Pathlength of Outerplanar graphs

Thomas Dissaux, Nicolas Nisse

To cite this version:

Thomas Dissaux, Nicolas Nisse. Pathlength of Outerplanar graphs. [Research Report] Inria \& Université Nice Sophia Antipolis, CNRS, I3S, Sophia Antipolis, France. 2022. hal-03655637v1

HAL Id: hal-03655637 https://hal.science/hal-03655637v1

Submitted on 3 May 2022 (v1), last revised 10 Jul 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pathlength of Outerplanar graphs*

Thomas Dissaux ${ }^{1}$ and Nicolas Nisse ${ }^{1}$
${ }^{1}$ Université Côte d'Azur, CNRS, Inria, I3S, Sophia Antipolis, France

May 3, 2022

Abstract

A path-decomposition of a graph $G=(V, E)$ is a sequence of subsets of V, called bags, that satisfy some connectivity properties. The length of a path-decomposition of a graph G is the greatest distance between two vertices that belong to a same bag and the pathlength, denoted by $p \ell(G)$, of G is the smallest length of its path-decompositions. This parameter has been studied for its algorithmic applications for several classical metric problems like the minimum eccentricity shortest path problem, the line-distortion problem, etc. However, deciding if the pathlength of a graph G is at most 2 is NP-complete, and the best known approximation algorithm has a ratio 2 (there is no c-approximation with $c<\frac{3}{2}$). In this work, we focus on the study of the pathlength of simple sub-classes of planar graphs. We start with the pathlength of cycles with n vertices which is equal to $\left\lfloor\frac{n}{2}\right\rfloor$. Then, we design a lineartime algorithm that computes the pathlength of trees. Finally, our main result is a (+1)approximation algorithm for the pathlength of outerplanar graphs. This algorithm is based on a characterization of almost optimal (of length at most $p \ell(G)+1$) path-decompositions of outerplanar graphs.

1 Introduction

Path-decomposition of graphs has been extensively studied since their introduction in the graph minor theory by Robertson and Seymour, for their various algorithmic applications. A pathdecomposition of a graph $G=(V, E)$ is a sequence (X_{1}, \ldots, X_{p}) of subsets (called bags) of V such that (1) $\bigcup_{i \leq p} X_{i}=V$, (2) for all edges $\{u, v\} \in E$, there exists $1 \leq i \leq p$ such that $u, v \in X_{i}$, and (3) for all $1 \leq i \leq z \leq j \leq p, X_{i} \cap X_{j} \subseteq X_{z}$. These constraints implies this fundamental property (widely used in proofs), for all $1 \leq i \leq p, S=X_{i} \cap X_{i+1}$ separates $A=\bigcup_{j \leq i} X_{j} \backslash S$ and $B=\bigcup_{j \geq i} X_{j} \backslash S$ (i.e. every path between A and B goes through S).

The most classical measure of path-decomposition is its width corresponding to the maximum size of the bags. The pathwidth of a graph G is the minimum width of its path-decomposition. Typically, the famous theorem of Courcelle implies that numerous NP-hard problems can be solved in polynomial times in graphs of bounded pathwidth [2].

We focus on an other measure of path-decomposition which, even if it is less studied, has also numerous algorithmic applications. This measure, the length $\ell(D)$ of a path-decomposition D, is the maximum diameter of the bags of D, where the diameter of a bag X is the biggest distance between two vertices in X. the pathlength $p \ell(G)$ of a graph G, is the minimum length of its pathdecomposition [5]. In particular, this measure captures some metrics properties of graphs. For

[^0]example, the line distortion problem can be approximated (constant factor) when the pathlength is bounded by a constant [6, which has many applications in computer vision 15, computational chemistry and biology [11], in network design and distributed protocol [9], etc.Moreover, since the pathlength is an upper bound or the treelength, the Traveling Salesman Problem (TSP) admits a FPTAS in bounded pathlength graphs [13], efficient compact routing schemes and sparse additive spanners can be built in the class of bounded pathlength graphs [12], and computing the metric dimension is FPT in the pathlength plus the maximum degree [1], etc.

Unfortunately, deciding if the pathlength of a graph is at most $2(p \ell(G) \leq 2)$ is NP-complete and there is no c-approximation for all $c<\frac{3}{2}$ (unless $P=N P$) [8]. On the other hand, there exists a 2-approximation in general graphs [6]. While computing the pathwidth of planar graphs is known to be NP-complete [14] , the case of pathlength has not been studied yet. In this paper, we initiate this study by considering outerplanar graphs. Note that the pathwidth of outerplanar graphs is known to be polynomial-time solvable, but the best known algorithm to compute the pathwidth of outerplanar n-node graphs has complexity at least $O\left(n^{11}\right)$ [3]. Moreover, there exist 2-approximations for this problem in time $O(n \log (n))$ by related it to the pathwidth of their weak dual (4].

Our contributions. We first give a linear-time algorithm that computes the pathlength of trees, and prove that $p \ell\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ for any cycle C_{n} with n vertices in Section 3. Our main contribution is the design of an algorithm that computes, in time $O\left(n^{3} p \ell(G)^{2}\right)$, a pathdecomposition of length at most $p \ell(G)+1$ for any outerplanar n-node graph G. This algorithm is based on a structural characterization of almost optimal (of length at most $p \ell(G)+1$) pathdecompositions of outerplanar graphs.

2 Preliminaries

Let $G=(V, E)$ be any graph. When it will not be specified below, n will always be the number $|V|$ of vertices. In what follows, any edge $\{x, y\}$ is also considered as the set of two vertices x and y. In particular, we say that $X \subseteq V$ contains an edge e if $e \subseteq X$. Given a vertex $v \in V$, let $N(v)=\{u \in V \mid\{v, u\} \in E\}$ be the neighbourhood of v and let $N[v]=N(v) \cup\{v\}$ be its closed neighbourhood. Given $S \subseteq V$, let $N(S)=\{v \in V \backslash S \mid \exists u \in S,\{u, v\} \in E\}$ and let $G[S]=(S, E \cap(S \times S))$ be the subgraph of G induced by the vertices of S. The distance $\operatorname{dist}_{G}(u, v)$ (or $\operatorname{dist}(u, v)$ if there is no ambiguity) between $u \in V$ and $v \in V$ is the minimum length (number of edges) of a path beetween u and v in G. A subgraph H of G is isometric if $\operatorname{dist}_{H}(u, v)=\operatorname{dist}_{G}(u, v)$ for all $u, v \in V(H)$.

A path-decomposition of G is a sequence $D=\left(X_{1}, \cdots, X_{p}\right)$ of subsets of vertices, called bags, such that $\bigcup_{i \leq p} X_{i}=V$, for every $e \in E$, there exists $i \leq p$ with $e \subseteq X_{i}$ and, for every $1 \leq i \leq j \leq q \leq p, X_{i} \cap X_{q} \subseteq X_{j}$. The length $\ell(D)$ of D is the maximum diameter of one of its bags, i.e., $\ell(D)=\max _{i \leq p} \ell\left(X_{i}\right)=\max _{i \leq p} \max _{u, v \in X_{i}} \operatorname{dist}_{G}(u, v)$. The pathlength $p \ell(G)$ of G is the minimum length of its path-decompositions. A path-decomposition of G of length $p \ell(G)$ is said optimal.

Let us say that a path-decomposition is reduced if no bag is contained in another one. It is easy to check that any graph admits an optimal reduced path-decomposition. In what follows, we will use the following result.

Lemma 1 [5] For every isometric subgraph H of G, then $p \ell(H) \leq p \ell(G)$.
An alternative (equivalent) way to define path-decompositions of a graph $G=(V, E)$ is through orderings of V. This representation will be particularly useful in Section 4 . Let $\mathcal{O}=$
$\left(v_{1}, \cdots, v_{n}\right)$ be an ordering (i.e., a permutation) of V. Let $D(\mathcal{O})=\left(X_{1}, \cdots, X_{2 n-2}\right)$ be defined as follows. Let $X_{1}=\left\{v_{1}\right\}$ and, for every $2 \leq i<n$, let $X_{2 i-2}=X_{2 i-3} \cup\left\{v_{i}\right\}$, let $S_{i} \subseteq X_{2 i-2}$ be the set of vertices $x \in X_{2 i-2}$ such that $N[x] \subseteq \bigcup_{j \leq 2 i-2} X_{j}$ (i.e., all vertices of $X_{2 i-2}$ whose all neighbours belong to a bag X_{j} for some $j \leq 2 i-\overline{2}$) and let $X_{2 i-1}=X_{2 i-2} \backslash S_{i}$. In particular, note that $S_{i} \subseteq N\left[v_{i}\right]$ and may be empty. Finally, let $X_{2 n-2}=X_{2 n-3} \cup\left\{v_{n}\right\}$. The following claim is straightforward.

Claim 1 Let \mathcal{O} be any ordering of the vertex-set V of a graph $G=(V, E)$. Then, $D(\mathcal{O})$ is a (not reduced) path-decomposition of G.

Given an ordering $\mathcal{O}=\left(v_{1}, \cdots, v_{n}\right)$ and $1 \leq i \leq j \leq n$, let $\mathcal{O}\left[v_{i}, v_{j}\right]=\left(v_{i}, \cdots, v_{j}\right)$.
Given two sequences $D=\left(X_{1}, \cdots, X_{p}\right)$ and D^{\prime} of subsets of V and $S \subseteq V$, let $D \cup S=$ $\left(X_{1} \cup S, \cdots, X_{p} \cup S\right)$ (If $S=\{v\}$, we note $D \cup v$ instead of $D \cup\{v\}$). Let $D \cap S$ and $D \backslash S$ be defined in a similar way (in these cases, the empty bags that may be created are removed). Finally, let $D \odot D^{\prime}$ be the sequence obtained by concatenation of D and D^{\prime}. The following claim is straightforward (and well known).

Claim 2 Let D be a path-decomposition of $G=(V, E)$ and $S \subseteq V$.

1. Then, $D^{\prime}=D \cap S$ (resp., $D^{\prime}=D \backslash S$) is a path-decomposition of $G[V \cap S]$ (resp., of $G \backslash S$). Moreover, if $G[V \cap S]$ (resp., $G \backslash S$) is an isometric subgraph of G, then $\ell\left(D^{\prime}\right) \leq \ell(D)$.
2. Let D^{\prime} be a path-decomposition of $G[V \backslash S]$. Then, $D^{\prime} \cup S$ is a path-decomposition of G.
3. Let $V=A \cup B$ with $A \cap B=S$ and S separating $A \backslash S$ and $B \backslash S$ (there does not exist any edge $\{u, v\} \in E$ with $u \in A \backslash S$ and $v \in B \backslash S$), let D_{1} be a path-decomposition of $G[A]$ with last bag containing S, and let D_{2} be a path-decomposition of $G[B]$ with the first bag containing S. Then, $D_{1} \odot D_{2}$ is a path-decomposition of G of length at most $\max \left\{\ell\left(D_{1}\right), \ell\left(D_{2}\right)\right\}$.

3 Pathlength of trees and cycles

We first begin by the trees, the easiest sub-class of planar graphs. Note that, intuitively, the algorithm presented in Section 4, that computes the pathlength of Outerplanar graphs follows similar ideas as the one we present for trees.

Let $k \in \mathbb{N}$ and let S_{k} be the tree obtained from a star with three leaves by subdividing each edges k times, i.e., by replacing each edge by a path with $k+1$ edges.

Lemma 2 [5] For any $k \in \mathbb{N}, p \ell\left(S_{k}\right)=k+1$.
Note that, $p \ell\left(S_{k}\right)=\frac{\left|V\left(S_{k}\right)\right|-1}{3}+1$. This is in contrast to the width counterpart where the pathwidth of any n-node tree is at most $O(\log n)$.

Theorem 1 The pathlength of any tree and an optimal path-decomposition can be computed in linear time.

Proof. Let T be any tree. If T is a path, the result is obvious (the pathlength equals one), so we may assume that T has at least three leaves.

Let P_{0} be a longest path in T and let x and y be its endpoints (that are leaves). Let z be any leaf of T maximizing its distance to P_{0} (i.e., for any leaf f of $T, \operatorname{dist}\left(f, P_{0}\right)=$ $\left.\min _{v \in V\left(P_{0}\right)} \operatorname{dist}(f, v) \leq \operatorname{dist}\left(z, P_{0}\right)\right)$. Let v^{*} be the projection of f on P_{0}, i.e., v^{*} is the vertex of P_{0} minimizing its distance to z. Note that $\operatorname{dist}\left(v^{*}, f\right) \leq \min \left\{\operatorname{dist}\left(v^{*}, x\right), \operatorname{dist}\left(v^{*}, y\right)\right\}$

Figure 1: example of a tree T (with $p \ell(T)=2$) and the path-decomposition obtained from theorem 11 could be $(\{a b\},\{b c\}, X, Y,\{c d\},\{d e\}, Z, W,\{e f\},\{f g\})$.
(since otherwise, P_{0} would not be a longest path). Let T^{\prime} be the inclusion-minimal subtree of T containing x, y and z. Note that T^{\prime} contains S_{k} as isometric subgraph for $k=\operatorname{dist}\left(v^{*}, z\right)-1$, and so, S_{k} is an isometric subgraph of T. Then, by Lemmas 2 and $1, p \ell(T) \geq p l\left(S_{k}\right)=k+1$.

We now show that $p \ell(T)=k+1$ by building a path-decomposition D of T with length $k+1$. Let $P_{0}=\left(x=v_{0}, v_{1}, \cdots, v_{t}=y\right)$. Let us describe an iterative algorithm that builds D. Let us start with D containing only the bag $\left\{v_{0}, v_{1}\right\}$.

For i going from 1 to $t-1$, let us do the following. Let T^{i} be the connected component of $T \backslash E\left(P_{0}\right)$ (that is, removing the edges of P_{0} but keeping its vertices) that contains v_{i}. Let F^{i} be the sequence of leaves of T^{i} except v_{i} (if v_{i} is a leaf of T^{i}) ordered by following any DFS of T^{i} starting from v_{i}. Note that, by definition of z, for every $f \in F^{i}, \operatorname{dist}\left(f, v_{i}\right) \leq k+1$ (let us denote this Property by $(* *))$. Let $\mathcal{Q}=\left(Q_{1}, \cdots, Q_{\left|F^{i}\right|}\right)$ be the sequence of the paths from v_{i} to f, for every $f \in F^{i}$, where the ordering of the paths follows the ordering of the leaves in F^{i}. For q going from 1 to $\left|F^{i}\right|$, add $V\left(Q_{q}\right)$ as the next bag of D, and then, add the bag $\left\{v_{i}, v_{i+1}\right\}$ to D.

Let $D=\left(X_{1}, \cdots, X_{h}\right)$ be the outcome of the above algorithm. First, by Property (**), for every $1 \leq i \leq h, \operatorname{diam}\left(X_{i}\right)=\max _{u, v \in X_{i}} \operatorname{dist}_{G}(u, v) \leq k+1$. Hence, it remains to prove that D is a path-decomposition of T. By construction, it is clear that every vertex and every edge of T belong to at least one bag of D. Moreover, for every $1 \leq j \leq t$, again by construction, if $v_{j} \in X_{a} \cap X_{b}$, then $v_{j} \in X_{c}$ for every $a \leq c \leq b$. Finally, let $v \in V(T) \backslash V\left(P_{0}\right)$, let $1 \leq i<t$ such that $v \in V\left(T^{i}\right)$ and assume that v belongs to $X_{a} \cap X_{b}$ for $1 \leq a<b \leq h$. By construction, there are two leaves f_{a} and f_{b} of $T^{i} \backslash\left\{v_{i}\right\}$ such that v belongs to P_{a} and P_{b}, the path between v_{i} and f_{a} and the path between v_{i} and f_{b} respectively, and with $X_{a}=V\left(P_{a}\right)$ and $X_{b}=V\left(P_{b}\right)$. Moreover, $f_{a}<f_{b}$ in the ordering of F^{i}. Now, for every $a \leq c \leq b$, the bag X_{c} corresponds to the path P_{c} between v_{i} and a leaf f_{c} of $T^{i} \backslash\left\{v_{i}\right\}$ such that $f_{a} \leq f_{c} \leq f_{b}$ in the ordering of F^{i}. By definition of the DFS of T^{i} from v_{i}, the path P_{c} must also contain v and so $v \in X_{c}=V\left(P_{c}\right)$. Hence, D is a path-decomposition of T with length at most $k+1$. An example of such a decomposition is given in Figure 1.

The fact that the above algorithm can be done in linear time comes from the fact that P_{0} can be computed in linear time (the diameter of a tree can be computed using 2 BFSs) and then, performing one DFS from v_{i} for each T^{i} suffices to compute the order of Q for each T^{i}.

Remark. The above proof actually shows that, in any tree $T, p \ell(T)$ equals its minimum eccentricity shortest-path. Note that it was already known that the minimum eccentricity shortest-path of trees can be computed in linear time [7].

We will focus now on cycles.

Theorem 2 Let C_{n} be a cycle of length n. We have that $p \ell\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. First, the path-decomposition consisting of a unique bag $V\left(C_{n}\right)$ has length $\left\lfloor\frac{n}{2}\right\rfloor$, so, $p \ell\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor$. Let us show that it is an optimal path-decomposition.

For purpose of contradiction, let us suppose that C_{n} admits a reduced path-decomposition $D=\left(X_{1}, \ldots, X_{p}\right)$ of length $k<\left\lfloor\frac{n}{2}\right\rfloor$. First, let us show that we may assume that X_{1} induces a connected subgraph (more precisely, a sub-path). Let us assume that it is not the case. Since D is reduced, there is a vertex in X_{1} that is not in every X_{i} for $2 \leq i \leq p$. Let v be such a vertex. Since v is only in X_{1}, the two neighbors of v also belong to X_{1}. Let A be the connected component of $G\left[X_{1}\right]$ containing v. Note that A is a path, otherwise $V(A)=V\left(C_{n}\right)$ contradicting that $k<\left\lfloor\frac{n}{2}\right\rfloor$. Let x and y be the two endpoints of A and let $A^{\prime}=A \backslash\{x, y\}$. Then, $D^{\prime}=\left(A, X_{1} \backslash A^{\prime}, X_{2} \backslash A^{\prime}, \cdots, X_{p} \backslash A^{\prime}\right)$ is a path-decomposition of length at most k and whose first bag induces a path. Up to removing the redundant bags (note that A is not contained in any other bag), we may assume that D^{\prime} is reduced.

Hence, let $D=\left(X_{1}, \ldots, X_{p}\right)$ be a reduced path-decomposition of length $k<\left\lfloor\frac{n}{2}\right\rfloor$ such that X_{1} induces a path. We moreover assume that, among such decompositions, D maximizes $\left|X_{1}\right|$. We next show that $\left|X_{1}\right|=k+1$. Let x and y be the two ends of the path induced by X_{1}. Note that $\left|X_{1}\right|-1=\operatorname{dist}(x, y) \leq k$. For purpose of contradiction, let us assume that $\operatorname{dist}(x, y)<k$. Let x^{\prime} and y^{\prime} be respectively the neighbors of x and y not in X_{1}. Let X_{j} and $X_{j^{\prime}}$ be the first bags (closest to X_{1}) that contain y^{\prime} and x^{\prime} respectively. Note that $y \in X_{i}$ for any $1 \leq i \leq j$ (resp. $x \in X_{i^{\prime}}$ for any $1 \leq i^{\prime} \leq j^{\prime}$), otherwise there would be no bag containing the edge $\left\{y, y^{\prime}\right\}$ (resp. the edge $\left\{x, x^{\prime}\right\}$). W.l.o.g., let suppose that $j \leq j^{\prime}$. Therefore, X_{j} contains x, y and y^{\prime}. Note that $\operatorname{dist}\left(x, y^{\prime}\right)=\operatorname{dist}(x, y)+1 \leq k$. Then, $D^{\prime}=\left(X_{1} \cup\left\{y^{\prime}\right\}, \ldots, X_{j-1} \cup\left\{y^{\prime}\right\}, X_{j}, \ldots, X_{p}\right)$ is a path-decomposition whose first bag induces a path of length $\left|X_{1}\right|$. We show that D^{\prime} has length at most k which will contradict the maximality of $\left|X_{1}\right|$ in D.

For purpose of contradiction, let us assume that D^{\prime} has length strictly larger than k. Therefore, there exists $1<h<j$ and $w \in X_{h} \operatorname{such}$ that $\operatorname{dist}\left(w, y^{\prime}\right)>k$. Since $y \in X_{h}$, then $\operatorname{dist}(w, y) \leq k$. Note also that $\operatorname{dist}\left(w, y^{\prime}\right) \leq \operatorname{dist}(w, y)+1 \leq k+1$ and so $\operatorname{dist}\left(w, y^{\prime}\right)=k+1$. Since $\operatorname{dist}(w, y) \geq \operatorname{dist}\left(w, y^{\prime}\right)-1=k$, then w is the unique vertex at distance k from y and at distance at least $k+1$ from y^{\prime}. Let w^{\prime} be the neighbor of w such that $\operatorname{dist}\left(w^{\prime}, y\right)=k+1$. Note that w^{\prime} cannot be in a bag containing y since they are at distance $k+1$. Therefore, it is not in X_{i} for $1 \leq i \leq j$ (since these bags contain y). Note that w^{\prime} and w have to be in some common bag of D (since they are adjacent). Therefore, there is a bag X_{l} with $j<l \leq p$ that contains w and w^{\prime}. Since $w \in X_{h} \cap X_{l}$, then $w \in X_{j}$ which contradicts the fact that P has length at most k (since $\operatorname{dist}\left(w, y^{\prime}\right)>k$). Therefore, D^{\prime} is a path-decomposition of length k.

Hence, let $D=\left(X_{1}, \ldots, X_{p}\right)$ be a reduced path-decomposition of length $k<\left\lfloor\frac{n}{2}\right\rfloor$ such that X_{1} induces a path of length exactly k. Let x^{\prime} and y^{\prime} be the neighbors of x and y not in X_{1}. Let X_{j} and $X_{j^{\prime}}$ be the first bags (closest to X_{1}) that contain y^{\prime} and x^{\prime} respectively. Note that $y \in X_{i}$ for any $1 \leq i \leq j$ (resp. $x \in X_{i}$ for any $1 \leq i \leq j^{\prime}$). W.l.o.g., let suppose that $j \leq j^{\prime}$. Therefore, X_{j} contains x, y and y^{\prime}, a contradiction since x and y^{\prime} are at distance $k+1$ since $k<\left\lfloor\frac{n}{2}\right\rfloor$.

4 Outerplanar graphs

This section is devoted to our main result: a polynomial-time algorithm that decides whether $p \ell(G)>k$ or returns a path-decomposition of G of length at most $k+1$.

A graph $G=(V, E)$ is outerplanar if it can be embedded in the plane without crossing edges and such that all vertices lie on the outer face (the unbounded face). An edge of an outerplanar graph is called an internal edge if it does not lie on the outer face. Note that, since we only consider simple graphs, the fact that an edge is internal or not does not depend on the
outerplanar embedding. Let $E_{\text {int }} \subseteq E$ be the set of internal edges and $E_{\text {out }}=E \backslash E_{\text {int }}$ be the set of outer edges. Note that any internal edge $e \in I$ of an outerplanar graph $G=(V, E)$ is a separator (i.e., $G \backslash V(e)$ has several connected components).

Path-decomposition with fixed first and last elements. Let $G=(V, E)$ be a connected graph and let $v \in V$ (resp., $e \in E$). A path-decompostion $D=\left(X_{1}, \cdots, X_{p}\right)$ of G starts from v (resp., from e) if $v \in X_{1}$ (resp., if $e \subseteq X_{1}$). Similarly, D finishes with v (resp., with e) if $v \in X_{p}$ (resp., if $e \subseteq X_{p}$). Let $x, y \in V \cup E$, a path-decomposition of G starting from x and finishing with y is called a $\{x, y\}$-path-decomposition. Let $p \ell(G, x, y)$ be the minimum length among all $\{x, y\}$-path-decompositions of G. An $\{x, y\}$-path-decomposition is an optimal $\{x, y\}$-pathdecomposition if its length is $p \ell(G, x, y)$. Clearly, any $\{x, y\}$-path-decomposition $\left(X_{1}, \cdots, X_{p}\right)$ corresponds to an $\{y, x\}$-path-decomposition $\left(X_{p}, \cdots, X_{1}\right)$ of same length, and so:

Claim 3 For any connected graph $G=(V, E)$ and $x, y \in E \cup V, p \ell(G, x, y)=p \ell(G, y, x)$.
The following claim directly holds by definition and because there always exists a reduced optimal path-decomposition (note that, for any reduced path-decomposition D of a connected graph, there exist $x, y \in E$ such that D starts from x and finishes with y).

Claim 4 For any connected graph $G=(V, E)$, $p \ell(G)=\min _{x, y \in E} p \ell(G, x, y)$.
For our purpose, we need to refine the above claim as follows.
Lemma 3 For any connected graph $G=(V, E), p \ell(G)=\min _{x, y \in E_{\text {out }}} p \ell(G, x, y)$.
Proof. Let $x, y \in E$ such that $p \ell(G)=p \ell(G, x, y)$ and such that the distance between x and y is maximized (here, the distance can be viewed at the number of faces that must be crossed to go from x to y). Let $D=\left(X_{1}, \cdots, X_{p}\right)$ be an optimal $\{x, y\}$-path-decomposition of G (so D is an optimal path-decomposition of G).

For purpose of contradiction, let us assume that $x \in E_{\text {int }}$. Let C be a connected component of $G \backslash x$ that does not contain y. Let $\left.D^{\prime}=(D \cap C) \cup x\right)$ (note that $\ell(D \cap C) \leq \ell(D)$ by Claim 2 and $\ell\left(D^{\prime}\right) \leq \ell(D)$ since every bag of D either contains x or contains some vertex of the component of $G \backslash x$ that intersects y) and $D_{2}=D \backslash C$ (note that $\ell\left(D_{2}\right) \leq \ell(D)$ by Claim 2). Let $D^{\prime \prime}$ be the reduced path-decomposition of $G[C \cup x]$ obtained from D^{\prime} (i.e., by removing the bags that are contained in others). Since $D^{\prime \prime}$ is reduced, the last bag of $D^{\prime \prime}$ must contain an edge $x^{\prime} \neq x$ of $G[C \cup x]$. Finally, let D_{1} be the path-decomposition of $G[C \cup x]$ obtained from $D^{\prime \prime}$ by reversing the order of the bags. Then, $D_{1} \odot D_{2}$ is a $\left\{x^{\prime}, y\right\}$-path-decomposition of G of length at most $p \ell(G)$ (by Claim 2 and since D_{1} and D_{2} contains x respectively in its last bag and in its first bag), contradicting the maximality of the distance between x and y.

By lemma 3, the computation of $p \ell(G)$ can be restricted to the $O\left(n^{2}\right)$ computations of $p \ell(G, x, y)$ for all fixed $x, y \in E_{\text {out }}$ (since G is planar, $\left.|E|=O(n)\right)$. Most of what follows is devoted to this task. Therefore, in Sections 4.1 to 4.2, $x, y \in V \cup E_{\text {out }}$ will be fixed. Section 4.1 is devoted to the "easy" cases. Depending on x and y, it will sometimes be possible to reduce the problem to smaller instances (and then proceed by induction) and, in other cases (roughly when $x=y$ and $G \backslash x$ is connected), we present a greedy algorithm that computes an optimal $\{x, y\}$-path-decomposition of G. Section 4.2 is devoted to the remaining case: roughly, when x and y are distinct, not included in each-other, do not separate G and belong to a same internal (bounded) face of G. In this latter case, we show that we can restrict our attention to particular $\{x, y\}$-path-decompositions of G and that such an optimal decomposition can be computed in polynomial time by dynamic programming. Finally, Section 4.3 formally states our main result and describes our main algorithm that uses results of Sections 4.1 to 4.2 to compute $p \ell(G)$.

4.1 Cases (depending on x and y) when recursion or greedy algorithm are possible

Let $G=(V, E)$ be a connected simple outerplanar graph and let $x, y \in E_{o u t} \cup V$. In this section, we first show that if $G \backslash x$ is not connected (Section4.1.1) or if x and y are "separated" (see formal definition in Section 4.1.2 , the problem of computing an optimal $\{x, y\}$-path-decomposition of G can be reduced to similar problems in smaller instances. Then, in subsection 4.1.3, roughly, we show that, if none of the previous two properties is met and either $x=y$ or $x \in y$ or $y \in x$, then an optimal $\{x, y\}$-path-decomposition of G can be computed in linear time by a greedy algorithm.

4.1.1 Case when $G \backslash x$ is not connected

Let us first assume that $G \backslash x$ is not connected. We have divided this case in several lemmas that look very similar (proofs seem redundant). We have not been able to factorize them while keeping a reasonable readability of this part. In particular, we hope that the division in different lemmas will be helpful to convince that all cases are actually considered.

Lemma 4 Let $G=(V, E)$ be a simple connected outerplanar graph and let $x=y \in E_{\text {out }} \cup V$ such that $G \backslash x$ is not connected.

Let C be any connected component of $G \backslash x$, let D_{1} be an optimal $\{x, x\}$-path-decomposition of $G[C \cup x]$ and let D_{2} be an optimal $\{x, x\}$-path-decomposition of $G \backslash C$. Then, $D_{1} \odot D_{2}$ is an optimal $\{x, y\}$-path-decomposition of G.

Proof. Let D be an optimal $\{x, x\}$-path-decomposition of G. Then, since $C \cup\{x\}$ and $G \backslash C$ are isometric subgraphs of G and by Claim 2, $D \cap(C \cup\{x\})$ is a $\{x, x\}$-path-decomposition of $G[C \cup x]$ of length at most $\ell(D)$ and $D \backslash C$ is a $\{x, x\}$-path-decomposition of $G \backslash C$ of length at most $\ell(D)$.

Reciprocally, by the last statement of Claim2, if D_{1} and D_{2} are defined as in the statement of the lemma, then $D_{1} \odot D_{2}$ is an $\{x, y\}$-path-decomposition of G of length $\max \left\{\ell\left(D_{1}\right), \ell\left(D_{2}\right)\right\} \leq$ $\ell(D)=p \ell(G, x, y)$.

Therefore, in the remaining part of this subsubsection (i.e., the case where $G \backslash x$ is not connected), we may moreover assume that $x \neq y$.

In the next four lemmas, we consider the cases when $x=\{u, v\} \in E_{\text {out }}, G \backslash x$ is not connected and $x \neq y\left(y \in V \cup E_{\text {out }}\right)$. Note that, because $x=\{u, v\}$ is not internal edge, the fact that $G \backslash x$ is not connected implies that one (or both) vertex of $\{u, v\}$ is a cut-vertex.

Precisely, w.l.o.g., we assume that $G \backslash u$ is not connected, and: in Lemmas 5 and 6, we assume that $x \cap y=\{u\}$, and in Lemmas 7 and 8, we consider the cases when $u \notin x \cap y$.

Lemma 5 Let $G=(V, E)$ be a simple connected outerplanar graph and let $x=\{u, v\} \in E_{\text {out }}$ such that $G \backslash u$ is not connected and $\{u\}=x \cap y$. Let C be the connected component of $G \backslash u$ that contains v and assume that y does not intersect C.

Let D_{1} be an optimal $\{x, u\}$-path-decomposition of $G[C \cup x]$ and D_{2} be an optimal $\{u, y\}$ -path-decomposition of $G \backslash C$, then $D_{1} \odot D_{2}$ is an optimal $\{x, y\}$-path-decomposition of G.

Proof. Let D be an optimal $\{x, y\}$-path-decomposition of G (Note that u belongs to all bags of D). By first item of Claim 2 and because $C \cup x$ and $G \backslash X$ are isometric subgraph of G, $D_{1}=D \cap(C \cup x)$ is a $\{x, u\}$-path-decomposition of $G[C \cup x]$ of length at most $p \ell(G, x, y)$ and $D_{2}=D \backslash C$ is a $\{u, y\}$-path-decomposition of $G \backslash C$ of length at most $p \ell(G, x, y)$.

Reciprocally, by the last statement of Claim 2, if D_{1} and D_{2} are defined as in the statement of the lemma, then clearly, $D_{1} \odot D_{2}$ is an $\{x, y\}$-path-decomposition of G of length at most $\max \left\{\ell\left(D_{1}\right), \ell\left(D_{2}\right)\right\} \leq \ell(D)=p \ell(G, x, y)$.

Lemma 6 Let $G=(V, E)$ be a simple connected outerplanar graph and let $x=\{u, v\} \in E_{\text {out }}$ such that $G \backslash u$ is not connected and $\{u\}=x \cap y$. Assume that y intersects the connected component C^{\prime} of $G \backslash u$ that contains v and let C be any connected component of $G \backslash u$ that does not contain v.

Let D_{1} be an optimal $\{x, x\}$-path-decomposition of $G[C \cup x]$ and D_{2} be an optimal $\{x, y\}$ -path-decomposition of $G \backslash C$, then $D_{1} \odot D_{2}$ is an optimal $\{x, y\}$-path-decomposition of G.

Proof. Let D be an optimal $\{x, y\}$-path-decomposition of G (Note that u belongs to all bags of D). By first item of Claim 2 and because $C \cup u$ and $G \backslash C$ are isometric subgraph of G, $D_{1}=(D \cap(C \cup u)) \cup v$ is a $\{x, x\}$-path-decomposition of $G[C \cup x]$ of length at most $p \ell(G, x, y)$ (since all bags of D contain a vertex of C^{\prime}, i.e., a vertex between v and $y \cap C^{\prime}$) and $D_{2}=D \backslash C$ is a $\{x, y\}$-path-decomposition of $G \backslash C$ of length at most $p \ell(G, x, y)$.

Reciprocally, by the last statement of Claim 2, if D_{1} and D_{2} are defined as in the statement of the lemma, then clearly, $D_{1} \odot D_{2}$ is an $\{x, y\}$-path-decomposition of G of length at most $\max \left\{\ell\left(D_{1}\right), \ell\left(D_{2}\right)\right\} \leq \ell(D)=p \ell(G, x, y)$.

Lemma 7 Let $G=(V, E)$ be a simple connected outerplanar graph and let $x=\{u, v\} \in E_{\text {out }}$ such that $G \backslash u$ is not connected and $u \notin x \cap y$. Let C be the component of $G \backslash u$ that contains v and assume that C does not intersect y.

Let D_{1} be an optimal $\{x, u\}$-path-decomposition of $G[C \cup x]$ and D_{2} be an optimal $\{u, y\}$ -path-decomposition of $G \backslash C$, then $D_{1} \odot D_{2}$ is an optimal $\{x, y\}$-path-decomposition of G.

Proof. Let D be an optimal $\{x, y\}$-path-decomposition of G. Then, by Claim 2 and because $C \cup u$ and $G \backslash C$ are isometric subgraph of $G, D_{1}=(D \cap(C \cup u)) \cup u$ is a $\{x, u\}$-path-decomposition of $G[C \cup x]$ of length at most $p \ell(G, x, y)$ (this holds since every bag of D contains u or a vertex of the component of $G \backslash u$ that contains y) and $D_{2}=D \backslash C$ is a $\{u, y\}$-path-decomposition of $G \backslash C$ of length at most $p \ell(G, x, y)$.

Reciprocally, by the last statement of Claim 2, if D_{1} and D_{2} are defined as in the statement of the lemma, then clearly, $D_{1} \odot D_{2}$ is an $\{x, y\}$-path-decomposition of G of length at most $\max \left\{\ell\left(D_{1}\right), \ell\left(D_{2}\right)\right\} \leq \ell(D)=p \ell(G, x, y)$.

Lemma 8 Let $G=(V, E)$ be a simple connected outerplanar graph and let $x=\{u, v\} \in E_{\text {out }}$ such that $G \backslash u$ is not connected and $u \notin x \cap y$. Assume that y is contained in the component C^{\prime} of $G \backslash u$ that contains v. Let C be any connected component of $G \backslash u$ that does not contain y.

Let D_{1} be an optimal $\{x, x\}$-path-decomposition of $G[C \cup x]$ and D_{2} be an optimal $\{x, y\}$ -path-decomposition of $G \backslash C$, then $D_{1} \odot D_{2}$ is an optimal $\{x, y\}$-path-decomposition of G.

Proof. Let D be an optimal $\{x, y\}$-path-decomposition of G. Then, by Claim 2 and because $C \cup u$ and $G \backslash C$ are isometric subgraph of $G, D_{1}=(D \cap(C \cup u)) \cup x$ is a $\{x, x\}$-path-decomposition of $G[C \cup x]$ of length at most $p \ell(G, x, y)$ (this holds since every bag of D contains a vertex of C^{\prime} between v and $y \cap C^{\prime}$ and a vertex of C^{\prime} between u and $y \cap C^{\prime}$) and $D_{2}=D \backslash C$ is a $\{x, y\}$-path-decomposition of $G \backslash C$ of length at most $p \ell(G, x, y)$.

Reciprocally, by the last statement of Claim 2, if D_{1} and D_{2} are defined as in the statement of the lemma, then clearly, $D_{1} \odot D_{2}$ is an $\{x, y\}$-path-decomposition of G of length at most $\max \left\{\ell\left(D_{1}\right), \ell\left(D_{2}\right)\right\} \leq \ell(D)=p \ell(G, x, y)$.

The case when $x \in V, y \in E_{\text {out }}$ and $x \in y$ can be dealt with similarly by reversing the path-decomposition (Claim 3).

It only remains the case when $x, y \in V, x \neq y$ and $G \backslash x$ is not connected.
Lemma 9 Let $G=(V, E)$ be a simple connected outerplanar graph and let $x, y \in V$ such that $G \backslash x$ is not connected and $y \neq x$. Let C be any connected component of $G \backslash x$ that does not contain y.

Let D_{1} be an optimal $\{x, x\}$-path-decomposition of $G[C \cup x]$ and D_{2} be an optimal $\{x, y\}$ -path-decomposition of $G \backslash C$, then $D_{1} \odot D_{2}$ is an optimal $\{x, y\}$-path-decomposition of G.

Proof. Let D be an optimal $\{x, y\}$-path-decomposition of G. Then, by Claim 2 and because $C \cup x$ and $G \backslash C$ are isometric subgraphs of $G, D_{1}=D \cap(C \cup x) \cup x$ is a $\{x, x\}$-path-decomposition of $G[C \cup x]$ of length at most $p \ell(G, x, y)$ (this holds since every bag of D contains x or a vertex in $V \backslash C$ since y is in the last bag) and $D_{2}=D \backslash C$ is a $\{x, y\}$-path-decomposition of $G \backslash C$ of length at most $p \ell(G, x, y)$.

Reciprocally, by the last statement of Claim 2, if D_{1} and D_{2} are defined as in the statement of the lemma, then clearly, $D_{1} \odot D_{2}$ is an $\{x, y\}$-path-decomposition of G of length at most $\max \left\{\ell\left(D_{1}\right), \ell\left(D_{2}\right)\right\} \leq \ell(D)=p \ell(G, x, y)$.

From now on, we may assume that $G \backslash x$ is connected. For the same reasons and by Claim 3 (and the sentence preceding this claim), we may also assume that, $G \backslash y$ is connected.

4.1.2 Case when x and y are "separated"

Let $G=(V, E)$ be a connected simple outerplanar graph and $x, y \in E_{\text {out }} \cup V$. In this section, we always assume that $G \backslash x$ and $G \backslash y$ are connected. We say that x and y are separated in G if there exists $z \in V \cup E$ such that $x^{\prime}=x \backslash z \neq \emptyset, y^{\prime}=y \backslash z \neq \emptyset$ and all paths from x^{\prime} to y^{\prime} intersect z. Note that this requires that $x \neq y$ and neither $x \in y$ nor $y \in x$, but x and y may intersect (in which case, z is or contains $x \cap y$). Note also that, if $z \in E$ and is inclusion-minimal for the property of separating x and y (i.e., no end of z separates x and y), then $z \in E_{\text {int }}$.

Lemma 10 Let $G=(V, E)$ be a connected simple outerplanar graph and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, and such that x and y are separated by $z \in V \cup E_{\text {int }}$.

Let C^{x} be the connected component of $G \backslash z$ containing (or intersecting) x and let $C^{y}=V \backslash C^{x}$.
Let D_{1} be an optimal $\{x, z\}$-path-decomposition of $G\left[C^{x} \cup z\right]$ and D_{2} be an optimal $\{z, y\}$ -path-decomposition of $G\left[C^{y}\right]$. Then, $D_{1} \odot D_{2}$ is an optimal $\{x, y\}$-path-decomposition of G.

Proof. Let $D=\left(X_{1}, \cdots, X_{p}\right)$ be an optimal $\{x, y\}$-path-decomposition of G. Let $1 \leq i \leq p$ be the smallest integer such that $z \in X_{i}$ (resp., such that $z \subseteq X_{i}$ if z is an edge) and let $i \leq j \leq p$ be the largest integer such that $z \in X_{i}$ (resp., such that $z \subseteq X_{i}$ if z is an edge). Then, let $D_{1}=\left(X_{1} \cap\left(C^{x} \cup z\right), \cdots, X_{j} \cap\left(C^{x} \cup z\right),\left(X_{j+1} \cap\left(C^{x} \cup z\right)\right) \cup z, \cdots,\left(X_{p} \cap\left(C^{x} \cup z\right)\right) \cup z\right)$. Clearly, D_{1} is a $\{x, z\}$-path-decomposition of $G\left[C^{x} \cup z\right]$. Moreover, because $y \in X_{p}$, then all bags X_{q} (for $j<q \leq p$) must contain some vertex in the connected component of $G \backslash z$ containing y. Therefore, by Claim $2, \ell\left(D_{1}\right) \leq \ell(D)$. Similarly, let $D_{2}=\left(\left(X_{1} \backslash C\right) \cup z, \cdots,\left(X_{i-1} \backslash C\right) \cup z, X_{i} \backslash\right.$ $\left.C, \cdots, X_{p} \backslash C\right)$.Then, D_{2} is a $\{z, y\}$-path-decomposition of $G \backslash C^{x}$. Moreover, because $x \in X_{1}$, then all bags X_{q} (for $1 \leq q<i$) must contain some vertex in C^{x}. Therefore, by Claim 2 , $\ell\left(D_{2}\right) \leq \ell(D)$.

Reciprocally, by last statement of Claim 2, if D_{1} and D_{2} are defined as in the statement of the lemma, then clearly, $D_{1} \odot D_{2}$ is an $\{x, y\}$-path-decomposition of G of length at most $\max \left\{\ell\left(D_{1}\right), \ell\left(D_{2}\right)\right\} \leq \ell(D)=p \ell(G, x, y)$.

4.1.3 Case when $x=y$ or $x \in y$ or $y \in x$: greedy algorithm

In the case of this section, we show that an optimal $\{x, y\}$-path-decomposition can be computed in linear time. We first define a recursive process to build a particular $\{x, x\}$-path-decomposition when $x \in E_{\text {out }} \cup V$.

Let $G=(V, E)$ be a n-node connected simple outerplanar graph and $x \in E_{\text {out }}$ such that neither u nor v is a cut-vertex, or $x \in V$ and is not a cut-vertex. A greedy path-decomposition P of G based on x is any path-decomposition of G that can be obtained recursively (on $|V|$) as follows.

Recursive algorithm Greedy.

- If G is a cycle $\left(v_{1}, \ldots, v_{n}\right)$ (w.l.o.g., $x=\left\{v_{1}, v_{n}\right\}$ or $\left.x=v_{1}\right), D=\left(X_{1}, \ldots, X_{n-1}\right)$ with, for every $1 \leq i \leq n-1, X_{i}=x \cup\left\{v_{i}, v_{i+1}\right\}$. The second basic case is when G is an edge $\{u, v\}$ and $x=u$, in which case, $D=(\{u, v\})$.
- Else, if x is a vertex of degree one in G, let w be its neighbour and D^{\prime} be a greedy pathdecomposition of $G \backslash x$ based on w. Then, $D=D^{\prime} \cup x$ is a greedy path-decomposition of G based on x.
- Else, if x is a cut-vertex that belongs to no internal face of G, let C be any connected component of $G \backslash x$. Let D_{1} be any greedy path-decomposition of $G[C \cup x]$ based on x and let D_{2} be any greedy path-decomposition of $G \backslash C$ based on x. Then, $D=D_{1} \odot D_{2}$ is a greedy path-decomposition of G based on x.
- Else, let $\left(v_{1}, \ldots, v_{q}\right)$ be the unique internal face containing x (the face is unique because, if x is an edge, its is an outer edge and, if x is a vertex, then x belong to at most 2 faces, denote the vertices of any one of them such that the interserction of this two faces is $\left.\left\{x, v_{q}\right\}\right)$ such that $x=\left\{v_{1}, v_{q}\right\}$ if x is an edge and $x=v_{1}$ otherwise.
- If there exists a cut-vertex v_{j} for some $2 \leq j<q$ (resp. $2 \leq j \leq q$), let C be a connected component of $G \backslash v_{j}$ that does not contain x. Let $G_{1}=G\left[C \cup v_{j}\right]$ and $G_{2}=G[V \backslash C]$. Let D_{1} be a greedy path-decomposition of G_{1} based on v_{j}, let $D_{2}=\left(X_{1}, \cdots, X_{p}\right)$ be a greedy path-decomposition of G_{2} based on x and let $1 \leq h \leq p$ be the largest integer such that $\left\{v_{j-1}, v_{j}\right\} \subseteq X_{h}$ the last interger such that $\left\{v_{j-1}, v_{j}\right\} \subseteq X_{h}$ and $v_{j+1} \notin X_{h}$
Then, $D=\left(X_{1}, \cdots, X_{h}\right) \odot\left(D_{1} \cup\left(X_{h} \cap X_{h+1}\right)\right) \odot\left(X_{h+1}, \cdots, X_{p}\right)$ is a greedy pathdecomposition of G based on x.
- Otherwise, there exists $1 \leq j<q$ (resp., $1 \leq j \leq q$) such that $f=\left\{v_{j}, v_{j+1}\right\} \in E_{\text {int }}$ with neither v_{j} nor v_{j+1} is a cut-vertex. First, if $1 \leq j<q-1$ (resp., $1 \leq j<q$) (case $j=q-1$ when x is an edge and case $j=q$ when x is a vertex are treated after), let C and C^{\prime} be the two connected components of $G \backslash f$ and, w.l.o.g., C intersects x. Let D_{1} be a greedy path-decomposition of $G\left[C^{\prime} \cup f\right]$ based on f and let $D_{2}=\left(X_{1}, \cdots, X_{p}\right)$ be a greedy path-decomposition of $G[C \cup f]$ based on x and let $1 \leq h \leq p$ be the smallest integer such that $f \subseteq X_{h}$. Then, $D=\left(X_{1}, \cdots, X_{h}\right) \odot$ $\left(D_{1} \cup\left(X_{h} \cap X_{h+1}\right)\right) \odot\left(X_{h+1}, \cdots, X_{p}\right)$ is a greedy path-decomposition of G based on x. Hence, it remains the case where $j=q-1$ (resp., $j=q$). Let C and C^{\prime} be the two connected components of $G \backslash f$ (resp., $G \backslash\left\{v_{q}, v_{1}\right\}$) and, w.l.o.g., C intersects x. Let $D_{1}=\left(X_{1}^{\prime}, \ldots, X_{p^{\prime}}^{\prime}\right)$ be a greedy path-decomposition of $G\left[C^{\prime} \cup f\right]$ based on f and let $D_{2}=\left(X_{1}, \cdots, X_{p}\right)$ be a greedy path-decomposition of $G[C \cup f]$ based on x and let $1 \leq h \leq p$ be the last integer such that $f \subseteq X_{h}$ and let $1 \leq h^{\prime} \leq p^{\prime}$ be
the first bag such that $N_{C}\left(v_{q-1}\right) \bigcup_{1 \leq i \leq h^{\prime}} V\left(X_{i}\right)$. Then, $D=\left(X_{1}, \cdots, X_{h-1}\right) \odot\left(X_{1}^{\prime} \cup\right.$ $\left.X_{h}, \ldots, X_{i} \cup X_{h},\left(X_{i+1} \cup X_{h}\right) \backslash v_{q-1}, \ldots,\left(X_{p^{\prime}} \cup X_{h}\right) \backslash v_{q-1}\right) \odot\left(X_{h+1}, \cdots, X_{p}\right)$ is a greedy path-decomposition of G based on x. Intuitively, we will not keep v_{q-1} until the end. Note that if we don't remove it, then the greedy path-decomposition is not optimal.

Note that, unless G is 2 -connected and x is an edge, there is not a unique decomposition resulting from the above process (when v_{j} is a cut-vertex, the order in which the components of $G \backslash v_{j}$ not containing x are added in the greedy path-decomposition is arbitrary). However, it is easy to show by induction (in particular, each edge is considered at most twice) that:

Claim 5 Any sequence $D=\left(X_{1}, \cdots, X_{p}\right)$ returned by Algorithm Greedy is a $\{x, x\}$-pathdecomposition of G. Moreover, Algorithm Greedy proceeds in linear time.

Moreover, for all $1<i \leq p,\left|X_{i} \backslash X_{i-1}\right| \leq 1$ and, if $X_{i} \backslash X_{i-1}=\{u\}$, then X_{i} consists of u, of one of its neighbors u^{\prime} a subset of its neighbors and of all the vertices of each internal edge or vertex that separates u from x.

Proof. to be written formally

Theorem 3 Let $G=(V, E)$ be a connected simple outerplanar graph and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected and either $x=y$ or $y \in x$ or $x \in y$.

An optimal $\{x, y\}$-path-decomposition of G can be computed in linear time (in $O(|E|)$).
Proof. Let us first consider the case when $x=y$. Note that, since x belongs to every bag of every $\{x, x\}$-path-decomposition of G, then $p \ell(G, x, x) \geq \max _{w \in V} \operatorname{dist}(w, x)$ (if $x=\{u, v\} \in E$, $\operatorname{dist}(w, x)=\max \{\operatorname{dist}(w, u), \operatorname{dist}(w, v)\})$.

Let $D=\left(X_{1}, \cdots, X_{p}\right)$ be a result of Algorithm Greedy. by Claim 5, D is a $\{x, x\}$-pathdecomposition of G computed in linear time. Let $1<i \leq p$ such that $\left|X_{i} \backslash X_{i-1}\right|>0$.

Let us suppose by contradiction that there is two vertices v and v^{\prime} in $X_{i} \backslash x$ such that $d\left(v^{\prime}, v\right) \geq \max _{w \in V} \operatorname{dist}(w, x)$. Note that, v and v^{\prime} cannot be both in the same edge separator of u and x, and that they cannot be both in $X_{i} \cap N(u)$, because in this case, $d\left(v, v^{\prime}\right)=1 \leq$ $\max _{w \in V} \operatorname{dist}(w, x)$. For the moment, let us suppose that x is an edge. Hence, by Claim 5 and w.l.o.g., we can suppose that $v \in S_{1}$, a separator of x and u (resp., $S_{1}=N(u)$), and $v^{\prime} \in S_{2}$, a separator of $x \backslash S_{2}$ and u such that v is not in the connected component of $G \backslash S_{2}$ that contains x. Therefore, if S_{2} is a cut vertex, then every (v, x)-path contains v^{\prime} and so $d\left(v, v^{\prime}\right) \leq d(v, x)$, a contradiction. Otherwise, S_{2} is an edge-separator (i.e. S_{2} in $E_{\text {int }}$). Let us denote by v_{x} the vertex from x such that $d(v, x)$ is maximized. If $v^{\prime} \in\left(v, v_{x}\right)$-path, then $d\left(v, v^{\prime}\right) \leq d\left(v, v_{x}\right)$, a contradiction. Otherwise, the only vertex v^{*} in $S_{2} \backslash v^{\prime}$ is in every $\left(v, v_{x}\right)$ path and so $d\left(v, v^{\prime}\right) \leq d\left(v, v^{*}\right)+1 \leq d\left(v, v_{x}\right)$ (even if $v^{*} \in x$), a contradiction. Note that it remains the case where x is a vertex. Note that if we can suppose that $v \in S_{1}$, a separator of x and u (resp., $S_{1}=N(u)$), and $v^{\prime} \in S_{2}$, a separator of $x \backslash S_{2}$ and u such that v is not in the connected component of $G \backslash S_{2}$ that contains x, then the same argument as before holds, which implies a contradiction. Otherwise, v^{\prime} and x are adjacent and $G \backslash\left\{v^{\prime}, x\right\}$ disconnect the graph. Let us denote by $\mathcal{C}_{v^{\prime}}$ the set of connected component of $G \backslash v^{\prime}$ not containing x (if there is such component). Let C_{1} and C_{2} be the two connected component $G \backslash\left(\left\{x, v^{\prime}\right\} \bigcup_{C \in \mathcal{C}_{v^{\prime}}} V(C)\right.$. Note that, by construction, however which face has been chosen, $v^{\prime}=v_{q}$. Moreover, for any bag X containing $v^{\prime}, X \cap C_{1}=N_{C_{1}}\left(v^{\prime}\right), X \cap C_{2}=N_{C_{2}}\left(v^{\prime}\right)$. Hence it implies that $v \in C \in \mathcal{C}_{v^{\prime}}$. Note that every (v, x)-path contains v^{\prime}, which implies that $d\left(v, v^{\prime}\right) \leq d(v, x)$, a contradiction.

Therefore, the diameter $\max _{u, v \in X_{i}} \operatorname{dist}_{G}(u, v)$ of X_{i} is at ${\operatorname{most~} \max _{v \in V(G)}} \operatorname{dist}(v, x)$. Hence, D is an optimal $\{x, x\}$-path-decomposition of G.

Now, let us assume that $x=\{u, v\}$ and $y=v$ (the case when $x \in y$ is symmetric). Note that, since v belongs to every bag of every $\{x, y\}$-path-decomposition of G, then $p \ell(G, x, y) \geq$ $\max _{w \in V} \operatorname{dist}(w, v)$. Let F be the internal face containing x (such a face exists and is unique since $G \backslash x$ and $G \backslash y$ are connected, $u \in E_{\text {out }}$ and $\left.G \neq x\right)$ and let $w \neq v$ be the second neighbour of u in F. Let C be the connected component of $G \backslash\{u, w\}$ that does not contain v and such that $N(C)=\{u, w\}$ (possibly $C=\emptyset)$. Note that, for every $h \in C, \operatorname{dist}_{G}(h, u) \leq \operatorname{dist}_{G}(h, v)$. Let $D^{\prime}=\left(X_{1}, \cdots, X_{p}\right)$ be a result of Algorithm Greedy and let $1 \leq i \leq p$ be the smallest integer such that $w \in X_{i}$. Let $D=\left(X_{1}, \cdots, X_{i}, X_{i+1} \backslash\{u\}, \cdots, X_{p} \backslash\{u\}\right)$. Then, D is a $\{x, y\}$-path-decomposition of G of length at $\operatorname{most}_{\max _{w \in V}} \operatorname{dist}(w, v)$.

Note that, in the case where $y \in x$, an optimal $\{x, y\}$ path-decomposition can be computed as a $\{x, x\}$ path-decomposition $\left(X_{1}, \ldots, X_{q}\right)$ such that, at the end of the construction, we remove $x \backslash y$ from $X_{i+1}, \ldots X_{q}$ where X_{i} is the first bag such that $N(x) \subseteq \bigcup_{1 \leq j \leq i} X_{j}$. Note that by claim 3, the case $x \in y$ is similar.

4.2 Case when x and y are "around" a same face

In this section, we consider the last remaining case which is much more technical than previous ones. Namely, let $G=(V, E)$ be a n-node connected simple outerplanar graph and $x, y \in$ $E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, $x \neq y, x \notin y, y \notin x$ and x and y lie on the same internal face F of G (i.e., they are not separated by an edge or a vertex).

In this setting, we first show that there always exists an almost optimal $\{x, y\}$-path-decomposition satisfying specific properties (first, contiguous, then g-contiguous (Section 4.2.2) and finally Lt R g-contiguous (Section 4.2.3), see formal definitions below). Then, a dynamic programming algorithm to compute such an optimal $\{x, y\}$-path-decomposition is presented (Section 4.2.4). We first need further notation presented in Section 4.2.1.

4.2.1 Notation

Let $x=\left\{x_{1}, x_{2}\right\}$ and $y=\left\{y_{1}, y_{2}\right\}$ (to simplify the presentation, we assume that $x, y \in E_{\text {out }}$. If $x \in V$ (resp., $y \in V$), it is sufficient to set $x_{1}=x_{2}$ (resp., $y_{1}=y_{2}$)). Let F (the internal face containing x and y) consists of two internally disjoint paths $P_{u p}$ between x_{1} and y_{1} and $P_{\text {down }}$ between x_{2} and y_{2} (if x and y are edges, they may share one vertex, in which case, we assume that $x_{2}=y_{2}$ and $P_{\text {down }}$ is reduced to x_{2}).

Let \mathcal{C} be the set of connected components of $G \backslash F$. Let $\mathcal{C}_{u p}$ (resp., $\mathcal{C}_{\text {down }}$) be the set of connected components C of $G \backslash F$ such that $N(C) \subseteq V\left(P_{u p}\right)$ (resp., $N(C) \subseteq V\left(P_{d o w n}\right)$). For every $C \in \mathcal{C}_{u p} \cup \mathcal{C}_{\text {down }}$, let $\bar{C}=C \cup N(C)$ and let $s_{C}=N(C)$ (abusing the notation, s_{C} will be either an edge or a vertex of F).

Lemma 11 Let $G=(V, E)$ be a connected simple outerplanar graph and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, $x \neq y, x \notin y, y \notin x$ and x and y lie on the same internal face F of G.

If $p \ell(G, x, y) \leq k$, then there exists an $\{x, y\}$-path-decomposition $D^{\prime}=\left(X_{1}, \cdots, X_{p}\right)$ of G with length at most k such that, for every $C \in \mathcal{C}$, if $X_{i} \cap C \neq \emptyset$, then $s_{C} \in X_{i}$ (or $s_{C} \subseteq X_{i}$ if s_{C} is an edge).

Proof. Consider an $\{x, y\}$-path-decomposition $D^{\prime}=\left(X_{1}, \cdots, X_{p}\right)$ of G with length at most k that maximizes the number of components of $C \in \mathcal{C}$ that satisfy the property that if $X_{i} \cap C \neq \emptyset$, then $s_{C} \in X_{i}$.

For purpose of contradiction, let us assume that there exists $C \in \mathcal{C}$ that does not satisfy this property. W.l.o.g., assume that $C \in \mathcal{C}_{u p}$. Let $1 \leq i \leq j \leq p$ be the smallest (largest
respectively) integer such that $C \cap X_{i} \neq \emptyset\left(C \cap X_{j} \neq \emptyset\right.$, resp. $)$. Note that, for every $i \leq h \leq j$, $X_{h} \cap V\left(P_{\text {down }}\right) \neq \emptyset$, and, moreover, for every vertices $u \in s_{C}, v \in C$ and $w \in V\left(P_{\text {down }}\right)$, $\operatorname{dist}(u, w) \leq \operatorname{dist}(v, w)$ and $d(v, u) \leq d(v, w)$.

Then, $\left(X_{1}, \cdots, X_{i-1}, X_{i} \cup s_{C}, \cdots, X_{j} \cup s_{C}, X_{j+1}, \cdots, X_{p}\right)$ is an $\{x, y\}$-path-decomposition $D^{\prime}=\left(X_{1}, \cdots, X_{p}\right)$ of G with length at most k, contradicting the maximality of D^{\prime}.

Let C be a component of $G \backslash F$.

- If s_{C} is a vertex, let $d_{C}=\max _{v \in C \cup s_{C}} \operatorname{dist}\left(v, s_{C}\right)$ and let h_{C}^{*} be any vertex such that $\operatorname{dist}\left(h_{C}^{*}, s_{C}\right)=d_{C}$.
- If s_{C} is an edge, let $s_{C}=\left\{l_{C}, r_{C}\right\}$ and let $d_{C}=\max _{v \in C \cup s_{C}} \max \left\{\operatorname{dist}\left(v, r_{C}\right), \operatorname{dist}\left(v, l_{C}\right)\right\}$ and let $\mathcal{M}_{C}=\left\{v \in C \cup s_{C} \mid \max \left\{\operatorname{dist}\left(v, r_{C}\right), \operatorname{dist}\left(v, l_{C}\right)\right\}=d_{C}\right\}$. Note that, for every $v \in C \cup s_{C}, \operatorname{dist}\left(v, l_{C}\right)-1 \leq \operatorname{dist}\left(v, r_{C}\right) \leq \operatorname{dist}\left(v, l_{C}\right)+1$. If there exists $v \in \mathcal{M}_{C}$ such that $\operatorname{dist}\left(v, r_{C}\right)=\operatorname{dist}\left(v, l_{C}\right)=d_{C}$, then let h_{C}^{*} be such a vertex. Otherwise, let h_{C}^{*} be any vertex of \mathcal{M}_{C}.

If s_{C} is a vertex or if there exists a vertex $v \in C \cup s_{C}$ with $\operatorname{dist}\left(v, r_{C}\right)=\operatorname{dist}\left(v, l_{C}\right)=d_{C}$, we say that C is a convenient component.

Claim 6 Let C be a connected component of $G \backslash F$ and let $v \in C$ and $u \in G \backslash C$. If C is convenient or $v \notin \mathcal{M}_{C}, \operatorname{dist}(v, u) \leq \operatorname{dist}\left(h_{C}^{*}, u\right)$. Otherwise, $\operatorname{dist}(v, u) \leq \operatorname{dist}\left(h_{C}^{*}, u\right)+1$.

4.2.2 Toward g-contiguous decompositions

Let $D=\left(X_{1}, \cdots, X_{p}\right)$ be any $\{x, y\}$-path-decomposition of G and let $C \in \mathcal{C}$. The component C is said contiguous (with respect to D) if there exist $1 \leq a_{C} \leq b_{C} \leq p$ such that (1) $C \cap X_{i}=\emptyset$ if and only if $i \notin\left\{a_{C}, \cdots, b_{C}\right\}$, and $s_{C} \in X_{j}$ for all $a_{C} \leq j \leq b_{C}$, and (2) there exists $R_{C} \subseteq V(F)$ such that $X_{i} \backslash C=R_{C}$ for every $a_{C} \leq i \leq b_{C}$. Intuitively, C is contiguous w.r.t. D if, once a vertex of C has been introduced in D, no vertex of $G \backslash C$ can be introduced in D before all vertices of C have been introduced.

A path-decomposition D is contiguous if every component of $G \backslash F$ is contiguous w.r.t. D.
In what follows, we show that there always exists an optimal (or almost optimal) $\{x, y\}$ -path-decomposition of G which is contiguous. Let us start with the following constrained (we assume that all components of $G \backslash F$ are convenient) but more favorable case (and easier to prove).

Theorem 4 Let $G=(V, E)$ be a connected simple outerplanar graph and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, $x \neq y, x \notin y, y \notin x$ and x and y lie on the same internal face F of G. Moreover, let us assume that all components of $G \backslash F$ are convenient.

If $p \ell(G, x, y) \leq k$, then there exists a contiguous $\{x, y\}$-path-decomposition D^{\prime} of G with length at most k.

Proof. Given any $\{x, y\}$-path-decomposition $D=\left(X_{1}, \cdots, X_{p}\right)$ of G with length at most k, let $\mathcal{Q}(D) \subseteq \mathcal{C}$ be a set of components C of \mathcal{C} such that there exist $1 \leq a_{C} \leq b_{C} \leq p$ such that:

1. $C \cap X_{i} \neq \emptyset$ if and only if $a_{C} \leq i \leq b_{C}$, and $s_{C} \in X_{j}$ for all $a_{C} \leq j \leq b_{C}$, and
2. there exists $R_{C} \subseteq F \cup \bigcup_{C^{\prime} \notin \mathcal{Q}(D)} C^{\prime}$ such that, for every $a_{C} \leq i \leq b_{C}, X_{i} \backslash C=R_{C}$.

Let D be an $\{x, y\}$-path-decomposition of G with length k. Then, such a set $\mathcal{Q}(D)$ is well defined (possibly, $\mathcal{Q}(D)$ is empty).

Let us consider an $\{x, y\}$-path-decomposition $D^{\prime}=\left(X_{1}, \cdots, X_{p}\right)$ of G with length at most k, and that maximizes $\left|\mathcal{Q}\left(D^{\prime}\right)\right|$. If $\mathcal{Q}\left(D^{\prime}\right)=\mathcal{C}$, then D^{\prime} is the desired path-decomposition.

For purpose of contradiction, let us assume that $\mathcal{C} \backslash \mathcal{Q}\left(D^{\prime}\right) \neq \emptyset$. Let $C \in \mathcal{C} \backslash \mathcal{Q}\left(D^{\prime}\right)$ and let $1 \leq i \leq p$ be the smallest integer such that $h_{C}^{*} \in X_{i}$. Note that, by Lemma $11, s_{C} \in X_{i}$. Note also that, there is no $C^{\prime} \in \mathcal{Q}\left(D^{\prime}\right)$ such that $a_{C^{\prime}}<i \leq b_{C^{\prime}}$ by the second property above.

Let $Y=\left(D^{\prime} \cap C\right) \cup\left(s_{C} \cup\left(X_{i-1} \cap X_{i}\right) \backslash C\right)$. by Claim 6, and the fact that C is convenient, $\ell(Y) \leq k$.

Therefore, $D^{\prime \prime}=\left(X_{1} \backslash C, \cdots, X_{i-1} \backslash C\right) \odot Y \odot\left(X_{i} \backslash C, \cdots, X_{p} \backslash C\right)$ is an $\{x, y\}$-pathdecomposition of G, with length at most k, and such that $\mathcal{Q}\left(D^{\prime}\right) \cup\{C\} \subseteq \mathcal{Q}\left(D^{\prime \prime}\right)$. This contradicts the maximality of $\left|\mathcal{Q}\left(D^{\prime}\right)\right|$.

Next, we include the cases when not all components of $G \backslash F$ are convenient. We show that it may imply an increase of +1 of the length of the path-decompositions. Later, we show that this increase cannot be avoided.

Theorem 5 Let $G=(V, E)$ be a connected simple outerplanar graph and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, $x \neq y, x \notin y, y \notin x$ and x and y lie on the same internal face F of G.

If $p \ell(G, x, y) \leq k$, then there exists a contiguous $\{x, y\}$-path-decomposition D^{\prime} of G with length at most $k+1$.

Proof. Let $D=\left(X_{1}, \cdots, X_{p}\right)$ be any $\{x, y\}$-path-decomposition of G with length at most $k+1$, such that, for every $1 \leq i \leq p$, every $C \in \mathcal{C}$ and every $u, v \in C \cap X_{i}$, we have that $\operatorname{dist}(u, v) \leq k$ (Property $(*))$.

Let $\mathcal{Q}(D) \subseteq \mathcal{C}$ be a set of components C of \mathcal{C} such that there exist $1 \leq a_{C} \leq b_{C} \leq p$ such that:

1. $C \cap X_{i} \neq \emptyset$ if and only if $a_{C} \leq i \leq b_{C}$, and $s_{C} \in X_{j}$ for all $a_{C} \leq j \leq b_{C}$, and
2. there exists $R \subseteq F \cup \bigcup_{C^{\prime} \notin \mathcal{Q}(D)} C^{\prime}$ such that, for every $a_{C} \leq i \leq b_{C}, X_{i} \backslash C=R_{C}$, and
3. for every $1 \leq j \leq p$ such that there exists no $C \in \mathcal{Q}(D)$ with $a_{C} \leq j \leq b_{C}$, then $\ell\left(X_{j}\right) \leq k$. Moreover, if there exist $C, C^{\prime} \in \mathcal{Q}(D)$ with $b_{C^{\prime}}=j=a_{C^{\prime}}-1$, then $\ell\left(X_{j} \cap X_{j+1}\right) \leq k$.
Let D be an $\{x, y\}$-path-decomposition of G with length k. In particular, note that D trivially satisfies Property $(*)$. Then, such a set $\mathcal{Q}(D)$ is well defined (possibly, $\mathcal{Q}(D)$ is empty).

Let us consider an $\{x, y\}$-path-decomposition $D^{\prime}=\left(X_{1}, \cdots, X_{p}\right)$ of G with length at most $k+1$ and satisfying Property $(*)$, and that maximizes $\left|\mathcal{Q}\left(D^{\prime}\right)\right|$. If $\mathcal{Q}\left(D^{\prime}\right)=\mathcal{C}$, then D^{\prime} is the desired path-decomposition.

For purpose of contradiction, let us assume that $\mathcal{C} \backslash \mathcal{Q}\left(D^{\prime}\right) \neq \emptyset$. Let $C \in \mathcal{C} \backslash \mathcal{Q}\left(D^{\prime}\right)$ and let $1 \leq i \leq p$ be the smallest integer such that $h_{C}^{*} \in X_{i}$. Note that, by Lemma 11, $s_{C} \in X_{i}$. Note also that, there is no $C^{\prime} \in \mathcal{Q}\left(D^{\prime}\right)$ such that $a_{C^{\prime}}<i \leq b_{C^{\prime}}$ by the second property above.

Let $Y=\left(D^{\prime} \cap C\right) \cup\left(s_{C} \cup\left(X_{i-1} \cap X_{i}\right) \backslash C\right)$. By Property $(*)$ and Claim 6 and third item above, $\ell(Y) \leq k+1$ (if C is convenient, we even have $\ell(Y) \leq k$).

Therefore, $D^{\prime \prime}=\left(X_{1} \backslash C, \cdots, X_{i-1} \backslash C\right) \odot Y \odot\left(X_{i} \backslash C, \cdots, X_{p} \backslash C\right)$ is an $\{x, y\}$-pathdecomposition of G, with length at most $k+1$ and satisfying Property $(*)$, and such that $\mathcal{Q}\left(D^{\prime}\right) \cup\{C\} \subseteq \mathcal{Q}\left(D^{\prime \prime}\right)$. This contradicts the maximality of $\left|\mathcal{Q}\left(D^{\prime}\right)\right|$.

Unfortunatelly, previous theorem cannot be improved since there are 2-connected outerplanar graphs G and $x, y \in E_{\text {out }}$, such that every contiguous $\{x, y\}$-path-decomposition has length at least $p \ell(G, x, y)+1$.

Figure 2: Example of a graph G and $x, y \in E_{\text {out }}$ such that every contiguous $\{x, y\}$-pathdecomposition of G has length at least $p l(G, x, y)+1$. Weight on edges represent the length of a path between the two endpoints of the edges.

Lemma 12 There exists 2-connected outerplanar graphs G and $x, y \in E_{\text {out }}$ such that every contiguous $\{x, y\}$-path-decomposition of G has length at least pl $(G, x, y)+1$.

Proof. Let G be the graph depict in Figure 2. Let C be the unique component of $G \backslash F$. Let us denote the vertices of s_{C} by l_{C} and r_{C} as depicted in Figure 2. Let us first describe a $\{x, y\}$-path-decomposition D of G with length 10. Let $X_{1}=\{x\}, X_{2}=C_{l} \cup C_{m} \cup L$ where L is the $\left(x_{2}, r_{c}\right)$-path in F not containing y_{1} and y_{2}. Let $X_{3}=C_{m} \cup$ down where down is the $\left(x_{2}, y_{2}\right)$-path in F not containing x_{1} and y_{1}. Let $X_{4}=C_{m} \cup C_{r} \cup R$ where R is the (y_{2}, l_{c})-path in F not containing x_{1} and x_{2}. Finally, let $X_{5}=\{y\}$. Note that $D=\left(X_{1}, \ldots, X_{5}\right)$ is a $\{x, y\}$ -path-decomposition of length 10 . Moreover, D is not contiguous since for X_{2} and X_{4} contains both vertices from C but $X_{2} \backslash V(C) \neq X_{4} \backslash V(C)$.

Let us apply lemma 5 to D. Note that the contiguous $\{x, y\}$-path-decomposition D^{\prime} obtained, has every vertex from $V(C)$ either contained with L or with R. Hence, either l and y_{2} are both in a bag, or r and x_{2} are both in a bag. In every case, there is a bag containing two vertices at distance 11 .

A contiguous $\{x, y\}$-path-decomposition $D=\left(X_{1}, \cdots, X_{p}\right)$ of G is said g-contiguous if, for every $C \in \mathcal{C},\left(D_{a_{C}} \cap(\bar{C}), \cdots, D_{b_{C}} \cap(\bar{C})\right)$ is an optimal greedy path-decomposition of $G[\bar{C}]=G\left[C \cup s_{C}\right]$ based on s_{C} (see Section 4.1.3).

Theorem 6 Let $G=(V, E)$ be a connected simple outerplanar graph and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, $x \neq y, x \notin y, y \notin x$ and x and y lie on the same internal face F of G.

If $p \ell(G, x, y) \leq k$, then there exists a g-contiguous $\{x, y\}$-path-decomposition $D=\left(X_{1}, \cdots, X_{p}\right)$ of G with length at most $k+1$. Moreover, for every $C \in \mathcal{C}$ and $a_{C} \leq i \leq b_{C}, \ell\left(X_{i}\right)=k+1$ only if $h_{C}^{*} \in X_{i}$ for some $h_{C}^{*} \in \mathcal{M}_{C}$.

Proof. By Theorem 5, there exists a contiguous $\{x, y\}$-path-decomposition $D^{\prime}=\left(X_{1}, \cdots, X_{p}\right)$ of G with length at most $k+1$.

Iteratively, for every component $C \in \mathcal{C}$, replace D^{\prime} with $\left(X_{1}, \cdots, X_{a_{C}-1}\right) \odot \mathcal{G}(C) \cup\left(X_{a_{C}-1} \cap\right.$ $\left.X_{b_{C}+1}\right) \odot\left(X_{b_{C}+1}, \cdots, X_{p}\right)$ where $\mathcal{G}(C)$ is an optimal greedy path-decomposition of $G[\bar{C}]=$ $G\left[C \cup s_{C}\right]$ based on s_{C}. This remains a contiguous $\{x, y\}$-path-decomposition of G since, for every $a_{C} \leq i \leq b_{C}, s_{C} \in X_{i}$ and $X_{i} \backslash C \subseteq V(F)$.

Moreover, by construction of D^{\prime} (see the proof of Theorem 5), two vertices u and v in a bag $X_{i}\left(a_{C} \leq i \leq b_{C}\right.$ for some $\left.C \in \mathcal{C}\right)$ may be at distance $k+1$ only if $u \in C$ and $v \in V(F)$. Therefore, the result holds (including the last statement) by definition of greedy path-decomposition and by Claim 6 .

4.2.3 Toward left-to-right g-contiguous decompositions

Recall that we are considering a n-node connected simple outerplanar graph $G=(V, E)$ and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, $x \neq y, x \notin y, y \notin x$ and x and y lie on the same internal face F of G.

Let $x=\left\{x_{1}, x_{2}\right\}$ if x is an edge (or $x=x_{1}=x_{2}$ if x is a vertex) and let $y_{1}, y_{2} \in V$ be defined similarly for y. Let $P_{u p}=\left(x_{1}=u_{1}, \cdots, u_{t}=y_{1}\right)$ and $P_{\text {down }}=\left(x_{2}=d_{1}, \cdots, d_{s}=y_{2}\right)$ be the two internally disjoint paths that consist of all vertices of the face F. Note that, it may be possible that $x_{1}=y_{1}$ or $x_{2}=y_{2}$ but not both (in what follows, we assume that $x_{1} \neq y_{1}$).

For every $C \in \mathcal{C}_{u p}$ (i.e., such that $s_{C} \in V\left(P_{u p}\right)$ or $s_{C} \subseteq V\left(P_{u p}\right)$), let l_{C} (resp., r_{C}) be the vertex of s_{C} that is closest (resp., furthest) to x_{1} in $P_{u p}$ (or $l_{C}=r_{C}=s_{C}$ if s_{C} is a vertex). Similarly, for every $C \in \mathcal{C}_{\text {down }}$ (i.e., such that $s_{C} \in V\left(P_{d o w n}\right)$ or $s_{C} \subseteq V\left(P_{\text {down }}\right)$), let l_{C} (resp., r_{C}) be the vertex of s_{C} that is closest (resp., furthest) to x_{2} in $P_{d o w n}$ (or $l_{C}=r_{C}=s_{C}$ if s_{C} is a vertex).

An edge $e \in E(F) \backslash\{x, y\}$ is said trivial if there does not exist $C \in \mathcal{C}$ such that $e=s_{C}$ (note that an end of e may be a cut vertex, but there is no $C \in \mathcal{C}$ with $N(C)=e$). While trivial edges are not related to any component of $G \backslash F$, we need to include them in the analysis that follows. To unify the notation, let $\overline{\mathcal{C}}=\left\{\bar{C}=C \cup s_{C} \mid C \in \mathcal{C}\right\} \cup\{e \in E(F) \backslash\{x, y\} \mid \mathrm{e}$ is a trivial edge $\}$. Intuitively, every trivial edge $e \in E(F) \backslash\{x, y\}$ may be seen as $e=s_{C}$ for some dummy empty component $C=\emptyset$. Similarly, let $\overline{\mathcal{C}}_{u p}=\left\{\bar{C}=C \cup s_{C} \mid C \in \mathcal{C}_{u p}\right\} \cup\left\{e \in E\left(P_{u p}\right) \mid\right.$ e is a trivial edge $\}$ and $\overline{\mathcal{C}}_{\text {down }}=\left\{\bar{C}=C \cup s_{C} \mid C \in \mathcal{C}_{\text {down }}\right\} \cup\left\{e \in E\left(P_{\text {down }}\right) \mid\right.$ e is a trivial edge $\}$. Note that $\overline{\mathcal{C}}=\overline{\mathcal{C}}_{u p} \cup \overline{\mathcal{C}}_{\text {down }}$.

Let $\mathcal{O}_{u p}=\left(C_{1}^{u}, \cdots, C_{s^{\prime}}^{u}\right)$ be any ordering of $\overline{\mathcal{C}}_{u p}$ such that, if $l_{C_{i}^{u}}$ is strictly closer to x_{1} in $P_{u p}$ than $l_{C_{j}^{u}}$ and/or if $r_{C_{i}^{u}}$ is strictly closer to x_{1} in $P_{u p}$ than $r_{C_{j}^{u}}^{u}$, then $i<j$. Similarly, let $\mathcal{O}_{\text {down }}=\left(C_{1}^{d}, \cdots, C_{s^{\prime}}^{d}\right)$ be any ordering of $\overline{\mathcal{C}}_{\text {down }}$ such that, if $l_{C_{i}^{u}}$ is strictly closer to x_{2} in $P_{\text {down }}$ than $l_{C_{j}^{u}}$ and/or if $r_{C_{i}^{u}}$ is strictly closer to x_{1} in $P_{u p}$ than $r_{C_{j}^{u}}$, then $i<j$. Intuitively, we order the components of $\mathcal{C}_{u p}$ and the trivial edges of $P_{u p}$ from x_{1} to y_{1} (resp., of $\mathcal{C}_{\text {down }}$ and the trivial edges of $P_{\text {down }}$ from x_{2} to y_{2}), from "left to right" ("from x to y "). Note that for every two components $C, C^{\prime} \in \mathcal{C}$ such that $s_{C}=s_{C^{\prime}} \in V$, the relative order between C and C^{\prime} in $\mathcal{O}_{\text {up }}$ (resp., in $\mathcal{O}_{\text {down }}$ if $s_{C} \in V\left(P_{\text {down }}\right)$) is not relevant (but all connected components C^{\prime} with $s_{C}=s_{C^{\prime}}$ are consecutive in $\mathcal{O}_{u p}$ (resp., in $\left.\mathcal{O}_{\text {down }}\right)$).

In this section, we only consider g-contiguous $\{x, y\}$-path-decompositions $D=\left(X_{1}, \cdots, X_{p}\right)$ of G. That is, for every $C \in \mathcal{C}$, there exist $1 \leq a_{C} \leq b_{C} \leq p$, and an interval $I_{C}=\left[a_{C}, b_{C}\right]$ such that $X_{i} \cap C \neq \emptyset$ if and only if $i \in I_{C}, s_{C} \in X_{i}$ for all $i \in I_{C}$ and $X_{i} \backslash C \subseteq F$ for all $i \in I_{C}$. In particular, $I_{C} \cap I_{C^{\prime}}=\emptyset$ for all distinct $C, C^{\prime} \in \mathcal{C}$. We say that C appears in D in the bag $X_{a_{C}}$. Moreover, $\left(X_{a_{C}} \cap \bar{C}, \cdots,\left(X_{b_{C}} \cap \bar{C}\right)\right)$ is a greedy path-decomposition of $G[\bar{C}]$ based on s_{C}. Recall also that we may assume that the property of the last statement in Theorem 6 holds.

By definition, D induces a total order $\mathcal{O}_{D}=\left(\bar{C}_{1}, \cdots, \bar{C}_{b}\right)$ on $\overline{\mathcal{C}}$ such that, for any $1 \leq i<$ $j \leq b, \bar{C}_{i}$ appears in D before \bar{C}_{j} (i.e., $b_{C_{i}}<a_{C_{j}}$). We aim at considering such g-contiguous $\{x, y\}$-path-decompositions D such that the total orders \mathcal{O}_{D} they induce satisfy some extra property defined below.

Let $H=H^{1} \cup H^{2}$ be a ground set with $H^{1} \cap H^{2}=\emptyset$. Let $\mathcal{O}=\left(H_{1}, \cdots, H_{q}\right)$ be a total ordering on H, and let \mathcal{O}^{i} be a total ordering of H^{i} for $i \in\{1,2\}$. A prefix $\mathcal{P}=\left(H_{1}, \cdots, H_{q^{\prime}}\right)$ $\left(q^{\prime} \leq q\right)$ of H is compatible with \mathcal{O}^{i} if $\mathcal{P} \cap H^{i}$ is a prefix of \mathcal{O}^{i} for $i \in\{1,2\}$. If $q^{\prime}=q$, then \mathcal{O} is said compatible with \mathcal{O}^{1} and \mathcal{O}^{2}.

A contiguous $\{x, y\}$-path-decompositions D of G is said $L t R$ (letf to right) if \mathcal{O}_{D} is compatible with $\mathcal{O}_{u p}$ and $\mathcal{O}_{\text {down }}$. Another equivalent way to define $L t R$ is as follows:
Claim 7 A contiguous $\{x, y\}$-path-decompositions $D=\left(X_{1}, \cdots, X_{p}\right)$ of G is Lt R if and only if (1), for every $C_{i}^{u}, C_{j}^{u} \in \mathcal{O}_{u p}$ (resp., $C_{i}^{d}, C_{j}^{d} \in \mathcal{O}_{\text {down }}$) with $i<j, b_{C_{i}^{u}}<a_{C_{j}^{u}}$ (resp., with $b_{C_{i}^{d}}<$
$a_{C_{j}^{d}}$) and, moreover, (2), for every $C \in \overline{\mathcal{C}}_{\text {up }}$ (resp., $\overline{\mathcal{C}}_{\text {down }}$), and $i \in I_{C}, X_{i} \cap F=\left\{l_{C}, r_{C}, f_{C}\right\}$ where f_{C} is one vertex of $V\left(P_{\text {down }}\right)$ (resp., of $V\left(P_{u p}\right)$).

In what follows, we will iteratively transform a given g-contiguous $\{x, y\}$-path-decomposition of G. While, during these transformations, the obtained path-decomposition will always remain a g-contiguous $\{x, y\}$-path-decomposition of G, its length may be increased temporary. To deal with this difficulty, let us define the weak length, denoted by $w \ell(D)$ of a path-decomposition $D=\left(X_{1}, \cdots, X_{p}\right)$. The weak length, denoted by $w \ell\left(X_{i}\right)$, of a bag $X_{i}(1 \leq i \leq p)$ is $\max _{u \in X_{i}, v \in X_{\dot{i}} \cap Y} \operatorname{dist}(u, v)$ where $Y=V\left(P_{u p}\right)$ (resp., $Y=V\left(P_{\text {down }}\right)$) if $a_{C} \leq i \leq b_{C}$ for a component $\bar{C} \in \bar{C}_{\text {down }}$ (resp., $C \in \bar{C}_{u p}$). Then, $w \ell(D)=\max _{i \leq p} w \ell\left(X_{i}\right)$.

Lemma 13 Let D be a LtR g-contiguous $\{x, y\}$-path-decomposition of G, satisfying the last statement of Theorem 6, and of weak length k. Then, $\ell(D) \leq k$.

Proof. This holds by definition of $L t R$ and by the last statement of Theorem 6.
Next theorem roughly says that, from a g-contiguous $\{x, y\}$-path-decomposition, we can add the property that it is LtR without increasing the length.

Theorem 7 Let $G=(V, E)$ be a connected simple outerplanar graph and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, $x \neq y, x \notin y, y \notin x$ and x and y lie on the same internal face F of G.

Let us assume that there exists a g-contiguous $\{x, y\}$-path-decomposition $D=\left(X_{1}, \cdots, X_{p}\right)$ of G with length k and such that, for every $C \in \mathcal{C}$ and $a_{C} \leq i \leq b_{C}, \ell\left(X_{i}\right)=k$ only if $h_{C}^{*} \in X_{i}$ for some $h_{C}^{*} \in \mathcal{M}_{C}$.

Then, there exists a LtR g-contiguous $\{x, y\}$-path-decomposition of G with length at most k.

Proof. Let $D=\left(X_{1}, \cdots, X_{p}\right)$ be a g-contiguous $\{x, y\}$-path-decomposition of G with weak length k. We say that D satisfies Property $(*)$ if, for every $C \in \mathcal{C}$ and $a_{C} \leq i \leq b_{C}, w \ell\left(X_{i}\right)=k$ only if $h_{C}^{*} \in X_{i}$ for some $h_{C}^{*} \in \mathcal{M}_{C}$.

Recall that $\mathcal{O}_{u p}$ (resp., $\mathcal{O}_{\text {down }}$) are not uniquely defined in the sense that the order between two components $C, C^{\prime} \in \mathcal{C}_{u p}$ (resp., $C, C^{\prime} \in \mathcal{C}_{\text {down }}$) with $s_{C}=S_{C^{\prime}} \in V$ is arbitrary (but all such components are consecutive in $\mathcal{O}_{u p}$ (resp., $\left.\mathcal{O}_{\text {down }}\right)$).

Let $D=\left(X_{1}, \cdots, X_{p}\right)$ be g-contiguous $\{x, y\}$-path-decomposition of G with weak length at most k satisfying Property $(*)$ and let $\mathcal{O}_{u p}$ and $\mathcal{O}_{\text {down }}$ be orderings of $\overline{\mathcal{C}}_{\text {up }}$ and $\overline{\mathcal{C}}_{\text {down }}$ (as defined previously) that maximize $1 \leq h \leq p$ such that $\left(X_{1}, \cdots, X_{h}\right)$ is compatible with $\mathcal{O}_{u p}$ and $\mathcal{O}_{\text {down }}$. Note that, if $h=p$, then D is the desired path-decomposition. Hence, for purpose of contradiction, let us assume that $h<p$.

Note that, because D is a contiguous $\{x, y\}$-path-decomposition and because $\left(X_{1}, \cdots, X_{h}\right)$ is compatible with $\mathcal{O}_{u p}$ and $\mathcal{O}_{\text {down }}$, there exist $1 \leq i \leq s$ and $1 \leq j \leq t$ (recall that t and s are the number of vertices of $P_{u p}$ and $P_{d o w n}$ respectively) such that $X_{h} \cap X_{h+1}=\left\{u_{i}, d_{j}\right\}$.

Let $\mathcal{O}_{D}=\mathcal{O} \odot\left(C_{1}, \cdots, C_{q}\right)$ where \mathcal{O} is the prefix of \mathcal{O}_{D} that corresponds to the components appearing in $\left(X_{1}, \cdots, X_{h}\right)$. W.l.o.g., let us assume that $C_{1} \in \overline{\mathcal{C}}_{u p}$. Let $\mathcal{O}_{u p}=\mathcal{O}^{\prime} \odot\left(C_{1}^{\prime}, \cdots, C_{q^{\prime}}^{\prime}\right)$ where $\mathcal{O}^{\prime}=\mathcal{O} \cap \overline{\mathcal{C}}_{u p}$. By maximality of $h, C_{1} \neq C_{1}^{\prime}$. More precisely, $C_{1}=C_{z}^{\prime}$ for some $1<z \leq q^{\prime}$. There are two cases to be considered.

- First, let us assume that, for every $1 \leq \alpha<z$ and for all $h_{C}^{*} \in \mathcal{M}_{C}, \operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, d_{j}\right) \leq k$. Let

$$
D^{\prime}=\left(X_{1}, \cdots, X_{h}\right) \odot\left(\left(X_{a_{C_{1}^{\prime}}}, \cdots, X_{b_{C_{1}^{\prime}}}\right) \cap \bar{C}_{1}^{\prime}\right) \cup\left\{d_{j}\right\} \odot\left(\left(X_{a_{C_{2}^{\prime}}}, \cdots, X_{b_{C_{2}^{\prime}}}\right) \cap \bar{C}_{2}^{\prime}\right) \cup\left\{d_{j}\right\} \odot
$$

$$
\cdots \odot\left(\left(X_{a_{C_{z-1}^{\prime}}^{\prime}}, \cdots, X_{b_{C_{z-1}^{\prime}}}\right) \cap \bar{C}_{z-1}^{\prime}\right) \cup\left\{d_{j}\right\} \odot\left(\left(X_{h+1}, \cdots, X_{p}\right) \backslash\left(\left(\bigcup_{1 \leq \alpha<z} \bar{C}_{\alpha}^{\prime}\right) \backslash\left\{l_{C_{z}^{\prime}}\right\}\right)\right)
$$

Intuitively, all components that are between (in $\mathcal{O}_{u p}$) the last component of \mathcal{O} and C_{1} are "moved" just before C_{1} in the decomposition (in D all these components were appearing after C_{1}).
Because D is g-contiguous and satisfies Property $(*)$, then D^{\prime} is a g-contiguous $\{x, y\}$ -path-decomposition of G satisfying Property $(*)$. Moreover, its weak length is at most k. In particular, for every bag B of $\left(\left(X_{a_{C_{\alpha}^{\prime}}}, \cdots, X_{b_{C_{\alpha}^{\prime}}}\right) \cap \bar{C}_{\alpha}^{\prime}\right) \cup\left\{d_{j}\right\}$ for $1 \leq \alpha<z, w \ell(B) \leq k$ because D satisfies Property $(*)$ and because, by assumption, $\operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, d_{j}\right) \leq k$.
To conclude this case, D^{\prime} is g-contiguous $\{x, y\}$-path-decomposition of G with weak length at most k satisfying Property $(*)$ and with a larger prefix than D that is compatible with $\mathcal{O}_{u p}$ and $\mathcal{O}_{d o w n}$, contradicting the maximality of h.

- Else, for every decomposition D defined as above and maximizing h (where $z:=z(D)$, defined as above, depends on D), there exists an integer $1 \leq \alpha<z(D)$ and a vertex $h_{C_{\alpha}^{\prime}}^{*} \in \mathcal{M}_{C_{\alpha}^{\prime}}$ such that $\operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, d_{j}\right)>k$ (otherwise, we are back to the previous case). Let $\alpha(D)$ be the smallest such integer α for the decomposition D.
Let $1<\alpha^{*}(D) \leq q$ be such that $C_{\alpha(D)}^{\prime}=C_{\alpha^{*}(D)}$.
Consider such a decomposition D (still maximizing h) that minimizes $\alpha^{*}(D)$. From now on, we denote the integer $\alpha(D)$ (for this particular decomposition D) by α and $\alpha^{*}(D)$ is denoted by α^{*}.
Let $\alpha<\beta \leq z \leq \gamma \leq q^{\prime}$ be defined such that $[\beta, \gamma]$ is the inclusion-maximal interval (containing z) such that every component C_{m}^{\prime} with $m \in[\beta, \gamma]$ appears before $C_{\alpha^{*}}$ in \mathcal{O}_{D} (i.e., for every $m \in[\beta, \gamma]$, setting m^{\prime} such that $C_{m}^{\prime}=C_{m^{\prime}}$, then $1 \leq m^{\prime}<\alpha^{*}$). Let $C_{l_{C_{\beta}^{\prime}}}$ denote the set of component C from \mathcal{C} such that $l_{C_{\beta}^{\prime}} \in s_{C}, C \notin I$ and $C \leq_{D} \alpha^{*}$, i.e. the component C that appears before $C_{\alpha^{*}}$ in D, which will not be moved, and that contains $l_{C_{\beta}^{\prime}}$ (note that we cannot remove $l_{C_{\beta}^{\prime}}$ from the bags of the component in $C_{l_{C_{\beta}^{\prime}}}$ without breaking a property of path-decomposition). Note that $C_{\alpha^{*}}$ can be in $C_{l_{C_{\beta}^{\prime}}}$. Let $C_{r_{C_{\gamma}^{\prime}}}$ denote the set of component C from \mathcal{C} such that $r_{C_{\gamma}^{\prime}} \in s_{C}, C \notin I$ and $C \leq_{D} \alpha^{*}$.
- First, let us assume that, $C_{l_{C_{\beta}^{\prime}}}=C_{r_{C_{\beta}^{\prime}}}=\emptyset$. Let

$$
\begin{gathered}
D^{\prime}=\left(X_{1}, \cdots, X_{h}\right) \odot\left(\left(X_{h+1}, \cdots, X_{a_{C_{\alpha^{*}}}-1}\right) \backslash\left(\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right)\right) \odot\left(X_{a_{C_{\alpha^{*}}}}, \cdots, X_{b_{C_{\alpha^{*}}}}\right) \odot \\
\left(\left(X_{h+1} \cdots, X_{a_{C_{\alpha^{*}}}-1}\right) \cap \bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right) \cup\left(X_{b_{C_{\alpha^{*}}}} \cap V\left(P_{\text {down }}\right)\right) \odot\left(X_{b_{C_{\alpha^{*}}}}, \cdots, X_{p}\right) .
\end{gathered}
$$

Intuitively, all components $C_{\beta}^{\prime}, \cdots, C_{\gamma}^{\prime}$ (and in particular, $C_{1}=C_{z}^{\prime}$) that were appearing before $C_{\alpha^{*}}$ in D (but that are greater than $C_{\alpha^{*}}$ in $\mathcal{O}_{u p}$) are "moved" after $C_{\alpha^{*}}$ in D.
Because D is g-contiguous and satisfies Property $(*)$, then D^{\prime} is a g-contiguous $\{x, y\}$-path-decomposition of G satisfying Property ($*$). In particular, each edge of G belongs to some bag because we have ensured that all components intersecting
$\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}$ do not appear in $\left(X_{h+1}, \cdots, X_{a_{C_{\alpha^{*}}}-1}\right)$. It remains to prove that its weak length is at most k.
We will prove that every bag in $\left(\left(X_{h+1} \cdots, X_{q}\right) \cap \bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right) \cup\left(X_{b_{C_{\alpha^{*}}}} \cap V\left(P_{\text {down }}\right)\right)$ has weak length at most k (that are the only bags where some vertices may be added compared with the bags of D). Since we are considering the weak length, we actually need to prove that, for every $v \in \bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}$ and every $w \in X_{b_{C_{\alpha^{*}}}} \cap V\left(P_{\text {down }}\right)$, $\operatorname{dist}(v, w) \leq k$. Actually, we will show that $\operatorname{dist}(v, w) \leq \operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, w\right)$ (note that $\operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, w\right) \leq k$ since w belongs to every bag in $\left.X_{a_{C_{\alpha}^{\prime}}}, \cdots, X_{b_{C_{\alpha}^{\prime}}}\right)$.
Note that, because D is a path-decomposition, $X_{h} \cap X_{h+1} \cap V\left(P_{\text {down }}\right)=\left\{d_{j}\right\}$ and $y_{2} \in X_{p}$, then w is between d_{j} and y_{2} in $P_{\text {down }}$. Moreover, since $\operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, d_{j}\right)>k$ and $\operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, w\right) \leq k$, then the shortest path between w and $h_{C_{\alpha}^{\prime}}^{*}$ goes through y_{2}.
Let $\beta \leq m \leq \gamma$ such that $v \in \bar{C}_{m}^{\prime}$ and let $1 \leq \delta<a_{C_{\alpha}^{\prime}}$ be such that $v \in X_{\delta}($ in $D)$. Because D is a path-decomposition and $d_{j} \in X_{h}$ and $w \in X_{a_{C_{\alpha}^{\prime}}}$, there must be a vertex $w^{\prime} \in X_{\delta}$ which is between d_{j} and w in $P_{\text {down }}$, and so $\operatorname{dist}\left(v, w^{\prime}\right) \leq k$ since D has weak length at most k. If the shortest path between v and w^{\prime} goes through y_{2}, we get that $\operatorname{dist}(v, w) \leq \operatorname{dist}\left(v, w^{\prime}\right) \leq k$ and we are done. Otherwise, w is strictly between w^{\prime} and y_{2} (in particular $w \neq w^{\prime}$) (because the shortest path between $h_{C_{\alpha}^{\prime}}^{*}$ and w goes through y_{2}, the one between v and w^{\prime} goes through x_{2} and $s_{C_{\alpha}^{\prime}}$ is closer to x_{2} than $s_{C_{m}^{\prime}}$). Note also that w^{\prime} belongs to every bag in $X_{a_{C_{m}^{\prime}}}, \cdots, X_{b_{C_{m}^{\prime}}}$ and, in particular, one of this bag contains a vertex $h_{C_{m}^{\prime}}^{*}$, and so $\operatorname{dist}\left(h_{C_{m}^{\prime}}^{*}, w^{\prime}\right) \leq k$.
To sum up, $\operatorname{dist}\left(w^{\prime}, l_{C_{m}^{\prime}}\right)+\operatorname{dist}\left(l_{C_{m}^{\prime}}, h_{C_{m}^{\prime}}^{*}\right)=\operatorname{dist}\left(h_{C_{m}^{\prime}}^{*}, w^{\prime}\right) \leq k<\operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, d_{j}\right)=$ $\leq \operatorname{dist}\left(w^{\prime}, l_{C_{\alpha}^{\prime}}\right)+\operatorname{dist}\left(l_{C_{\alpha}^{\prime}}, h_{C_{\alpha}^{\prime}}^{*}\right)$. Because $l_{C_{\alpha}^{\prime}}$ is between x_{2} and $l_{C_{m}^{\prime}}$ in $P_{u p}$ and the shortest path between $l_{C_{m}^{\prime}}$ and w^{\prime} goes through x_{2}, we get that $\operatorname{dist}\left(w^{\prime}, l_{C_{m}^{\prime}}\right) \geq$ $\operatorname{dist}\left(w^{\prime}, l_{C_{\alpha}^{\prime}}\right)$ and so $\operatorname{dist}\left(l_{C_{m}^{\prime}}, h_{C_{m}^{\prime}}^{*}\right)<\operatorname{dist}\left(l_{C_{\alpha}^{\prime}}, h_{C_{\alpha}^{\prime}}^{*}\right)$. Finally, $k \geq \operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, w\right)=$ $\operatorname{dist}\left(h_{C_{\alpha}^{\prime}}^{*}, r_{C_{\alpha}^{\prime}}^{\prime}\right)+\operatorname{dist}\left(r_{C_{\alpha}^{\prime}}, w\right) \geq \operatorname{dist}\left(r_{C_{m}^{\prime}}, h_{C_{m}^{\prime}}^{*}\right)+\operatorname{dist}\left(r_{C_{m}^{\prime}}, w\right)=\operatorname{dist}\left(h_{C_{m}^{\prime}}^{*}, w\right)$. The last inequality comes from the fact that $r_{C_{m}^{\prime}}^{m}$ is between y_{1} and $r_{C_{\alpha}^{\prime}}$ in $P_{u p}$ and the shortest path between $l_{C_{\alpha}^{\prime}}$ and w goes through y_{1} and y_{2}. Hence, we get that $\operatorname{dist}\left(h_{C_{m}^{\prime}}^{*}, w\right) \leq k$ and so, $\operatorname{dist}(v, w) \leq k$ by Property $(*)$.
It remains to show that D^{\prime} contradicts the minimality of α^{*}. Let C be the component that appears in D^{\prime} just after X_{h}.

* First, let us assume that $C \in \mathcal{C}_{u p}$.

If $C \leq C_{\alpha}^{\prime}$ in $\mathcal{O}_{u p}$, then by definition of α, D^{\prime} corresponds to the first case of the proof of the Theorem, i.e., C and all components smaller than C in $\mathcal{O}_{u p}$ can be moved just after X_{h} in D^{\prime} (recall that all these components can be added with d_{j} by definition of α).
Otherwise, by definition of α (and of d_{j}), we have that $\alpha\left(D^{\prime}\right)=\alpha(D)=\alpha$ and, then $C_{\alpha^{*}\left(D^{\prime}\right)}=C_{\alpha^{*}(D)}$. Since $C_{\alpha^{*}(D)}$ is "closer" from X_{h} in D^{\prime} than in D (since D^{\prime} is obtained from D by moving at least C_{1} after $C_{\alpha^{*}(D)}$), we get that $\alpha^{*}\left(D^{\prime}\right)<\alpha^{*}(D)$, contradicting the minimality of $\alpha^{*}(D)$.

* If $C \in \mathcal{C}_{\text {down }}$, then we repeat the process. Either we fall in the first case, which contradicts the maximality of h, or we have to repeat the transformation of the second case. This leads to a new decomposition $D^{\prime \prime}$ with same prefix (X_{1}, \cdots, X_{h}) and a component C^{\prime} that appears just after this prefix in $D^{\prime \prime}$. If $C^{\prime} \in \mathcal{C}_{\text {down }}$, then applying the above paragraph with D^{\prime} and $D^{\prime \prime}$ instead of D and D^{\prime} leads to a contradiction. Otherwise, since the prefix (and so d_{j}) is the same, then applying the paragraph above for C^{\prime} also contradicts the minimality of $\alpha^{*}(D)$ (i.e., $\alpha^{*}\left(D^{\prime \prime}\right)<\alpha^{*}(D)$).
- Second, let us assume that $r_{C_{\alpha}^{\prime}}=l_{C_{\beta}^{\prime}}$ and that there exists a component $C \notin$ $\left\{C_{\beta}^{\prime}, \cdots, C_{\gamma}^{\prime}\right\}$ such that $r_{C}=l_{C_{\beta}^{\prime}}$ that appears before C_{α}^{\prime} in D (because $C \notin$ $\left\{C_{\beta}^{\prime}, \cdots, C_{\gamma}^{\prime}\right\}$, this implies that $C<C_{\alpha}^{\prime}$ in $\left.\mathcal{O}_{u p}\right)$. Let $1 \leq \delta<\alpha$ be the smallest integer such that C_{δ}^{\prime} is such a component C, and let $h+1 \leq \delta^{\prime}<a_{C_{\alpha}^{\prime}}$ be such that $\delta^{\prime}=a_{C_{\delta}^{\prime}}$. Then, let

$$
\begin{gathered}
D^{\prime}=\left(X_{1}, \cdots, X_{h}\right) \odot\left(\left(X_{h+1}, \cdots, X_{b_{C_{\delta}^{\prime}}}\right) \backslash\left(\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right)\right) \odot \\
\left(\left(\left(X_{b_{C_{\delta}^{\prime}}+1}, \cdots, X_{a_{C_{\alpha^{*}}}-1}\right) \backslash\left(\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right)\right) \cup\left\{l_{C_{\beta}^{\prime}}\right\}\right) \odot\left(X_{a_{C_{\alpha^{*}}}}, \cdots, X_{b_{C_{\alpha^{*}}}}\right) \odot \\
\left(\left(X_{h+1} \cdots, X_{a_{C_{\alpha^{*}}-1}} \cap \bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right) \cup\left(X_{b_{C_{\alpha^{*}}}} \cap V\left(P_{d o w n}\right)\right) \odot\left(X_{b_{C_{\alpha^{*}}+1}}, \cdots, X_{p}\right) .\right.
\end{gathered}
$$

With similar arguments as in the previous case, D^{\prime} contradicts the minimality of α.

- Second, let us assume that $C_{l_{C_{\beta}^{\prime}}} \neq \emptyset$, and that $C_{r_{C_{\beta}^{\prime}}}=\emptyset$ (note that the case when $C_{l_{C_{\beta}^{\prime}}}=\emptyset$, and $C_{r_{C_{\beta}^{\prime}}} \neq \emptyset$ is symmetric). Let us denote by C_{γ}^{\prime} the first component in D that is also in $C_{l_{C_{\beta}^{\prime}}}$. Then, let

$$
\begin{gathered}
D^{\prime}=\left(X_{1}, \cdots, X_{h}\right) \odot\left(\left(X_{h+1}, \cdots, X_{b_{C_{\delta}^{\prime}}}\right) \backslash\left(\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right)\right) \odot \\
\left(\left(\left(X_{b_{C_{\delta}^{\prime}}+1}, \cdots, X_{a_{C_{\alpha^{*}}}-1}\right) \backslash\left(\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right)\right) \cup\left\{l_{C_{\beta}^{\prime}}\right\}\right) \odot\left(X_{a_{C_{\alpha^{*}}}}, \cdots, X_{b_{C_{\alpha^{*}}}}\right) \odot \\
\left(\left(X_{h+1} \cdots, X_{a_{C_{\alpha^{*}}-1}} \cap \bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right) \cup\left(X_{b_{C_{\alpha^{*}}}} \cap V\left(P_{\text {down }}\right)\right) \odot\left(X_{b_{C_{\alpha^{*}}}+1}, \cdots, X_{p}\right) .\right.
\end{gathered}
$$

With similar arguments as in the previous case, D^{\prime} contradicts the minimality of α.

- Third, let us assume that $C_{l_{C_{\beta}^{\prime}}} \neq \emptyset$, and that $C_{r_{C_{\beta}^{\prime}}} \neq \emptyset$. Let us denote by C_{γ}^{l} the first component in D that is also in $C_{l_{C_{\beta}^{\prime}}}$. Let us denote by C_{γ}^{r} the first component in D that is also in $C_{l_{C_{\beta}^{\prime}}}$. W.l.o.g., let us assume that C_{γ}^{l} appears before C_{γ}^{r} in D.

$$
\begin{gathered}
D^{\prime}=\left(X_{1}, \cdots, X_{h}\right) \odot\left(\left(X_{h+1}, \cdots, X_{b_{C_{\delta}^{\prime}}}\right) \backslash\left(\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right)\right) \odot \\
\left(\left(\left(X_{b_{C_{\delta}^{l}}^{\prime}}, \cdots, X_{b_{C_{\delta}^{r}}-1}\right) \backslash\left(\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right)\right) \cup\left\{l_{C_{\beta}^{\prime}}\right\}\right) \odot \\
\left(\left(\left(X_{b_{C_{\delta}^{r}}}, \cdots, X_{a_{C_{\alpha^{*}}}-1}\right) \backslash\left(\bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right)\right) \cup\left\{l_{C_{\beta}^{\prime}}^{\prime}, r_{C_{\gamma}^{\prime}}\right\}\right) \odot\left(X_{a_{C_{\alpha^{*}}}}, \cdots, X_{b_{C_{\alpha^{*}}}}\right) \odot \\
\left(\left(X_{h+1} \cdots, X_{a_{C_{\alpha^{*}}-1}} \cap \bigcup_{\beta \leq m \leq \gamma} \bar{C}_{m}^{\prime}\right) \cup\left(X_{b_{C_{\alpha^{*}}}} \cap V\left(P_{d o w n}\right)\right) \odot\left(X_{b_{C_{\alpha^{*}}}+1}, \cdots, X_{p}\right) .\right.
\end{gathered}
$$

With similar arguments as in the previous case, D^{\prime} contradicts the minimality of α.

4.2.4 Compute optimal left-to-right g-contiguous decompositions in polynomialtime

Finally, we show that $L t R g$-contiguous $\{x, y\}$-path-decompositions can be computed efficiently.
Theorem 8 Let $G=(V, E)$ be a connected simple outerplanar n-node graph and $x, y \in E_{\text {out }} \cup V$ such that $G \backslash x$ and $G \backslash y$ are connected, $x \neq y, x \notin y, y \notin x$ and x and y lie on the same internal face F of G. Let us assume that $p \ell(G, x, y) \leq k$.

Then, an Lt R-contiguous $\{x, y\}$-path-decomposition of G with length at most k can be computed in time $O\left(n+k^{2}\right)$.

Proof. First, the connected components C (and $\bar{C}=C \cup s_{C}$) of $G \backslash F$ can be computed in linear-time. Note that these components are pairwise edge-disjoint. By Theorem 3, in global time $O(|E|)$, an optimal greedy path-decomposition D_{C} based on s_{C} can be computed for each such a component \bar{C}.

For each cut vertex $v \in V(F)$, let \mathcal{C}_{v} be the set of the connected components of $G \backslash v$ that do not contain x (nor y) and let $C_{v} \in \mathcal{C}_{v}$ (note that $v=s_{C_{v}}$) be a component that maximizes $\operatorname{dist}\left(h_{C_{v}}^{*}, v\right)$. Let G^{\prime} be obtained from G by removing, for every cut-vertex $v \in V(F)$, all components of \mathcal{C}_{v} but C_{v}. That is, for every cut-vertex v of F, there is a single component of $G^{\prime} \backslash v$ not containing x nor y.

We first compute a path-decomposition for G^{\prime} that we then extend to a path-decomposition of G.

Let $\left(\bar{C}_{1}^{u}, \cdots, \bar{C}_{q}^{u}\right)$ be the components C such that $s_{C} \in P_{u p}$ ordered from "left to right" (from x_{1} to y_{1} as in previous section), and let $\left(\bar{C}_{1}^{d}, \cdots, \bar{C}_{q^{\prime}}^{d}\right)$ be the components C such that $s_{C} \in P_{d o w n}$ ordered from x_{2} to y_{2} (we use the same notation as in Section 4.2.3).

Note that F induces an isometric subgraph of G (and of G^{\prime}) and so, by Lemma 1 and Theorem $2,|F|=O(k)$. Therefore, since every cut-vertex of G^{\prime} corresponds to a single component, it follows that $q, q=O(k)$.

For every $0 \leq i \leq q, 0 \leq j \leq q^{\prime}$, let $G[i, j]$ be the subgraph of G induced by $x=\left\{x_{1}, x_{2}\right\}$ and every component $\left.\bar{C}_{i^{\prime}}^{u}\right), 1 \leq i^{\prime} \leq i$ and every component $\left.\bar{C}_{j^{\prime}}^{d}\right), 1 \leq j^{\prime} \leq j$ and adding a new edge $e_{i, j}$ between $r_{\bar{C}_{i}^{u}}$ and $r_{\bar{C}_{j}^{d}}$ of length $\operatorname{dist}_{G}\left(r_{\bar{C}_{i}^{u}}, r_{\bar{C}_{j}^{d}}\right)$ (this artificial edge is used to keep the same distances as in G and $\left.G^{\prime}\right)$. Let $D[i, j]$ denote an optimal $L t R g$-contiguous $\left\{x, e_{i, j}\right\}$-path-decomposition of $G[i, j]$.

Let $D_{1}=D[i-1, j] \odot D_{C_{i}^{u}} \cup\left\{r_{C_{j}^{d}}\right\}$ and let $D_{2}=D[i, j-1] \odot D_{C_{j}^{d}} \cup\left\{r_{C_{i}^{u}}\right\}$. Let $D^{\prime} \in\left\{D_{1}, D_{2}\right\}$ then, by definition of $L t R g$-contiguous path-decomposition, D^{\prime} is an optimal $L t R g$-contiguous $\left\{x, e_{i, j}\right\}$-path-decomposition of $G[i, j]$. Therefore, for every $0 \leq i \leq q, 0 \leq j \leq q^{\prime}, D[i, j]$ can be computed in constant time from $D[i-1, j]$ and $D[i, j-1]$. Indeed, computing the length of D_{1} (resp., D_{2}) from the one of $D[i-1, j]$ (resp., of $D[i, j-1]$) only relies on the distance between $h_{C_{j}^{d}}^{*}$ and $r_{C_{i}^{u}}$ (resp., between $h_{C_{i}^{u}}^{*}$ and $r_{C_{j}^{d}}$) and these distances can be pre-computed in linear global time (for each component C, a single BFS from s_{C} is sufficient to determine h_{C}^{*} and its distance to s_{C}).

Hence, once the linear time pre-processings (computation of the greedy decompositions and of the distances) have done, an $\{x, y\}$-path-decomposition $D\left[q, q^{\prime}\right]$ of G^{\prime} with length at most k can be computed in time $O\left(k^{2}\right)$ by dynamic programming.

To conclude, to obtain the desired decomposition for G from $D\left[q, q^{\prime}\right]$, it is sufficient, for every cut-vertex $v \in V(F)$ and every component $C \in \mathcal{C}_{v} \backslash\left\{C_{v}\right\}$, to insert the greedy decomposition $D_{C} \cup x_{v}$ just after the one of $D_{C_{v}}$ in $D\left[q, q^{\prime}\right]$ where $x_{v} \neq v$ is the (unique) vertex of F not in \bar{C}_{v} that appears in the same bags as \bar{C}_{v} in $D\left[q, q^{\prime}\right]$ (by maximality of $\operatorname{dist}\left(h_{C_{v}}^{*}, v\right)$ when defining C_{v}, this does not increase the path-length).

4.3 Polynomial-time +1 approximation for computing the pathlength of outerplanar graphs

We are finally ready to prove our main theorem.
Theorem 9 There exists an algorithm that, for every n-node connected outerplanar graph $G=$ (V, E), decides in time $O\left(n^{3}\left(n+k^{2}\right)\right)$ whether $p \ell(G)>k$ or returns a path-decomposition of G with length at most $k+1$.

Proof. For every $x, y \in E_{\text {out }} \cup V$ (possibly $x=y$), the algorithm computes decides whether $p \ell(G, x, y)>k$ or computes an $\{x, y\}$-path-decomposition of G length at most $k+1$. By Lemma 3, such a decomposition with minimum length will be a path-decomposition of G with length at most $k+1$. (We need to also consider the cases when x and y are vertices for the recursion below).

Let us fix $x, y \in E_{\text {out }} \cup V$ and let us assume that $p \ell(G, x, y) \leq k$, we present an algorithm that computes an $\{x, y\}$-path-decomposition of G length at most $k+1$ in time $O\left(n\left(n+k^{2}\right)\right)$.

If $x=y$, the Algorithm Greedy (see Section 4.1.3) computes an optimal $\{x, y\}$-pathdecomposition of G in linear time by Theorem 3 and we are done. So let us assume that $x \neq y$.

First, in linear time, the cut-vertices and internal edges separating x and y are computed (this can be done, e.g., using SPQR trees [10]). Let $\left\{e_{0}=x, e_{1}, \cdots, e_{q-1}, e_{q}=y\right\}$ where $e_{i} \in E_{\text {int }} \cup V$ for every $0<i<q$ be the set of those separators in order they are met when going from x to y. For every $0 \leq i<q, e_{i} \neq e_{i+1}$ (they may intersect) and either e_{i} and e_{i+1} share a same internal face F_{i} or, e_{i} and e_{i+1} are vertices and $\left\{e_{i}, e_{i+1}\right\} \in E$. Let \mathcal{C} be the set of connected components of $G \backslash e_{i}$ for some $0 \leq i \leq q$ that contain neither x nor y. That is, for every $C \in \mathcal{C}$, there exists $0 \leq i \leq q$ and $v \in e_{i}$ (or $v=e_{i}$ if e_{i} is a vertex) such that $N(C)=\{v\}$. Note that this decomposition into several connected components is done once for all at the beginning of the execution of the algorithm. In particular, it is not done anymore in the recursive calls described below and therefore it counts only for a linear time in the time complexity.

Assume first that $e_{1} \neq y$. Let C^{\prime} be the connected component of $G \backslash e_{1}$ containing (or intersecting if $\left.e_{1} \cap x \neq \emptyset\right) x$. Let $G_{y}=G\left[V \backslash C^{\prime}\right]$, let $\mathcal{C}_{x} \subseteq \mathcal{C}$ be the set of the connected components of $G \backslash x$ that do not contain y (they already have been computed above) and let $G_{x}=G\left[\left(C \cup e_{1}\right)\right]$ and let $\left.G_{x}^{\prime}=G_{x} \backslash \bigcup_{C \in \mathcal{C}_{x}}\right]$ be the subgraph induced by the vertices in $C \cup e_{1}$ that are not in some component of \mathcal{C}_{x}.

Our algorithm first recursively computes a $\left\{e_{1}, y\right\}$-path-decomposition D_{y} of G_{y} with length at most $k+1$ in time $O\left(\left|V\left(G_{y}\right)\right|\left(\left|V\left(G_{y}\right)\right|+k^{2}\right)\right)$. Then, note that $G_{x}^{\prime} \backslash x$ and $G_{x}^{\prime} \backslash e_{1}$ are connected and $e_{1} \neq x$ share a same face F_{0}.

- If $x \in e_{1}$ or $e_{1} \in x$, let D_{x}^{\prime} be an optimal greedy $\left\{x, e_{1}\right\}$-path-decomposition of G_{x}^{\prime} in time $O\left(\left|E\left(G_{x}^{\prime}\right)\right|\right)$ (see Section 4.1.3).
- Otherwise, the condition of Theorem 8 are fulfilled and an $\left\{x, e_{1}\right\}$-path-decomposition D_{x}^{\prime} of G_{x}^{\prime} with length at most $k+1$ can be computed in time $O\left(\left|V\left(G_{x}^{\prime}\right)\right|+k^{2}\right)$.

Then, for every $C \in \mathcal{C}_{x}$ with $N(C)=\{v\}$, our algorithm computes an optimal greedy pathdecomposition D_{c} of \bar{C} based on v. Using several times (one time per component of \mathcal{C}_{x}) some of the Lemmas 599 (depending on whether x and e_{1} are edges or not, whether they intersect or not, and whether $N(C)$ intersects e_{1} or not), an $\left\{x, e_{1}\right\}$-path-decomposition D_{x} of G_{x} with length at most $k+1$ can be computed in time $\left|\mathcal{C}_{x}\right|$ from D_{x}^{\prime} and the decompositions $D_{C}, C \in \mathcal{C}_{x}$. Finally, from Lemma 10, the desired $\{x, y\}$-path-decomposition of G with length at most $k+1$
is obtained from D_{x} and D_{y}. So in total, in time $O\left(\left|V\left(G_{y}\right)\right|\left(\left|V\left(G_{y}\right)\right|+k^{2}\right)\right)+O\left(\left|V\left(G_{x}^{\prime}\right)\right|+k^{2}\right)=$ $O\left(n^{3}\left(n+k^{2}\right)\right)$.

The last case is when $e_{1}=y$. In that case, let G_{x}^{\prime} be obtained from G by removing the component of $G \backslash x$ that do not contain y and also removing the components of $G \backslash y$ that do not contain x. An $\{x, y\}$-path-decomposition D_{x}^{\prime} of G_{x}^{\prime} of length at most $k+1$ is obtained as in the two items above. And then, using Lemmas 599 , the components of $G \backslash G_{x}^{\prime}$ can be added to it as above to obtain the desired $\{x, y\}$-path-decomposition of G with length at most $k+1$.

5 Further work

The next step would be to design a polynomial time exact algorithm (if it exists) to compute the pathlength of Outerplanar graphs. Note that the increase of the length $(+1)$ in our approximation algorithm comes from the contiguous property. The Example of Figure 2 shows that we cannot avoid this increase if we keep the contiguous property. Moreover, the $L t R$ property has been prove from a contiguous path-decomposition. Therefore, this proof needs also to be adapted for the exact case. An other question would be to know whether our algorithm for trees can be adapted to chordal graphs. Moreover, the complexity of computing the pathlength (or treelength) of planar graphs is still open.

References

[1] R. Belmonte, F. V. Fomin, P. A. Golovach, and M. S. Ramanujan. Metric dimension of bounded tree-length graphs. SIAM J. Discret. Math., 31(2):1217-1243, 2017.
[2] Achim Blumensath and Bruno Courcelle. Monadic second-order definable graph orderings. Log. Methods Comput. Sci., 10(1), 2014.
[3] H. L. Bodlaender and F. V. Fomin. Approximation of pathwidth of outerplanar graphs. J. Alg., 43(2):190-200, 2002.
[4] D. Coudert, F. Huc, and J.-S. Sereni. Pathwidth of outerplanar graphs. J. Graph Theory, 55(1):27-41, 2007.
[5] Y. Dourisboure and C. Gavoille. Tree-decompositions with bags of small diameter. Discret. Math., 307(16):2008-2029, 2007.
[6] F. F. Dragan, E. Köhler, and A. Leitert. Line-distortion, bandwidth and path-length of a graph. Algorithmica, 77(3):686-713, 2017.
[7] Feodor F. Dragan and Arne Leitert. Minimum eccentricity shortest paths in some structured graph classes. J. Graph Algorithms Appl., 20(2):299-322, 2016.
[8] G. Ducoffe, S. Legay, and N. Nisse. On the complexity of computing treebreadth. Algorithmica, 82(6):1574-1600, 2020.
[9] Maurice Herlihy, Fabian Kuhn, Srikanta Tirthapura, and Roger Wattenhofer. Dynamic analysis of the arrow distributed protocol. Theory Comput. Syst., 39(6):875-901, 2006.
[10] John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components. SIAM J. Comput., 2(3):135-158, 1973.
[11] Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings. In $42 n d$ Annual Symposium on Foundations of Computer Science, FOCS, pages 10-33. IEEE, 2001.
[12] Adrian Kosowski, Bi Li, Nicolas Nisse, and Karol Suchan. k-chordal graphs: From cops and robber to compact routing via treewidth. Algorithmica, 72(3):758-777, 2015.
[13] R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In 47 th Annual IEEE Symp. on Foundations of Computer Science (FOCS 2006), pages 119-132, 2006.
[14] Burkhard Monien and Ivan Hal Sudborough. Min cut is np-complete for edge weighted treees. Theor. Comput. Sci., 58:209-229, 1988.
[15] J. B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

[^0]: ${ }^{*}$ This work is partially funded by the project UCA JEDI (ANR-15-IDEX-01) and EUR DS4H Investments in the Future (ANR-17-EURE-004).

