups.

The first group involves people who want to study different
physical factors outside the vehicle. In the second group, the
parameters of the car are studied, like the action of the driver.

Previous studies on visual driving practices primarily
concentrate on pupils, facial expressions, or an accept-
able combination. Oliver and Pentland (2000) provided a
machine-learning system for modeling and recognition of
driver’s emotions through using graphic models, hidden
Markov models (HMMs), and coupled hidden Markov mod-
els (CHMMs), with a focus on how the context affects driver
performance.

For safety verification, in Ito et al. (2013), two forms of
unsupervised neural networks were studied, along with fuzzy
adaptive resonance theory (ART) and independent maps for
driver body position, where authors addressed categorization
of face orientation as well.

Veeraraghavan et al. (2007) introduced an unattended
algorithm to classify a probabilistic binary image classifica-
tion with only two driver actions, i.e., gripping the steering
wheel, speaking on a cell phone, and driver activities as a
protected class, risky class, or unknown class.

Zhao et al. (2012) developed an efficient feature extraction
technique consisting of homomorphic, skin-like segmenta-
tion regions for driving postures from a video camera. The
proposed Contourlet Transform (CT) feature extractor and
the implementation of the Random Forest (RE) grading clas-
sifier is used to classify four classes of driving operations:
steering wheel grip, shift gear operation, mobile phone feed,
and chat.

Zhao et al. (2011a) introduce a new method for the extrac-
tion of vehicle drivers’ fatigue signals, consisting of the facial
recognition algorithm Viola—Jones and Gabor wave line
transformation. Using the multilayer perceptron (MLP) clas-
sifier, holdout experiments are created with features derived
from the fatigue expression dataset generated in Southeast
University compared with the naive Bayes classifier, sub-
space classifier, and k-nearest neighbor (kNN).

Mechanized infringement authorization approaches for
violating the safety belt, cell phone infringement, and inhab-
itance infringement identification assignments have been
proposed later. Smoking while driving is yet another common
form of violation restricted in many nations. The street-side
officials conduct physical smoking tests daily. The study
(Artan et al. 2019) suggests a robotic approach to perform the
location of driver smoking using near-infrared (NIR) recog-
nition camera images. Cigarette tips arrive at 800-900 C
during the puff creating a problem area on the NIR images.
The proposed strategy aims to identify particular problem
areas around the head district of the drivers. First, they use
deep learning-based item location to constrain the front wind-
shield and driver ’s head area consecutively. Next, they play
out a double window (neighborhood) peculiarity locator on
the limited district to determine the white problem area, and
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then the driver conducts smoking. They have gathered 1472
original NIR images from the world to assess the presence of
the solution proposed. The proposed methodology obtained
a general accuracy rate of 84 percent and an affectability rate
of 70 percent on the test sample.

A new vision-based system for conductor foot behavior
analysis was proposed by Tran et al. (2012) and developed
using optical flow-based foot tracking and a hidden Markov
model (HMM) technique to describe temporal foot behavior.
Liu et al. (2002) identified a vision device that monitored the
driver’s face and used the yaw orientation angles to estimate
his face position during driving conditions. Toma et al. (2012)
developed an efficient approach for inexperienced drive by
using a finite state machine (FSM) and a rule-based system
(RBS), using inputs from sensor data fusion. By evaluat-
ing the sequence of postures, we can determine whether the
maneuvering of the inexperienced drivers is done correctly.

An abnormal driving factor is a crucial cause of actual
car accidents which threaten human life and open land all-
inclusive. They discuss using a profound learning approach
to deal with the ultimately perceived driving behavior (e.g.,
ordinary driving, hand driving off the wheel, calling, play-
ing cell phone, smoking, and talking to travelers) in a single
picture. The allocation of acknowledgment of driving con-
duct can be viewed as a multi-class order problem. In the
study, the author resolves this major issue (Hu et al. 2018)
from two perspectives: (1) Using multi-stream CNN to extri-
cate multiscale that includes separating images with open
fields of different portion sizes and (2) researching different
combination techniques to join multiscale data and produc-
ing the ultimate drug choice. The adequacy of their proposed
approach is supported by comprehensive analyses conducted
on our dataset of self-made re-enacted driving behavior ,
much like a data collection of actual driving behavior. The test
results show that the proposed CNN-based multi-stream solu-
tion accomplishes the critical design improvements instead
of the best in class.

Kato et al. (2004) established an active capture device for
the identification of facial directions of the driver, such as the
left, front, and back.

You et al. (2017) choose eight parameters that represent
a driving fatigue identification model with a support vector
machine algorithm, reflecting the vehicle movement state and
the driver’s physiological and psychological status.

Yan et al. (2015) proposed a modern vision-based recog-
nition method for driving posture. A side-mounted camera
with a view of the left profile of a driver prepared the driving
position dataset. After preprocessing, they extracted eight
segments of action groups of driving activities, including
ordinary drive, mobile phone service, eating, and smoking
and applied the directed gradient pyramid histogram (PHOG)
for more discriminating characteristics. Four widely used
multilayer perceptrons (MLPs) and support vector machines

(SVMs) are assessed at each step, including random forest
(RF) and k-nearest neighbor (KNN).

In the study (Zhao et al. 2011b), features are derived from
a driving posture dataset consisting of gripping the steering
wheel, working the shift lever, eating a cake, and talking on a
mobile phone, during which vector machines (SVMs) were
introduced with five separate kernels.

Diverted driver behavior is the primary driver of street-car
accidents, jeopardizing human life protection and open prop-
erty. Considering the intuition that prompts (like cigarette
holding hand) to show what the driver does, a driver oper-
ation recognition model is introduced Lu et al. (2019c),
which is called Faster R-CNN (DD-RCNN) deformable
and expanded. Their methodology uses definite articles to
discover movement to arrange driver activities that dis-
play incredible intra-class contrasts and class-likeness. The
deformable and extended lingering square is built to isolate
highlights of overt ROIs operation that are small in size and
sporadically fit as a fiddle (for example, cigarettes and cell
phones). Consideration modules are added for the reweight
highlights in the channel and spatial measurements in the
modified ResNet. The District Proposal Advancement Orga-
nize is implemented to decrease the quantity of ROIs joining
R-CNN and increase model profitability. Furthermore, the
deformable one is replaced by the Rol pooling portion, and
the rearranged R-CNN without relapse layer is prepared as
the final classifier. Results show DD-RCNN on the Kaggle-
driving dataset, and the self-manufactured dataset shows the
best performance in class.

Dangerous driving activity triggers numerous car acci-
dents, causing actual losses and property misfortunes. The
hand with a cigarette can be uncovered from the pieces of
information in the image. The new approaches to identify-
ing actions are not suitable for interpreting driving activity
with only local contrasts. Throughout the (Lu et al. 2019b)
investigation, the author perceives driving actions by defining
particular parts of the action and suggests the solution Dilated
Light-Head R-CNN (DL-RCNN), which uses broader convo-
lution to guarantee apparent subtleties for the target picture.
The specialized curiosity includes: a position-delicate Rol
structure to improve the view of small posts and tri-focus non-
sense to introduce proximity between intra-class highlights
and comparison of highlights in separate classes. We also
endorse two procedures, such as site complex model min-
ing and correspondingly modifying the global boundaries.
The test results on the comprehensive collection of Kaggle-
driving information and the self-manufactured collection of
information suggest that DL-RCNN performs cutting-edge
perception of driving behavior.
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Table 2 Statistics of dataset obtained

Label Characteristics Quantity
Cco Safe driving 2489
Cl Texting-right 2267
Cc2 Talking-right 2317
C3 Texting-left 2346
C4 Talking-left 2326
C5 Operating the radio 2312
Cc6 Drinking 2325
C7 Reaching behind 2002
C8 Hair and makeup 1911
C9 Talking to passenger 2129
Total - 22,424

3 Materials and methods
3.1 Driver distraction classification

Driver distraction classification offers a problem identifying
if the driver is being distracted while driving using the novel
deep learning approach. In this approach, a CNN is used for
classifier driver stance during driving. The CNN is trained
on images of drivers while driving. The stances of the driver
to be predicted are:

— Safe driving

— Texting-right

— Talking on the phone-right
— Texting-left

— Talking on the phone-left
— Operating the radio

— Drinking

— Reaching behind

— Hair and makeup

— Talking to passenger

3.2 Dataset

Below are the statistics of the dataset used for this research
(Table 2).

The dataset used included 22424 portraits belonging to all
ten groups of people either driving safely or performing one
of nine types of interrupted behaviors (texting, eating, talk-
ing on the phone, making up, reaching behind, and others).
The dataset was divided into 70, 30-ratio training, and vali-
dation dataset. The training dataset includes 15702 images,
and 6722 images are included in the validation dataset. Both
images were resized to 120 * 160 pixels. Images have been
rescaled, so their values are between O and 1. The training

images come with clear labeling, and the challenge is to
make the best classifications possible (Figs. 1, 2, 3, 4, 5).

3.3 CNN architecture

CNN or convolutional neural networks have widely used in
image-related tasks. CNN is based on the human eye. The
main advantage of CNN is that it automatically extracts fea-
tures from an image. Proposed CNN architecture contains
three convolutional, three MaxPooling, two Dense layers,
and one output layer. The convolutional layers of the pro-
posed algorithm have 12, 16, 20 kernels and kernel sizes of
(5,9),(5,5),and (4, 4), respectively. MaxPooling layers have
kernel sizes of (2, 2). Our dense layers have 512 and 128
neurons, respectively. All hidden layers have activation of
ReLU, and output layers have activation of Softmax.

3.3.1 Convolutional layer

Convolution is basically as kernel or filter which moves over
all the image and extract feature map which contains features
of an image (Khan and Yong 2017). It helps in detecting fea-
tures of an image. Kernel is a matrix that moves over the
image, and each value of the matrix is multiplied and then
summed, and we get the resultant feature map that contains
our features. Some famous kernels are edge detection, blur-
ring, and sharpening the image (Hu et al. 2017).

3.3.2 MaxPooling layer

MaxPooling layer helps detect the best or most prominent
features of the image matrix (Boureau et al. 2010). It is done
basically to reduce the number of computations and find
the most prominent and ignore the less prominent feature. It
reduces the feature matrices in size and increases the number
of essential features in them (Preprint 2014).

3.3.3 Dense layers

Dense layers or fully connected layers are a simple neural
network at the end of every CNN that computes the output
based on the convolved and max-pooled features, flattened
just before the fully connected neural network.

3.3.4 Data augmentation

Data augmentation introduces random zoom, flip, and shear
in an image to prevent over-fitting. Data augmentation is
used in training CNN so that it does not over-fit the data.
Yan LeCunn introduced CNN based on feed-forward neu-
ral networks, which indicates that the information is fed
forwarded through the neural network, and after comparing
the output of the image with the actual output, the error is
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(f) Sample 6 C5.

(h) Sample 8 C7. (i) Sample 9 C8.
G .

(j) Sample 10 CO.

Fig.1 Sample of labeled images differentiating different characteristics by each class

back-propagated. CNN uses a backpropagation algorithm for ~ are updated accordingly, and the entire process is carried on
error correction and weight alteration. Backpropagation is  until the CNN converges.

an algorithm that determines which neuron is contributing to

the overall error. Based on each Neuron’s error, the weights
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Fig.2 Image matrix multiplies
kernel or filter matrix

* An image matrix (volume) of dimension (h x w x d)

o A filter (fax fux d)
» Outputs a volume dimension (h-fan+ 1) x(w-fu+ 1) x 1

Single depth slice

% 111124
max pool with 2x2 filters
5(6 7|8 and stride 2 6 8
3| 2 EINNG 3|4
112]3| 4
y

Fig.3 Single depth slice of max pooling

4 Experimentation

Experiments were conducted with two CNN architectures.
One was a larger one containing higher 32, 64, and 64 filters
in each convolutional layer, respectively. It also contained a
dropout. Dropout is a technique of shutting down random
neurons such that noise is introduced in training and the neu-
ral network does not over-fit the data. The other CNN was
a simple and smaller one described in the previous pages,
and it is proposed architecture. The reason why we chose
this architecture over the other one is that it was perform-
ing better. The other architecture was under-fitting our data.
Training loss was higher than validation loss, and training
accuracy was lower than validation accuracy. The reason
is that simply the problem does not require a more exten-
sive network. Experimentations were conducted with the
hyperparameters as Learning_rate = 0.001, Loss_function =
Categorical_Crossentropy and Optimizer = Adam.

The trial after-effects of the proposed model and the other
state-of-the-art models are as per the following, under differ-
ing parameters, i.e., epochs and verbose per epochs, training
loss, training accuracy, testing loss, and testing accuracy of
proposed CNN, in Table 3.

5 Results

It is observed that the training accuracy (referred to Fig. 6)
after eight epochs starts converging. The neural network is
not stopped early because the CNN still needs to attain the
maximum accuracy it could, and after 20 epoch, it reached
98.98%.

The training loss (Fig. 7) started converging after eight
epochs, and training loss was almost reduced to around
0.0316 in the 20th. After that, the loss might not have reduced
much, and CNN converged.

The validation accuracy (referred to Fig. 8) showed sim-
ilar behavior to the training accuracy, which shows that the
proposed CNN was not over-fitting the data nor was under-
fitting the data. In initial epochs, the validation accuracy was
more significant than our training accuracy; the reason is
that the proposed CNN was under-fitting which is expected
as per bias—variance curve. After a few more epochs, the
CNN started showing best-fit results.

Moreover, the validation loss (referred to Fig. 9) showed
similar results to the training loss, determining the CNN is
not over-fitted, and the loss is also shallow (Table 4).

The confusion matrix shows that our model was not
biased toward any class. Furthermore, we have brought
the comparative analysis of the proposed approach with
recent state-of-the-art algorithms based on the same param-
eter setting, the same number of classes with a standard
experimental environment. Performance comparison of the
proposed approach with state-of-the-art variants on an exact
number of classes is presented in Table 6. The bar chart
accuracy comparison of proposed vs. others is illustrated in
Fig. 10.

5.1 Proposed Algorithm

The proposed deep learning approach has been tested on
the State Farm Driver distraction dataset, demonstrating the
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Fig.4 Model architecture with
input—output parameters

conv2zd 10: Conv2D

mput:

(None, 120, 160, 3)

output:

(None, 116, 156, 12)

'

max_pooling2d 10: MaxPooling2D

mput:

(None, 116, 156, 12)

output:

(None, 58, 78, 12)

'

conv2d 11: Conv2D

mput: (None, 58, 78, 12)

output: | (None, 54, 74, 16)

'

max_pooling2d 11: MaxPooling2D

mput:

(None, 54, 74, 16)

output:

(None, 27, 37, 16)

'

conv2d 12: Conv2D

nput: (None, 27, 37, 16)

output: (None, 24, 34, 20)

'

max_pooling2d 12: MaxPooling2D

mput:

(None, 24, 34, 20)

output:

(None, 12,17, 20)

'

mput: (None, 12, 17, 20)

flatten _4: Flatten

output: (None, 4080)

'

dense 10: Dense

mput: (None, 4080)

output: (None, 512)

'

dense 11: Dense

mput: (None, 512)

output: | (None, 128)

'

dense 12: Dense

mput: (None, 128)

output: (None, 10)
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12@116x156

16@54x74

3@120x160 12@58x78

\,

Image

Convolution 1 Max Pooling 1

Convolution 2

Fig.5 Proposed CNN architecture

16@27x37

Max Pooling 2 Convolution 3 Max Pooling 3 T . /"/

1x512

20@24x34 20@12x17

1x128

Fully Connected

Table 3 Training results

Training accuracy Validation loss Validation accuracy

obtained on different parameters Epoch # Training loss
1 1.2986
2 0.3822
3 0.2301
4 0.1568
5 0.1230
6 0.1060
7 0.0899
8 0.0942
9 0.0712
10 0.0682
11 0.0615
12 0.0623
13 0.0590
14 0.0542
15 0.0477
16 0.0514
17 0.0500
18 0.0481
19 0.0449
20 0.0316

0.5397 0.6280 0.7871
0.8768 0.2605 0.9177
0.9288 0.1886 0.9424
0.9513 0.1448 0.9578
0.9616 0.1591 0.9511
0.9671 0.1251 0.9655
0.9726 0.1099 0.9676
0.9708 0.1065 0.9680
0.9783 0.1011 0.9714
0.9797 0.1316 0.9612
0.9806 0.0898 0.9774
0.9796 0.1147 0.9664
0.9798 0.0959 0.9749
0.9828 0.0863 0.9762
0.9860 0.0786 0.9793
0.9831 0.0987 0.9737
0.9855 0.0793 0.9784
0.9846 0.0938 0.9750
0.9857 0.0796 0.9807
0.9898 0.0786 0.9805

effectiveness in the generalization performance in natural
driving environments. The CNN model shows better results
in the contrast experiment than a handcrafted approach and
ensemble learning system. The end-to-end learning-based
model can learn from raw images using temporal signs and
discrimination ratio. This section examines and contrasts the
findings with some previous models.

Among the six pre-prepared (referred to Table 5) models
with the proposed CNN architectures, i.e., Alex Net, Incep-
tion V3, Best-Rf, R BF- SVM, Majority voting ensemble, and
GA-weighted ensemble, the best-Rf accomplishes the high-
est accuracy yet additionally the most significant loss. The
proposed CNN has the most reduced accuracy and second-
lowest loss. Inception V3 accomplishes the third-lowest loss,
yet its accuracy is lower than GA-weighted ensemble and
majority voting ensemble. The proposed CNN architecture

accomplishes an accuracy of 98.96% on the validation set and
98.98% on the training set for distracted behavior detection.
For GA-weighted ensemble and majority voting ensem-
ble, these two accuracy rates are 95.98% and 95.77%,
separately, and for Alex Net, they are 93.66% with 0.39%
loss, individually. In this way, the over six pre-trained models
can perceive distracted driving behaviors in the State Farm
dataset. Notwithstanding, these pre-trained models likewise
all have enormous losses; this way, they are unequipped for
recognizing data instances of occupied CNN drivers without
this particular dataset. The testing and training curves for the
proposed CNN have appeared in figures. It tends to be seen
that the proposed CNN improves the testing accuracy and
loss and improves the validation accuracy and loss.
Similarly, referred to Table 6, we compare the proposed
model with other recent CNN models having a standard
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Table 4 Confusion matrix of validation data obtained using CNN

Class CO Cl1 C2 C3 C4 C5 Co6 C1 C8 (9
Co 717 1 0 2 5 15 1 1 2 2
Cl 2 675 0 1 0 0 2 0 0 0
C2 0 0 691 0 1 0 0 1 1 1
C3 2 0 0 695 3 0 0 0 1 2
C4 0 0 1 0 694 1 0 0 1 0
(6] 2 0 0 0 1 688 0 0 2 0
(6 0 0 8 0 1 0 680 0 6 2
C7 0 0 0 0 0 0 0 594 5 1
C8 3 0 1 0 4 1 2 3 555 4
C9 5 1 0 1 1 2 0 1 12 615

Table 5 Comparison between some methods using accuracy and loss
metrics

Method Training Testing Loss %
accuracy % accuracy %

Our CNN 98.98 98.05 0.3

AlexNet - 93.65 0.3909

InceptionV3 - 94.57 0.2937

Best-RF 88.47 80.6 0.4

R BF- SVM 92.81 92.45 -

Majority voting - 95.77 0.1661
ensemble

GA-weighted - 95.98 0.1575
ensemble

Improved results are shown in bold

testing benchmark. We can observe that the combination of
handcrafted features and the external classifier did not work
in the literature and obtained a poor accuracy score of 27%.

8.000

10.00 12.00 14.00 16.00 18.00

Table 6 Performance comparison of proposed approach with state-of-
the-art variants on same number of classes

Network Accuracy (%)
3D-CNN (Moslemi et al. 2019) 94.40
M-VGG (Baheti et al. 2018) 95.54
Inception V3 (Chawan et al. 2018) 73.00
Vgg 19 (Chawan et al. 2018) 77
ResNet 152 (Tran et al. 2018) 85
Vgg 16 (Tran et al. 2018) 82.50
AlexNet (Tran et al. 2018) 72.60
SVM+Handcrafted features (Tran 27.70
et al. 2018)
HCF (Huang et al. 2020) 96.74
DD-ST-M1 (Dhakate and Dash 73.01
2020)
DD-ST-M2 (Dhakate and Dash 97.00
2020)
Proposed method 98.05

On the other hand, 3D CNN got a better accuracy score than
94.40% instead of the modified Inception V3 with 73% accu-
racy. The proposed approach obtained 98.05% accuracy and
stood first in the comparison list, while the second modified
variant of DD-ST reached 97% and got second place in the
evaluation comparison in terms of superior performance.

6 Conclusion

This article discusses the minimization of traffic accidents
using anintelligent system based on the CNN method by dis-
tinguishing between dangerous and safe driving situations.
The proposed CNN architecture implicitly extracts the fea-
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tures of each network and is more robust than the existing References

methods. The proposed system is evaluated with the State
Farm Distracted Driver Database, which included exam-
ples illustrating ten different driving positions like reaching
behind and talking to the passenger, making up, safe driving,
talking on the phone, hair, checking right/left hand, right/left
hand and running the radio. Compared to other common
approaches with different image descriptors and classifica-
tion methods, we defined the selection of proposed CNN
architecture parameters and the different layers and presented
the results for the different epoch configurations. The pro-
posed model has achieved the best performance with an
accuracy of 98.98%.
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