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A B S T R A C T

We address the homogenisation of a linear viscoelastic and hierarchical composite material in a one-
dimensional (1D) framework via a three-scale asymptotic homogenisation method. We consider a family of
heterogeneous problems with periodic, rapidly-oscillating and piece-wise coefficients that model a structure
with two hierarchical levels of organisation. Here, we assume continuity contact conditions at the interfaces
among the constituents and set a straightforward geometrical configuration in order to gain a better insight
of the multiscale problem. The main goal is to provide a general overview of the procedure and validate
the approach by means of a comparison between the solution of the original heterogeneous problem, the
homogenised problem and the formal asymptotic solution. In addition, we show that the three-scale approach
presents a clear improvement over the recursive two-scale one, and we illustrate the convergence of the
solutions towards the solution of the homogenised problem when the asymptotic parameters approach.
1. Introduction

There are numerous works that study the modelling of multiscale
hierarchical heterogeneous media using homogenisation techniques. In
particular, the asymptotic homogenisation method (AHM) is a powerful
tool, which has been widely considered in the study of composite
materials, see, e.g., Bensoussan et al. (1978), Sanchez-Palencia (1980)
and Bakhvalov and Panasenko (1989). In general, the multiscale AHM
takes advantage of the information available at the smaller scales of
a given heterogeneous medium to predict the effective properties at
its larger scales, which dramatically reduces the computational com-
plexity of the original mathematical problems (see, e.g., Lukkassen
and Milton (2000), Penta and Gerisch (2017a), Ramírez-Torres et al.
(2018b, 2019b), Dong et al. (2019) and Yang et al. (2019a)). This mul-
tiscale homogenisation procedure requires the solution of cell problems
with input data corresponding to the homogenised material properties
obtained from the previous steps.

From the theoretical point of view, Trucu et al. (2012) proposed
a three-scale convergence analysis where the asymptotic parameters
independently approach zero. Before that Allaire and Briane (1996)
illustrated the advantages of the method of reiterated homogenisation,
which can be found in Sanchez-Palencia (1980), to a heat problem
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in composites. Recently, a three-scale asymptotic approximation tech-
nique has been proposed in Ramírez-Torres et al. (2018b, 2019a)
with particular interest in hierarchical laminated and fibre-reinforced
elastic composites. Additionally, in Dong et al. (2019) and Yang et al.
(2019a,b), the authors study the properties of thermo-mechanical, non-
ageing and ageing viscoelastic composites with multiple spatial scales
by using a three-scale asymptotic expansion and a periodic layout of
the heterogeneities in the structures. They also provide a finite ele-
ment algorithm based on inverse Laplace transform and the three-scale
asymptotic homogenisation to obtain the numerical results. Moreover,
in Nasirov et al. (2020), the authors employed a three-scale formulation
of asymptotic homogenisation to predict the mechanical properties of
short fibre-reinforced composites manufactured using the fused fila-
ment fabrication process. In Chen et al. (2021), the homogenised and
local response of unidirectional fuzzy fibre nanocomposites undergoing
inelastic deformations is simulated by proposing a new hybrid hier-
archical homogenisation approach. In addition, the Authors in Yang
et al. (2021) determine the nonlinear mechanical properties of 3D
braided composites by means of a higher-order three-scale reduced
homogenisation approach.

The aim of this work is to apply the three-scale asymptotic ho-
mogenisation approach introduced in Ramírez-Torres et al. (2018b) to a
vailable online 20 April 2022
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viscoelastic and hierarchical structure in a one-dimensional framework.
This simplified setting allows to fully solve the original heterogeneous
problem and to compare the solution with the one obtained by the
homogenisation approach. With this purpose, it is intended to establish
a methodology using a three-scale framework, which is more gen-
eral than the one studied, e.g., in Rodríguez-Ramos et al. (2020) for
two-scale viscoelastic composites.

The novelty of this work relies on the solution of the hierarchical
one-dimensional problem. To the best of our knowledge, there are no
studies addressing the one-dimensional problem for viscoelastic and hi-
erarchical heterogeneous media by means of the three-scale asymptotic
homogenisation approach in its entirety. We notice that, in Cruz-
González et al. (2020a) a three-dimensional viscoelastic problem is
addressed via the three-scale asymptomatic approach given in Ramírez-
Torres et al. (2018b), and the effective properties are determined from
the solutions of the local problems. However, in this work, we addition-
ally solve the heterogeneous and homogenised problem, and construct
the formal asymptotic solution, where the smallness parameters play
a fundamental role. In addition, here, we formalise the fact that the
initial condition for the homogenised viscoelastic model at 𝑡 = 0 s
is given as the homogenised elastic limit case. Furthermore, we offer
evidence of the advantages of applying the hierarchical approach with
respect to the recursive homogenisation for the geometric configuration
under study. This proposal provides a methodology that could serve as
a guide for further studies of viscoelastic, multidimensional problems
representing real-life scenarios.

The manuscript is organised as follows. In Section 2, we present
the geometrical description of the composite material, we introduce the
fundamental notions related to the separation of scales and periodicity,
and we formulate the linear viscoelastic heterogeneous problem. In
Section 3, we consider the correspondence principle and the Laplace–
Carson transform, and we rewrite the problem in the Laplace–Carson
domain. Then, in Section 4, we describe the three-scale asymptotic
homogenisation approach and obtain the main results concerning to the
different hierarchical levels of organisation. Additionally, in Section 5,
we solve a heterogeneous problem, the corresponding homogenised
problem, and determine the asymptotic solution. Finally, in Section 6,
we present the numerical results and compare different approaches,
highlighting the potential of the three-scale method and showing the
convergence of the solutions.

2. Formulation of the problem

In this section, we introduce the geometrical description of the
hierarchical structure at the different levels of organisation. Besides,
we consider the separation of scales and provide a direct link between
the physical variables and the characteristic length scales of the com-
posites. Furthermore, we discuss the concept of periodicity in terms of
the local variables. Finally, we present the heterogeneous problem for
linear viscoelastic materials in a one-dimensional framework.

2.1. Topology of the macrostructure

We identify a hierarchical composite material with the open and
bounded set in the one-dimensional Euclidean space ℬ = ]0, 𝐿[, where
> 0 (see Fig. 1(a)).
Extending the picture reported in Ramírez-Torres et al. (2021), we

uppose that ℬ presents a periodic configuration at two different levels
f organisation. In particular, at the first level of organisation, the 𝜀1-
tructural level, we assume that ℬ comprises a two-phase composite
ith constituents specified by the open subsets

(𝜀1)
1 ∶=

𝑁
∪
𝑖=0

]𝑥(1)2𝑖 , 𝑥
(1)
2𝑖+1[⊂ ℬ and ℬ(𝜀1)

2 ∶=
𝑁
∪
𝑖=0

]𝑥(1)2𝑖+1, 𝑥
(1)
2𝑖+2[⊂ ℬ, (1)

o that ℬ = ℬ
(𝜀1)
1 ∪ℬ

(𝜀1)
2 and ℬ

(𝜀1)
1 ∩ℬ(𝜀1)

2 = ℬ(𝜀1)
1 ∩ℬ

(𝜀1)
2 = ∅. Here,

the bar symbol indicates the closure of the set. We notice that, for
2

every 𝑖 = 0,… , 𝑁 , the intervals ]𝑥(1)2𝑖 , 𝑥
(1)
2𝑖+1[ and ]𝑥(1)2𝑖+1, 𝑥

(1)
2𝑖+2[ represent

different constituents (see Fig. 1(b)). Additionally, we denote with ℐ (𝜀1)

the interface between ℬ(𝜀1)
1 and ℬ(𝜀1)

2 , namely, ℐ (𝜀1) = ℬ
(𝜀1)
1 ∩ℬ

(𝜀1)
2 =

∪𝑁
𝑖=0{𝑥

(1)
2𝑖+1}.

Moreover, in this particular setting, we consider that ℬ(𝜀1)
1 is at

same time a two-phase composite material. This assumption introduces
the 𝜀2-structural level. In this situation, the open subsets

ℬ(𝜀2)
1 ∶=

𝑀
∪
𝑖=0

]𝑥(2)2𝑖 , 𝑥
(2)
2𝑖+1[⊂ ℬ(𝜀1)

1 andℬ(𝜀2)
2 ∶=

𝑀
∪
𝑖=0

]𝑥(2)2𝑖+1, 𝑥
(2)
2𝑖+2[⊂ ℬ(𝜀1)

1 (2)

form the constituent ℬ(𝜀1)
1 . So, for every 𝑖 = 0,… ,𝑀 , the intervals

]𝑥(2)2𝑖 , 𝑥
(2)
2𝑖+1[ and ]𝑥(2)2𝑖+1, 𝑥

(2)
2𝑖+2[ represent different materials (see Fig. 1(c)).

Furthermore, we have that ℬ
(𝜀1)
1 = ℬ

(𝜀2)
1 ∪ ℬ

(𝜀2)
2 and ℬ

(𝜀2)
1 ∩ ℬ(𝜀2)

2 =

ℬ(𝜀2)
1 ∩ ℬ

(𝜀2)
2 = ∅. In particular, the symbol ℐ (𝜀2) is used to denote

the interface between ℬ(𝜀2)
1 and ℬ(𝜀2)

2 , that is, ℐ (𝜀2) = ℬ
(𝜀2)
1 ∩ℬ

(𝜀2)
2 =

∪𝑀
𝑖=0{𝑥

(2)
2𝑖+1}.

2.2. Separation of scales

The use of the asymptotic homogenisation technique requires the
sharp separation of the length scales that characterise the hierarchical
levels. In this framework, we assume that there exist three distinct
length scales 𝓁2, 𝓁1 and 𝐿𝑐 which are related to the characteristic sizes
of the periodic micro-structure, meso-structure and the whole compos-
ite, respectively. This is formalised by assuming that the dimensionless
smallness parameters 𝜀1 and 𝜀2 are defined as (Ramírez-Torres et al.,
2019a)

𝜀1 ∶=
𝓁1
𝐿𝑐

≪ 1 and 𝜀2 ∶=
𝓁2
𝐿𝑐

≪ 𝜀1. (3)

The parameters 𝜀1 and 𝜀2 are assumed to be constant, as done in
several works on both classical two-scale homogenisation (see Bensous-
san et al. (1978), Bakhvalov and Panasenko (1989) and Cioranescu and
Donato (1999)) and three-scale homogenisation (see Ramírez-Torres
et al. (2018b, 2019a)). In addition, it is worth mentioning that in
a more general scenario than the one studied in this work, such as
the case of a composite material subjected to deformation and change
of the internal structure, the characteristic lengths and the scaling
parameters may also depend on the spatial variable 𝑥 and on time 𝑡
(see Ramírez-Torres et al. (2018a)).

Based on the above considerations, we can explicitly specify the
three-scale nature of a given field 𝛷(𝑥, 𝑡). Specifically, by adapting the
considerations discussed in Di Stefano et al. (2020), Penta and Gerisch
(2017b) and Ramírez-Torres et al. (2021) to our case, we introduce the
notation 𝛷(𝑥, 𝑡) = �̆�(𝑥, 𝑡;𝓁1,𝓁2, 𝐿𝑐 ) to consider the dependency of the
field on the characteristic length scales. In particular, by introducing
the dimensionless variables

̄ ∶= 𝑥
𝐿𝑐

, �̄� ∶= 𝑥
𝓁1

and �̄� ∶= 𝑥
𝓁2

, (4)

where 𝑥 is said to be the physical spatial variable, whereas �̄�, �̄�
and �̄� represent the macroscopic, mesoscopic and the microscopic
dimensionless spatial variables, respectively, we can write

𝛷(𝜀)(𝑥, 𝑡) = �̆�(𝑥, 𝑡;𝓁1,𝓁2, 𝐿𝑐 ) = �̄�(𝑥∕𝐿𝑐 , 𝑥∕𝓁1, 𝑥∕𝓁2, 𝑡) = 𝜙(�̄�, �̄�, �̄�, 𝑡), (5)

where by means of Eq. (3), �̄�, �̄� and �̄� can be related through the
expressions,

�̄� = 𝑥
𝓁1

=
𝑥∕𝐿𝑐
𝓁1∕𝐿𝑐

= �̄�
𝜀1

, (6a)

̄ = 𝑥
𝓁2

=
𝑥∕𝐿𝑐
𝓁2∕𝐿𝑐

= �̄�
𝜀2

. (6b)

That is, 𝛷(𝜀) is reformulated in terms of three formally independent
variables �̄�, �̄� and �̄�, which are representative of the geometrical config-
uration. Within this dimensionless setting, ℬ becomes 𝒳 ∶= ]0, 𝐿∕𝐿 [.
𝑐
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Fig. 1. (a) Viscoelastic heterogeneous bar with two hierarchical levels of organisation ((b) and (c)). This figure presents a two-phase configuration at both structural levels.
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ccordingly, the variables �̄�, �̄� and �̄� vary in 𝒳 , 𝒳∕𝜀1 = ]0, 𝐿∕𝓁1[=
0, 1

𝜀1
𝐿∕𝐿𝑐 [ and 𝒳∕𝜀2 = ]0, 𝐿∕𝓁2[= ]0, 1

𝜀2
𝐿∕𝐿𝑐 [, respectively. Therefore,

for each time 𝑡, 𝛷(𝜀) is defined, in general, as 𝜙(�̄�, �̄�, �̄�, ⋅) ∶ 𝒟�̄�×𝒟�̄�×𝒟�̄� →

𝒮 , where 𝒟�̄� ⊆ 𝒳 , 𝒟�̄� ⊆ 𝒳∕𝜀1 and 𝒟�̄� ⊆ 𝒳∕𝜀2 and 𝒮 denotes the
one-dimensional Euclidean space.

Now, by considering the expressions in (3)–(6b) and the chain rule,
the spatial derivative of 𝛷(𝜀) can be computed as follows,

𝜕𝛷(𝜀)(𝑥, 𝑡)
𝜕𝑥

= 1
𝐿𝑐

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

+ 1
𝓁1

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

+ 1
𝓁2

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

= 1
𝐿𝑐

(

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

+ 1
𝜀1

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

+ 1
𝜀2

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

)

. (7)

2.3. Topology of the micro- and meso-structure

At the micro-scale, the representative periodic cell is represented
as the open interval ]0,𝓁2[, which in a dimensionless formalism is
identified as 𝒵 = ]0, 1[⊂ 𝒳∕𝜀2. Additionally, the two constituents
in 𝒵 are denoted by the non-empty, open subsets 𝒵1 = ]0, �̄�𝐼 [ and

2 = ]�̄�𝐼 , 1[, where the interface between them is the set with a single
lement ℐ𝒵 = 𝒵 1 ∩ 𝒵 2 = {�̄�𝐼}, with �̄�𝐼 ∈ ]0, 1[ (see Fig. 1(c)).

Furthermore, the constraints 𝒵 = 𝒵 1 ∪𝒵 2 and 𝒵 1 ∩𝒵2 = 𝒵1 ∩𝒵 2 = ∅
re satisfied.

Similarly, the representative periodic cell at the meso-scale is the
pen interval ]0,𝓁1[, which in a dimensionless setting is given by 𝒴 =

]0, 1[⊂ 𝒳∕𝜀1. In this case, the two constituents in 𝒴 are denoted by
the non-empty, open subsets 𝒴1 =]0, �̄�𝐼 [ and 𝒴2 =]�̄�𝐼 , 1[, with interface
𝒴 = 𝒴 1∩𝒴 2 = {�̄�𝐼}, with �̄�𝐼 ∈]0, 1[ (see Fig. 1(b)). Analogously, 𝒴 =

𝒴 1 ∪𝒴 2 and 𝒴 1 ∩𝒴2 = 𝒴1 ∩𝒴 2 = ∅. It is worth mentioning that every
field 𝜙 used in the model is assumed to be defined in 𝒴 ⧵ {�̄�𝐼} ⊂ 𝒟�̄�
and 𝒵 ⧵ {�̄�𝐼} ⊂ 𝒟�̄�, and for the interface points we consider interface
onditions.

For the sake of simplicity, we restrict our analysis to the particular
ase in which the elementary periodic cells 𝒴 and 𝒵 , at each level of
3

rganisation, can be uniquely chosen independently of �̄� and �̄� in the
case of the 𝜀2-structural level, and independently of the macroscopic
variable �̄� in the case of the 𝜀1-structural level. These assumptions are
referred to as macroscopic uniformity (see, e.g., Holmes (2012), Penta
et al. (2014, 2015), Di Stefano et al. (2020) and Ramírez-Torres et al.
(2021)). One of the implications of this assumption is that, if the field
𝜙 satisfies the required properties, the operations of differentiation and
integration commute. Thus, if we define the average operators on the
elementary cells 𝒵 and 𝒴 as

⟨𝜙(�̄�, �̄�, �̄�, 𝑡)⟩�̄� ∶=
1

|𝒵 |
∫𝒵

𝜙(�̄�, �̄�, �̄�, 𝑡)𝑑�̄�, (8a)

nd

𝜙(�̄�, �̄�, �̄�, 𝑡)⟩�̄� ∶=
1

|𝒴 |
∫𝒴

𝜙(�̄�, �̄�, �̄�, 𝑡)𝑑�̄�, (8b)

we can write
𝜕
𝜕�̄�

⟨𝜙(�̄�, �̄�, �̄�, 𝑡)⟩�̄� =
⟨

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

⟩

�̄�
, (9a)

𝜕
𝜕�̄�

⟨𝜙(�̄�, �̄�, �̄�, 𝑡)⟩�̄� =
⟨

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

⟩

�̄�
, (9b)

𝜕
𝜕�̄�

⟨𝜙(�̄�, �̄�, �̄�, 𝑡)⟩�̄� =
⟨

𝜕𝜙(�̄�, �̄�, �̄�, 𝑡)
𝜕�̄�

⟩

�̄�
. (9c)

The above relationships are useful when obtaining the homogenised
problems at the 𝜀1-structural level and at the macro-scale.

We notice that, in the case of non-macroscopically uniform struc-
tures, Reynolds’ transport theorem should be consider (see for in-
stance Holmes, 2012; Penta and Gerisch, 2017b; Burridge and Keller,
1981; Ramírez-Torres et al., 2021 in the context of poroelasticity and
diffusion).

2.4. Periodicity

Further considerations are required for the boundary points of the
periodic cells and their relation with the assumption of periodicity. To
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this end, we follow the ideas given in Ramírez-Torres et al. (2021) and
adapted to the present three-scale framework. For this purpose, and in
view of the definitions provided in Cioranescu and Donato (1999), we
say that a function 𝛷 is 𝓁𝑖-periodic, with 𝑖 = 1, 2, if 𝛷(𝑥, 𝑡) = 𝛷(𝑥+𝑠𝓁𝑖, 𝑡)
for all integers 𝑠. Now, in our three-scale homogenisation approach, the
periodicity of 𝛷 is reinterpreted in terms of 𝜙. However, as pointed
out in Ramírez-Torres et al. (2021), since 𝜙 can be undefined for
some values of the dimensionless microscopic, �̄�, and mesoscopic, �̄�,
variables, it is needed to understand the periodicity in the sense

𝜙(�̄�, �̄�, 𝜁±�̄� , 𝑡) = 𝜙(�̄�, �̄�, (𝜁�̄� + 1)±, 𝑡), (10a)

𝜙(�̄�, 𝜁±�̄� , �̄�, 𝑡) = 𝜙(�̄�, (𝜁�̄� + 1)±, �̄�, 𝑡), (10b)

where, for all 𝜁�̄� and 𝜁�̄� for which both lateral limits exist,

𝜙(�̄�, �̄�, 𝜁±𝛼 , 𝑡) ∶= lim
𝛼→𝜁±𝛼

𝜙(�̄�, �̄�, �̄�, 𝑡), (11)

with 𝛼 = �̄�, �̄�.
Now, based on the macroscopic uniformity assumption and the 1-

periodicity of 𝜙 in relation to �̄� and �̄�, we are able to reduce the analysis
to the case of a representative periodic cell. For this purpose, let us
consider the restriction of 𝜙 to the unit cells 𝒴 = ]0, 1[ and 𝒵 = ]0, 1[
as piecewise functions. That is

𝜙(�̄�, �̄�, �̄�, 𝑡)|𝒵 =

{

𝜙1(�̄�, �̄�, �̄�, 𝑡), �̄� ∈ 𝒵1,
𝜙2(�̄�, �̄�, �̄�, 𝑡), �̄� ∈ 𝒵2,

(12a)

and

𝜙(�̄�, �̄�, �̄�, 𝑡)|𝒴 =

{

𝜙3(�̄�, �̄�, �̄�, 𝑡), �̄� ∈ 𝒴1,
𝜙4(�̄�, �̄�, �̄�, 𝑡), �̄� ∈ 𝒴2.

(12b)

Thus, using Eqs. (10a) and (10b), we can describe the periodicity at
𝜁�̄� = 0 and 𝜁�̄� = 0 as follows

𝜙(�̄�, �̄�, 0+, 𝑡) = 𝜙(�̄�, �̄�, 1+, 𝑡), (13a)

𝜙(�̄�, 0+, �̄�, 𝑡) = 𝜙(�̄�, 1+, �̄�, 𝑡). (13b)

In particular, to satisfy possible continuity conditions for 𝜙 at the
boundary of the periodic cells (see Eqs. (12a) and (12b)), we have that

𝜙2(�̄�, �̄�, 1−, 𝑡) = 𝜙1(�̄�, �̄�, 1+, 𝑡), (14a)

𝜙4(�̄�, 1−, �̄�, 𝑡) = 𝜙3(�̄�, 1+, �̄�, 𝑡). (14b)

So, combining the results in Eqs. (13a)–(14b) and because of the
periodicity assumption,

𝜙2(�̄�, �̄�, 1−, 𝑡) = 𝜙1(�̄�, �̄�, 0+, 𝑡), (15a)

𝜙4(�̄�, 1−, �̄�, 𝑡) = 𝜙3(�̄�, 0+, �̄�, 𝑡). (15b)

2.5. Further assumptions

By following the formalism adopted so far, all equations should be
written in dimensionless form. However, for simplicity of notation, we
drop the ‘bar’ notation in the subsequent discussions. Therefore, with
a slight abuse of notation, the expression in (5) takes the form

𝛷(𝜀)(𝑥, 𝑡) = 𝜙(𝑥, 𝑦, 𝑧, 𝑡), (16)

with

𝑦 = 𝑥
𝜀1

and 𝑧 = 𝑥
𝜀2

. (17)

2.6. Statement of the problem

We consider a one-dimensional physical model that describes a
heterogeneous bar of length 𝐿 with linear viscoelastic behaviour and
two hierarchical levels of organisation. For the sake of simplicity, we
4

neglect inertial terms and assume that the body force 𝑓 (𝑥) is indepen-
dent of 𝜀 and in particular depends on the macroscale only. We refer
to Penta et al. (2021) for the case in which an inhomogeneous body
force admits a classical Helmholtz decomposition. In this situation, the
body force 𝒇 (𝑥) will be given by the gradient and the curl of scalar and
ector potentials. Therefore, it will present microscale variations of the
ype 𝑥∕𝜀.

So, for all 𝑡 ∈ ] − ∞,+∞[, the one-dimensional, balance of linear
omentum together with the interface, boundary and initial conditions

eads

−
𝜕 𝜎(𝜀)(𝑥, 𝑡)

𝜕𝑥
= 𝑓 (𝑥), 𝑥 ∈ ℬ ⧵ (ℐ (𝜀1) ∪ℐ (𝜀2)), (18a)

[[

𝑢(𝜀)(𝑥, 𝑡)
]]

= 0,
[[

𝜎(𝜀)(𝑥, 𝑡)
]]

= 0, 𝑥 ∈ ℐ (𝜀1) ∪ℐ (𝜀2), (18b)
Boundary conditions

𝑢(𝜀)(0, 𝑡) = 𝑢0(𝑡), 𝑢(𝜀)(𝐿, 𝑡) = 𝑢𝐿(𝑡), (18c)
Initial condition

𝑢(𝜀)(𝑥, 0) = 𝑢(𝜀)e (𝑥), 𝑥 ∈ ℬ, (18d)

where 𝜎(𝜀) is the one-dimensional representation of stress and 𝑢(𝜀) is the
global displacement. Besides, the double bracket in (18b), also called
contrast or jump operator, is defined as

[[

𝛷(𝜀)(𝑥𝑗 , 𝑡)
]]

∶= lim
𝑥→𝑥+𝑗

𝛷(𝜀)(𝑥, 𝑡) − lim
𝑥→𝑥−𝑗

𝛷(𝜀)(𝑥, 𝑡) = 𝛷(𝜀)(𝑥+𝑗 , 𝑡) −𝛷(𝜀)(𝑥−𝑗 , 𝑡).

(19)

As observed in Eq. (18b), we impose continuity conditions at the
interfaces between the different constituents.

In the present framework, the composite behaves as a non-ageing
linear viscoelastic material so that the constitutive relation for 𝜎(𝜀) can
be written as (see Christensen (1982))

𝜎(𝜀)(𝑥, 𝑡) = ∫

𝑡

0
R(𝜀)(𝑥, 𝑡 − 𝜏) 𝜕

𝜕𝜏

(

𝜕𝑢(𝜀)(𝑥, 𝜏)
𝜕𝑥

)

𝑑𝜏, (20)

where R(𝜀) is the relaxation modulus. Notice that the properties of the
phases are encoded in R(𝜀), which is assumed to be a smooth real
function of 𝑥 in (ℬ⧵ℐ )× ]−∞,+∞[, but discontinuous on ℐ × ]−∞,+∞[,
with ℐ = ℐ (𝜀1) ∪ℐ (𝜀2).

An important remark is related to the initial condition given in
Eq. (18d). In this regard, we consider that a suitable initial condition for
the non-ageing linear viscoelastic heterogeneous problem (18a)–(18d)
corresponds to the solution of the equivalent problem in the elastic
case, denoted in Eq. (18d) by 𝑢(𝜀)e (𝑥). This result is reached at 𝑡 = 0 s
because for this value of time the constitutive law in Eq. (20), and hence
the whole problem, become the equivalent elastic one. In Appendix A,
we provide, for the particular case of a two-scale configuration, details
on the implications of this assumption on the homogenisation process.
In the remainder of this work, the notation 𝛷(𝜀)

e (𝑥) stands for the elastic
counterpart (instant elastic response) of 𝛷(𝜀)(𝑥, 𝑡).

Finally, mimicking the two scale case (Bakhvalov and Panasenko,
1989; Persson et al., 1993), we consider that 𝑓 ∈ 𝐶∞(ℬ) and that there
exist two real constants 𝛼, 𝛽 such that 0 < 𝛼 ≤ R(𝜀)(𝑥, 𝑡) ≤ 𝛽 < +∞ for
all 𝑥 ∈ ℬ and 𝑡 ∈ ] −∞ +∞[ as {𝜀1, 𝜀2} → 0.

3. Reformulation in Laplace–Carson space

The integral equation (20) refers to the constitutive law for non-
ageing, linear viscoelastic materials, and can be manipulated by means
of integral transforms (see, e.g., Christensen (1982)). In particular, the
Laplace–Carson transform, which is given by

𝛷(𝜀)(𝑥, 𝑝) = 𝑝
∞
𝑒−𝑝𝑡𝛷(𝜀)(𝑥, 𝑡)𝑑𝑡, ∀𝑡 ≥ 0, (21)
∫0
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where 𝑝 is the variable in the Laplace–Carson space, reduces (20) to
n expression representing the constitutive relation in classical elastic-
ty theory (see, for instance, Lakes (2009)). This methodology origi-
ally proposed by Hashin (1965) is known as the elastic–viscoelastic
orrespondence principle.

Hence, based on the above considerations, the original system
18a)–(18d), together with (20), can be written in the Laplace–Carson
omain as follows

− 𝜕
𝜕𝑥

(

R(𝜀)(𝑥, 𝑝)
𝜕𝑢(𝜀)(𝑥, 𝑝)

𝜕𝑥

)

= 𝑓 (𝑥), 𝑥 ∈ ℬ ⧵ℐ , (22a)

[[

𝑢(𝜀)(𝑥, 𝑝)
]]

= 0,
[[

R(𝜀)(𝑥, 𝑝)
𝜕𝑢(𝜀)(𝑥, 𝑝)

𝜕𝑥

]]

= 0, 𝑥 ∈ ℐ , (22b)

Boundary conditions

𝑢(𝜀)(0, 𝑝) = 𝑢0(𝑝), 𝑢(𝜀)(𝐿, 𝑝) = 𝑢𝐿(𝑝), (22c)
Initial condition

𝑢(𝜀)(𝑥, 0) = 𝑢(𝜀)e (𝑥), 𝑥 ∈ ℬ. (22d)

where 𝑝 ∈ [0,+∞[. We recall that the dependency on the variable 𝑝
means that the quantity is defined in the Laplace–Carson space.

4. Solution via a three-scale asymptotic homogenisation method

In this section, we adapt the three-scale asymptotic homogeni-
sation method introduced in Ramírez-Torres et al. (2018b) to the
one-dimensional viscoelastic problem stated above. It is worth notic-
ing that when both asymptotic parameters are approaching zero, we
are in presence of a strongly heterogeneous structure. Therefore, we
apply the three-scale asymptotic technique to reduce the complexity
of the model specified in (22a)–(22d) by finding an ‘‘equivalent’’ ho-
mogenised problem through the construction of a formal asymptotic
solution.

The three-scale AHM proposes the solution of the heterogeneous
problem (22a)–(22d) as a formal series expansion in powers of 𝜀1 and
2. In the Laplace–Carson domain, it reads

(𝜀) (𝑥, 𝑝) = �̃�(0) (𝑥, 𝑦, 𝑧, 𝑝) +
+∞
∑

𝑖=1
�̃�(𝑖) (𝑥, 𝑦, 𝑧, 𝑝) 𝜀𝑖2, (23)

here �̃�(0) is defined as

�̃�(0) (𝑥, 𝑦, 𝑧, 𝑝) = 𝑢(0) (𝑥, 𝑦, 𝑧, 𝑝) +
+∞
∑

𝑖=1
𝑢(𝑖) (𝑥, 𝑦, 𝑧, 𝑝)𝜀𝑖1, (24)

nd 𝑢(𝑖) and �̃�(𝑖) are assumed to be 1-periodic functions with respect to
he variables 𝑦 and 𝑧, for all natural numbers 𝑖, for all 𝑥 ∈ ℬ, and for
ll 𝑝 ∈ [0,+∞[.

The homogenisation procedure starts by collecting information at
he smallest scale, i.e., the 𝜀2-structure level and then taking the study
p to the larger scales, i.e., the 𝜀1-structure level and the macro-scale.
he solution (23)–(24) is built according to the definition of the formal
symptotic solution (see Bakhvalov and Panasenko (1989) for more
etails). In particular, we consider the same order of the approximation
t the different levels of organisation, namely O(𝜀2) and O(𝜀1). In what
ollows (unless necessary), the variable dependence is dropped out for
onvenience.

.1. Homogenisation at the 𝜀2-structure level

After replacing (23) into (22a) and using (7), we have

− L𝑥𝑥

(

�̃�(0) +
+∞
∑

𝑖=1
�̃�(𝑖)𝜀𝑖2

)

− 𝜀−11 L𝑥𝑦

(

�̃�(0) +
+∞
∑

𝑖=1
�̃�(𝑖)𝜀𝑖2

)

− 𝜀−12 L𝑥𝑧

(

�̃�(0) +
+∞
∑

𝑖=1
�̃�(𝑖)𝜀𝑖2

)

− 𝜀−11 L𝑦𝑥

(

�̃�(0) +
+∞
∑

𝑖=1
�̃�(𝑖)𝜀𝑖2

)

− 𝜀−21 L𝑦𝑦

(

�̃�(0) +
+∞
∑

�̃�(𝑖)𝜀𝑖2

)

− 𝜀−11 𝜀−12 L𝑦𝑧

(

�̃�(0) +
+∞
∑

�̃�(𝑖)𝜀𝑖2

)

5

𝑖=1 𝑖=1
− 𝜀−12 L𝑧𝑥

(

�̃�(0) +
+∞
∑

𝑖=1
�̃�(𝑖)𝜀𝑖2

)

− 𝜀−11 𝜀−12 L𝑧𝑦

(

�̃�(0) +
+∞
∑

𝑖=1
�̃�(𝑖)𝜀𝑖2

)

− 𝜀−22 L𝑧𝑧

(

�̃�(0) +
+∞
∑

𝑖=1
�̃�(𝑖)𝜀𝑖2

)

= 𝑓 (𝑥). (25)

here the following operator is defined,

𝛼𝛽 (𝜙(𝑥, 𝑦, 𝑧, 𝑝)) ∶=
1
𝐿2
𝑐

𝜕
𝜕𝛼

(

R(𝑥, 𝑦, 𝑧, 𝑝) 𝜕𝜙(𝑥, 𝑦, 𝑧, 𝑝)
𝜕𝛽

)

, (26)

for 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧.
The homogenisation procedure follows by grouping the terms of

q. (25) in the same powers of 𝜀2, keeping 𝜀1 fixed. Then, in order to
have the order of approximation O(𝜀2) in the construction of the formal
symptotic solution, all the coefficients of such power having non-
ositive exponents are set equal to zero. Then, the following sequence
f problems are obtained,
−2
2 ∶ L𝑧𝑧(�̃�(0)) = 0, (27a)
𝜀−12 ∶ L𝑧𝑧(�̃�(1)) = −L𝑥𝑧(�̃�(0)) − 𝜀−11 L𝑦𝑧(�̃�(0)) − L𝑧𝑥(�̃�(0)) − 𝜀−11 L𝑧𝑦(�̃�(0)),

(27b)
𝜀02 ∶ L𝑧𝑧(�̃�(2)) = −L𝑥𝑥(�̃�(0)) − 𝜀−11 L𝑥𝑦(�̃�(0)) − L𝑥𝑧(�̃�(1)) − 𝜀−11 L𝑦𝑥(�̃�(0))

− 𝜀−21 L𝑦𝑦(�̃�(0)) − 𝜀−11 L𝑦𝑧(�̃�(1)) − L𝑧𝑥(�̃�(1)) − 𝜀−11 L𝑧𝑦(�̃�(1)) − 𝑓. (27c)

Analogously, by replacing Eq. (23) into (22b) and multiplying the
resulting expressions by 𝜀−22 and 𝜀−12 , respectively, the interface condi-
tions are rewritten as follows
[[

𝜀−22 �̃�(0) + 𝜀−12 �̃�(1) + 𝜀02�̃�
(2) +⋯

]]

= 0, (28a)
[[

R
𝐿𝑐

[

𝜀−22
𝜕�̃�(0)

𝜕𝑧
+ 𝜀−12

(

𝜕�̃�(0)

𝜕𝑥
+ 𝜀−11

𝜕�̃�(0)

𝜕𝑦
+ 𝜕�̃�(1)

𝜕𝑧

)

+𝜀02

(

𝜕�̃�(1)

𝜕𝑥
+ 𝜀−11

𝜕�̃�(1)

𝜕𝑦
+ 𝜕�̃�(2)

𝜕𝑧

)]

+⋯
]]

= 0. (28b)

Before going further, it is worth mentioning that in order to solve
the problems (27a)–(27c) equipped with the corresponding interface
conditions that emanates from (28a)–(28b), the following lemma is
useful.

Lemma 1. Let 𝑎(𝜁 ), 𝐹0(𝜁 ), and 𝐹1(𝜁 ) be 1-periodic piecewise-differentiable
functions with finite jump discontinuities in 𝜁 ∈ {𝜁1, 𝜁2,… , 𝜁𝑛} (0 < 𝜁 < 1)
and positive 𝑎(𝜁 ) bounded over [0, 1]. Then, a necessary and sufficient
condition for the existence of a 1-periodic solution 𝑁(𝜁 ) of the problem

𝑑
𝑑𝜁

(

𝑎(𝜁 )
𝑑𝑁(𝜁 )
𝑑𝜁

)

= 𝐹0(𝜁 ) +
𝑑𝐹1(𝜁 )
𝑑𝜁

, (29a)

[[𝑁(𝜁 )]]𝜁𝑗 = 0, (29b)
[[

𝑎(𝜁 )
𝑑𝑁(𝜁 )
𝑑𝜁

− 𝐹1(𝜁 )
]]

𝜁𝑗
= 0, (29c)

for all 𝜁 ∉ {𝜁1, 𝜁2,… , 𝜁𝑛}, is that

⟨𝐹0(𝜁 )⟩𝜁 ≡ ∫

1

0
𝐹0(𝜁 )𝑑𝜁 = 0. (30)

So, if 𝑁(𝜁 ) is a 1-periodic solution of the problem (29a)–(29c), there
xists a family of 1-periodic solutions given by 𝑁1(𝜁 ) = 𝑁(𝜁 )+𝐶, where

is an arbitrary real constant. That is, the solution is unique up to a
-constant function. The proof of this Lemma, in the context of elastic
omposites, is given in Section 2 of Álvarez-Borges et al. (2014) and
e refer to Álvarez-Borges et al. (2018) for a version of the lemma in

he case of imperfect contact conditions.
The problems concerning the 𝜀2-structural level are presented below

roblem for 𝜀−22
For all 𝑝 ∈ [0,+∞[,

𝑧𝑧
(

�̃�(0)(𝑥, 𝑦, 𝑧, 𝑝)
)

= 0, 𝑧 ∈ 𝒵 ⧵ℐ𝒵 , (31a)
[[

�̃�(0)(𝑥, 𝑦, 𝑧, 𝑝)
]]

= 0, 𝑧 ∈ ℐ , (31b)
𝒵
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𝜀

[[

R(𝑦, 𝑧, 𝑝)
𝐿𝑐

𝜕�̃�(0)(𝑥, 𝑦, 𝑧, 𝑝)
𝜕𝑧

]]

= 0, 𝑧 ∈ ℐ𝒵 , (31c)

nitial condition

�̃�(0)(𝑥, 𝑦, 𝑧, 0) = �̃�(0)e (𝑥, 𝑦, 𝑧), 𝑧 ∈ 𝒵 . (31d)

n Eq. (31a), the problem has the trivial solution �̃�(0)(𝑥, 𝑦, 𝑧, 𝑝) ≡ 0. Then,
emma 1 ensures that �̃�(0)(𝑥, 𝑦, 𝑧, 𝑝) is a solution of (31a)–(31d) if and
nly if it is independent of 𝑧, namely

�̃�(0) = �̃�(0)(𝑥, 𝑦, 𝑝). (32)

hus, from Eqs. (24) and (32), it follows that

(0) = 𝑢(0)(𝑥, 𝑦, 𝑝), (33a)
(𝑖) = 𝑢(𝑖)(𝑥, 𝑦, 𝑝). (33b)

roblem for 𝜀−12
In view of the above result, L𝑥𝑧(�̃�(0)) = 0 and L𝑦𝑧(�̃�(0)) = 0 in (27b).

herefore, the problem for �̃�(1) can be reformulated as

𝑧𝑧
(

�̃�(1)
)

= −L𝑧𝑥
(

�̃�(0)
)

− 𝜀−11 L𝑧𝑦
(

�̃�(0)
)

, 𝑧 ∈ 𝒵 ⧵ℐ𝒵 , (34a)
[[

�̃�(1)
]]

= 0, 𝑧 ∈ ℐ𝒵 , (34b)
[[

R
𝐿𝑐

𝜕�̃�(1)

𝜕𝑧

]]

= −
[[

R
𝐿𝑐

(

𝜕�̃�(0)

𝜕𝑥
+ 𝜀−11

𝜕�̃�(0)

𝜕𝑦

)]]

, 𝑧 ∈ ℐ𝒵 , (34c)

nitial condition

�̃�(1)(𝑥, 𝑦, 𝑧, 0) = �̃�(1)e (𝑥, 𝑦, 𝑧), 𝑧 ∈ 𝒵 . (34d)

or all 𝑝 ∈ [0,+∞[.
Applying Lemma 1 on (34a) and considering (32) and the 1-

eriodicity of R(𝑥, 𝑦, 𝑧, 𝑡) with respect to 𝑧, the following result holds
rue
⟨

L𝑧𝑥
(

�̃�(0)
)

+ 𝜀−11 L𝑧𝑦
(

�̃�(0)
)⟩

𝑧 = 0. (35)

Consequently, the existence and uniqueness, up to a 𝑧-constant
function, of a solution for the problem (34a)–(34d) is guaranteed. In
particular, a solution for (34a)–(34d) is proposed as follows

�̃�(1)(𝑥, 𝑦, 𝑧, 𝑝) = 𝜒(𝑥, 𝑦, 𝑧, 𝑝)�̃� (0)(𝑥, 𝑦, 𝑝), (36a)

̃ (0)(𝑥, 𝑦, 𝑝) =
𝜕�̃�(0)(𝑥, 𝑦, 𝑝)

𝜕𝑥
+ 𝜀−11

𝜕�̃�(0)(𝑥, 𝑦, 𝑝)
𝜕𝑦

, (36b)

here the local function 𝜒(𝑥, 𝑦, 𝑧, 𝑝) is 1-periodic with respect to 𝑧.
The substitution of (36a)–(36b) into (34a)–(34d) leads to the 𝜀2-

ocal problem, which, for all 𝑝 ∈ [0,+∞[, is given by

1
𝐿2
𝑐

𝜕
𝜕𝑧

(

R(𝑥, 𝑦, 𝑧, 𝑝)
𝜕𝜒(𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑧
+ R(𝑥, 𝑦, 𝑧, 𝑝)

)

= 0, 𝑧 ∈ 𝒵 ⧵ℐ𝒵 ,

(37a)
[[

𝜒(𝑥, 𝑦, 𝑧, 𝑝)
]]

= 0, 𝑧 ∈ ℐ𝒵 , (37b)
[[

1
𝐿𝑐

(

R(𝑥, 𝑦, 𝑧, 𝑝)
𝜕𝜒(𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑧
+ R(𝑥, 𝑦, 𝑧, 𝑝)

)]]

= 0, 𝑧 ∈ ℐ𝒵 , (37c)

Initial condition

𝜒(𝑥, 𝑦, 𝑧, 0) = 𝜒e(𝑥, 𝑦, 𝑧), 𝑧 ∈ 𝒵 . (37d)

According to the problem (37a)–(37d), a further condition is re-
quired to obtain the uniqueness of the solution, for instance, one
can enforce that ⟨𝜒(𝑥, 𝑦, 𝑧, 𝑝)⟩𝑧 = 0, or alternatively, fix the value of
𝜒(𝑥, 𝑦, 𝑧, 𝑝) at one point of the reference cell 𝒵 (see, e.g., Penta and
Gerisch (2017a) and Penta and Gerisch (2015)). Following previous
works (Cruz-González et al., 2020b, 2021), we assume the following
Dirichlet condition

𝜒(𝑥, 𝑦, 0, 𝑝) = 0, ∀𝑝 ∈ [0,+∞[. (38)
6

Problem for 𝜀02
Because of Lemma 1, the existence and uniqueness of a 1-periodic

solution �̃�(2) for the problem (27c) is guaranteed if and only if
⟨

L𝑥𝑥(�̃�(0)) + 𝜀−11 L𝑥𝑦(�̃�(0)) + L𝑥𝑧(�̃�(1)) + 𝜀−11 L𝑦𝑥(�̃�(0))+

+𝜀−21 L𝑦𝑦(�̃�(0)) + 𝜀−11 L𝑦𝑧(�̃�(1)) + L𝑧𝑥(�̃�(1)) + 𝜀−11 𝐿𝑧𝑦(�̃�(1)) + 𝑓
⟩

𝑧 = 0. (39)

Thus, working with Eq. (39) we find the ‘‘intermediate’’ homogenised
problem, after taking into account Eqs. (32), (36a), the periodicity of
R(𝑥, 𝑦, 𝑧, 𝑝) and 𝜒(𝑥, 𝑦, 𝑧, 𝑝) with respect to 𝑧, and the assumption of
macroscopic uniformity (see, e.g., Cruz-González et al. (2017)). Thus,
the intermediate homogenised problem in the Laplace–Carson space, is
given by

1
𝐿2
𝑐

(

𝜕
𝜕𝑥

+ 𝜀−11
𝜕
𝜕𝑦

)

[

Ř(𝑥, 𝑦, 𝑝)�̃� (0)(𝑥, 𝑦, 𝑝)
]

+ 𝑓 (𝑥) = 0, (40)

where 𝑝 ∈ [0,+∞[ and 𝑥 ∈ ℬ
(ℎ𝜀1 )
1 with ℬ

(ℎ𝜀1 )
1 denoting the ho-

mogenised counterpart of ℬ(𝜀1)
1 . In particular, Ř is the effective co-

efficient at the 𝜀1-structural level, which is given by the expression

̌ (𝑥, 𝑦, 𝑝) =
⟨

R(𝑥, 𝑦, 𝑧, 𝑝) + R(𝑥, 𝑦, 𝑧, 𝑝)
𝜕𝜒(𝑥, 𝑦, 𝑧, 𝑝)

𝜕𝑧

⟩

𝑧
. (41)

.2. Homogenisation at the 𝜀1-structure level

Here, we use the information obtained in Section 4.1 as input values
n order to find the macroscopic effective behaviour of the hierarchical
omposite material. For this purpose, we proceed by replacing (36b)
nd (24) into (40) so that

̌
𝑥𝑥

(

𝑢(0) +
+∞
∑

𝑖=1
𝑢(𝑖)𝜀𝑖1

)

+ 𝜀−11 Ľ𝑥𝑦

(

𝑢(0) +
+∞
∑

𝑖=1
𝑢(𝑖)𝜀𝑖1

)

+ 𝜀−11 Ľ𝑦𝑥

(

𝑢(0) +
+∞
∑

𝑖=1
𝑢(𝑖)𝜀𝑖1

)

+ 𝜀−21 Ľ𝑦𝑦

(

𝑢(0) +
+∞
∑

𝑖=1
𝑢(𝑖)𝜀𝑖1

)

+ 𝑓 = 0, (42)

where

Ľ𝛼𝛽 (𝜙(𝑥, 𝑦, 𝑝)) ∶=
1
𝐿2
𝑐

𝜕
𝜕𝛼

(

Ř(𝑥, 𝑦, 𝑝) 𝜕𝜙(𝑥, 𝑦, 𝑝)
𝜕𝛽

)

, (43)

for 𝛼, 𝛽 = 𝑥, 𝑦.
We proceed similarly to the previous section, i.e. grouping the terms

of the resulting Eq. (42) in the same powers of 𝜀1. So then, in order to
have the order of approximation O(𝜀1), the following conditions must
e satisfied,
−2
1 ∶ Ľ𝑦𝑦

(

𝑢(0)
)

= 0, (44a)

𝜀−11 ∶ Ľ𝑦𝑦
(

𝑢(1)
)

= −Ľ𝑥𝑦
(

𝑢(0)
)

− Ľ𝑦𝑥
(

𝑢(0)
)

, (44b)

𝜀01 ∶ Ľ𝑦𝑦
(

𝑢(2)
)

= −Ľ𝑥𝑥
(

𝑢(0)
)

− Ľ𝑥𝑦
(

𝑢(1)
)

− Ľ𝑦𝑥
(

𝑢(1)
)

− 𝑓. (44c)

In addition, from the interface condition (31b), the expression for
�̃�(0) given in (24), and multiplying by 𝜀−21 , we can deduce that
[[

𝜀−21 𝑢(0) + 𝜀−11 𝑢(1) + 𝜀01𝑢
(2) +⋯

]]

= 0. (45)

Moreover, by considering the relations in (24), (34c), (36a) and
(36b), using the cell average operator over 𝒵 and multiplying the result
by 𝜀−11 , we obtain (granted that the operations of limit and integration
can be interchanged)
[[

Ř
𝐿𝑐

(

𝜀−21
𝜕𝑢(0)

𝜕𝑦
+ 𝜀−11

𝜕𝑢(0)

𝜕𝑥
+ 𝜀−11

𝜕𝑢(1)

𝜕𝑦
+ 𝜀01

𝜕𝑢(1)

𝜕𝑥

)

+⋯
]]

= 0. (46)

It is worth mentioning that the interface condition (46) holds in the
physical domain, whereas we are now addressing the homogenisation
process at the 𝜀1-structural level, whose mechanical response is given,
in effect, by the effective elastic function Ř(𝑥, 𝑦, 𝑝) provided in (41).

Then, the sequence of problems for the 𝜀 -structural level are
1
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Problem for 𝜀−21
For all 𝑝 ∈ [0,+∞[

̌
𝑦𝑦
(

𝑢(0)(𝑥, 𝑦, 𝑝)
)

= 0, 𝑦 ∈ 𝒴 ⧵ℐ𝒴 , (47a)
[[

𝑢(0)(𝑥, 𝑦, 𝑝)
]]

= 0, 𝑦 ∈ ℐ𝒴 , (47b)
[[

Ř(𝑦, 𝑝)
𝐿𝑐

𝜕𝑢(0)(𝑥, 𝑦, 𝑝)
𝜕𝑦

]]

= 0, 𝑦 ∈ ℐ𝒴 , (47c)

nitial Condition
(0)(𝑥, 𝑦, 0) = 𝑢(0)e (𝑥, 𝑦), 𝑦 ∈ 𝒴 . (47d)

imilarly to what we discussed in the previous section, Lemma 1
nsures that 𝑢(0)(𝑥, 𝑦, 𝑝) is a solution of (47a)–(47d) if and only if it is
-constant, i.e.,
(0) = 𝑢(0)(𝑥, 𝑝). (48)

his result leads to a simplification in the expression for �̃�(1) given in
36a) and (36b). Specifically, we have that

�̃�(1)(𝑥, 𝑦, 𝑧, 𝑝) = 𝜒(𝑥, 𝑦, 𝑧, 𝑝)
(

𝜕𝑢(0)(𝑥, 𝑝)
𝜕𝑥

+
𝜕𝑢(1)(𝑥, 𝑦, 𝑝)

𝜕𝑦

)

. (49)

roblem for 𝜀−11
Using the result in (48), Eq. (44b), together with the corresponding

nterface and initial conditions, can be rewritten as

̌
𝑦𝑦
(

𝑢(1)
)

= −Ľ𝑦𝑥
(

𝑢(0)
)

, 𝑝 ∈ 𝒴 ⧵ℐ𝒴 , (50a)
[[

𝑢(1)
]]

= 0, 𝑦 ∈ ℐ𝒴 , (50b)
[[

Ř
𝐿𝑐

𝜕𝑢(1)

𝜕𝑦

]]

= −
[[

Ř
𝐿𝑐

(

𝜕𝑢(0)

𝜕𝑥

)]]

, 𝑦 ∈ ℐ𝒴 , (50c)

nitial Condition
(1)(𝑥, 𝑦, 0) = 𝑢(1)e (𝑥, 𝑦), 𝑦 ∈ 𝒴 , (50d)

here 𝑝 ∈ [0,+∞[.
Now, taking into account Eq. (48) and the 1-periodicity of Ř(𝑥, 𝑦, 𝑡)

ith respect to 𝑦, we can deduce that
⟨

Ľ𝑦𝑥
(

𝑢(0)
)

⟩

𝑦
= 0. (51)

ence, the existence and uniqueness, up to a 𝑦-constant function, of
he solution for the problem (50a)–(50d) is guaranteed by means of
emma 1, and a solution is proposed as follows

(1)(𝑥, 𝑦, 𝑝) = 𝜒(𝑥, 𝑦, 𝑝)
𝜕𝑢(0)(𝑥, 𝑝)

𝜕𝑥
, (52)

here the local function 𝜒(𝑥, 𝑦, 𝑝) is 1-periodic with respect to 𝑦 and,
for all 𝑝 ∈ [0,∞[, solution of the 𝜀1-local problem

1
𝐿2
𝑐

𝜕
𝜕𝑦

(

Ř(𝑥, 𝑦, 𝑝)
𝜕𝜒(𝑥, 𝑦, 𝑝)

𝜕𝑦
+ Ř(𝑥, 𝑦, 𝑝)

)

= 0, 𝑦 ∈ 𝒴 ⧵ℐ𝒴 , (53a)

[[

𝜒(𝑥, 𝑦, 𝑝)
]]

= 0, 𝑦 ∈ ℐ𝒴 , (53b)
[[

1
𝐿𝑐

(

Ř(𝑥, 𝑦, 𝑝)
𝜕𝜒(𝑥, 𝑦, 𝑝)

𝜕𝑦
+ Ř(𝑥, 𝑦, 𝑝)

)]]

= 0, 𝑦 ∈ ℐ𝒴 , (53c)

nitial Condition

(𝑥, 𝑦, 0) = 𝜒e(𝑥, 𝑦), 𝑦 ∈ 𝒴 . (53d)

dditionally, we include the following condition to guarantee the
niqueness,

(𝑥, 0, 𝑝) = 0, ∀𝑝 ∈ [0,+∞[. (54)

roblem for 𝜀01
According to Lemma 1, the existence of a solution for Eq. (44c)

equires that the following condition must be satisfied
⟨

Ľ (𝑢(0)) + Ľ (𝑢(1)) + Ľ (𝑢(1)) + 𝑓
⟩

= 0. (55)
7

𝑥𝑥 𝑥𝑦 𝑦𝑥 𝑦
o, from (55) and taking into account Eqs. (48) and (52), the pe-
iodicity of Ř(𝑥, 𝑦, 𝑝) and the assumption of macroscopic uniformity,
e reach the fully homogenised problem at the macroscale, which in

Laplace–Carson space, reads

− 1
𝐿2
𝑐

𝜕
𝜕𝑥

(

R̂(𝑥, 𝑝) 𝜕𝑢
(0)(𝑥, 𝑝)
𝜕𝑥

)

= 𝑓 (𝑥), (56)

here 𝑝 ∈ [0,+∞[ and 𝑥 ∈ ℬ(ℎ), with ℬ(ℎ) being the idealised
omogeneous structure. In addition, R̂ represents the effective coefficient
f the hierarchical composite and is given by the expression

̂ (𝑥, 𝑝) =
⟨

Ř(𝑥, 𝑦, 𝑝) + Ř(𝑥, 𝑦, 𝑝)
𝜕𝜒(𝑥, 𝑦, 𝑝)

𝜕𝑦

⟩

𝑦
. (57)

Finally, from the boundary and initial conditions (22c)–(22d), we
can conclude that the leading order term in the asymptotic expansion
must satisfy the boundary and initial conditions

𝑢(0)(0, 𝑝) = 𝑢0(𝑝), 𝑢(0)(𝐿, 𝑝) = 𝑢𝐿(𝑝), 𝑝 ∈ [0,+∞[, (58a)

𝑢(0)(𝑥, 0) = 𝑢(0)e (𝑥), 𝑥 ∈ ℬ(ℎ). (58b)

4.3. Relation between the effective relaxation modulus and the effective
creep compliance

The one-dimensional mathematical relationship between the effec-
tive relaxation modulus R̂ and the effective creep compliance Ĵ(𝑡), is
given in the Laplace–Carson space as follows (refer to Hashin (1972)
for further details)

R̂(𝑝)Ĵ(𝑝) = 1. (59)

Furthermore, the application of the inverse of the Laplace–Carson trans-
form in (59) leads to the Stieltjes convolution integral, (see Hanyga and
Seredyńska (2007))

∫

𝑡

0
R̂(𝜏)Ĵ(𝑡 − 𝜏)𝑑𝜏 = 𝑡, 𝑡 > 0. (60)

This last integral equation can be solved numerically by using, for
instance, one of the numerical integration schemes outlined in Park
and Kim (1999). So, if the effective relaxation modulus is known in
the time domain, then the effective creep compliance can be derived.
These relations will be useful for computational purposes.

5. Numerical calculations

The scope of this section is twofold. First, we solve the hetero-
geneous problem by adapting the semi-analytical technique used in
Álvarez-Borges et al. (2014). That is, in this case, we consider the
solution of the original problem (18a)–(18d) without going through
the homogenisation process. In the second part of this section, we use
the results derived in this work to solve the homogenised and local
problems. In doing this, our aim is to compare the solutions given by
these two approaches.

5.1. The heterogeneous problem

In the present framework, we neglect the body force 𝑓 (𝑥) in the
eterogeneous problem (18a)–(18d). Moreover, we set 𝐿 = 𝐿𝑐 = 1 cm
nd assume the boundary conditions
(𝜀)(0, 𝑡) = 0 cm, 𝑢(𝜀)(1, 𝑡) = 1 cm. (61)

for all 𝑡 ∈ ] −∞,+∞[.
Furthermore, along with the assumption of macroscopic uniformity,

we consider that the material properties of each individual constituent
do not depend of the global variable 𝑥. Specifically, we chose the
relaxation modulus (see Eq. (20)) to be given by the expression,

R(𝜀)(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

R1(𝑡), if 𝑥 ∈ ℬ(𝜀2)
1 ,

R2, if 𝑥 ∈ ℬ(𝜀2)
2 ,
(𝜀1)

(62)
⎩

R3, if 𝑥 ∈ ℬ2 .
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Fig. 2. Zener model.

Table 1
Material properties.
𝐸0 (kPa) 𝑔 𝜏 (s) R2 (kPa) R3 (kPa)

75 0.8 15 90 105

As observed in Eq. (62), the relaxation modulus for the first con-
stituent is assumed to depend on time, corresponding to a viscoelastic
material, whereas the other two constituents have constants values and
describe elastic materials. In particular, the viscoelastic constituent is
modelled by means of the Maxwell-like relaxation representation of the
Zener model, also denominated Standard Linear Solid (S.L.S.) (Mainardi
and Spada, 2011),

R1(𝑡) = 𝐸1 + 𝐸2exp(−𝑡∕𝜏), (63)

where 𝐸𝑖 (𝑖 = 1, 2) represents the elastic modulus of the spring 𝑖 in
Fig. 2 and 𝜏 = 𝜂2∕𝐸2 is the relaxation time. In particular, Eq. (63) can
be equivalently rewritten as

R1(𝑡) = 𝐸0{1 − 𝑔[1 − exp(−𝑡∕𝜏)]}, (64)

where 𝐸0 = 𝐸1+𝐸2 is the instantaneous elastic relaxation modulus and
𝑔 ∶= 𝐸1∕𝐸0 (see Che-Yu (2020)). Here, we fix the parameters appearing
in Eqs. (62) and (64) as shown in Table 1.

Now, to solve the heterogeneous problem described in (18a)–(18d),
we continue by setting the values of the scaling parameters that de-
scribe the two levels of organisation. Here, we choose 𝜀1 = 1∕3 and
𝜀2 = 1∕9. These values of 𝜀1 and 𝜀2 lead to the set of 14 discontinuity
points ℐ𝑑 of the relaxation function R(𝜀)(𝑥, 𝑡), namely

ℐ𝑑 =
{ 4
45

, 1
9
, 1
5
, 2
9
, 1
3
, 19
45

, 4
9
, 8
15

, 5
9
, 2
3
, 34
45

, 7
9
, 13
15

, 8
9

}

. (65)

In addition, we assume that the volumetric fractions of 𝒵1 and 𝒵2
are 𝑉 (𝒵1)

𝑓 = 0.8 and 𝑉 (𝒵2)
𝑓 = 1 − 𝑉 (𝒵1)

𝑓 = 0.2, respectively. In the case of
the volumetric fractions of 𝒴1 and 𝒴2, we consider that

𝑉 (𝒴1)
𝑓 = (𝑛2∕𝑛1 −𝑁𝑐 )𝜀2∕𝜀1 and 𝑉 (𝒴2)

𝑓 = 1 − 𝑉 (𝒴1)
𝑓 , (66)

where 𝑛1 = 1∕𝜀1 = 3, 𝑛2 = 1∕𝜀2 = 9 and 𝑁𝑐 is a parameter that we
introduce and serves as an acronym for number of cells.

The purpose of the first expression appearing in Eq. (66) is to
avoid overlapping and unexpected cuts of the periodicity when the
constituents ℬ(𝜀2)

1 and ℬ(𝜀2)
2 at the 𝜀2-structural level are coupled with

the constituent ℬ(𝜀1)
2 at the 𝜀1-structural level. Additionally, the number

𝑁𝑐 provides the quantity of 𝒵 -periodic cells that are equal in length to
𝒴2 in the 𝑥-axis. Here, we consider 𝑁𝑐 = 1, so that 𝑉 (𝒴1)

𝑓 = 0.6667. Fig. 3
shows the geometrical configuration of the viscoelastic heterogeneous
material ℬ for the set of fixed parameters.

It is worth noting that, to solve the original heterogeneous problem
(18a)–(18d) with boundary conditions specified in (61), we also need to
consider the boundary points within the set of discontinuity points. This
is an important difference with respect to the homogenised problem
for which the relevant information of the internal structure is captured
through the representative periodic cell and, then, extended according
to periodicity conditions. So, in the homogenised case, the interface
points represent the only discontinuity points of interest of R(𝜀)(𝑥, 𝑡) (see
Eqs. (18a)–(18b)).

In Fig. 4, the graph of the function R(𝜀)(𝑥, 𝑡) is plotted for 𝑡 = 0 s
(elastic limit case).
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Fig. 3. Schematic of the heterogeneous material. The red dots are used to visualise
the discontinuities. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 4. Plot of the relaxation function at 𝑡 = 0 s.

Similar to what was done in Section 3, the solution of the hetero-
geneous problem is rewritten in the Laplace–Carson domain, as follows

− 1
𝐿2
𝑐

𝜕
𝜕𝑥

(

R(𝜀)(𝑥, 𝑝)
𝜕𝑢(𝜀)(𝑥, 𝑝)

𝜕𝑥

)

= 0, 𝑥 ∈ ℬ ⧵ℐ𝑑 , (67a)

[[

𝑢(𝜀)(𝑥, 𝑝)
]]

= 0,
[[

R(𝜀)(𝑥, 𝑝)
𝐿𝑐

𝜕𝑢(𝜀)(𝑥, 𝑝)
𝜕𝑥

]]

= 0, 𝑥 ∈ ℐ𝑑 , (67b)

𝑢(𝜀)(0, 𝑝) = 0, 𝑢(𝜀)(1, 𝑝) = 1, (67c)

𝑢(𝜀)(𝑥, 0) = 𝑢(𝜀)e (𝑥), 𝑥 ∈ ℬ, (67d)

for all 𝑝 ∈ [0,+∞[.
In particular, for each discrete value of 𝑝, denoted by 𝑝𝑗 , it is

possible to solve the elastic-type heterogeneous problem (67a)–(67d)
following the ideas put forward in Álvarez-Borges et al. (2014). Specif-
ically, we propose an analytical solution of the problem (67a)–(67d) as
follows

𝑢(1∕3,1∕9)het (𝑥, 𝑝𝑗 ) =
14
∑

𝑖=0
𝑤𝑖𝑗 (𝑥)1]𝛼𝑖 ,𝛼𝑖+1[, (68)

where 𝑤𝑖𝑗 (𝑥) are linear functions defined as 𝑤𝑖𝑗 (𝑥) = 𝑚𝑖𝑥 + 𝑛𝑖, and
1]𝛼𝑖 ,𝛼𝑖+1[ denotes the characteristic function of the interval ]𝛼𝑖, 𝛼𝑖+1[,
being these intervals the ones defined by the discontinuity points in
(65) with 𝛼0 = 0 and 𝛼15 = 1. We determine the unknowns 𝑚𝑖, 𝑛𝑖 with
𝑖 = 0,… , 14, by solving the linear system of the form (see Appendix B
for more details)

M ⋅ Xincog = B, (69)

where M, Xincog and B are defined in (B.5). It is worth noticing that
𝑛0 = 0 due to the first equation of (67c), therefore it is not considered
as an unknown quantity, i.e. 𝑛0 ∉ Xincog.

The last step to obtain the solution of the heterogeneous problem
in the time domain involves the inversion of the solution Eq. (68). For
this purpose, we employ a numerical approach using Matlab’s function
INVLAP (see Juraj (2020) and Valsa and Brančik (1998)). In particular,
each fixed value 𝑝 is defined using the formula 𝑝 ∶= 𝜄 ∕𝑡 for 𝑗 =
𝑗 𝑗 𝑗 𝑖
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Fig. 5. Solution of the heterogeneous problem (67a)–(67d) in the time domain.

1,… , (𝑛𝑠 + 𝑛𝑑 + 1), where 𝑡𝑖 is a point of the discretised time interval
= [𝑡1, 𝑡2,… , 𝑡𝑁 ], ns, 𝑛𝑑 and 𝜄𝑗 are parameters of Valsa’s numerical

nversion method (see, e.g., Juraj (2020), Valsa and Brančik (1998) and
ruz-González et al. (2021)). As a drawback, this numerical algorithm
resents issues close to 𝑡 = 0 s, however, in our approach the particular
ase at 𝑡 = 0 s is obtained from the elastic problem (instant elastic
esponse).

We remark that the original version of the INVLAP’s script is only
onceived for the inversion of the Laplace transform. In this and pre-
ious works of ours (Cruz-González et al., 2020a,b, 2021), we adapted
he code to perform the inversion of the Laplace–Carson transform in
discrete space of solutions arising from the multiscale analysis (see

igure 2 of Cruz-González et al. (2021)).
So using the semi-analytical approach given above, in Fig. 5, we

lot the solution of the heterogeneous problem (67a)–(67d), which we
enote by 𝑢(1∕3,1∕9)het (𝑥, 𝑡) (see Eq. (68)), for different values of time. We
ote how the heterogeneities influence the solution as time increases
eing more in-homogeneous.

.2. The homogenised problem and the asymptotic solution

Considering the assumptions given in the above section, the ho-
ogenised problem at the macro-scale takes the form

R̂(𝑝)
𝐿2
𝑐

𝜕2𝑢(0)(𝑥, 𝑝)
𝜕𝑥2

= 0, 𝑥 ∈ ℬℎ, (70a)

(0)(0, 𝑝) = 0, 𝑢(0)(1, 𝑝) = 1, (70b)
(0)(𝑥, 0) = 𝑢(0)e (𝑥) = 𝑥, ∀𝑥 ∈ ℬℎ. (70c)

here 𝑝 ∈ [0,+∞[. In contrast with the heterogeneous problem,
he solution of the homogenised problem at the macro-scale can be
omputed in a more simpler way. Particularly, the solution of (70a)
ith boundary and initial conditions (70b) and (70c) reads
(0)(𝑥, 𝑝) = 𝑥. (71)

We note that the solution of the homogenised problem, which
epresents the leading order term in the asymptotic expansion (23)–
24), does not feature dependency on time, neither any contribution
hat makes it ‘‘oscillates’’ as the original solution of the heterogeneous
roblem. This information, however, is encrypted in the terms of higher
owers of 𝜀1 and 𝜀2. With this in mind, we consider the truncation of
he expansion for 𝑢(𝜀) up to the first order of 𝜀1 and 𝜀2, so that, by taking
nto account the results in Eqs. (48), (49) and (52), we have

(𝜀1 ,𝜀2)
ThreeScale (𝑥, 𝑝) = 𝑢(0)(𝑥, 𝑝) + 𝜒 (𝜀1 ,𝜀2)(𝑦, 𝑝)

𝜕𝑢(0)(𝑥, 𝑝)
𝜕𝑥

𝜀1

+ 𝜒 (𝜀1 ,𝜀2)(𝑧, 𝑝)
(

1 +
𝜕𝜒 (𝜀1 ,𝜀2)(𝑦, 𝑝)

𝜕𝑦

)

𝜕𝑢(0)(𝑥, 𝑝)
𝜕𝑥

𝜀2, (72)
9

hich for 𝜀1 = 1∕3 and 𝜀2 = 1∕9 takes the form
Fig. 6. Images (a)–(b) show the periodic cells for the 𝜀2- and 𝜀1-structural levels,
respectively.

𝑢(1∕3,1∕9)ThreeScale (𝑥, 𝑝) = 𝑢(0)(𝑥, 𝑝) + 1
3
𝜒 (1∕3,1∕9)(𝑦, 𝑝)

𝜕𝑢(0)(𝑥, 𝑝)
𝜕𝑥

+ 1
9
𝜒 (1∕3,1∕9)(𝑧, 𝑝)

(

1 +
𝜕𝜒 (1∕3,1∕9)(𝑦, 𝑝)

𝜕𝑦

)

𝜕𝑢(0)(𝑥, 𝑝)
𝜕𝑥

. (73)

Therefore, apart from the solution of the homogenised problem
(71), we need to compute the solutions of the local problems (79a) and
(79b) to fully determine Eq. (72). In this respect, we solve the 𝜀2- and
1-local problems by means of a similar approach to the one performed
n Section 5.1 concerning the heterogeneous problem. However, for this
urpose, we need to take into account the discontinuity points within
he periodic cells since we have a two-phase composite material at both
tructural levels (see Fig. 6).

By considering the expression introduced in (62) for the relaxation
odulus and according to the structure of the periodic cells at the
ifferent levels of organisation (see Fig. 6), we write

(𝑧, 𝑡) =

{

R1(𝑡), if 𝑧 ∈ 𝒵1 = [0, 𝑧𝐼 [,
R2, if 𝑧 ∈ 𝒵2 =]𝑧𝐼 , 1],

(74)

nd

̌ (𝑦, 𝑡) =

{

Ř(𝑡), if 𝑦 ∈ 𝒴1 = [0, 𝑦𝐼 [,
R3, if 𝑦 ∈ 𝒴2 =]𝑦𝐼 , 1].

(75)

e remark that the effective relaxation modulus Ř in Eq. (75) is derived
y means of the relaxation moduli R1 and R2 in the homogenisation
rocess at the 𝜀2-structural level.

Because of the assumptions made so far, after integrating the local
roblems (37a)–(38) and (53a)–(54), we can write

1
𝐿2
𝑐

[

R(𝑧, 𝑝)
𝜕𝜒(𝑧, 𝑝)

𝜕𝑧
+ R(𝑧, 𝑝)

]

= Ř(𝑝), 𝑧 ∈ 𝒵 ⧵ℐ𝒵 , (76a)

[[

𝜒(𝑧, 𝑝)
]]

= 0, 𝑧 ∈ ℐ𝒵 , (76b)
Uniqueness condition

𝜒(0, 𝑝) = 0, (76c)
Initial condition

𝜒(𝑧, 0) = 𝜒e(𝑧), 𝑧 ∈ 𝒵 , (76d)

and
1
𝐿2
𝑐

[

Ř(𝑦, 𝑝)
𝜕𝜒(𝑦, 𝑝)

𝜕𝑦
+ Ř(𝑦, 𝑝)

]

= R̂(𝑝), 𝑦 ∈ 𝒴 ⧵ℐ𝒴 , (77a)

[[

𝜒(𝑦, 𝑝)
]]

= 0, 𝑦 ∈ ℐ𝒴 , (77b)
niqueness condition

(0, 𝑝) = 0, (77c)
nitial condition

(𝑦, 0) = 𝜒e(𝑦), 𝑦 ∈ 𝒴 , (77d)

here 𝑝 ∈ [0,+∞[ and the effective coefficients Ř and R̂ can be recast
n the form

̌ (𝑝) =
⟨

R−1(𝑧, 𝑝)
⟩−1
𝑧 =

R1(𝑝)R2
(𝒵2) (𝒵1)

, (78a)

𝑉𝑓 R1(𝑝) + 𝑉𝑓 R2
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Fig. 7. Comparison of the effective relaxation moduli (a) and the effective creep compliances (b) in the time domain.
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R̂(𝑝) =
⟨

Ř−1(𝑦, 𝑝)
⟩−1
𝑦 =

Ř(𝑝)R3

𝑉 (𝒴2)
𝑓 Ř(𝑝) + 𝑉 (𝒴1)

𝑓 R3

. (78b)

We note that expressions (78a) and (78b) have a similar structure,
with the only difference being related to the hierarchical level and
the corresponding relaxation function we use in each of them. So, it
shows the pattern also observed when considering the recursive or
double homogenisation performed by several authors when obtaining
the macroscopic properties of such kind of composites (see, for in-
stance, Bensoussan et al. (1978), Allaire and Briane (1996), Auriault
et al. (2009) and Guinovart-Díaz et al. (2005)). However, as it will be
clear later on, the three-scale asymptotic approach adopted in this work
presents some advantages with respect to the recursive homogenisation
scheme.

Finally, as it was done in the case of the heterogeneous problem (see
Section 5.1), the analytical solutions in the Laplace–Carson domain for
the local problems (76a)–(76d) and (77a)–(77d) can be proposed as
follows

𝜒 (1∕3,1∕9)(𝑧, 𝑝𝑗 ) = 𝑤(𝑧)
0𝑗 (𝑧)1]0,𝑧𝐼 [ +𝑤(𝑧)

1𝑗 (𝑧)1]𝑧𝐼 ,1[, (79a)

𝜒 (1∕3,1∕9)(𝑦, 𝑝𝑗 ) = 𝑤(𝑦)
0𝑗 (𝑦)1]0,𝑦𝐼 [ +𝑤(𝑦)

1𝑗 (𝑦)1]𝑦𝐼 ,1[, (79b)

where 𝑤(𝛼)
𝑖𝑗 with 𝛼 = 𝑦, 𝑧 and 𝑖 = 0, 1 are linear functions in the form

𝑤(𝛼)
𝑖𝑗 (𝛼) = 𝑚(𝛼)

𝑖 𝛼+𝑛(𝛼)𝑖 , similar as in Eq. (68). In particular, the unknowns
𝑚(𝛼)
𝑖 , 𝑛(𝛼)𝑖 with 𝛼 = 𝑦, 𝑧 and 𝑖 = 0, 1 are found by solving the linear

systems of equations (see Appendix C for more details)

M(𝑧) ⋅ Zincog = B(𝑧), (80)

and

M(𝑦) ⋅ Yincog = B(𝑦), (81)

where M(𝑧), M(𝑦), Zincog, Yincog, B(𝑧), B(𝑦) are defined in (C.3) and (C.6).
Once again, 𝑛(𝑧)0 = 0 and 𝑛(𝑦)0 = 0 due to (76c) and (77c), respectively.
Hence, 𝑛(𝑧)0 ∉ Zincog and 𝑛(𝑦)0 ∉ Yincog.

6. Numerical results

6.1. Effective coefficients and local solutions

In Fig. 7(a), we show the plots of the effective relaxation modulus
at the 𝜀1-structural level (see Eq. (78a)) and at the macro-scale (see
Eq. (78b)) in the time domain. In addition, in Fig. 7(b), we present
the equivalent effective creep compliance at the 𝜀1-structural level and
at the macro-scale by means of the relations given in Section 4.3. As
shown in Fig. 7(a), both effective relaxation moduli decrease with time,

̂

10

with R having higher values. On the contrary, in Fig. 7(b), the effective v
creep compliances increase with time and, because of the inverse
relation in Eq. (59), the effective creep compliance at the macro-scale
exhibits lower values.

In particular, the solutions of the local problems (76a)–(76d) and
(77a)–(77d), that is 𝜒 (1∕3,1∕9) and 𝜒 (1∕3,1∕9), are shown in Fig. 8 for
ifferent instants of time. Note that the plots (a) and (c) show the
ehaviour of the local functions in the corresponding periodic cells,
hereas graphs (b) and (d) extend this behaviour periodically to the
hole domain. Additionally, we notice that the periodic cells in plots

b) and (d) are repeated according to the values 𝜀2 = 1∕9 and 𝜀1 = 1∕3
nd using Eq. (17).

.2. Comparison between different approaches

In this section, we use our previous results to compare the solutions
iven by (i) the original heterogeneous problem (see Eq. (68)); (ii)
he truncated formal asymptotic expansion (see Eq. (72)); and (iii)
he truncated formal asymptotic solution that arises from a two-scale
nalysis (see for instance Cruz-González et al., 2018) given by

(𝜀1)
TwoScale (𝑥, 𝑝) = 𝑢(0)(𝑥, 𝑝) + 𝜒 (𝜀1)(𝑦, 𝑝)

𝜕𝑢(0)(𝑥, 𝑝)
𝜕𝑥

𝜀1, (82)

here 𝜒𝜀1 (𝑦, 𝑝) is the solution of the local problem which results from
two scale approach (see, for instance, Bakhvalov and Panasenko

1989)). In our case, this would be equivalent to the local problem
77a)–(77d). In particular, for 𝜀1 = 1∕3 the expression (82) reads

(1∕3)
TwoScale (𝑥, 𝑝) = 𝑢(0)(𝑥, 𝑝) + 1

3
𝜒 (1∕3)(𝑦, 𝑝)

𝜕𝑢(0)(𝑥, 𝑝)
𝜕𝑥

. (83)

We remark that, if we would like to use a two-scale approach for
the aforementioned hierarchical structure, we would need to know
the value of the effective coefficient Ř(𝑡). This is because with a two
cale framework the 𝜀2-structural level cannot be taken into account
xplicitly (see (82)). In this situation, we can circumvent this downside
y setting Ř(𝑡) as done, for example, in Rodríguez-Ramos et al. (2020).
roceeding in this way, we are able to implicitly account the informa-
ion of the lower scale of the hierarchical structure. Then, we can find
he effective coefficient R̂(𝑡) given in Eq. (78b).

In Fig. 9, we compare, for the fixed value of time 𝑡 = 45 s, the
olution of the heterogeneous problem (68), the solution of the ho-
ogenised problem (71), and the truncated formal asymptotic solutions

iven by Eqs. (72) and (82). In particular, it can be noticed that the
runcated formal asymptotic expansions are in good agreement with
he solution of the heterogeneous problem, being the truncated three-
cale asymptotic expansion the nearest to the solution of the original
roblem. Moreover, we point out that the solution of the homogenised
roblem, as is trivial from its nature, does not incorporate the spatial

ariations present in the other solutions. In order to provide further
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Fig. 8. Graphs (a)–(b) show the spatial distribution of the local function 𝜒 (1∕3,1∕9) given in (79a), whereas graphs (c)–(d), show the local function 𝜒 (1∕3,1∕9) as described in (79b).
The results are given in the time domain.
Fig. 9. Comparison of the different approaches studied in this work. The plots
corresponds to the fixed value of time 𝑡 = 45 s.

evidences on the closeness of the asymptotic solutions to the one from
the heterogeneous problem, we introduce the relative numerical errors
in 𝐿2-norm as follows,

e(1∕3,1∕9)0 (𝑡) =
‖

‖

‖

𝑢(1∕3,1∕9)het (𝑥, 𝑡) − 𝑢(0)(𝑥, 𝑡)‖‖
‖𝐿2

‖

‖

‖

𝑢(1∕3,1∕9)het (𝑥, 𝑡)‖‖
‖𝐿2

, (84a)

e(1∕3,1∕9)TwoScale (𝑡) =
‖

‖

‖

𝑢(1∕3,1∕9)het (𝑥, 𝑡) − 𝑢(1∕3)TwoScale (𝑥, 𝑡)
‖

‖

‖𝐿2

‖

‖

‖

𝑢(1∕3,1∕9)het (𝑥, 𝑡)‖‖
‖𝐿2

, (84b)

e(1∕3,1∕9)ThreeScale (𝑡) =
‖

‖

‖

𝑢(1∕3,1∕9)het (𝑥, 𝑡) − 𝑢(1∕3,1∕9)ThreeScale (𝑥, 𝑝)
‖

‖

‖𝐿2

‖

‖

‖

𝑢(1∕3,1∕9)het (𝑥, 𝑡)‖‖
‖𝐿2

. (84c)

In Fig. 10, we show the relative numerical errors in 𝐿2-norm deter-
mined by Eqs. (84a), (84b) and (84c). As it can be observed, the relative
error concerning the three-scale asymptotic solution with respect to
the solution of the original problem is the lowest, which confirms the
discussions made so far and the advantage of the three-scale approach
with respect to the methods analysed in this work. Therefore, this result
illustrates the major accuracy of the three-scale technique to model
hierarchical structures over the two-scale one.
11
Fig. 10. Comparison of the relative numerical errors given in Eqs. (84a), (84b) and
(84c).

Finally, we address the convergence of the solutions. With this aim,
we explore the behaviour of the asymptotic formal solutions and the
solution of the heterogeneous problem when the scaling parameters
𝜀1 and 𝜀2 become smaller. That is, we can extend the procedure in
previous sections for different values of 𝜀1 and 𝜀2. Here, we consider
three new sets of parameters, namely (i) 𝜀1 = 1∕4, 𝜀2 = 1∕16, (ii)
𝜀1 = 1∕6, 𝜀2 = 1∕36, and (iii) 𝜀1 = 1∕9, 𝜀2 = 1∕81. The results of
the comparisons are displayed in Fig. 11, wherein the behaviour of
the curves is similar to the one shown in Figs. 9 and 10. However,
we have now more information on the convergence behaviour of the
results. As observed in Fig. 11 the asymptotic formal solutions and the
solution of the heterogeneous problem approach to the solution of the
homogenised problem when the parameters become smaller (which is
what it is expected).

7. Conclusions

In the present work, we considered the three-scale asymptotic ho-
mogenisation technique proposed in Ramírez-Torres et al. (2018a) to
model the overall response of a viscoelastic and hierarchical composite
material in a one-dimensional framework. In particular, the method-
ology is fully addressed by deriving the local and homogenised prob-
lems, and the effective coefficients for the two levels of organisation
examined in this work.
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Fig. 11. (a)–(c) Comparison of the different approaches for three new frameworks and the fixed value of time 𝑡 = 45 s. (d)–(f) Relative error in 𝐿2-norm for the three frameworks.
To demonstrate the advantage of this three-scale approach, we com-
puted a semi-analytical solution for the corresponding heterogeneous
problem and compare it with the one resulting from the truncation of
the formal three-scale asymptotic expansion used here. In doing this,
we needed to compute the solutions of the cell problems that can be
found using a similar semi-analytical procedure to the one employed
to solve the original, heterogeneous problem. Furthermore, we also
compared our results with the solution resulting from the homogenised
problem. Our numerical simulations confirmed that, under this hier-
archical setting, the three-scale approach offers a better agreement
with the solution of the heterogeneous problem with respect to the
homogenised and two-scale ones. Furthermore, we performed some
additional calculations to analyse the convergence of the solutions, and
our findings showed a trend towards the solution of the homogenised
problem when the scaling parameters approaches to zero.
12
We note that if we were to compute the errors on the stresses as we
did with the displacement, we would have to consider additional terms
in the expansion (72). Extending these computations to the three-scale
case would involve several changes in our manuscript. For this reason,
we preferred not to do it this time and we will consider it in our future
research.

We further mention that even though we concentrated on a one-
dimensional setting, our theoretical results can be immediately gen-
eralised to account for more complex, three dimensional composite
materials. In this respect, future developments of the present work are
aimed to consider, e.g., the overall behaviour of hierarchical biological
tissues such as bones (Ramírez-Torres et al., 2018b). Viscoelastic effects
in this context are well-documented (Yamashita et al., 2002) and can
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play a crucial role because of their connections with specific physiolog-
ical conditions (Eberhardsteiner et al., 2014), as well as ageing (Chen
et al., 2020).
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Appendix A. Initial condition in the homogenisation process of
viscoelastic materials

For simplicity in our analysis, we consider the classical two-scale
case. However, the ideas discussed here can be adapted with minor
modifications to the three-scale approach. Then, let us consider the
that the initial condition in (18d), 𝑢(𝜀)e , is solution of the linear elastic
problem

−
𝜕𝜎(𝜀)e (𝑥)

𝜕𝑥
= 𝑓 (𝑥), 𝑥 ∈ ℬ ⧵ℐ (𝜀1), (A.1a)

[[

𝑢(𝜀)e (𝑥)
]]

= 0,
[[

𝜎(𝜀)e (𝑥)
]]

= 0, 𝑥 ∈ ℐ (𝜀1), (A.1b)

𝜎(𝜀)e (𝑥) = R(𝜀)(𝑥, 0)
𝜕𝑢(𝜀)e (𝑥)

𝜕𝑥
= C(𝜀)(𝑥)

𝜕𝑢(𝜀)e (𝑥)
𝜕𝑥

, (A.1c)

hich has to be supplemented with appropriate boundary conditions.
Considering the classical procedure in two-scale AHM (see, for

nstance, Bakhvalov and Panasenko (1989), Bensoussan et al. (1978)
nd Cioranescu and Donato (1999)), the formal asymptotic solution for
he elastic problem (A.1a)–(A.1c), truncated up to first order of 𝜀1, is
iven by the expression,
(𝜀)
e (𝑥) = 𝑢(0)e (𝑥, 𝑦) + 𝑢(1)e (𝑥, 𝑦)𝜀1

= 𝑢(0)e (𝑥) + 𝜒e(𝑥, 𝑦)
𝜕𝑢(0)e (𝑥)

𝜕𝑥
𝜀1. (A.2)

where 𝑢(0)e and 𝜒e are, respectively, the solutions of the homogenised
nd local problem. Thus, using a two-scale asymptotic expansion for
(𝜀)(𝑥, 0) and Eq. (18d), we can deduce that
(0)(𝑥, 𝑦, 0) + 𝑢(1)(𝑥, 𝑦, 0)𝜀 = 𝑢(0)(𝑥, 𝑦) + 𝑢(1)(𝑥, 𝑦)𝜀 , (A.3)
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which leads to the following identifications

𝑢(0)(𝑥, 𝑦, 0) = 𝑢(0)e (𝑥, 𝑦), (A.4a)
(1)(𝑥, 𝑦, 0) = 𝑢(1)e (𝑥, 𝑦), (A.4b)

𝜒(𝑥, 𝑦, 0) = 𝜒e(𝑥, 𝑦). (A.4c)

Therefore, from expressions (A.4a)–(A.4c), we can conclude that
he initial conditions at 𝑡 = 0 s for all the problems involved in the
omogenisation process of the non-ageing linear viscoelastic problem
re given by corresponding instantaneous elastic counterpart.

ppendix B. Solution of the heterogeneous problem

Here, we adapt the method shown in Álvarez-Borges et al. (2014) to
ur case and outline the main ideas leading to the system of Eqs. (69).
he solution of the heterogeneous problem (67a)–(67d) can be found,

n a first step, by determining the unknowns quantities 𝑚𝑖, 𝑛𝑖 with
= 0,… , 14, involved in the construction of the proposed solution (68).
n particular, the first expression appearing in Eq. (67b) leads to

𝑑 (1)𝑚0 + 𝑛0 = ℐ𝑑 (1)𝑚1 + 𝑛1, (B.1a)

𝑑 (2)𝑚1 + 𝑛1 = ℐ𝑑 (2)𝑚2 + 𝑛2, (B.1b)

ℐ𝑑 (3)𝑚2 + 𝑛2 = ℐ𝑑 (3)𝑚3 + 𝑛3, (B.1c)
⋮ ⋮ ⋮

ℐ𝑑 (14)𝑚13 + 𝑛13 = ℐ𝑑 (14)𝑚14 + 𝑛14, (B.1d)

and the second expression in (67b) yields

R1(𝑝𝑗 )𝑚0 = R2𝑚1, (B.2a)

R2𝑚1 = R1(𝑝𝑗 )𝑚2, (B.2b)

R1(𝑝𝑗 )𝑚2 = R2𝑚3, (B.2c)

R2𝑚3 = R3𝑚4, (B.2d)

R3𝑚4 = R1(𝑝𝑗 )𝑚5, (B.2e)
⋮ ⋮ ⋮

2𝑚13 = R3𝑚14. (B.2f)

oreover, from Eq. (67c) we have that

0 = 0, (B.3a)

14 + 𝑛14 = 1. (B.3b)

qs. (B.1a)–(B.3b) can be rewritten as the system of linear equations

⋅ Xincog = B. (B.4)

Finally, the structure of each element of (B.4) is summarised below

[M]29×29 =
⎡

⎢

⎢

⎣

M1 N1
M2 N2
V1 V2

⎤

⎥

⎥

⎦

, [Xincog]29×1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚0
⋮

𝑚14
𝑛1
⋮
𝑛14

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, [B]29×1 =

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦

, (B.5)

where [M1]14×15, [N1]14×14, [M2]14×15, [N2]14×14, [V1]1×15, [V2]1×14, M𝑧,
M∗

𝑧 are given in Box I.

Appendix C. Solution of the local problems

The solutions of the local problems follow from a similar analysis
as the one presented above. So, we need to determine the unknowns
𝑚(𝛼)
𝑖 , 𝑛(𝛼)𝑖 , with 𝛼 = 𝑦, 𝑧 and 𝑖 = 0, 1, involved in the construction of the

proposed solutions (79a) and (79b) for the local problems (76a)–(76d)

https://materiaux.sorbonne-universite.fr/
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a
o

𝑧

R

R

w

M

w

M

[M1]14×15 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℐ𝑑 (1) −ℐ𝑑 (1) 0
⋱ ⋱

0 ℐ𝑑 (14) −ℐ𝑑 (14)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, [N1]14×14 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0
1 ⋱

⋱ −1
⋱ ⋱

0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.6)

[M2]14×15 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M𝑧(1) 0 0
⋱ ⋱

M𝑧(4) ⋱
R3 ⋱

M𝑧(1) ⋱
⋱ ⋱

M𝑧(4) ⋱
R3 ⋱

M𝑧(1) ⋱
⋱ ⋱

0 M𝑧(4) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −M∗
𝑧(1) 0
⋱ ⋱

⋱ −M∗
𝑧(3)
⋱ −R3

⋱ −M𝑧(1)
⋱ ⋱

⋱ −M𝑧(4)
⋱ −R3

⋱ −M𝑧(1)
⋱ ⋱

⋱ −M𝑧(4)

0 0 −R3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.7)

[N2]14×14 =
⎡

⎢

⎢

⎣

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

⎤

⎥

⎥

⎦

, [V1]1×15 =
[

0 ⋯ 1
]

, [V2]1×14 =
[

0 ⋯ 1
]

, (B.8)

M𝑧 =
[

R1(𝑠𝑗 ) R2 R1(𝑠𝑗 ) R2
]

, M∗
𝑧 =

[

R2 R1(𝑠𝑗 ) R2
]

. (B.9)

Box I.
𝑦

R

R

T

M

w

M

nd (77a)–(77d), respectively. In particular, from Eqs. (76a)–(76c), we
btain the following system of linear equations

𝐼𝑚
(𝑧)
0 = 𝑧𝐼𝑚

(𝑧)
1 + 𝑛(𝑧)1 , (C.1a)

1(𝑝𝑗 )𝑚
(𝑧)
0 + R1(𝑝𝑗 ) = Ř(𝑝𝑗 ), (C.1b)

2𝑚
(𝑧)
1 + R2 = Ř(𝑝𝑗 ), (C.1c)

hich can be rewritten as
(𝑧) ⋅ Zincog = B(𝑧), (C.2)

here

(𝑧) =

⎡

⎢

⎢

⎢

⎣

𝑧𝐼 −𝑧𝐼 −1

R1(𝑝𝑗 ) 0 0

0 R2 0

⎤

⎥

⎥

⎥

⎦

, Zincog =

⎡

⎢

⎢

⎢

⎣

𝑚(𝑧)
0

𝑚(𝑧)
1

𝑛(𝑧)1

⎤

⎥

⎥

⎥

⎦

,

B(𝑧) =

⎡

⎢

⎢

⎢

0

Ř(𝑝𝑗 ) − R1(𝑝𝑗 )
̌

⎤

⎥

⎥

⎥

. (C.3)
14

⎣
R(𝑝𝑗 ) − R2 ⎦
Similarly, from Eqs. (77a)–(77c), we obtain

𝐼𝑚
(𝑦)
0 = 𝑦𝐼𝑚

(𝑦)
1 + 𝑛(𝑦)1 , (C.4a)

̌ (𝑝𝑗 )𝑚
(𝑦)
0 + Ř(𝑝𝑗 ) = R̂(𝑝𝑗 ), (C.4b)

3𝑚
(𝑦)
1 + R3 = R̂(𝑝𝑗 ). (C.4c)

he above system can be rewritten as

(𝑦) ⋅ Yincog = B(𝑦), (C.5)

here

(𝑦) =

⎡

⎢

⎢

⎢

⎣

𝑦𝐼 −𝑦𝐼 −1

Ř(𝑝𝑗 ) 0 0

0 R3 0

⎤

⎥

⎥

⎥

⎦

, Yincog =

⎡

⎢

⎢

⎢

⎣

𝑚(𝑦)
0

𝑚(𝑦)
1

𝑛(𝑦)1

⎤

⎥

⎥

⎥

⎦

, B(𝑦) =

⎡

⎢

⎢

⎢

⎣

0
R̂(𝑝𝑗 ) − Ř(𝑝𝑗 )

R̂(𝑝𝑗 ) − R3

⎤

⎥

⎥

⎥

⎦

.

(C.6)
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