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1. Introduction
Metamaterials are structured materials for which exotic behaviours in terms of wave propagation
emerge from the microstructure. The most striking example is probably that of metamaterials
for electromagnetic waves having a negative refractive index [1], which is obtained when both
the permittivity and permeability of the medium are negative. In acoustics, finding structures
that lead to negative parameters has also been a fruitful field of research. The literature contains
many examples of acoustic metamaterials with negative bulk modulus and/or negative density
[2]. Among the countless resonant systems exhibiting such properties, one finds several studies
on membrane or thin plate structures: simple membranes arranged in parallel or series [3–11],
decorated membranes [12–15], thin plates loaded with small pillars [16], and also natural systems
composed with liquid membranes [17].

However, the concept of negative density is still often unsettling when first encountered, much
more than the idea of a negative compressibility or a negative permittivity. This is of course
because the term of density can refer to the gravitational density, which cannot be negative, or
to the inertial density, which can. The main motivation of the present article is to highlight the
physical mechanisms underlying the negative effective density, in order to demythify this notion.

We propose a simple system that can be used as a toy model to understand the concept
of effective density in acoustics. All the calculations are straightforward, based on Newton’s
second law, and we give some details about their derivations (sections 2 to 4), hopefully allowing
scientists that are not familiar with metamaterials to gain a physical understanding of the
mechanisms leading to negative density. With this toy model one can determine under which
conditions a unit cell will give rise, or not, to a negative density (section 5), including in the case
of dissipation (section 6). We also show that despite its crudeness, our toy model can reproduce,
at least qualitatively, the acoustic behaviour of several existing metamaterials (section 7).

2. Effective mass
The system that we consider is sketched in Fig. 1. In an infinite tube of section S = πR2, we
consider an object made of an annulus (part 1) of mass M1 and section S1 around a disk (part 2)
of mass M2 and section S2, both of thickness e. Parts 1 and 2 of this object are linked by a spring
of stiffness K, and the ring is connected to the tube by a spring of stiffness K′. We note z = 0

the position of the left face of the object, and z = e that of its right face. The pressure difference
between the left and right faces is noted ∆P and we are interested in the situation in which the
system is harmonically excited: ∆P exp(−iωt).

For the simple case of a uniform mass M that slides without friction on the tube (M1 = 0,
M2 =M , K =K′ = 0) the displacement U is given by:

−Mω2U = ∆PS. (2.1)

Note that the sign of U might seem counter-intuitive here: for∆P > 0, one finds that U < 0, which
means that a pressure force that pushes to the right results in a displacement to the left. This
is what is expected for a purely inertial response of the system: the system displacement is in
antiphase with the excitation force.

In the general case with two masses, we define the effective mass, Meff, as the ratio between
the force ∆PS and the acceleration −ω2〈U〉. The average displacement is defined as 〈U〉= (1−
x)U1 + xU2, where U1 and U2 are the displacements of masses 1 and 2, and x= S2/(S1 + S2) is
the surface fraction occupied by the central mass (mass 2). U1 and U2 are determined by solving
the coupled equations

−M1ω
2U1 = ∆PS1 −K(U1 − U2)−K′U1 (2.2)

−M2ω
2U2 = ∆PS2 −K(U2 − U1). (2.3)
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Figure 1. Schematic views of the system which we propose as a toy model. (a) An annulus of mass M1 and surface S1

is around a disk of massM2 and surface S2, in an infinite tube of surface S = S1 + S2 = πR2. (b) The two masses are

connected via a spring K, and the annulus is linked to the tube with a spring K′. The effective mass of this system can

be established by calculating how it moves when excited by an overpressure ∆P exp(−iωt).

It is then easy to calculate the effective mass:

Meff =
M2 +M1(1 +K′/K)−K′/ω2 − ω2M1M2/K

1 + x2K′/K − ω2[x2M1 + (1− x)2M2]/K
. (2.4)

Meff is thus frequency dependent, and it also depends on the parameters of the system (M1, M2,
K, K′ and x). To illustrate the idea of negative mass, let us consider the case of an infinitely
rigid spring between the two masses (K→∞). The system is then a M1 +M2 mass linked to the
tube by a spring K′, and Eq. (2.4) reduces to Meff = (M1 +M2)−K′/ω2, which is negative for
ω2 <K′/(M1 +M2). It is interesting to write Newton’s second law in this case:

−(M1 +M2)ω
2U +K′U = ∆PS. (2.5)

In response to our forcing pressure, there are two components now: the inertial response, that
involves the mass of the system, and the elastic response, which depends on the spring. At low
frequency, for ω�

√
K′/(M1 +M2), the elastic force dominates, and we see that ∆P > 0 leads

to U > 0 this time. The system thus responds in a way that is more natural to our everyday
life experience: it moves in the direction of the applied force. However, when analysed from
an inertial point of view, it gives an abnormal phase, and a negative mass. A negative mass
system is thus merely a system that reacts elastically rather than inertially. Note that this situation
is formally analogous to the plasma resonance in electromagnetics, in which the permittivity is
negative for frequencies below the plasma resonance [19].

Designing an elementary cell in view of obtaining a negative density consists in including
somehow an elastic response that will be interpreted as an abnormal inertial response. The spring
K′ between the outer ring and the tube is a solution, but it is not the only one. As shown in
Fig. 2, Eq. (2.4) can also predict the existence of a regime of negative mass even for K′ = 0.
Here the parameters are M1 = 9 g, M2 = 1 g, x= 0.9, K = 1000 N/m, and K′ = 0. We see that
the effective mass is negative from about 200 to 600 Hz. Let us look into detail the response of
the system as a function of frequency. At low frequency, the two masses move together and we
find Meff =M1 +M2. For a given frequency, here close to 150 Hz, there is a resonance and the
effective mass diverges and becomes negative. We will discuss in section 5 how this resonance
frequency depends on the parameters. For now, let us focus on the physical picture. The resonance
comes from the different inertial responses of the two masses (because their mass and surface
are different), which leads to different displacements U1 and U2 and brings the elastic response
K(U1 − U2) into play, such that the effective mass becomes negative. However as in the case
K′ 6= 0 discussed before, the inertial response dominates the elastic one at higher frequencies,
meaning that the effective mass becomes positive again. At high frequency, the asymptotic value
of Meff corresponds to two masses in parallel, without connection.
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Figure 2. Example of (a) the effective mass and (b) the amplitude of transmission for objects defined by M1 = 9 g,

M2 = 1 g, x= 0.9, K = 10 kN/m, K′ = 0 and immersed in a tube filled with air (k0 = 2πf/c0 and Z0 = ρ0c0 with

c0 = 340 m/s and ρ0 = 1.2 kg.m−3 ). Inset: sketch of the transmission and the reflection of an incident wave through

the effective system.

3. Transmission
In the previous section, we imagined a situation in which we were able to excite the system with
a given force ∆PS. In practice, the excitation is rather the result of an incoming wave. Let us
consider this more realistic situation. It will also turn out to be a good intermediate calculation for
the next section, in which we look at an effective continuous medium. The inset in Fig. 2b shows
the situation that we want to calculate: an incident pressure wave P exp[i(k0z − ωt)] impinges the
object and leads to a reflected wave rP exp[i(−k0z − ωt)] and a transmitted one tP exp[i(k0z −
ωt)], where k0 is the wavevector for the medium filling the tube (air, for example). Note that we
consider only plane waves propagating in the tube. It imposes that the wavelength remains larger
than the diameter of the tube, otherwise other modes could be excited, especially when the two
parts of the objects exhibit different displacements. For a tube of radius R= 5 cm filled with air,
the frequency must be lower than 2 kHz.

Let us calculate the coefficients r and t, which will allow us to determine∆P . The total pressure
field on each side of the object can be written (dropping the time dependence)

p(z) = Peik0z + rPe−ik0z for z < 0, (3.1)

p(z) = tPeik0z for z > e. (3.2)

On the other hand, the displacement field is given by

u(z) =
i

ωZ0
P (eik0z − re−ik0z) for z < 0, (3.3)

u(z) =
i

ωZ0
tPeik0z for z > e, (3.4)

where Z0 is the impedance of the surrounding medium. At this point it is important to introduce
a condition on the thickness of the object. We will consider that the wavelengths, in both the host
medium and in the constitutive material of the object, are much larger than the thickness e of the
object. Hence, we may discard wave propagation in the object, and we can consider that its left
and right faces are moving with the same displacement: u(z = 0) = u(z = e) =U . It gives a first
relationship between r and t:

1− r = teik0e. (3.5)
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Note that exp(ik0e) is close to one, but we keep this term because it will be useful in section 4.
The second relation is obtained by writing Newton’s second law for the object (directly with its
effective mass given by Eq. (2.4)):

−Meffω
2U = PS

(
1 + r − teik0e

)
. (3.6)

Putting Eqs. (3.4)-(3.6) together, we finally obtain:

t =
e−ik0e

1 + ωMeff
2iZ0S

, (3.7)

r = 1− teik0e. (3.8)

Eq. (3.7) is known as the Mass law, valid for an obstacle that is thinner than the wavelength.
It shows that low frequency sound is hard to block, because |t| → 1 for ω→ 0. A high value of
surface mass (Meff/S) is necessary for efficiently blocking low frequency noise. This is actually a
challenge for metamaterials: having a large effective mass with a light and thin system. Fig. 2b
shows the amplitude of the transmission in our example. There is a clear minimum at resonance
(when the effective mass diverges) and a maximum when the mass goes through zero.

4. Continuous medium
Now that we know the acoustical behaviour of our elementary cell, we can build a metamaterial.
The idea is simply to stack several objects one after the others. For simplicity let us consider that
the stacking is periodic, with a distance d from one layer to the other, as illustrated in Fig. 3a.
Between the layers, we have the same medium as in the rest of the tube (e.g., air), with k0 and
Z0. As shown in Appendix A, at the low frequency limit (k0d� 1), the N layers behave as an
effective homogeneous liquid of thickness L=Nd, with an effective compressibility χeff and an
effective density ρeff given by

χeff
χ0

= 1 +
i
k0d

1− t− r
t

, (4.1)

ρeff
ρ0

= 1 +
i
k0d

1− t+ r

t
. (4.2)

Inserting the values (3.7) for t and (3.8) for r, we obtain:

χeff =
(
1− e

d

)
χ0, (4.3)

ρeff =
(
1− e

d

)
ρ0 +

Meff
Sd

. (4.4)

We can check that these expressions correspond to a mixing law, in which an effective property
Aeff is given by an average of the properties of its components (A0, A1), with a weight
corresponding to the volume fraction: Aeff = (1− Φ)A0 + ΦA1, where Φ is the volume fraction
of component 1 in the unit cell. In our case, the volume fraction is given by e/d. The effective
compressibility (4.3) is a mixture law with χ1 = 0, because the inclusion is incompressible (we
assumed that both faces of the object had the same displacement). As for Eq. (4.4), it also takes the
form of a mixture law if we define a density ρ1 =Meff/(Se) for the inclusion.

The multilayer has thus the same qualitative behaviour as its constitutive elements, as shown
in Fig. 3b, with a resonance followed by a regime of negative density.

5. Frequency range of negative mass given by the toy model
We now study in more details the predictions of the toy model. We take advantage of its simplicity
to derive analytical predictions for the frequency ranges where the effective mass is negative
(henceforth called “negative bands” for simplicity), and which sets of parameters maximise these
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Figure 3. (a) A succession of layers, characterised by their transmission and reflection coefficients (t,r) is equivalent,

at low frequency, to a homogeneous medium with an effective compressibility χeff and an effective density ρeff, given by

Eqs. (4.1) and (4.2). (b) Effective density for a multilayer made of an elementary cell as in Fig. 2 (M1 = 9 g, M2 = 1 g,

x= 0.9, K = 10 kN/m, K′ = 0), for e= 1mm and d= 10mm.

ranges. Since we saw that ρeff was an affine function of Meff (eq. (4.4)), all our conclusions on the
effective mass will also apply on the negative density, provided the density of the host medium is
low (as for air). In order to explore the conditions for a negative effective mass, we introduce four
dimensionless parameters describing our system:

x =
S2

S1 + S2
, (5.1)

µ =
M2

M1 +M2
, (5.2)

κ =
K′

K
, (5.3)

Ω2 =
M1 +M2

K
ω2, (5.4)

with x the surface fraction occupied by the central cylinder (already introduced in Sec. 2), µ the
mass fraction carried by the central mass, κ the ratio between the stiffness of the two springs and
Ω a dimensionless frequency. Using these dimensionless parameters on can rewrite eq. (2.4) as:

meff ≡
Meff

M1 +M2
=
µ+ (1− µ)(1 + κ)− κ/Ω2 − µ(1− µ)Ω2

1 + x2κ− [(1− µ)x2 + µ(1− x)2]Ω2
, (5.5)

where meff is the dimensionless effective mass.

(a) Case K ′ = 0
First, let us look at the simple case where κ= 0. The dimensionless effective mass becomes

meff =
1− µ(1− µ)Ω2

1− [(1− µ)x2 + µ(1− x)2]Ω2
. (5.6)

In Fig. 4a we plot the dimensionless effective mass of Fig. 2a as a function of the dimensionless
frequency.

At low frequency, as previously explained, the two masses move in block:

lim
Ω→0

meff ≡ 1. (5.7)
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Figure 4. Case κ= 0. (a) Dimensionless effective mass as a function of the dimensionless frequency Ω for µ= 0.1 and

x= 0.9. (b) Ratio between the two bounds of the negative band as function of the surface fraction occupied by the central

cylinder x and the mass fraction carried by the central mass µ. The smaller the ratio, the larger the negative band.

Moreover, Eq. (5.6) shows immediately that the effective mass cancels out for one characteristic
frequency, Ω0, and presents one frequency resonance Ωr0:

Ω2
0 =

1

µ(1− µ) , (5.8)

Ω2
r0 =

1

(1− µ)x2 + µ(1− x)2
. (5.9)

Finally, at high frequency, the effective mass does not depend on the stiffness of the spring
between the two masses. It takes the form of two masses in parallel:

lim
Ω→∞

meff ≡m∞ =

[
x2

µ
+

(1− x)2

1− µ

]−1

. (5.10)

As illustrated in Fig. 4a, the effective mass is negative between Ωr0 and Ω0. To appreciate the
width of the negative band, we study Ωr0/Ω0, which will be small for a large negative band.
Interestingly, this ratio is equal to the high frequency limit of the effective mass, and it is almost
symetrical in x and µ:

Ω2
r0

Ω2
0

=m∞ =

[
1 +

(x− µ)2

µ(1− µ)

]−1

. (5.11)

Fig. 4b proposes a visualisation of how (Ωr0/Ω0)
2 depends on x and µ. The symmetry is

visible, and one can conclude that a large negative band can be obtained either with a small µ and
a large x, or with the opposite, a small x and a large µ. We will see in Section 7 that both cases
have been explored in experimental systems.

(b) Case K ′ 6= 0
Let us now consider the effect of the spring between the tube and the annulus. Since the analysis
is more involved than in the previous subsection, most calculations are deferred to Appendix B.
The behaviour of the effective mass is now much richer, as exemplified in Fig. 5.

From eq. (5.5), at low frequency, on can get a first expression:

lim
Ω→0

meff =−
κ

(1 + x2κ)Ω2
, (5.12)

In this limit the effective mass is no longer the sum of the two masses. The negative sign of
the limit (5.12) shows that the elastic response conferred by the spring of stiffness K′ dominates
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depending on the position of the resonance frequency Ωr respective to Ω±: (a) case Ω− <Ωr <Ω+; (b) case

Ωr <Ω− <Ω+; (c) caseΩ− <Ω+ <Ωr . The values of the parameters chosen to plot these graphs are: (a) x= 1/3,

µ= 1/3, κ= 1; (b) x= 0.1, µ= 0.9, κ= 101.4; (c) x= 0.65, µ= 0.55, κ= 3. The inset of (c) shows a degenerate

case where Ωr =Ω+ [values of the parameters: Inset:κ= κ− = 0.2 (d) x= 0.65, µ= 0.55, κ= κ− = 0.2, where

κ− is defined by (B 6)]. (d) Diagram showing which of the three cases occur as κ varies at given values of x and µ. In

blue, case (a) Ω− <Ωr <Ω+ happens whatever κ. In orange, as κ increases, there is a first transition from (a) to case

(b) Ωr <Ω− <Ω+, and a second one back to (a). In green, as κ increases, there is a first transition from (a) to case

(c) Ω− <Ω+ <Ωr , and a second one back to (a). In red, as κ increases, there is a single transition from (a) to (c).

The three symbols �, • and N in panel d indicate the values of x and µ corresponding to the plots in panels a, b and c,

respectively.

the behaviour of the system at low frequency. This is essentially different from the limit (5.7),
taken from a case where the stiffness K′ is absent, and where elastic effects dominate only at
intermediate frequency, as the two masses start moving at different amplitudes and phases.

In contrast, at high frequency, the effective mass remains independent of the two stiffnesses.
With or without springs the effective mass remains the same quantity, given by (5.10):

lim
Ω→∞

meff ≡m∞ (5.13)

To study the frequency dependence of the effective mass, we can recast (5.5) as:

meff =−
κ

(1 + x2κ)Ω2

(1−Ω2/Ω2
−)(1−Ω2/Ω2

+)

(1−Ω2/Ω2
r )

, (5.14)
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which shows that the effective mass now cancels for two characteristic frequencies Ω±, and that
one frequency resonance Ωr still appears:

Ω2
± =

1

2µ(1− µ)

{
µ+ (1− µ)(1 + κ)±

√
[µ− (1− µ)κ]2 + (1− µ)[1 + µ+ 2(1− µ)κ]

}
,

(5.15)
and:

Ω2
r = (1 + x2κ)Ω2

r0. (5.16)

The factorised expression (5.14) shows that one can expect three changes of sign for the
effective mass, hence two negative bands. If the three frequencies Ω−, Ω+ and Ωr are ordered as:
Ω1 <Ω2 <Ω3, the two negative bands appear at frequencies below Ω1, and between frequencies
Ω2 and Ω3.

Since Ω− <Ω+ from their definition (5.15), we must compare Ωr to the two frequencies Ω± to
determine the bounds of the negative bands in terms of these three frequencies. Three cases are
possible: (a) Ω− <Ωr <Ω+, where one negative band is below Ω−, and one between Ωr and Ω+

(Fig. 5a); (b) Ωr <Ω− <Ω+, where one negative band is below Ωr , and one between Ω− and Ω+

(Fig. 5b); (c) Ω− <Ω+ <Ωr , where one negative band is below Ω−, and one between Ω+ and Ωr
(Fig. 5c). Moreover, degenerate cases are possible when Ωr =Ω− or Ωr =Ω+. Then (5.14) shows
that both the resonance and the second negative band vanish, and that a single low-frequency
band remains present; this degenerate case is illustrated in the inset of Fig. 5c.

Now that the different cases (a), (b) and (c) have been presented, we must predict in which
range of parameters (x, µ, κ) they are found. First, it is worth noting from (5.15) and (5.16) that
limκ→0Ω− = 0, while limκ→0Ωr =Ωr0 > 0 and limκ→0Ω+ =Ω0 >Ωr0 where Ω0 and Ωr0 are
given by (5.8) and (5.9), hence the condition (a) Ω− <Ωr <Ω+ is fulfilled for sufficiently low
values of κ, whatever x and µ. Hence, for any fixed couple of values (x, µ), we study whether
the ordering changes as κ varies between 0 and∞. The result of such a study is summarised in
Fig. 5d (more details are given in Appendix B), where in the blue region the condition (a) is met
whatever the value of κ, while in the other regions, varying κ for fixed x and µ results in changes
of ordering of Ωr relative to Ω±.

6. Dissipation
We now consider the effect of dissipation. For simplicity, we restrict ourselves to adding an
imaginary part to the stiffnessK =Kr + iKi, as if there were a dashpot between the two moving
masses.

In the simplest case K′ = 0, the effective mass is given by meff =mr + imi with:

mr =
(1−Ω2/Ω2

0)(1−Ω2/Ω2
r0) + α2

(1−Ω2/Ω2
r0)

2 + α2
, (6.1)

mi = α

(
1

Ω2
r0

− 1

Ω2
0

)
Ω2

(1−Ω2/Ω2
r0)

2 + α2
, (6.2)

where the dimensionless parameter α is the ratio between the imaginary part and the real part of
the complex stiffness :

α≡ Ki
Kr

. (6.3)

Figure 6a shows how the system considered in figure 4 is modified by taking dissipation into
account. The negative band is reduced by the presence of dissipation. As expected for a resonance,
the imaginary part presents a maximum around the frequency resonance decreasing with α.
Interestingly, the frequency of this maximum slightly increases with α (Ω2

c =Ω2
r0

√
1 + α2). The

effective mass cancels for two frequencies Ωα± up to a critical value of α. From the numerator of
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Figure 6. Influence of the dissipation for κ= 0. (a) Real part (continuous lines) and imaginary part (dash lines) for the

same case as in Fig. 4 (x= 0.1, µ= 0.9), but with dissipation, for two different values of α: α= 0.1 (black lines) and

α= αc (red lines). (b) Width of the negative frequency band Γ = (Ωα+ −Ωα−)/Ωα+ (whereΩα± are the zero-mass

frequencies) for x= 0.9. The red dashed line indicates the extinction of the negative frequency band (Eq. (6.4)).

.

Eq. (6.1), one gets that the negative band vanishes for:

αc =
1

2

(
Ω0

Ωr0
− Ωr0

Ω0

)
, (6.4)

The width of the negative frequency band is quantified by Γ = (Ωα+ −Ωα−)/Ωα+. This quantity
Γ is represented in Fig. 6b for a fixed value of x.

In the general case where both stiffnessesK andK′ are present, it is easy to show that the main
effect of dissipation is to suppress the second negative band (see Sec. 5(b)) for a large enough
value of α. The proof is presented in Appendix C; however, there is no analytical prediction of αc,
contrary to Eq. (6.4) in the case κ= 0.

7. Comparison with real systems
Despite its crudeness, the toy model that we propose can reproduce, at least qualitatively, the
acoustic behaviours reported in some experimental systems. We will discuss three types of
systems.

A first example is the negative density obtained by placing a series of membranes [3,9] in a
tube. Each elastic membrane, attached to the tube, confers a stiffness K′ to the system, and has
a mass M1, leading to a plasma-like resonance, as discussed in [19], below which the effective
density is negative.

Two other examples associate a membrane and a heavier structure: the decorated membrane
resonators (DMR), and the liquid foams. Interestingly, each case illustrates one of the two
favourable configurations which we identified for the emergence of a negative band: a heavy
central part with a limited surface (large µ and small x) or a light one with a large surface (small
µ and large x).

(a) Membranes
Due to its ability to bring an elastic response to the system, a membrane is a good candidate
for obtaining a negative effective density. One of the first experimental evidences of a negative
density was brought by Lee et al. [3] who placed a series of membranes in a tube and demonstrated
the existence of a negative density below a critical frequency fc. Figure 7a shows the phase
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Figure 7. Comparison between experimental results obtained with membranes and the toy model. (a) Phase velocity as

a function of frequency for a series of 10µm-thick membranes separated by d= 7 cm in a 3.2 cm-radius tube (Fig. 5 of

Ref. [3] — black square). WithM = 30mg andK′ = 6210N/m, the toy model gives a good agreement (solid green line).

Adding dissipation (dashed green line) lowers the velocity peak. (b) Effective density for 102µm-thick plates separated

by d= 1 cm in a 1.5 cm-radius tube (Fig. 4 of Ref. [9] — white circle for the real part and black circle for the imaginary).

The toy model prediction is plotted for M = 101mg, K′ = 738N/m, and a dissipation of α′ = 0.13 (solid blue line for

the real part and dashed blue line for the imaginary).

velocity v that they measured in their system, as a function of frequency. As v= (ρχ)−1/2, the
passage through ρ= 0 is associated to a peak in velocity. Injecting eq. (2.4) into eq. (4.4) for
K→∞, we obtain the following law for the effective density of the system:

ρeff =
(
1− e

d

)
ρg +

M −K′/ω2

Sd
(7.1)

= ρ′
(
1− ω2

c

ω2

)
, (7.2)

with ρ′ = (1− e/d)ρg + ρme/d and ω2
c =K′/(Sdρ′) (ρg is the density of the gas, and ρm that

of the membrane). The experimental system was made with thin membranes (e= 10µm, ρm =

940 kg/m3) in a R= 1.5 cm tube, with a separation of d= 7 cm. We can thus evaluate ρ′ =

1.34 kg/m3. For K′, we adjust its value to match the cutoff frequency fc = 720Hz, which leads to
K′ = 6210N/m. As shown in Fig. 7a, with these values of the parameters, the measured velocity
is well captured by the toy model.

Metamaterials with density close to zero have attracted attention recently because they could
open the way to narrow and long channels capable of efficiently coupling wave guides [8]. Within
this perspective, a recent study by Malléjac et al. [9] has conducted careful experiments on a
system of thin plates in a tube. The measured effective density is reproduced in Fig. 7b, the
open symbols showing the real part of the density, and the black ones the imaginary. The data
were obtained with plates (e= 102µm, ρm = 1400 kg/m3) with a spacing of d= 1 cm in a 1.5 cm
tube. The material of the plates was characterized by a Young modulus of E =E0(1 + iβ), with
E0 = 4.6GPa and β = 0.13, and a Poisson ratio of 0.4.

Adapting the toy model to the mass of the plates and the geometry of the system, we take a
total mass M = 101mg, which leads to ρ′ = 15.5 kg/m3. For the spring, we select the value that
leads to the correct cutoff frequency of 413 Hz: K′ = 748N/m. And we add an imaginary part of
α′ = 13% to account for the dissipation. The prediction of the toy model with these parameters
is shown in Fig. 7b. As in the experiments, it suggests that the imaginary part of the density is
not negligible. It fails, however, at reproducing the correct trend for the increase of density with
frequency. This suggests that the toy model, which has only one degree of freedom, cannot capture
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Figure 8. Comparison between experimental results obtained with a decorated membrane [14] (a) and our toy model (b).

Both panels show the transmission (black curves) and the effective mass (red dashed curves) as function of frequency.

The inset is a drawing of the experimental setup. Data and drawing on the left panels are extracted from figure 3 in

the review by Ma and Ping-Sheng [2]. For the toy model, we plot Eq. (2.4) for parameters M1 +M2 = 277mg, K =

1.1 kN/m, x= 0.1, µ= 0.62, and κ= 0.53.

the whole behaviour of the plates. The interest of the toy model in this case is limited to its ability
to reproduce qualitatively the observed phenomenon.

(b) Decorated membrane resonators
Loading a membrane with a heavier element leads to what is often called a decorated membrane
resonator (DMR). A typical example is shown in the inset of figure 8: a latex membrane (in yellow)
is stretched on a rigid frame, and loaded with a plastic disk (in grey). Figure 8a is extracted from
reference [14] and shows the experimental transmission as a function of frequency, obtained with
such a system (black line). Two peaks are visible, with a very low minimum of transmission
in between. These features can be interpreted in terms of an effective mass (red dashed curve),
which goes through zero for the peaks of transmission, and increases abruptly at the resonance,
corresponding to the minimum of transmission.

We see that the effective density of this system is very similar to what was obtained in figure 2a
for our toy model. It is tempting to go a step further and look if we can obtain a quantitative
comparison. The membrane is 0.2 mm thick, with a density of 980 kg/m3 and a radius of 14
mm. The disk has a weight of 125mg and a radius of 14 mm [20]. Identifying the disk (and
the part of membrane beneath) with mass M2 in the toy model, we obtain M2 = 173mg and
M1 = 104mg, which corresponds to µ= 0.62. The geometry leads to x= 0.1. Chosing K and K′

is less straightforward because the elasticity of a membrane cannot be reduced to a simple set
of two springs. By tuning the parameters, we found that K = 1.1 kN/m and κ= 0.53 lead to the
effective mass shown in figure 8b (dashed red plot). Comparison with the experimental results is
qualitatively good, with the same range of frequencies of the two negative regimes. However, note
that the density is in arbitrary units in figure 8a, meaning that we cannot quantitavely compare
the agreement. We can do it with the transmission coefficient (black line), and it turns out to be
quite different from the experimental one, with less sharp peaks and minimum. As in Fig 7b, it
probably comes from the fact that the real membrane has a much richer dynamics than what can
be simulated with one mass and two springs. Despite this lack of quantitative agreement, the
toy model seems to capture some of the physical effects at play in the real system. It might be
interesting for helping in designing new DMR, guided by an analytical expression.
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Figure 9. Comparison between experimental results obtained with a liquid foam and the toy-model. The real and

imaginary parts of the effective density are shown as functions of the frequency (rescaled frequency f ′ for the

experiments, see text for details). The inset is a photograph of a liquid foam, showing the distribution of the liquid in

two different structures: the films and the channels. Data are extracted from figure 5 in our previous article [17]. For

the toy model, we plot Eq. (2.4) for parameters M1 +M2 = 3× 10−11 kg, K = 180mN/m, x= 0.2, µ= 0.001 and

α= 1.

(c) Liquid foams
Liquid foams are made of such a high volume fraction of gas that the bubbles are not spherical
anymore and adopt polyhedral shapes, as illustrated in the inset of figure 9. The liquid is
then contained in two different structures: the channels and the films. In 2014, we reported
experimental evidence that the acoustic density of a liquid foam could be negative. Figure 9
shows an experimental result, adapted from [17], with the real (white symbols) and imaginary
(black symbols) parts of the density as functions of frequency. The foams had a liquid volume
fraction of Φ` = 11% and a bubble median radius of R0 = 40µm. We proved that this negative
band was found at any other median radius R, provided a rescaled frequency f ′ = f(R/R0)

1.5

was used (see [17] for details).
We see in Figure 9 that the real part of the density (open symbols) takes negative values

between 100 and 400 kHz. This figure is strikingly similar to figure 6a, which corresponds to
the toy model in the K′ = 0 case. At first sight, this case of the toy model seems far from a real
situation, because it consists in considering a mass that can slide without friction in a tube. But
the very particular structure of the liquid foam leads to a behaviour that is similar to this idealised
situation. When an acoustic wave propagates through the liquid foam, it encounters soap films
and liquid channels. Most of the liquid is in the channels, the films being very thin elements. The
films carry the elastic response, due to their surface tension. In total, the acoustic behaviour of
the foam can thus be modelled as an heavy mass (the liquid channels) around a light one of large
relative surface (the films) with a restoring force.

Let us see if we can determine the parameters of the toy model that will reproduce the
measurements reported in figure 9. Equation (4.4) for the effective density can be rewritten as
a function of the liquid volume fraction:

ρeff = (1− Φ`)ρg + Φ`
Meff
Se

= (1− Φ`)ρg + Φ`ρ`meff. (7.3)
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To calculate meff, the values of M1 +M2, K(1 + iα), x and µ are required. The surface fraction
occupied by soap films in a liquid foam has been studied by Princen [21]. It depends on the liquid
fraction, and for Φ` = 11%, one finds that x= 0.2. The total mass M1 +M2 can be estimated by
looking at the mass of a unit cell, whose volume is given by the median radius of the bubbles
in the foam: M1 +M2 =Φ` × 4

3R
3
0ρ`. We find a mass of the order of 3× 10−11 kg. The other

parameters are tuned to recover the same frequencies for the beginning and the end of the
negative regime, and we obtain K = 0.18N/m, α= 1 and µ= 10−3. Figure 9 shows the complex
effective density given by the toy model for this set of parameters. We see that it compares well
to the experimental results, even quantitatively to a certain extent: we obtain good orders of
magnitude for the real and imaginary parts of the density. Note that the level of dissipation is
far from being negligible (α= 1). According to our analytical study of the model, the negative
band survives to this dissipation because parameter µ is particularly low (see figure 6b).

Liquid foams appear as quite unusual acoustic metamaterials because they combine several
characteristics that are in principle not favourable to the emergence of a negative band: they are
polydisperse, disordered, and highly dissipative. The negative band is robust because foams are
intrinsically constituted of large but light elements (the films) elastically attached to small but
massive elements (the liquid channels).

8. Conclusion
In this article, we have introduced a simple toy model, constituted at most of two masses, two
springs and one dissipative item, to clarify the occurrence of negative effective density in acoustic
metamaterials. We have shown three different sets of results. (i) We have made explicit how to
derive a transmission coefficient from the single unit of the toy model, and how, when coupled
to the ambient medium, its behaviour can be modelled at the macroscopic level as an effective
continuous medium. (ii) With a detailed study of the toy model, we have clarified for which
frequency range a negative mass can be expected. (iii) We have compared our predictions to real
experimental metamaterials and found a good agreement, at least qualitatively.

Beyond its didactic interest, this toy model might be a useful tool to design acoustic
metamatarials. Note that it could be generalised to systems with resonances in density and
compressibility, by adding masses in series. More complex systems could then be modelled, such
as the double DMR [13], or the “acoustic sandwiches” [22].

Acknowledgements. We acknowledge invaluable discussions with the participants of the ANR project
Samousse.
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A. Effective medium
In this Appendix we show that N layers characterised by their transmission and reflection
coefficients (t, r) are equivalent, at low frequency, to a homogeneous medium with effective
compressibility and density. The idea is to demonstrate that the N -layer system gives the same
total reflection and transmission coefficients, R and T , as an effective medium. Let us consider
(see Fig. 3a) a homogeneous medium of thickness L=Nd, with wavenumber k and impedance
Z. The total reflection and transmission coefficients are given by:

R = y

[
1− (1− y2)

e2ikL

1− y2e2ikL

]
, (A 1)

T = (1− y2)
eikL

1− y2e2ikL
, (A 2)

where y= (Z − Z0)/(Z + Z0). We want to show that the transmission and reflection coefficients
through the multi-layer system can be written in the same form, with Z and k being effective
quantities that can be expressed as functions of r and t.

Instead of handling Eq. (A 1), we will consider the ratio:

R/T =
y

1− y2

(
e−ikL − eikL

)
. (A 3)

We will show that the multi-layer system can satisfy (A 2) and (A 3) if k and y are related to r and
t by

r

t
=

y

1− y2

(
e−ikd − eikd

)
, (A 4)

1

t
=

eik0d

1− y2

(
e−ikd − y2eikd

)
. (A 5)

We follow a recursive sequence. For the initialisation (N = 1), we consider one object with a
thickness d of the host medium around it. We then obtain

R1 = reik0d, (A 6)

T1 = teik0d, (A 7)
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which satisfy conditions (A 2) and (A 3) if k and y verify (A 4) and (A 5), with L= d.
For the recursivity, we want to show that if TN verifies (A 2) and RN/TN verifies (A 3), then

TN+1 and RN+1/TN+1 also do. Going from N to N + 1 layers is simply done by a multiple
reflection calculation, adding the extra layer on the left. We obtain [23]

RN+1 = reik0d + eik0d t2RNeik0d

1− rRNeik0d
, (A 8a)

TN+1 =
TN teik0d

1− rRNeik0d
, (A 8b)

which leads to
1

TN+1
=

1

tTNeik0d
− rRN

tTN
, (A 9a)

RN+1

TN+1
=

r

tTN
+

(
t− r2

t

)
eik0dRN

TN
. (A 9b)

It can be checked that when (A 4) and (A 5) are injected into those equations, we obtain

1

TN+1
=

1

1− y2

[
e−ik(N+1)d − y2eik(N+1)d

]
(A 10a)

RN+1

TN+1
=

y

1− y2

[
e−ik(N+1)d − eik(N+1)d

]
, (A 10b)

as expected.
From equations (A 4) and (A 5), we can calculate k and Z as functions of r and t. We will only

consider the large-wavelength case, for which k0d� 1 and kd� 1. The calculations are easier
when using ρ and χ instead of k and Z, using the following relationships:

k
x

1− x2
=

k0

4

(
ρ

ρ0
− χ

χ0

)
, (A 11)

k
1 + x2

1− x2
=

k0

2

(
ρ

ρ0
+

χ

χ0

)
, (A 12)

and we finally obtain equations (4.1) and (4.2):

χeff
χ0

= 1 +
i
k0d

1− t− r
t

, (A 13a)

ρeff
ρ0

= 1 +
i
k0d

1− t+ r

t
. (A 13b)

Interestingly, we find that if t= 1 + r, only the compressibility is affected by the layers, while if
t= 1− r, only the density is. This is analogous to the case of three-dimensional inclusions, whose
monopolar response affects the compressibility, and dipolar one the density.

B. Details about how diagram of Fig 5d is obtained
In this section we present some details to determine the position of frequency resonance Ωr
comparatively to zero-mass frequencies Ω±. The relation depends on the stiffness ratio κ for a
fixed couple (x, µ)∈E = [0, 1]2 .

We must solve the equation Ω2
± =Ω2

r . From Eqs. (5.15) and (5.16), it is equivalent to:

[µ− (1− µ)κ]2 + (1− µ)[1 + µ+ 2(1− µ)κ] =
[

2µ(1− µ)(1 + x2κ)

(1− µ)x2 + µ(1− x)2
− µ− (1− µ)(1 + κ)

]2

,

(B 1)
which can be rewritten as a second order polynomial in κ: A2κ

2 +A1κ+A0 = 0, with:

A0 =
4µ(1− µ)(x− µ)2

(x2 − 2µx+ µ)2
, (B 2)
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Figure 10. Plot of the different regions in the parameter space (x, µ)∈ [0, 1]2 for the discussion of the roots of the

equation Ω2
r =Ω2

±. Plain lines delimit areas with different signs of the discriminant ∆ and coefficient A2. The sign of

the coefficient A1 is negative in between the two dashed lines. The coloured areas refer to position of Ωr respectively to

Ω± (see figure 5d).

A1 =
4µ(1− µ)

(x2 + 2µx+ µ)2
[x2 + (1− 2x− 4x2 + 2x3)µ− 2(1− 3x+ x2)µ2], (B 3)

and:

A2 =− 4µ(1− µ)2x2

(x2 − 2µx+ µ)2
[(x2 + 2x− 1)µ− x2]. (B 4)

The discriminant of this equation is thus given by:

∆=A2
1 − 4A0A2 =

16(1− µ)2

(x2 − 2µx+ µ)2
(−1 + 2x)(−1 + 2µ)(1 + 2x− 2µ), (B 5)

and its roots by:

κ± =
−A1 ±

√
∆

2A2
. (B 6)

Only positive roots are physical. A necessary condition is that the discriminant must be
positive, else the roots are complex. From (B 5), we find that ∆< 0 in two regions, labelled
as such, in the parameter space (x, µ)∈ [0, 1]2 (Fig. 10). If the discriminant is positive, the
sign of the real roots is determined by the signs of A0, A1 and A2, since κ−κ+ =A0/A2 and
κ− + κ+ =−A1/A2. From (B 2), A0 is positive, while from (B 4), the sign of A2 is the sign of
the quantity x2 − (x2 + 2x− 1)µ, which is positive except in the region denoted E+

2 in Fig. 10,
which is bounded by the bottom curve of equation µ= x2/(x2 + 2x− 1) for 1/2≤ x≤ 1. Hence
in this region, there is one positive root, which is κ−. For κ< κ−, we find that the ordering
Ω− <Ωr <Ω+ holds, while for κ> κ−, we find Ω− <Ω+ <Ωr . In the other regions, there are
either no positive roots or two positive roots, respectively ifA1 is positive or negative. The sign of
A1 is given by the term in bracket in (B 3); it is found thatA1 < 0 between the two dashed curves in
Fig. 10, and A1 > 0 elsewhere. Hence, in the region denoted E1, the two roots are negative, while
the two roots are positive in regions E−2 and E3 (Fig. 10), with κ− <κ+. In these two regions,
we find that the ordering Ω− <Ωr <Ω+ holds for κ< κ− and κ> κ+. For κ− <κ<κ+, we find
that Ω− <Ω+ <Ωr in region E−2 , and Ωr <Ω− <Ω+ in region E3.
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C. Suppression of the second negative band for large dissipation
To study dissipation, we substitute K =Kr + iKi in the expression (2.4) of the effective mass.
After some algebra, this yields:

meff =− κ

(1 + x2κ)Ω2

(1−Ω2/Ω2
−)(1−Ω2/Ω2

+) + iα(1−Ω2/κ)

1 + iα−Ω2/Ω2
r

, (C 1)

provided κ is redefined as κ=K′/Kr [compare to (5.3)]. Apart from this redefinition, the other
quantities are defined as previously, in particular Ω± is given by (5.15) and Ωr by (5.16). Hence
at large dissipation, the effective mass has the following limit:

lim
α→∞

meff =− κ

(1 + x2κ)Ω2

1−Ω2/κ

Ω2
.

This large-dissipation effective mass displays a single, low-frequency negative band, for Ω2 <κ

(and its imaginary part disappears). Intuitively, the two masses are then forced to move at the
same amplitude, which suppresses the effect of the spring constant K. Hence, the main effect of
dissipation is to make the second negative band studied in Sec. 5(b) vanish for a certain critical
value αc(x, µ, κ) of the dissipation parameter α. However, Eq. (C 1) is too complex to allow for
an analytical prediction of αc.
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