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Abstract Volterra series is a widely used tool for iden-

tifying physical systems with polynomial nonlinearities.

In this approach, the Volterra kernels expanded using

Kautz functions can be identified using several tech-

niques to optimize the filters’ poles. This methodology

is very efficient when the system observations are not

subject to high noise-induced variabilities (uncertain-

ties). However, this optimization procedure may not be

effective when the uncertainty level is increased since

the optimal value might be susceptible to small pertur-

bations. Seeking to overcome this weakness, the present

work proposes a new stochastic method of identification

based on the Volterra series, which does not solve an op-

timization problem. In this new approach, the Volterra

kernels are described as stochastic processes. The pa-

rameters of Kautz filters are considered independent
random variables so that their probability distribution

captures the variabilities. The effectiveness of the new

technique is tested experimentally in a nonlinear me-
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chanical system. The results show that the identified

stochastic Volterra kernels can reproduce the nonlinear

dynamics characteristics and the data variability.
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1 Introduction

Systems identification is an essential topic of research

related to dynamics control since the prediction of com-

plex systems behavior, subjected to nonlinearities and

uncertainties, is an everyday task in engineering sci-

ences [9]. This problem is relatively simple and well

solved when the linearity hypothesis is applicable. How-

ever, a lot of real systems may exhibit nonlinear phe-
nomena, depending on factors such as (i) operational

conditions, (ii) constitutive relationships of materials,

(iii) application of excitations and loads, etc. [7].

The literature presents several methods that can be

used to identify systems subjected to nonlinear phe-

nomena, suck as Hilbert transform, NARMAX Models,

High-Order Frequency Response Functions (HOFRFs),

Restoring Force Surface (RFS) method, etc. [8]. The

use of Volterra series expanded in orthonormal bases

– mainly the Kautz functions – is also frequently re-

ported in the literature to describe nonlinear systems,

with satisfactory results in oscillatory phenomena with

polynomial nonlinearities [18, 11, 17]. The major diffi-

culty for the use of Kautz functions based Volterra se-

ries is related to the definition of the basis parameters,

which requires the solution of a nonlinear optimization

problem [12, 14], a task that is computationally expen-

sive and very sensitive to the initial guess for the pa-

rameters. To make this task even more difficult, every

real system is subject to uncertainties, which manifest
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themselves via (i) measurements noise in the system ob-

servations (experimental data); (ii) variabilities of the

real system concerning its simple configuration (due to

geometric imperfections, manufacturing irregularities,

environmental conditions, etc.); or (iii) lack of knowl-

edge about the model structure (ignorance about the

system physics) [19]. These uncertainties make the solu-

tion to the optimization problem mentioned above even

more complex and unreliable. Nevertheless, to the best

of the authors’ knowledge, few papers in the literature

consider the approach of the Volterra series (with Kautz

bases) applied to the identification of systems taking

into account the variabilities (uncertainties) present in

the measured data [20, 21]. In this way, to conduct a

careful identification process and, consequently, obtain

an accurate response prediction, it is essential to con-

sider the effect of these uncertainties.

Some initiatives in this sense can be found in the lit-

erature, such as [10], which presents the formulation of

orthonormal bases in robust control, considering para-

metric uncertainties in linear systems. Additionally, some

expansions to represent nonlinear Volterra kernels in

an uncertain scenery are shown with generalized or-

thonormal basis functions (GOBF) in [1], and Kautz

functions in [13, 15]. In this latter work, Rosa et al.

(2010) [15] consider Volterra kernels as uncertain ob-

jects, and an optimization procedure is employed to de-

termine the Kautz bases parameters to describe the ker-

nel’s limits and minimize the uncertainties influence. In

[20, 21], the authors considered the stochastic version of

the Volterra series, implemented using random Kautz

functions. However, an optimization procedure to de-

termine the pole values that define the Kautz functions

was performed for each Monte Carlo run. This opti-

mization problem is non-convex, which requires global

search algorithms, e.g., genetic algorithms (very com-

putationally costly) since the use of gradient-based op-

timizers becomes highly dependent on the initial guess.

This procedure can be very costly when considering a

high number of MC runs, making the development of

new methodologies essential for the practical use of the

stochastic model.

This paper proposes to address the problem of non-

linear system identification in the presence of uncertain-

ties – for instance, noise in experimental observations –

using a stochastic version of Kautz functions based on

the Volterra series, without the use of an optmization

procedure to determine exact values for the Kautz pa-

rameters. In this context, the Volterra series is defined

in a parametric probabilistic framework. A stochastic

model of uncertainties for the nonlinear system under

analysis is identified, where model parameters are de-

scribed by independent random variables (instead of de-

terministic values), and the system response is treated

as a random process (rather than a deterministic func-

tion of time). One advantage of this approach is that

it allows the construction of confidence bands for the

Volterra kernels, i. e., it provides more robust predic-

tions for the model output once it considers potential

variabilities of the system response. Furthermore, the

main advantage of the proposed methodology is that

it does not require the optimization of deterministic

Kautz poles values, as they are considered to be random

variables. A deterministic optimal value becomes non-

representative in situations such as described above be-

cause a single-pole value may not represent all the data

variation in the measured signals, and an optimization

considering data variation with many measured signals

can be very costly.

The proposed identification methodology uses a para-

metric probabilistic approach to address model param-

eters uncertainties, where Kautz poles are treated as

independent random variables. Their probability distri-

butions are obtained conservatively utilizing the max-

imum entropy principle [5], taking into account only

known information about these parameters. Statistics

about the nonlinear system response are obtained using

the Monte Carlo method [3, 16]. The proposed method-

ology’s effectiveness is tested by identifying a clamped-

free beam undergoing large displacements. Measurements

were performed on different days to induce variations

in the data related to uncertainties in boundary condi-

tions, sensor positions, screws tightening, etc. The re-

sults obtained with the new methodology’s application

have shown that the identified random Kautz poles al-

low the stochastic model to predict the variability of the

system response with a certain level of confidence, en-

suring some robustness to the model output concerning

the underlying uncertainties. Such robustness can not

be obtained with an optimum pole-based deterministic

model.

2 Stochastic Identification via Volterra Series

2.1 System uncertainties

Uncertainties are classified in the literature as being

of two types, aleatory or epistemic. The first type is

intrinsic to scenarios with variabilities, such as those

described in section 1, and can not be eliminated, only

better characterized. The second type, epistemic un-

certainties, is only due to the lack of information. By

increasing knowledge about a particular system, these

uncertainties can be mitigated [19, 2].

The methodology adopted in this work only consid-

ers the aleatory uncertainties, also known as data uncer-
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tainties. Therefore, the uncertainties are materialized in

variations in the model parameters. In this sense, the

authors assume that the Volterra series can produce a

reliable representation of nonlinearities present in the

system’s dynamics. The epistemic uncertainties must

be considered in future works.

Additionally, the model parameters subjected to un-

certainties are described as random variables or random

processes, defined on the probability space (Θ,�,P),

where Θ is a sample space, � is a σ-algebra over Θ,

and P is a probability measure. It is assumed that any

random variable θ ∈ Θ 7→ V(θ) ∈ R in this probabilis-

tic setting, with probability distribution PV(dv) on R,

admits a probability density function (PDF) v 7→ pV(v)

with respect to dv [20].

2.2 Stochastic Volterra series

In this paper, a stochastic version of the Volterra series

is employed to identify the nonlinear system of interest.

In this sense, the discrete-time Volterra series describes

the random system output as

y(θ, k) =

∞∑
η=1

N1−1∑
n1=0

. . .

Nη−1∑
nη=0

Hη(θ, n1, . . . , nη)

η∏
i=1

u(k−ni),

(1)

where k ∈ Z 7→ u(k) is a deterministic input signal, the

random process (θ, k) ∈ Θ × Z 7→ y(θ, k) is the system

response and (θ, n1, .., nη) ∈ Θ×Zη 7→ Hη(θ, n1, . . . , nη)

represents the random version of the η-order Volterra

kernel. The representation in the form of higher-order
convolutions allows one to directly split the system out-

put into a sum of linear and nonlinear contributions

(that are random processes in this case).

The main drawback is related to the difficulty of

convergence of the series using a large number of terms.

However, the problem is reduced expanding the Volterra

kernels into an orthonormal basis (this work employs

the use of Kautz functions [6, 4]). Once the system re-

sponse varies during the measuring process, it is natu-

ral to model the Kautz functions as random processes,

since their definition are associated with the dynamics

of the system response y(θ, k) and depend on the pa-

rameters of damping ratio and natural frequency, which

are subjected to uncertainties. Considering the random

Kautz orthonormal basis expansion, the random output

is written as

y(θ, k) ≈
∞∑
η=1

J1∑
i1=1

. . .

Jη∑
iη=1

Bη (θ, i1, . . . , iη)

η∏
j=1

lij (θ, k) ,

(2)
where J1, . . . , Jη are the number of samples in each or-

thonormal projections of the Volterra kernels, the ran-

dom process (θ, i1, . . . , iη) ∈ Θ × Zη 7→ Bη(θ, i1, . . . , iη)

represents the η-order random Volterra kernel, expanded

in the orthonormal basis, and the random process (θ, k) ∈
Θ × Z 7→ lij (θ, k) is a simple filtering of the determin-

istic input signal u(k) by the random Kautz function

lij (θ, k) =

K−1∑
ni=0

 ij (θ, ni)u(k − ni) , (3)

where K = max{J1, . . . , Jη} and (θ, nj) ∈ Θ × Z 7→
 ij (θ, nj) represents the random version of the ij-th

Kautz filter. More information on the identification ap-

proach based on deterministic Volterra series can be

found in [18]. Details about deterministic Kautz func-

tions are given in section 2.3. The reader is also encour-

aged to see [10].

Finally, the coefficients of the kernels can be esti-

mated considering Monte Carlo (MC) simulations and

the least squares method

Φ = (Γ TΓ )−1Γ TY , (4)

where, considering each stochastic realization θ and the

series truncated on the third-order kernel, the matrix Γ

can be completed with the input signal filtered lij (θ, k)

Γ =


l11(θ, 1) . . . lJ11

(θ, 1) l12(θ, 1)l12(θ, 1) l12(θ, 1)l22(θ, 1) . . . lJ22
(θ, 1)lJ22

(θ, 1)

l11(θ, 2) . . . lJ11
(θ, 2) l12(θ, 2)l12(θ, 2) l12(θ, 1)l22(θ, 2) . . . lJ22

(θ, 2)lJ22
(θ, 2)

...
...

...
...

...
...

...

l11(θ, ns) . . . lJ11
(θ, ns) l12(θ, ns)l12(θ, ns) l12(θ, ns)l22(θ, ns) . . . lJ22

(θ, ns)lJ22
(θ, ns)

l13(θ, 1)l13(θ, 1)l13(θ, 1) l13(θ, 1)l13(θ, 1)l23(θ, 1) . . . lJ33
(θ, 1)lJ33

(θ, 1)lJ33
(θ, 1)

l13(θ, 2)l13(θ, 2)l13(θ, 2) l13(θ, 2)l13(θ, 2)l23(θ, 2) . . . lJ33
(θ, 2)lJ33

(θ, 2)lJ33
(θ, 2)

...
...

...
...

l13(θ, ns)l13(θ, ns)l13(θ, ns) l13(θ, ns)l13(θ, ns)l23(θ, ns) . . . lJ33
(θ, ns)lJ33

(θ, ns)lJ33
(θ, ns)

 (5)
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where ns represents the number of points of the train-

ing data. The vector Y can be completed with the ex-

perimental output signal y(θ, k)

Y =


y(θ, 1)

y(θ, 2)
...

y(θ, ns)

 , (6)

and,

Φ =



B1(θ, 1)
...

B1(θ, J1)

B2(θ, 1, 1)

B2(θ, 1, 2)
...

B2(θ, J2, J2)

B3(θ, 1, 1, 1)

B3(θ, 1, 1, 2)
...

B3(θ, J3, J3, J3)



, (7)

has the terms of the orthonormal kernels Bη to each

realization θ. The procedure is repeated until the con-

vergence is achieved. Figure 1 shows a flowchart of the

stochastic Volterra kernels identification.

2.3 Deterministic Kautz functions

To better understand the work it is helpful to know the

deterministic form of Kautz functions. The generalized
form of Kautz functions is written as [12]

ψ2j−1(z) =

√
1− d2

√
1− c2

z2 + d(c− 1)z − c

[
−cz2 + d(c− 1)z + 1

z2 + d(c− 1)z − c

]j−1
,

(8)

ψ2j(z) = ψ2j−1(z)
z − d√
1− d2

, (9)

being the values of c and d respectively defined by

c = −β2η−1β2η. (10)

d =
β2η−1 + β2η
1 + β2η−1β2η

, (11)

The functions β2η−1 and β2η are the Kautz poles

β2η = −ξ2ηω2η − jω2η

√
1− ξ22η, (12)

β2η−1 = −ξ2η−1ω2η−1 + jω2η−1

√
1− ξ22η−1 , (13)

where the parameters ωη and ξη are the natural fre-

quency and damping ratio of the system, and η repre-

sents the number of the kernel. For a stable system one

has ‖β2η−1‖,‖β2η‖ < 1. In identification processes it is

common use some optimization methodology to find ωη
and ξη [12].

Figure 1 Description of the random kernels identification
methodology.

2.4 The stochastic Kautz parameters

In an uncertain framework, the definition of Kautz func-

tions is difficult, and an optimization procedure is usu-

ally implemented to estimate the Kautz pole’s param-

eters. However, the optimization problem can generate

some errors in an uncertain scenario, even more, if we

consider a deterministic estimation, besides being very

costly. Therefore, to construct a robust method, it is

necessary to provide a statistic certification (the relia-

bility envelope for the model parameters). Such certifi-

cation can be obtained using a stochastic model, where

probability distributions are identified for the model

parameters instead of deterministic scalar values. As



An optimizationless stochastic Volterra series approach for nonlinear model identification 5

mentioned before, the Kautz poles’ parameters depend

on the system dynamics. As we consider the system

output a random process that varies in each experi-

mental realization, it is natural to consider that the

poles’ parameters vary. Therefore, the parameters ωη
and ξη for each kernel are considered as random vari-

ables θ ∈ Θ 7→ �η(θ) ∈ R, θ ∈ Θ 7→ �η(θ) ∈ R. The

random character of the poles will allow the construc-

tion of the random Kautz functions described in the

last section.

The critical step of the methodology is related to

the definition of the distributions of �η and �η. It is

assumed that the only information known about each

random variable is the support [a, b]. In this sense, the

maximum entropy principle is employed to construct

a consistent probabilistic model for the random Kautz

parameters [5]. Thus, the probability density function

that maximizes the entropy is a uniform distribution,

p(x) = 1[a,b](x)
1

b− a
, (14)

where p(x) is the probability density function of a uni-

formly distributed random variable, a and b are the

inferior and superior limits to the distribution. Then,

to each kernel, the Kautz parameters �η and �η distri-

butions are estimated between these limits. Finally, the

Kautz filters random processes are computed through

MC simulations [3, 16], and then used to filter the sys-

tem’s deterministic input data in the Volterra kernels

identification process. In this paper, the Kautz param-

eter limits are defined based on the system response

variation because the Kautz poles are associated with

the system’s dynamics. To be more clear, thought the

estimation of natural frequencies and damping ratios of

the system using the operation in the linear regime of

motion.

3 Effectiveness test for the new methodology

3.1 System of interest

To test the efficacy of the new identification methodol-

ogy, a nonlinear system composed of a magneto-elastic

beam, subject to large displacement, is considered. The

experimental setup that emulates this behavior is shown

in Fig. 2. It is the same setup used in [17, 20, 22], com-

posed by an 300 × 18 × 3 [mm] aluminum beam with

steel mass connected in the free end to cause a mag-

netic interaction between the beam and a magnet. A

MODAL SHOP shaker (Model Number: K2004E01) is

attached 50 mm from the clamped and used to excite

the structure considering different levels of voltage am-

plitude 0.01 V (low level), 0.10 V (medium level), and

0.15 V (high level). The system presents nonlinear be-

havior for large displacement amplitudes when a high

level of excitation amplitude is applied. A vibrometer

laser Polytec (Model: OFV-525/-5000-S) and a Dytran

load cell (Model: 1022V) are used to measure the veloc-

ity in the free end of the beam and the force excitation,

respectively. The magnet positioned next to the free end

of the beam interacts with the steel mass and generates

a nonlinear hardening behavior [20].

Figure 2 Nonlinear system to be identified [22].

3.2 Definition of the Kautz functions

The uncertain system response is used to establish the

limits of Kautz parameters without any optimization

procedure. The natural frequency and damping ratio

of the system are determined based on experimental

data measured on different days and used to establish

the limits of Kautz parameters distribution defined in

section 2.4. To find the number of Kautz functions for

each kernel, the accuracy of the model is observed. The

Volterra series is truncated in the third-order compo-

nent because the cubic effect can describe the polyno-

mial nonlinearity related to the system in the study, the

effect of cubic stiffness. Table 1 shows the parameters

found to the Kautz functions for each kernel.

Table 1 Kautz functions parameters.

Parameter 1st kernel 2sd kernel 3th kernel

Kautz Functions 2 2 4

�inf [rad/s] 145.5 145.5 145.5

�sup [rad/s] 147.5 147.5 147.5

�inf [%] 1.5 1.5 1.5

�sup [%] 2.0 2.0 2.0
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The limits are determined based on the variation

of the system’s physical parameters, natural frequency,

and damping ratio of the measured data. The PDFs of

the parameters are obtained considering 250 samples,

and the function showed in Eq. (14), then the Kautz

functions are obtained via MC simulations. This num-

ber of samples is determined based on a MC conver-

gence test applied in the identified kernels. Figure 3

shows the Kautz poles to the three kernels represented

in the z plain, considering the dispersion of the parame-

ters �η and �η. It can be seen that the probabilistic dis-

tribution allows a sweep in a region of the plane, which

assures the model the ability to describe the variation

of the uncertain response of the system.

0

0.1

0.2

0.3

0.4

0.5

-1 -0.9 -0.8 -0.7 -0.6 -0.5

Im
(z

)

Re(z)

zoom

R=1

Figure 3 Kautz poles represented in discret domain (z). ◦ -
first, ◦ - second, ◦ - third kernel.

With these parameters, it is possible to evaluate

the stochastic Kautz functions ( η), and use the esti-

mated random functions in the process of Volterra ker-

nels identification, which is described in the following

section.

3.3 Volterra kernels identification

To identify the uncertain Volterra kernels, 195 sam-

ples of experimental data, measured on 5 different days,

were used. The identification was performed in two steps

[17]. First, a low-level chirp was applied in the struc-

ture (0.01 V), varying the excitation frequency between

10 and 50 Hz, in the first mode bandwidth to identify

the linear kernel. After that, a high-level chirp was ap-

plied (0.15 V) with the same frequency range to iden-

tify the second and third kernels. The stochastic Kautz

functions described in section 2.4 were used in the pro-

cess of kernels estimation combining the functions with

the experimental system output measured on different

days. Their statistics were obtained via MC simulations

within a total of 1250 samples. Figure 4 presents the

mean value for the first kernel, represented in the time

domain, with the respective envelope for a 99% confi-

dence band. Figures 5 and 6 show the mean value of the

main diagonal of the second and third kernels, also rep-

resented in the time domain, with the respective 99%

confidence bands. The dispersion for the second and

third-order kernels is larger than for the first-order ones.

The second-order kernel has a large variability because

the system response is approximately symmetric, and

its contribution to the response is low, making it diffi-

cult to estimate in an uncertain scenery. The large dis-

persion observed on the impulse response of the third-

order kernel is associated with the number of random

Kautz functions used, representing a higher propaga-

tion of uncertainties related to the Kautz poles. On the

other hand, fewer functions do not allow the model to

describe the system behavior adequately.

-40
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30
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A
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p
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tu
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m
s-1

)/
N

]

Time [s]

Figure 4 First kernel represented in time domain with 99%
confidence band. continuous line - mean value.

3.4 Model validation

Once the stochastic model is identified, it is important

to validate the model and observe if it can describe the

system behavior characteristics. First, the same chirp

signal used in the identification process is applied, con-

sidering two amplitude levels. It is important to note

that the signals used in this process are new samples

of the experimental data (that were not used in the

identification process), with similar dynamical charac-

teristics. Figure 7 shows the model prediction with 99%

of confidence bands, compared with experimental data
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Figure 5 Main diagonal of second Volterra kernel repre-
sented in time domain with 99% confidence band. continuous
line - mean value.
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Figure 6 Main diagonal of third Volterra kernel represented
in time domain with 99% confidence band. continuous line -
mean value.

measured on different days, considering linear and non-

linear regimes of motion, respectively. The results are

satisfactory because the model can describe the system

behavior in linear and nonlinear components and the

data variation simultaneously (the experimental disper-

sion is lower than the confidence bands). The mean of

the model output cannot describe the variability of the

experimental data, which confirms the importance of

constructing a stochastic model.

Finally, it is important to validate the model using

an input signal with different characteristics than the

ones used in the identification process. As the system is

nonlinear, its behavior is strongly input-signal depen-

dent. Therefore, a sine signal with a fixed frequency is

used as input to validate the model. This signal has a

high level of amplitude (0.15 V) and frequency close
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(b) High level of input (nonlinear behavior).

Figure 7 Volterra model response with 99% of confidence
bands. blue line - mean model, red line - new experimental
data.

to the system’s natural frequency (≈ 23 Hz), inducing

the nonlinear behavior. Figure 8 shows the results in

the frequency domain to help the visualization of the

frequency components. The presence of multiple har-

monics in the response shows that the system behav-

ior is nonlinear in this condition, and the model can

describe this behavior in all-important frequency com-

ponents. The large dispersion in the model response is

a consequence of the number of Kautz functions used.

However, as previously commented, fewer functions in

nonlinear kernels do not allow the model to describe the

system’s nonlinearities.
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Figure 8 Volterra model response with 99% of confidence
bands for a single frequency sine input. blue line - mean
model, red line - new experimental data.

4 Conclusion

Identifying nonlinear systems subject to uncertainties

is challenging, especially when a gray-box model that

depends directly on the input/output signals, like the

Volterra series, is used. In this scenario, the optimiza-

tion of Kautz poles can be costly and considered ir-

relevant once a deterministic value of the pole cannot

describe the fluctuations necessary in Kautz functions

to approximate the variation in system response.

This work presented a methodology for nonlinear

system identification based on a stochastic version of

the Volterra series (expanded using Kautz functions),

where model parameters are described as independent

random variables and the model output as a random

process. In this methodology, the Kautz poles are de-

termined based on the uncertain output signals of the

system and the maximum entropy principle. The results

show that this stochastic version of the Volterra series

can describe the system response considering the exper-

imental data variations obtained from measurements

performed on different days. The stochastic model ob-

tained is robust to uncertainties and can be adequately

validated.
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