Introduction

The aim of this book is to introduce some basic objects and properties related to random walks on graphs and to present some fundamental relations between these objects and random fields used in mathematical physics.

These objects include Markov loops, spanning forests, random holonomies and covers.

Those random fields arise in mathematical models of statistical physics (e.g Ising model, percolation) and in constructive quantum field theory. quantum field theory (particle physics) uses three kinds of fields Bose fields, Fermi fields and gauge fields which are operator-valued fields indexed by space-time and satisfying Poincaré invariance. Performing a "Wick rotation", i.e. considering a purely imaginary time produces a set of fields satisfying Euclidean invariance in which Bose fields and gauge fields commute and can be viewed as random fields while Fermi fields anticommute as 1-forms or Grassmann variables. Besides, this set of fields satisfies a reflection positivity (or Osterwalder-Schrader positivity) property that allows reconstruction of the quantum fields.

However, interactions between the fields and the subsequent renormalization are sources of great mathematical difficulties, especially in dimension higher than two. These difficulties have been overcome, to a certain extent, in dimension two and three only. One easy way to overcome them, at least from a practical point of view is to replace the continuous space-time by a discrete lattice. This has been used extensively in physics as a non-perturbative ap-7 Contents proach to quantum field theory. The lecture notes of Ehrard Seiler [START_REF] Seiler | Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics[END_REF] are representative of this approach. It was suggested there that the construction of a continuum limit might appear more feasible if one considers the extended objects, such as loop holonomies, associated with the fields, rather than the fields themselves. In particular, random loops and bridges had been introduced as useful tools in constructive field theory and statistical physics models. (e.g. in [START_REF] Symanzik | Euclidean quantum field theory[END_REF] and [START_REF] Brydges | The Random Walk Representation of Classical Spin[END_REF]).

One purpose of this book is to develop this idea, taking into account more recent developments within probability theory. These fields and the random objects mentioned hereinabove are indeed related: random loops, to Bose fields, spanning forests to Fermi fields, holonomies and covers to gauge fields.

We will introduce Poissonian ensembles of Markov loops, their occupation fields and their holonomies, uniform spanning trees, Fermi Fields and gauge Fields, i.e. connections. Some important properties of these objects will be derived, as well as the relations of Markov loop ensembles with other statistical models such as Ising model, random flows, configuration models and combinatorial maps. The ambition here is not to propose an encyclopedia of these topics (it would require several volumes) but to introduce them as aspects of the same mathematical scenery. An interesting feature is that interactions with gauge fields, in the case of discrete gauge groups, are interpreted in terms of lift to cover spaces. Most essential aspects of lattice quantum field theory are not mentioned here or have still to be interpreted in this context (e.g. the use of different fermionic actions, confinement properties, thermodynamic limit and phase transition, renormalization and scaling limits of correlation functions etc.). Nevertheless, we hope this introduction will encourage probabilists with a sense of adventure to work in this direction.

Several sections propose an improved presentation of a large part of the results published in [START_REF] Jan | Markov loops and renormalization[END_REF][START_REF] Jan | Markov paths, loops and fields[END_REF] where the main emphasis was put on the study of occupation fields defined by Poissonian ensembles of Markov loops. These ensembles appeared informally already in [START_REF] Symanzik | Euclidean quantum field theory[END_REF], and were defined in [START_REF] Lawler | The Brownian loop soup[END_REF] for planar Brownian motion in relation with SLE processes. Note however that topics related to the Brownian case, in particular renormalization results given in Chapter 10 of [START_REF] Jan | Markov paths, loops and fields[END_REF] for 2-dimensional Brownian loops and in [START_REF] Le Jan | Intersection Local Times, Loop Soups and Permanental Wick Powers[END_REF] for Lévy processes are not included here. Our framework is essentially discrete, which allows to avoid heavy technicalities.

New material includes results published in [START_REF] Jan | Markovian loop clusters on graphs[END_REF], [START_REF] Jan | Markov loops, free field and Eulerian networks[END_REF], [START_REF] Jan | On discrete loop signatures and Markov loops topology[END_REF], [START_REF] Jan | Markov loops, coverings and fields[END_REF], [START_REF] Jan | On Markovian random networks Electron[END_REF]. [START_REF] Jan | Random flows defined by Markov loops[END_REF], [START_REF] Van De Brug | Spin systems from loop soups[END_REF], [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF] and [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF]. A mini course on this topic was given at NYU-Shanghai in 2018.

The text is self-contained but the reader is assumed to be familiar with basic notions of probability, Poisson point processes, and discrete Markov chains.

Sections marked by a star * are not referred to in the subsequent sections.

Let us give an overview of the most notable results presented in the book.

In the first chapter, we review basic notions of Markovian potential theory in the context of a countable graph G " pX, Eq, equipped with conductances C and killing rates κ. These notions include the energy, the Green function, the heat semigroup, the continuous time Markov chain and Feynman-Kac formula.

The next six chapters are dedicated to the study of loop ensembles and some related statistical physical models. The second chapter introduces the Markov loop measure µ and the related Poisson processes of loops L α of intensity αµ, often referred to as loop soups. The third chapter deals with decompositions induced by splitting the set X of graph vertices in two parts, D and F , the energy and the Markov chain being decomposed into its restriction to D and its trace on F . Excursion decomposition is applied to loop ensembles. In chapter 4 occupation fields for vertices and oriented edges are introduced and their distributions are computed. Chapter 5 focuses on loop clusters distribution and related Markovian percolation results, which generalizes the well-known notion of i.i.d percolation. The Gaussian free field φ is defined in chapter 6 and the identity in law between the vertex occupation field of L 1 2 and 1 2 φ 2 is proved . This formula, which appeared in [START_REF] Jan | Markov loops, determinants and Gaussian fields[END_REF] and [START_REF] Jan | Markov loops and renormalization[END_REF], is related to an identity combining bridge local times with the Gaussian free field which is known as Dynkin's (or BFS Dynkin's) isomorphism (cf [START_REF] Brydges | The Random Walk Representation of Classical Spin[END_REF], [START_REF] Dynkin | Local times and Quantum fields[END_REF], [START_REF] Jan | On the Fock space representation of functionals of the occupation field and their renormalization[END_REF]). In chapter 7, we show that edge occupation fields have remarkable distributions for intensity 1 ( considering oriented edges) and 1{2 (considering non-oriented edges). Moreover, after conditioning by the vertex occupation field, the loop ensemble of intensity 1 defines a remarkable distribution on flows with integral intensity defined on the graph. We also show, following [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF] and [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF], that after conditioning by the vertex occupation field, the clusters of the loop ensemble of intensity 1{2 can be used to construct the F-K Ising model, which provides a coupling between this loop ensemble and the real free field. A relation is also established between these loops ensembles and configuration models.

Chapters 8 and 9 focus on spanning trees and Fermi fields. In Chapter 8 we introduce loop-erased random walks and present an extended version of Wilson's algorithm which yields a loop ensemble of intensity 1 and a spanning forest of the graph. They are independent. We then show how a remarkable distribution on combinatorial maps can be derived from a configuration model. Discrete loops of L 1 can be constructed as face contours of this random combinatorial map. In Chapter 9, we define fermionic fields from creation and anihilation operators on skew symmetric Fock space, and show how they can be used to prove two versions of the transfer current theorem for spanning trees. We also establish the supersymmetry relation with the corresponding bosonic fields, which are identical to the free fields. We also give an example of an interaction between trees and loops, which can be represented by an interaction between bosonic and fermionic fields.

Chapter 10 focuses on topological properties of loops and graphs. Notions of universal cover and fundamental group are introduced. We show there is a one to one correspondence between geodesic (i.e. non backtracking) loops and conjugacy classes of the fundamental groups. Distributions of loop homotopy classes and of homologies are studied. Galois covers which are intermediate between the graph and its universal cover are introduced.

In Chapter 11, given a group N , we introduce N -connections on a graph, loop holonomies, and associated bosonic and fermionic field. When the group is discrete, connections induce Galois covers. Loops on the cover correspond to loops with trivial holonomy.

Loops and spanning forests on the cover are related to bosonic and fermionic fields which can be decomposed using group representation theory into the fields interacting with the connection.

We introduce Yang-Mills measure on discrete tori and, on any graph, the measure on connections given by the expectation of the product of holonomies of a loop ensemble. We show that for high intensity and high killing rate this measure can approximate the Yang-Mills measure.

Then we prove that trace of holonomies determine an intertwining relation between merge-and-split generators on loop ensembles (which were introduced in Chapter 7) and Casimir operators on connections. By adding a deformation part to the generator on loops, this result is extended to the Casimir operator modified in order to be self adjoint with respect to Yang-Mills measure. This relation contains the Schwinger-Dyson equation previously obtained (with a similar proof, though it does not mention Casimir operators) in [START_REF] Chatterjee | Rigorous solution of strongly coupled SOpN q lattice gauge theory in the large N limit[END_REF], as an essential step in the proof of the t'Hooft expansion for large d " n. In continuous spaces, such equations, which originate from physics, are often referred to as Markeenko-Migdal equations.

We conclude with Chapter 12 in which reflection positivity properties are established for all these fields, allowing to construct a physical Hilbert space.

The list of citations is mostly a list of works from which we remember that we collected some elements presented in this text. It is certainly very imperfect and does not pretend to be exhaustive, nor to describe accurately the "history" of the different topics introduced in this book.

Chapter 1

Markov chains and Potential theory on Graphs

In this first chapter, we review basic notions of Markovian potential theory in the context of a countable graph G " pX, Eq, equipped with conductances C and killing rates κ. These notions include the energy, the Green function, the heat semigroup, Fokker -Planck equations, the continuous time Markov chain and Feynman-Kac formula.

Graphs and Markov chains

Our basic object will be a finite or countable space X and a set of nonnegative conductances C x,y " C y,x , indexed by pairs of distinct points of X. We say that tx, yu, for x ‰ y belonging to X, is an edge iff C x,y ą 0. The points of X together with the set of non oriented edges E define a graph G " pX, Eq.

We say that X is the set of vertices of G.

An oriented edge px, yq is defined by the choice of an ordering in an edge. We set ´px, yq " py, xq and if e " px, yq, we denote it also by pe ´, e `q. The edge tx, yu is also denoted by ˘px, yq. The degree d x of a vertex x is by definition the number of edges incident at x.

Given two graphs G 1 and G 2 of , a bijection j from r X 1 onto r X 2 is a graph isomorphism iff j maps E 1 onto E 2 .
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We generally assume this graph is connected. The set of oriented edges is denoted by E o . It will always be viewed as a subset of X 2 , without reference to any imbedding. We say the graph is regular if all vertices have the same degree.

An important example is the case in which the conductances of the edges are equal to 1. Then the conductance matrix is the adjacency matrix of the graph: A x,y " 1 tx,yuPE .

If a graph is finite, its characteristic polynomial, eigenvalues and eigenspaces are the ones associated with its adjacency matrix.

A complete graph is defined by taking all conductances equal to one.

The complete graph with n vertices is denoted by K n . The complete graph K 4 is the graph defined by the tetrahedron. K 5 is not planar (i.e. cannot be imbedded in a plane), but K 4 is.

Other common examples are, for d ą 2 the d-regular tree, the lattice Z d and the discrete tori pZ{pZq d , for p ą 2.

Together with the conductances, we suppose given a damping (or killing) rate, i.e. a nonnegative function κ on X. Define λ x " κ x `řy C x,y . We will assume λ everywhere finite.

The standard examples are the cases where pX, Eq is a regular graph with uniform degree d, and we have unit conductances and κ a nonnegative constant.

Setting P x,y "

Cx,y λx we associate to the pair pC, κq a stochastic or substochastic transition matrix P which is λ-symmetric i.e. such that λ x P x,y " λ y P y,x (this property is also referred to as detailed balance) with P x,x " 0 for all x in X.

It defines an irreducible discrete time Markov chain on X. If κ does not vanish we add as usual an extra point ∆ in which the chain is absorbed. We set P x,∆ " κx λx and P ∆,∆ " 1. In the standard examples, P x,y "1 d`κ A xy .

In what follows, unless the converse is explicitly mentioned, we will assume that the transience property holds. It is well known it can be formulated in three equivalent ways:

a) The Markov chain defined by P visits every vertex at most finitely many times.

b) For any x P X, ř 8 n"0 rP n s x,x ă 8. c) For any x, y P X, ř 8 n"0 rP n s x,y ă 8.

Note that when the graph is finite, this transience hypothesis is equivalent to assuming that κ does not vanish everywhere.

Green matrices and hitting distributions

With this transience assumption, we can now define the Green matrix (or Green function) G on X 2 : G x,y " G y,x " 1 λ y 8 ÿ n"0 rP n s x,y .

Note that setting M pλq x,y " λ x δ x,y , we have M pλqG " CG `I. The diagonal matrix M pλq will sometimes be denoted by M λ . Sometimes, it can be convenient to denote the Green matrix as a function: G x,y " Gpx, yq.

The Green matrices defined by conductances equal to 1 and all positive constants κ " u's define the resolvent tG G puq, u ą 0u of the graph.

Example 1. The Green matrix in the case of the complete graph K n unit conductances and uniform killing measure of intensity κ ą 0 is given by the matrix 1 n `κ pI `1 κ Jq where J denotes the pn, nq matrix with all entries equal to 1.

Proof. Note first that rλI ´CsG " I, and that λI ´C " pn `κqI ´J. Hence G " rpn `κqI ´Js ´1.

Example 2. The Green matrix of the d-regular tree with uniform killing measure of intensity κ ą 0 is u dpx,yq κ`dp1´uq , with u " ˆd`κ´?pd`κq 2 ´4pd´1q 2pd´1q ˙, dpx, yq denoting the graph distance between x and y.

Proof. From its definition, G x,y is clearly bounded by 1 d`κ

1 1´d d`κ " 1
κ . It depends only on dpx, yq, so we can set G x,y " g k if dpx, yq " k. For k ě 1, g k solves the equation: pd `κqg k " pd ´1qg k`1 `gk´1 so that g k " u k g 0 .

Moreover, pd `κqg 0 " dg 1 `1 " dug 0 `1.

We denote by P x or by Pp . |ξ 0 " xq the law of the Markov chain ξ n defined by P starting at x, and for any subset F of X, by T F , the first hitting time of F by the path. Set D " F c . P D " P | DˆD is the transition matrix of the Markov chain killed at T F . It is defined on the restricted graph pD, EXpDˆDq by the same conductances and by the killing rate κ D

x " κ x `řyPF C x,y . λ D is the restriction of λ to D.

We denote by G D the associated Green matrix. The hitting distributions define a submarkovian matrix H F : rH F s x,y " P x pξ TF " yq (H F is called the balayage or Poisson matrix in potential theory).

Hitting distributions can be expressed in terms of Green matrices. The following proposition follows directly from these definitions. Note that as G and G D are symmetric, it follows from b) that rH F Gs x,y " rH F Gs y,x .

Energy

Recall that we assume transience.

Definition 1. For any complex function z on X, its energy is defined as:

epzq " 1 2 ÿ

x,y C x,y pzpxq ´zpyqqpzpxq ´zpyqq `ÿ x κ x zpxqzpxq.

The space of functions of finite energy is equipped with the scalar product:

epf, gq " 1 2 ÿ

x,y C x,y pf pxq ´f pyqqpgpxq ´gpyqq `ÿ x κ x f pxqgpxq.

It contains finitely supported functions.

Note that epzq will also be denoted by epz, zq.

Theorem 1. a) For any vertex x 0 , define the function G x0 by G x0 pxq " G x,x0 . G x0 has finite energy and for any x, y P X, epG x , G y q " G x,y . b) For any finitely supported function f , epf, G x0 q " f px 0 q.

Proof. If X is finite, every function has finite energy. a) and b) follow directly from the fact that epf, gq " ÿ

x λ x f pxqgpxq ´ÿ x,y C x,y f pxqgpyq (we can simply write epf, gq " xpM λ ´Cqf, gy) and use the expression of G as rM pλq ´Cs ´1. We get in the same way that epf, G x0 q " f px 0 q which implies the positive definiteness of e. Note also that epGf, gq " xf, gy.

If X is infinite, any function with finite support has finite energy. Letting a finite set D increase to X, then, as P D increases to P and λ D " λ on D, G D increases to G. By Fatou's lemma, epG x0 q ď lim inf eprG D s x0 q. But for any function f supported in D, the definition of κ D implies that epf q " e D pf q, hence, eprG D s x0 q " G D x0,x0 if x 0 P D, in particular for D large enough. Hence epG x0 q ď G x0,x0 .

To prove the reverse inequality note that:

epG x 0 q " eprG D s x0 q `epG x0 ´rG D s x0 qq `2eprG D s x0 , G x0 ´rG D s x0 q ě G D x0,x0 `2eprG D s x0 , H F G x0 q.
We conclude the proof of by checking that for any function f supported by D, epf, H F G x0 q vanishes. This expression is given by a countable absolutely converging sum:

ř xPD λ x f pxqH F G x0 pxq ´řxPD ř y C
x,y f pxqG x0 pyq " ř xPD λ x f pxqpH F G x0 pxq ´řy P x,y H F G x0 pyqq. Note finally that for any px, yq P D ˆF, H F x,y " ř z P x,z H F z,y . The same argument works for G x `Gy so we can conclude the proof of a)

. We then get that for any finitely supported function f , taking D large enough to include its support, epf, G x0 q " epf, rG D s x0 q `epf, H F G x0 q " e D pf, rG D s x0 q " f px 0 q.

The Dirichlet space D (also known as the extended Dirichlet space (Cf [START_REF] Fukushima | Dirichlet forms and Markov processes[END_REF])) is defined as the closure of the space D 0 of finitely supported functions equipped with the energy scalar product. It is clear from the above that G x0 belongs to D. The following theorem identifies it with a space of functions. Theorem 2. Let f n be a Cauchy sequence in D 0 . Then f n converges pointwise towards a function of finite energy f 8 and epf 8 ´fn q converges to 0. Moreover G x0 belongs to D and for any f in D, epf, G x0 q " f px 0 q.

Proof. The pointwise convergence follows from the inequality |f n pxq´f m pxq| " |epf n ´fm , G x q| ď repf n ´fm qGpx, xqs 1 2 . By Fatou's lemma, epf 8 q ď lim nÑ8 epf n q, and epf 8 ´fm q ď lim inf nÑ8 epf n ´fm q which can be made arbitrarily small by taking m large enough.

If a sequence of finite sets D n increases to X, for m ă n, eprG Dn s x0 ŕG Dm s x0 q " G Dn px 0 , x 0 q´G Dm px 0 , x 0 q. As G Dn px 0 , x 0 q increases to Gpx 0 , x 0 q, rG Dn s x0 is a Cauchy sequence and it converges pointwise to G x0 which therefore belongs to D. The last statement follows by approximation of f by a sequence of finitely supported functions.

Theorem 3. For any subset F of X, g and f in D, with g vanishing on F , H F f P D, epH F f q ď epf q, and epH F f, gq " 0.

Proof. Assume that F c is finite, and that f, g P D 0 . Then the result follows from the identity: @x P F c , y P F, P H F x,y " H F x,y .

Indeed, as f ´HF f vanishes on F , it implies that epH F f, f ´HF f q vanishes and we have epf q " epH F f q`epf ´HF f q . We then extend to D by continuity.

If F c is infinite, let F n be a sequence decreasing towards F , with F c n finite. Then H Fn f converges to H F f pointwise and therefore epH F f q ď epf q by Fatou's lemma. Moreover, H Fn f converges to H F f in D: Take f ǫ P D 0 such that epf ´fǫ q ă ǫ and note that for n large enough, H F f ǫ " H Fn f ǫ . Then, epH Fn f ´HF f q ď epH Fn pf ´fǫ qq `epH F pf ´fǫ qq ď 2ǫ.

We say that u P D is a potential iff for any nonnegative g P D, epu, gq ě 0, or equivalently, iff P u ď u. Setting χ x " epu, ½ txu q, we get that u " Gχ, i.e.

upxq " ř y G x,y χ y . Note that in particular, if F is finite, H F 1 " H F 1 F is a potential, known as the capacitary potential of F whose energy defines the capacity of F , denoted by Cap e pF q. For further developments see for example [START_REF] Fukushima | Dirichlet forms and Markov processes[END_REF] and its references.

Continuous time Markov chain and semigroup

Attach to each edge tx, yu a Poisson Process N tx,yu of intensity C x,y on p0, `8q and to each vertex x with κ x ą 0 a Poisson Process N tx,∆u of intensity κ x on p0, `8q, all these processes being independent.

Then the discrete Markov chain ξ n starting at x defined by P , together with a sequence of holding times T n ´Tn´1 can be obtained as follows:

Set T 0 " 0 and let T 1 be the first time at which one of the Poisson processes N tx,yu , y P X Y t∆u jumps. T 1 follows an exponential distribution of parameter λ x . Let ξ 1 be the other end of the edge to which it is attached. If ξ 1 " ∆, set ζ " 1. Otherwise, set that ζ ą 1 and iterate this procedure as follows:

If ζ ą n, let T n`1 be the first time after T n at which one of the Poisson processes N tξn,yu , y P X Y t∆u jumps. Conditionally to tξ k , T k , k ď nu, T n`1 ´Tn follows an exponential distribution of parameter λ ξn . Let ξ n`1 be the other end of the edge to which it is attached. If ξ n`1 " ∆, set ζ " n `1.

Otherwise, set that ζ ą n `1.

If the iteration never stops, set ζ " 8. The process ξ n , n ď ζ is a Markov chain starting from x with transition matrix P . Setting ξ 0 " x, define x t to be ξ n if T n ď t ă T n`1 and ∆ if t ě T ζ (with T 8 " lim nÑ8 T n if ζ " 8). The process tx t , t ě 0u is by definition the continuous Markov chain defined by pC, κq. Note that if ζ is infinite, T 8 can be finite or infinite. In the former case one says it is an explosion time. Explosion cannot occur when λ is bounded.

Remark : Note that this procedure defines not only a continuous time Markov chain, but a flow of maps Φ s,t , 0 ď s ď t from X to X which has independent increments. We have x t " Φ s,t px s q.

For any pair px, yq P X 2 , set p t px, yq " Ppx t " y|x 0 " xq. Then we can state: Theorem 4. a) For any 0 ă t 1 ă ... ă t n , y 1 , ..., y n P X, Ppx t1 " y 1 , ..., x tn " y n | x 0 " xq " p t1 px, y 1 q p t2´t1 py 1 , y 2 q...p tn´tn´1 py n´1 , y n q. b) For any pair px, yq P X 2 , p t px, yq " p t py, xq.

c) Semigroup property:

ř zPX p t px, zqp s pz, yq " p t`s px, yq. d) Fokker Planck equations: ř zPX ş t 0 C x,z p s pz, yqds " p t px, yq ´1tx"yu `şt 0 λ x p s px, yqds; ř zPX ş t 0 p s px, zqC z,y ds " p t px, yq ´1tx"yu `şt 0 p s px, yqλ y ds. e) G x,y " ş 8 0 p s px, yqds.

Proof. In case X is finite, we get from the construction of x t and from the independent increment property of Poisson processes that: p t`δ px, yq ´pt px, yq " δ ÿ zPX p t px, zqL z,y `Opδ 2 q.

with L " ´Mλ `C, M λ denoting the diagonal matrix with coefficients given by λ.

It follows that p t px, yq " expptLq x,y , which implies b), c) d) and e) as G " p´Lq ´1. Property a) follows from the stationary independent increment property of Poisson processes and consequently of the associated flow of maps Φ.

To deal with the infinite case, consider D finite, increasing to X. Define C D to be the restriction of C to D ˆD, λ D the restriction of λ to D, so that κ D

x " κ x `řzPD c C tx,zu . As D increases, the associated processes x D t , absorbed in ∆, are naturally coupled in such a way that if D 1 Ă D 2 , until its absorption time, which occurs when

x D2 t hits D c 1 Y t∆u, x D1 t coincides with x D2 t .
The associated semigroup p D t px, yq increases towards p t px, yq as D increases to X, and properties a), b), c), d) extend to the limit. In the same way, the Green function G D increases to G so that e) is also verified. Remark 2. If X is finite, λ ř λx is the unique stationary distribution of the discrete Markov chain as well as of the continuous time chain defined hereinabove. Note that dividing the holding times at each vertex x by some positive number cpxq we can construct a continuous time Markov chain which has the same jump probabilities but whose stationary distribution is proportional to cλ.

Feynman-Kac formula

The continuous time Markov chain defined above as well as the associated semigroup and Green function are determined by the pair pC, κq. The following result determines the effects of an increase of κ.

Theorem 5. If χ x is a nonnegative function defined on X, let us denote respectively by p χ t and G χ the semigroup and the Green function associated with pC, κ `χq. Then:

a) (Feynman-Kac formula) Epe ´şt 0 χx s ds 1 txt"yu |x 0 " xq " p χ t px, yq. b) (Resolvent equations) G " G χ `GM χ G χ " G χ `Gχ M χ G.
Proof. a) Attach to each vertex x with χ x ą 0 a Poisson process on r0, `8q N χx of intensity χ x , independent of the Poisson processes defined previously.

Then the continuous time Markov chain xt associated with pC, κ `χq can be obtained as above from the Poisson processes N tx,yu , tx, yu P E and Ñ tx,∆u defined at each vertex by the sum of the two independent processes N tx,∆u and N χx . Clearly, xt " x t until x jumps to ∆. This will occur when x jumps to ∆ or at the first time at which for some n, N χx is the first Poisson process to jump after T n . If n t " suppn, T n ď tq, conditionally to the path of x up to time t, this occurs after time t with probability nt´1 ź k"0 e ´χξ k pTk`1´T k q e ´χξn t pt´Tn t q " e ´şt 0 χx s ds . b) In the finite case, we have p χ t px, yq " expptpL ´M pχqqq x,y , and G χ " p´L`M pχqq ´1, and the equations follow trivially. They extend to the infinite case. If χ is finitely supported, take increasing limits with D increasing to X, as before. Then if χ is not finitely supported, take decreasing limits, letting a sequence of finitely supported χ n increase towards χ.

A discrete analogue of the Feynman-Kac formula can be given as follows:

Let s be any function on X taking values in p0, 1s. Then, for the discrete Markov chain ξ n associated with P , E x p n´1 ź j"0 spξ j q1 tξn"yu q " rpM psqP q n s x,y , in which M psq is the diagonal matrix defined by s.

Chapter 2

Loop measures

In this chapter, we introduce the Markov loop measure µ and the related Poisson processes of loops L α of intensity αµ often referred to as 'loop soups".

Bridges and based loops measures

A bridge between two vertices x and y is a path from x to y jumping only across edges of E. In discrete time, it is a finite sequence of adjacent vertices ξ " pξ 0 , ξ 1 , ..., ξ n q with n ě 1, ξ 0 " x and ξ n " y. In continuous time, a holding time is given at each step, including 0 and n.

Based loops are bridges with identical endpoints: a bridge from x to x is a loop based at x. In discrete time, to avoid trivial infinities, we will require based loops to have at least one jump. In continuous time, they can be reduced to a point and a holding time.

The discrete bridge measure ν x,y is defined as follows:

If ξ " px 0 " x, x 1 , ..., x n " yq, ν x,y pξq "

ś n´1 0 C xi,xi`1 ś n 0 λ xi " 1 λ y n´1 ź 0 P xi,xi`1 .
The discrete based loop measure ν is defined as follows:

If ξ " px 0 " x, x 1 , ..., x n " xq,
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νpξq "

1 n λ x ν x,x pξq " 1 n n´1 ź 0 P xi,xi`1 .
In particular, denoting by ppξq the number of jumps of the based loop ξ, we obtain that, for k ě 2 νpp " kq " 1 k T rpP k q and therefore, as T rpP q " 0, the mass of ν denoted |ν| equals ř 8

1 1 k T rpP k q. If X is finite: |ν| " ´logpdetpI ´P qq " logpdetpGq ź x λ x q (2.1)
since (recalling that M λ denotes the diagonal matrix with entries λ x ) we have detpI ´P q " detpM λ ´Cq detpM λ q .

In continuous time, denoting by P x the distribution of the continuous time Markov chain starting at x, the t-bridge measure P x,y t is defined as the restriction of P x to the set of paths segments indexed by r0 , ts ending at y. Its mass is p t px, yq.

For any measurable set A of right continuous paths indexed by r0 ts, we can write P x,y t pAq " P x pA X tx t " yuq.

In particular, If t 1 ă t 2 ă ... ă t h ă t, P x,y t pxpt 1 q " x 1 , ..., xpt h q " x h q " p t1 px, x 1 qp t2´t1 px 1 , x 2 q...p t´t h px h , yq.

The bridge measure µ x,y is defined as ż 8 0 P x,y t dt. Its mass is G x,y .

A bridge from x to y with p jumps can be decomposed as a discrete time bridge and a list of holding times i.e. as a pair pξ, τ q " ppξ m , 0 ď m ď pq, pτ m , 0 ď m ď pqq in X p ˆRp`1 `, with ξ 0 " x and ξ p " y. The discrete bridge is ξ " pξ 0 , ..., ξ p q, and the τ m are the holding times. Lemma 1. µ x,y induces ν x,y on discrete bridges. Moreover, under µ x,y , conditionally on the discrete bridge, the holding times τ m are independent exponential variables of parameter λ ξm .

Proof. Indeed, for any positive s 0 , s 1 ..., s k´1 , P x,y t pp " k, ξ i " x i , τ i P ps i , s i ds i q, 0 ď i ď k ´1q equals

1 tx0"x,x k "yu r k´1 ź i"0 P xi,xi`1 λ xi e ´λx i si ds i s1 t ř k´1
i"0 siătu e ´λx k pt´ř k´1 i"0 siq .

We get the first result by integrating in t, and all s i , then the second one by integrating in t only.

Note that the images of the bridge measures under the natural time reversal transformation is obtained by switching x and y.

We can now give the most important definition in this section:

Definition 2. Denoting by T plq the time length of a continuous time based loop l, the based loop measure µ is defined by the identity:

µpdlq " ÿ xPX λ x ş T plq 0 λ lpsq ds µ x,x pdlq " ÿ xPX ż 8 0 λ x ş t 0 λ lpsq ds P x,x t pdlqdt.
Remark 3. a) µ is clearly sigma-finite invariant under time reversal.

b) Note that in continuous time, a based loop with p points in X can be defined as a couple l " pξ, τ q " ppξ m , 0 ď m ď p ´1q, pτ m , 0 ď m ď pq in X p ˆRp`1 `, and we can set ξ p " ξ 0 (equivalently, we can parametrize the associated discrete based loop by Z{pZ). Note that two time parameters are attached to the base point since the based loops do not in general end or start with a jump. The integer p represents the number of points (distinct or not) in the discrete based loop ξ " pξ 0 , ..., ξ ppξq´1 q and will be denoted ppξq, or pplq, and the τ m are holding times.

Based loops have a time period T plq " ř ppξq i"0 τ i . If we denote ř m i"1 τ i´1 by s m : lptq " ξ m´1 on rs m´1 , s m q (with by convention s 0 " 0 and ξ p " ξ 0 ). c) Based loops with one point pp " 1q are simply given by a pair pξ, τ q in X ˆR`. For one-point loops:

µtppξq " 1, ξ 0 " x, τ 0 P dtu " e ´λxt t dt.

(2.2) d) µ induces ν on discrete loops. Indeed, by lemma 1:

µpp " k, ξ i " x i q " P x0,x1 P x1,x2 ...P x k´1 ,x0 ż p0,8q k`1 1 ř k i"0 λ xi t i k ź i"0
λ xi e ´λx i ti dt i .

(with

x k " x 0 ) " 1 k P x0,x1 P x1,x2 ...P x k´1 ,x0 . 
e) If D is a subset of X, the restriction of µ to based loops contained in D, denoted by µ D is clearly the based loop measure induced by the Markov chain killed at the exit of D. This can be called the restriction property.

Loops and pointed loops

Definition 3. In discrete as in continuous time, a loop is defined as an equivalence class of based loops for the time shift. Equivalence classes will be denoted by a circle exponent. The based loop measures ν and µ induce measure on loops denoted by ν ˝and µ ˝which are also sigma-finite.

In discrete time, we clearly have, for ξ " px 1 , ..., x p q, denoting by ξ ˝the associated discrete loop: We define non trivial pointed loops as based loops ending with a jump.

ν
They are given by a discrete based loop ξ 0 , ..., ξ p´1 and by holding times τ 0 , ..., τ p´1 . One-point pointed loops and one-point based loops coincide. A measure µ ˚is naturally defined on pointed loops. For k ą 1, it is given by:

µ ˚pp " k, ξ i " x i , τ i P dt i q " 1 k P x0,x1 P x1,x2 ...P x k´1 ,x0 k´1 ź i"0
λ xi e ´λx i ti dt i .

(2.

3)

The measures µ and µ ˚coincide on trivial (i.e. one point) based loops.

Theorem 6. µ and µ ˚induce the same measure µ ˝on loops.

Note that µ ˚is simpler to define and to analyze than µ. However, the definition of µ can be extended to more general situations, e.g. diffusion processes.

Proof. For non-trivial loops, the parameters of the pointed loop naturally associated with a based loop are ξ 0 , ..., ξ p´1 and

τ 0 `τp " τ 0 , τ i " τ i , 1 ď i ď p ´1
By definition of µ, its image on the set of pointed loops is:

µpp " k, ξ i " x i , τ i P dt i q " P x0,x1 ...P x k´1 ,x0 λx 0 t0 ř k´1 0 λx i ti ś k´1 i"0 λ xi e ´λx i ti dt i .
Note that loop functionals can be written

Φpl ˝q " 8 ÿ k"1
1 tppξq"ku Φ k ppξ i , τ i q, i " 1, ..., kq with Φ k invariant under circular permutation of the variables pξ i , τ i q.

Then, for non negative Φ k , ş Φ k pl ˝qµpdlq equals ż Φ k ppx i , t i q i " 0, 1, ..., k´1qP λ lpsq ds, can be performed on based loop or more generally bridges so that all holding times have parameter 1. This definition was used in [START_REF] Jan | Markov paths, loops and fields[END_REF].

If one performs this time change, under µ ˝, conditionally on the discrete loop ξ such that ppξq " k, T λ " ř λ xi τ i is a gamma variable of density

t k´1
pk´1q! e ´t on R `and p λx i τi Tλ , 1 ď i ď kq an ordered k-sample of the uniform distribution on p0, 1q independent of T λ .

Wreath products *

Assume X is finite. The following construction gives an interesting information about the number of distinct points visited by the loop.

Associate to each point x of X an integer n x . Let Z be the product of all the groups Z{n x Z. On the wreath product space X ˆZ, define a set of conductances r C px,zq,px 1 ,z 1 q by:

r C px,zq,px 1 ,z 1 q " 1 n x n x 1 C x,x 1 ź y‰x,x 1 1 tzy"z 1 y u
and set r κ px,zq " κ x . Denote by r e the corresponding energy form. Note that r λ px,zq " λ x , that in the associated Markov chain, the first coordinate is an autonomous Markov chain on X and that in a jump, the Z-configuration is modified only at the points from which or to which the first coordinate jumps.

Then, denoting by r ν the discrete loop measure and by r P the transition matrix on X ˆZ defined by r e, we have the following Proposition 2. Note that in the set tx, x 1 , ..., x k´1 u under the product sign, distinct points are counted only once, even if the path visit them several times, as it is only the last resampling that is prescribed. There are ś xPX n x possible values for z. The detail of the proof is left as an exercise.

ź xPX n x ÿ l νplq ź x, nxplqą0
In the case where X is a group and P defines a random walk, r P is associated with a random walk on X ˆZ equipped with its wreath product structure (Cf [START_REF] Pittet | On random walks on wreath products[END_REF]).

Poissonian Loop Ensembles

Following the idea of [START_REF] Lawler | The Brownian loop soup[END_REF], which was already implicitly in germ in [START_REF] Symanzik | Euclidean quantum field theory[END_REF], let us define, for all positive α, L α to be the Poissonian ensemble of loops (i.e. the Poisson point process in the set of loops) with intensity αµ

˝.
It is sometimes more convenient to consider the corresponding Poissonian ensemble of based loops of intensity αµ. We will not emphasize the difference between them, as one can often replace µ ˝by µ as they coincide on loop functionals.

Here we consider loops with holding times, and the loops in the ensemble are a.s. distinct. If we consider loops in discrete time, we get a collection of loops. By collection, we mean that each element can have multiple copies.

One could alternatively refer to collections as multisets, or non-negative integer valued point measures. For each discrete loop ξ, the number of copies of ξ in the ensemble follows a Poisson distribution of parameter αν ˝pξq and these variables are independent.

Note also that these Poissonian ensembles can be also be considered as a point process of loops indexed by the "time" α. From that perspective, L α is an increasing set of loops with stationary increments. It is a Poisson point process of intensity µ ˝pdlq b dα (dα denoting Lebesgue measure on the positive half-line). Its points are a countable set of pairs pl i , α i q formed by a loop and a time.

Recall from the general theory of Poisson point processes, that for any functional Φ on the loop space, vanishing on loops of arbitrary small length,

Epe i ř lPLα Φplq q " exppα ż pe iΦplq ´1qµpdlqq.
In this formula as in the following, we could replace µ ˝by µ as we consider loop functionals.

Similarly, for any positive functional Ψ on the loop space,

Epe ´řlPLα Ψ plq q " exppα ż pe ´Ψ plq ´1qµpdlqq. (2.4) It follows that if Φ is µ-integrable, ř lPLα Φplq is integrable and Ep ÿ lPLα Φplqq " α ż Φplqµpdlq.
And if in addition Φ 2 is µ-integrable, ř lPLα Φplq is square-integrable and

Ep ÿ lPLα Φplqq 2 " α ż Φ 2 plqµpdlq `pα ż Φplqµpdlqq 2 .
Recall "Campbell formula" (see formula 3-13 in [START_REF] Kingman | Poisson processes[END_REF]): For any system of non negative or µ-integrable loop functionals F i ,

E ´ÿ l1‰l2...‰l k PLα ź F i pl i q ¯" k ź 1 α ż F i plqµpdlq. (2.5)
Let us finally recall one important property of Poisson processes, known as Palm formula.

Proposition 3. Given any bounded functional Φ on loop sets and any integrable loop functional F , we have:

Ep ÿ lPLα F plqΦpL α qq " ż EpΦpL α Y tluqqαF plqµpdlq.
Proof. This is proved by considering first for ΦpLq the functionals of the form ř l1‰l2...‰lqPL ś q 1 G j pl j qq (with G j bounded and µ-integrable) which span an algebra separating distinct configurations and applying formula (2.5).

Then, the common value of both members is α q ř q 1 µpF G j q ś l‰j µpG l q ὰq`1 µpF q ś q 1 µpG j q.

Exercise 1. Give an alternative proof of this proposition using formula (2.4).

Remember that L α includes one point loops. The periods τ l of the one point loops at any point x form a Poisson process of intensity α e ´λx t t . It follows directly from this (see [START_REF] Pitman | Combinatorial stochastic processes[END_REF] and references therein) that: Proposition 4. The sum of these periods ř τ l and the set of "frequencies" τ l ř τ l (in decreasing order) are independent and follow respectively a Γ pα, 1 λx q and a P oisson ´Dirichletp0, αq distribution.

Hitting probabilities

Note that by the restriction property, L D α " tl P L α , l Ď Du is a Poisson process of loops with intensity µ D , and that L D α is independent of L α zL D α . It follows that the probability that no non trivial loop (i.e. a loop which is not reduced to a point) in L α intersects F " D c equals expp´αrµptl, pplq ą 1q´µ D ptl, pplq ą 1qsq " expp´αµptl, pplq ą 1, l Ę Duqq.

Let us now assume that the graph is finite. Then this probability equals

ˆdetpI D ´P D q detpI ´P q ˙´α " ˆdetpG D q ś xPF λ x detpGq ˙α.
Recall Jacobi's identity: for any pn `p, n `pq invertible matrix A, denoting by e i the canonical basis, detpA ´1q detpA ij , 1 ď i, j ď nq " detpA ´1q detpAe 1 , ..., Ae n , e n`1 , ..., e n`p q " detpe 1 , ..., e n , A ´1e n`1 , ..., A ´1e n`p q " detppA ´1q k,l , n `1 ď k, l ď n `pq.

In particular, detpG D q " detpGq detpG|F ˆF q , we can also denote by detpGq detF ˆF pGq . Therefore, we have proved:

Proposition 5. The probability that no non-trivial loop in L α intersects F equals ś xPF rλ x det F ˆF pGqs ´α.
In particular, it follows that the probability that no non-trivial loop in L α visits x equals p 1 λxGx,x q α . Remark 5. Similarly, if F 1 and F 2 are disjoint, the µ-measure of loops inter-

secting both sets is µptl, pplq ą 1, l Ę D 1 q `µptl, pplq ą 1, l Ę D 2 q ´µptl, pplq ą 1, l Ę D 1 X D 2 q
" logp detpGq detpG D1XD2 q detpG D1 q detpG D2 q q " logp det F1ˆF1 pGq det F2ˆF2 pGq det F1YF2ˆF1YF2 pGq q.

Therefore the probability that no loop in L α intersects F 1 and F 2 equals ˆdetpG D1 q detpG D2 q detpGq detpG D1XD2 q ˙α " ˆdet F1ˆF1 pGq det F2ˆF2 pGq det F1YF2ˆF1YF2 pGq ˙´α .

This formula extends to infinite graphs provided F 1 and F 2 are finite.

It follows that the probability no loop in L α connects two distinct points x and y equals `Gx,xGy,y´pGx,yq 2

Gx,xGy,y ˘α and in particular 1 ´pGx,yq 2 Gx,xGy,y if α " 1.

Exercise 2. Generalize this formula to n disjoint sets F i " D c i . The probability that no loop of L α intersects all F i equals:

´detpGq ś iăj detpG DiXDj q... ś detpG Di q ś iăjăk detpG Di XDj XD k q... ¯´α .
Chapter 3

Decompositions

In this chapter, we study the decompositions induced by splitting the set X of graph vertices in two parts, D and F , the energy and the Markov chain being decomposed into its restriction to D and its trace on F . Excursion decomposition is applied to loop ensembles. The case in which F is reduced to a single point receives special attention.

Traces of Markov chains and energy decomposition

If D Ă X and we set F " D c , the orthogonal decomposition of the energy epf, f q " epf q into e D pf ´HF f q `epH F f q (see proposition 3) leads to a decomposition of the continuous time Markov chain into the Markov chain killed at the exit of D and its trace on F , i.e.

x tF u t " x S F t , with S F t " infps, ż s 0 1 F px u qdu " tq.
Theorem 7. The trace of the continuous time Markov chain on F is the continuous time Markov chain associated with the pair pC tF u , λ tF u q defined by the energy functional e tF u pf q " epH F f q , for which

C tF u x,y " C x,y `ÿ a,bPD C x,a C b,y G D a,b λ tF u x " λ x ´ÿ a,bPD C x,a C b,x G D a,b .
Moreover, G tF u is the restriction of G to F ˆF and if the graph is finite, detpGq " detpG D q detpG tF u q.

Proof. For the second assertion, recall first that for any x in X and y P F , by proposition 1, we have

H F x,y " 1 x"y `1D pxq ÿ bPD G D x,b C b,y .
Moreover, epH F f q " epf, H F f q, by proposition 3 and therefore, by proposition 1,

λ tF u
x " e tF u p1 txu q " ep1 txu , H

F 1 txu q " λ x ´ÿ aPD C x,a H F a,x " λ x p1 ´ptF u x q where p tF u x " ř a,bPD P x,a G D a,b C b,x " ř aPD P x,a H F a,
x is the probability that the Markov chain starting at x will first perform an excursion in D and then return to x.

Then for distinct x and y in F ,

C tF u x,y " ´etF u p1 txu , 1 tyu q " ´ep1 txu , H F 1 tyu q " C x,y `ÿ a C x,a H F a,y " C x,y `ÿ a,bPD C x,a C b,y G D a,b .
Note that the graph defined on F by the non-vanishing conductances C tF u

x,y has in general more edges than the restriction to F of the original graph.

For the third assertion, note that G tF u is the restriction of G to F as for all x, y P F , e tF u pG y |F , 1 txu q " epG y , H F 1 txu q " H F 1 txu pyq " 1 tx"yu . Then, at it was already observed in section 2.5, Jacobi's identity yields the formula.

For the first assertion note the transition matrix rP tF u s x,y can be computed directly and equals

P x,y `ÿ a,bPD P x,a r 8 ÿ 0 rrP DYtxu s n s a,b sP b,y " P x,y `ÿ a,bPD P x,a G DYtxu a,b C b,y .
It can be decomposed according to whether the jump to y occurs from x or from D and the number of excursions from x to x into D:

rP tF u s x,y " ř 8 k"0 p ř a,bPD P x,a G D a,b C b,x q k pP x,y `řa,bPD P x,a G D a,b C b,y q.
The expansion of

C tF u x,y λ tF u x
in geometric series yields exactly the same result.

Finally, remark that the holding times of x tF u t at any point x P F are sums of a random number of independent holding times of x t . This random integer is the number of excursions from x to x performed by the chain x t during the holding time of x tF u t

, added to 1. It follows a geometric distribution on positive integers of parameter 1 ´ptF u x . Therefore, from the definition of the trace of continuous time Markov chain given at the beginning of this chapter,

1 λ tF u x " 1 λxp1´p tF u x q
is the expectation of the holding times of x tF u t at x.

Excursion theory

A loop in X which hits a subset F can be decomposed into its trace on F and its excursions in the complement of F , denoted by D. These excursions may be empty or possibly come back to their starting point.

The trace l tF u of a loop l is defined by restricting the discrete loop to F and by affecting to each point a holding time which is the sum of the holding times at that point until the loop hits a different point of F . Theorem 8. Let µ tF u be the loop measure defined by the pair pC tF u , λ tF u q.

Traces of loops of L α define a Poisson process of intensity αµ tF u .

Proof. A loop l hitting F can be decomposed into its restriction l tF u " pξ i , τ i q in F (possibly a one point loop), a family of excursions γ ξi,ξi`1 attached to the jumps of l tF u and a finite systems of n ξi i.i.d. excursions pγ h ξi , h ď n ξi ´1q attached to each position ξ i of l tF u . These sets of excursions can be empty. 

µ D x,y " 1 C tF u x,y rC x,y δ H `ÿ a,bPD C x,a C b,y µ a,b D s, µ D x " 1 λ x p tF u x p ÿ a,bPD C x,a C b,x µ a,b D q
and denote respectively by ν D x,y and ν D x their images on discrete excursions:

ν D x,y " 1 C tF u x,y rC x,y δ H `ÿ a,bPD C x,a C b,y ν a,b D s, ν D x " 1 λ x p tF u x p ÿ a,bPD C x,a C b,x ν a,b D q
and note that ν D x,y p1q " ν D x p1q " 1. We first identify the law of the restriction of discrete loops. They can be decomposed in their trace on F and a set of excursions which conditionally to the trace, are independent and distributed according to the excursion probabilities, the number of excursions from a position ξ i following a geometric distribution on non-negative integers of parameter p tF u ξi . If the multiplicity is one, it is enough to check that the cyclic products of transition matrices which gives the measure of a loop coincides with the product you get when you combine the distribution of a discrete loop on F with a the distribution of a compatible set of excursions. Let us check it on an example: Take F " tx, y, zu and D " ta, b, cu. Consider the loop px, a, b, x, y, c, z, xq ˝. Then on one hand, from the decomposition into trace on F and excursions, we get

p1´p tF u x qp tF u x ν D x pa, bqP tF u x,y ν D x,y pHqp1´p tF u y qP tF u y,z ν D y,z pcqp1´p tF u z qP tF u z,x ν D z,x pHq.
Using definition 4 and the identities ν c,c D pcq " 

λ tF u z λ z C tF u z,x λ tF u z C z,x C tF u z,x
which is equal to P x,a P a,b P b,x P x,y P y,b P c,z P z,x namely the expression of the discrete loop measure. One can prove in the same way that the identity holds for any discrete loop of mutiplicity 1 by decomposing a discrete loop into bridges ρ i between the first visit to ξ i and the first visit to ξ i`1 , for all i. These bridges are obtained by concatenating the discrete excursions from ξ i to itself and the final discrete excursion from ξ i to ξ i`1 .

To deal with the general case, note that the multiplicity m of the discrete loop is equal to the multiplicity m F of its trace on F divided by the period p E of the cyclically ordered bridges ρ i . Conversely, given a discrete loop ξ " pξ i q on F of multiplicity m F , and a cyclically ordered set of bridges pρ i q compatible with ξ and of period p E , they can be combined in p E different ways to yield the same discrete loop of mutiplicity mF pE . We see therefore that the image of µ by the trace operation coincides with µ tF u at the level of discrete loops. The property naturally extends to the corresponding Poisson processes.

The holding time τ i at ξ i of the loop l tF u is the sum of the n ξi ´1 ě 0 exponential holding times at ξ i of the loops γ h ξi , denoted by τ h i and of the holding time τ n ξ i i starting the excursion γ ξi,ξi`1 . As mentioned in the last remark made in the previous section, the n ξi 's follow geometric distributions and with the identity λ tF u ξi " λ ξi p1 ´ptF u ξi q), we finish specifying the intensity µ tF u of the traces Poisson process, thereby concluding the proof of the theorem for continuous time loops.

In addition, let us provide a decomposition formula for µ. Note that the holding time parameters inside D are the same for loops and excursions.

Then, conditionally on the holding time τ i at ξ i of the loop l tF u , the distribution of n ξi is a Poisson distribution of parameter pλ ξi ´λtF u ξi qτ i " λ ξi p tF u ξi τ i and the distribution of the holding times τ h i is the distribution β n ξ i ,τi of the n ξi increments defined by a uniform sample of n ξi ´1 points in r0, τ i s put in increasing order.

We set l " Λpl tF u , pγ ξi,ξi`1 q, pn ξi , γ h ξi , τ i,h qq. Then µ´µ D is the image measure by Λ of µ tF u pdl tF u q ź pν D ξi,ξi`1 qpdγ ξi,ξi`1 qe

´pλ ξ i ´λtF u ξ i qτi 8 ÿ k"0 rpλ ξi ´λtF u ξi qτ i s k k! δ k n ξ i rν D
x s bk pdγ h ξi qβ k,τi pdτ i,h q.

Note that for x, y belonging to F , the bridge measure µ x,y can be decomposed in the same way, with the same excursion measures.

The one point case and the excursion measure

We now consider the case in which F is reduced to a point x 0 and κ vanishes on D " tx 0 u c . We assume moreover that this point is almost surely visited by the Markov chain, i.e. that H tx0u 1pxq " 1 for all x ‰ x 0 , which implies that

p tx0u c x0
" 1. Note that since κ vanishes on D, this last assumption is always satisfied when X is finite.

Then the decomposition takes a simpler form.

First, λ x0 " ř a C x0,a `κx0 and

λ tx0u x0 " λ x0 ´ÿ a,bPD C a,x0 G D a,b C b,x0 " λ x0 ´ÿ aPD C x0,a " κ x0 as ř b G D a,b C b,x0 " H tx0u 1paq " 1.
l tx0u is a trivial one point loop with lifetime τ equal to the total time spent in x 0 , that we denote by p l x0 , and the number of excursions (which are all independent with the same distribution ν (the first time in K) and L K pγq (the last time in Kq, given γ TK and γ LK is

1 G D γ T K ,γ L K µ γT K ,γL K D .
It should be noted that ρ D depends only of e D (i.e. does not depend on κ x0 ).

Proof. a) follows directly from b). b) By definition of ρ D , the non-normalized hitting distribution of K at any

z P K is expressed by ÿ a,b,cPD C x0,a C b,x0 G D´K a,c C c,z G D z,b " ÿ a,cPD C x0,a G D´K a,c C c,z .
C x0,a , a P D is the killing rate of the Markov chain killed at the exit of D associated with e D and we have seen that

ř b G D a,b C b,x0 " H tx0u 1paq " 1. G D´K a,c C c,z is the e D -balayage matrix H D,K on K. Hence ÿ a,cPD C x0,a G D´K a,c C c,z " e D p1, H D,K ½ z q " e D pH D,K 1, ½ z q.
The case of last hitting distribution follows from the invariance of ρ D under time reversal. c) Indeed, if given a path segment xptq hitting K we denote by θ K pxq the path segment xpt `TK q, and by R K pxq the path segment pxpt `TK q, t ď

L K ´TK q, then 2 θ K µ a,b D " ÿ cPD,zPK G D´K a,c C c,z µ z,b D and θ K ρ D equals ř zPK ř a,b,cPD C x0,a G D´K a,c C c,z µ z,b D C b,x0 .
Therefore on any event A in the set of paths starting and ending in K,

R K ρ D pAq " ÿ z,tPK ÿ a,b,c,dPD C x0,a G D´K a,c C c,z µ z,t D pAqC t,d G D´K d,b C b,x0 .
Consequently,

ρ D pR ´1 K pAq|T K ă 8, γ TK " z, γ LK " tq " µ z,t D pAq G D z,t as ř a,b,c,dPD C x0,a G D´K a,c C c,z G D z,t C t,d G D´K d,b C b,x0 " ρ D pT K ă 8 , γ TK " z, γ LK " tq (see the proof of b).
Remark 6. This construction of ρ D can be extended to transient chains on infinite spaces with zero killing measure. There exists a unique measure on equivalence classes under the shift of doubly infinite paths converging to infinity on both sides, such that the hitting distribution of any compact set is given by its capacitary measure (Cf [START_REF] Hunt | Markoff chains and Martin boundaries[END_REF], [START_REF] Weil | Quasi processus. Séminaire de Probabilités IV[END_REF], [START_REF] Silverstein | Symmetric Markov processes[END_REF], and the first section of [START_REF] Sznitman | Vacant set of random interlacements and percolation[END_REF] for a presentation in the case of Z d random walks). Proposition 6 holds also in this context.

Application to loop hitting distributions

Let us come back to the µ-measure of loops intersecting two disjoint sets F 1 and F 2 , assuming they are finite. Setting F " F 1 Y F 2 , we see that this result involves only µ tF u and e tF u i.e. it can be expressed in terms of the restrictions of the loops to F .

Proposition 7. If F 1 and F 2 are disjoint, µptl, l Ę F c 1 , l Ę F c 2 q " 8 ÿ 1 1 k T rprH 12 H 21 s k q with H 12 " H F2 | F1 and H 21 " H F1 | F2 .
Proof. The idea is to use remark 5.

If X " X 1 Y X 2 is finite, with X 1 X X 2 " H, set H 12 " H X2 | X1 and H 21 " H X1 | X2 .
Then using the identity

G ´1 " M λ ´C on X, X 1 and X 2 , we get detpGq detpG X1 q detpG X2 q " ˆdet ´IX1ˆX1 ´GX1 C X1ˆX2 ´GX2 C X2ˆX1 I X2ˆX2 ¯˙´1 " ˆdet ´IX1ˆX1 ´H12 ´H21 I X2ˆX2 ¯˙´1 .
The transience implies that either H 12 Note finally that this can be applied to the restrictions of

G to F 1 Y F 2 , F 1
and F 2 , and that hitting distributions of F 1 from F 2 and F 2 from F 1 are the same for the Markov chain on X and its restriction to F 1 YF 2 . The conclusion follows at once from the property of the trace.

Remark 7. The k-th term of the expansion can be interpreted as the measure of loops with exactly k-crossings between F 1 and F 2 .

Chapter 4

Occupation fields

In this chapter, occupation fields of loop ensembles for vertices and oriented edges are introduced and their distributions are computed.

Loop occupation fields

The simplest variables defined on discrete or continuous loops are the number of crossings of an oriented edge px, yq N x,y plq " #ti : ξ i " x, ξ i`1 " yu (recall the convention ξ p " ξ 0 q and the number of visits to a vertex x N x plq " ÿ y N x,y plq.

Note that N x " #ti ě 1 : ξ i " xu except for trivial one point loops for which it vanishes.

tN x,y plq, px, yq P E o u can be referred to as the (oriented) edge occupation field defined by the loop. We also define N tx,yu plq " N x,y plq `Ny,x plq.

Proposition 8. µpN x,y q " rpI ´P q ´1s y,x P x,y " G x,y C x,y and µpN x q " λ x G x,x ´1 (4.1)

More generally µpN x,y pN x,y ´1q...pN x,y ´k `1qq " pk ´1q!pG x,y C x,y q k .

Proof. We can assume that X is finite. For any x ‰ y in X and s P r0, 1s, setting P psq u,v " P u,v if pu, vq ‰ px, yq and P psq x,y " sP x,y , we can prove in the same way as equation (2.1) that: µps Nx,y 1 tpą1u q " ´logpdetpI ´P psq qq.

Differentiating in s " 1, and remembering that for any invertible matrix function M psq, d ds logpdetpM psqq " T rpM 1 psqM psq ´1q, it follows that: µpN x,y q " rpI ´P q ´1s y,x P x,y " G x,y C x,y and (as GpM λ ´Cq " Id)

µpN x q " ÿ y µpN x,y q " λ x G x,x ´1. (4.2) 
For the third equation, note that as M 2 psq vanishes, d k ds k logpdetpM psqqq " p´1q k´1 pk ´1q!T rrpM 1 psqM psq ´1q k s.

Remark 8. Differentiating k times in s " 0, and setting G p0q " ř 8 m"0 rP p0q s m M p 1 λ q we get that: µptl, N x,y plq " kuq " pC x,y G p0q y,x q k k Remark 9. Similarly to the notations defined in the proof of the previous The joint conditional distribution of p p l x , x P Xq given pN x , x P Xq is a product of gamma distributions. In particular, for any function Φ of the discrete loop ξ and k ě 1, ż p p l x q k 1 tpą1u Φpξq µpdlq " λ ´k x µppN x `k ´1q...pN x `1qN x Φpξqq.

Functions of the occupation fields are not the only functions naturally defined on the loops. Other such variables of interest are, for n ě 2, the multiple crossing numbers N px1,y1q,...,pxn,y nq , defined to be

n´1 ÿ j"0 ÿ 0ďi1ă...ăinăpplq n ź q"1
1 tξi q "xq`j ,ξi q `1"yq`j u , 

I l " ti l , i l `1, ..., i l`1 ´1u with i 1 " 1 ă i 2 ă ... ă i k ă i k`1 " n `1.
Show that p l x1,...,xn p l y1,...,ym " m´1 ÿ

j"0 infpn,mq ÿ k"1 ÿ IPP n,k ÿ JPP m,k p l xI 1 ,yj`J 1 ,xI 2 ,...yj`J k
where for example the term y j`J1 appearing in the upper index should be read as j `j1 , . . . , j `j2 ´1.

Let us now compute the Laplace transform of the occupation field.

Proposition 10. For any finitely supported non-negative function χ on X, denoting ř xPX χ x lx by ă l, χ ą, ż pe ´xp l,χy ´1qµpdlq " ´logpdetpI `M? χ GM ? χ qq.

If X is finite, with the notation of theorem 5, detpI `M? χ GM ? χ q " detpG χ q detpGq .

Proof. In the case of a finite graph, for any non-negative function χ, it comes easily from equation (4.3) that for χ ă 1 ż pe ´xp l,χy ´1qµpdlq " ÿ ną0 p´1q n n T rrpGM χ q n s " ´T rrlogpI `GM χ s Hence, as T rplogq " logpdetq ż pe ´xp l,χy ´1qdµplq " ´log detpI `GM χ q which now holds for all non negative χ as both members are analytic in χ.

Besides, by the resolvent equation in theorem 5:

detpI `GM χ q ´1 " detpI ´Gχ M χ q " detpG χ q detpGq . (4.4)

Note that detpI `GM χ q " detpI `M? χ GM ? χ q and detpI ´Gχ M χ q " detpI ´M? χ G χ M ? χ q, so we can deal with symmetric matrices. We can extend the formula to the infinite case as before: the determinants are well defined since we assumed that χ is finitely supported.

Remark 10. a) One checks the proposition still holds if

ř x G x,x χ x is finite, as then M ? χ GM ? χ is trace-class. b) Note that in particular µpe ´tp l x ´1q " ´logp1 `tG x,x q. ( 4.5) 
Consequently, the image measure of µ by p l x is 1 tsą0u 

"

´logp1 ´stpG x,y q 2 q.

The result follows by expanding both sides in powers of s and t, and identifying the coefficients.

Occupation fields and bridge measures

If C x,y ą 0, any path segment on the graph starting at x and ending at y can be naturally extended into a loop by adding a jump from y to x. We denote by w this map from bridges to loops. Note that different bridges can be mapped on the same loop. Denote by μx,y the image of µ distinct discrete bridges of same ν x,y measure from x to y, obtained by "cutting" one jump from y to x.

This proposition shows that the loop measure allows to recover all the measures μx,y when C x,y ą 0. If C x,y vanishes, an arbitrarily small positive perturbation creating a non vanishing conductance between x and y allows to recover μx,y . More precisely, denoting by e pεq the energy form equal to e except for the additional conductance C pεq x,y " ε, μx,y can be represented as lim εÑ0 1 ε N y,x µ e pεq . µ x,x is a measure on based loops, with base point x. Denote by µ x,x ˝the image of µ x,x on the set of loops. A direct calculation from the definitions shows the following result, analogous to proposition 11 in which the case

x " y was left aside.

Proposition 12. We have µ x,x ˝pdlq " p l x µpdlq.

Occupation fields of loop ensembles

We can associate to L α an occupation field:

p L x α " ÿ lPLα p l x .
For any finitely supported non-negative measure χ on X Epe ´x p

Lα,χy q " exp ´α ż pe ´xp l,χy ´1qdµplq ¯.

And therefore by proposition 10 we have Corollary 2. Epe ´x p

Lα,χy q " detpI `M? χ GM ? χ q ´α. If X is finite the determinant equals

" detpGχq detpGq ı α .
Many calculations follow from this result.

Note first that Epe ´t p L x α q " p1 `tG x,x q ´α. Therefore p L x α follows a gamma distribution Γ pα, G x,x q, with density 1 tuą0u e ´u Gxx Γ pαq u α´1 pGxxq α (in particular, an exponential distribution of mean G x,x for α " 1q and Ep p L x α q " αG x,x . Using the µ-distribution of p l x given in remark 10 b), we can recover the above result and get, as in proposition 4: Corollary 3. If L α " tl i u, the set of "frequencies" ´s p L y α q " pp1 `tG x,x qp1 `sG y,y q ´stpG x,y q2 q ´α. c) When we let α vary as a time parameter, we get a family of gamma subordinators, which can be called a "multivariate gamma subordinator" 2 .

We define the edge occupation field of L α in a similar way. For any oriented edge px, yq, we denote by N x,y pL α q or by N pαq x,y the sum `N pαq y,x .

ř lPLα N x,
Remark 12. a) It follows from (4.6) that if p L x α,0 denotes the part of the occupation field at x generated by one point loops, these variables are independent and have Γ pα, 1 λx q distributions (in particular, for α " 1, exponential distributions). Indeed, it follows from (4.6) that its Laplace transform equals p1 `t λx q ´α.

b) The distribution of tN pαq x , x P Xu follows easily, from a) and corollary 2 in terms of generating functions:

Ep ź x s N pαq x `α x q " det ˜δx,y `d λ x p1 ´sx q s x G x,y d λ y p1 ´sy q s y ¸´α (4.8)
so that the vector of components N pαq x follows a multivariate negative binomial distribution (see for example [START_REF] Jones | Alpha permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions[END_REF]).

c) It follows in particular that N pαq x follows a negative binomial distribution of parameters α and 1 ´1 λxGxx . For α " 1, N p1q

x `1 follows a geometric distribution of parameter 1 λxGx,x " p x . An alternative proof can be derived from the statement a) of the following proposition and the identity µptl, N x plq " nuq " p1´pxq n n ( cf. equation (4.7) in remark 10-d).

Proposition 13. Let tM i , i ą 0u be a sequence of independent Poisson variables of parameters αp i i , with p P p0, 1q and α ą 0. a) N " ř i iM i follows a negative binomial distribution of parameters pα, pq. b) Given an integer n and a sequence tm i , i ą 0u such that ř i im i " n, the conditional probability given that N " n that M i " m i for all i equals n! αpα`1q...pα`n´1q

ś i α m i i m i mi! .
In particular, it equals 1 ś i mi!i m i for α " 1. c) In any infinite set, attach to each non-vanishing variable M i M i elements, all distinct, and mark them by i. Then arrange these ř M i elements in random order. Conditionaly to N " n, the probability to get a k-uple of marks pi 1 , i 2 , ..., i k q equals

α k n! αpα`1q...pα`n´1qk! ś k 1 ij
. In particular, it equals

1 k! ś k 1 ij for α " 1.
Proof. a) can be proved by identification of the generating function ´1´sp 1´p ¯α. b) follows straightforwardly from the expressions of the Poisson and negative binomial distributions. For c), denote by m i the number of marks equal to i in the k-tuple pi j q. Observe that the number of partitions of t1, 2, ..., ku in blocks of sizes

m i is k! ś mi! . As k " ř i m i and ś k j"1 i j " ś i i mi , c) follows directly from b).
We can deduce from statement b) and equation ( 4 " n, the probability that the collection tN x plq, l P L pxq u arranged in random order equals pn 1 , n 2 , ...n k q, where ř n j " n, equals

α k n! αpα`1q...pα`n´1qk! ś k
1 nj (and in particular

1 k! ś k 1 nj for α " 1).
Remark 13. A similar result holds for the edge occupation field: N pαq x,y follows a negative binomial distribution of parameters α and C x,y G y,x . Moreover, denoting by L px,yq the set of loops of L α traversing px, yq, conditionally to N pαq x,y " n, the probability that the collection tN x,y plq, l P L px,yq u arranged in a random order equals pn 1 , n 2 , ...n k q, where ř n j " n, equals

α k n! αpα`1q...pα`n´1qk! ś k 1 nj (" 1 k! ś k 1 nj for α " 1.
) This results is a straightforward consequence of proposition 13 and proposition 8.

Palm formula applied to F plq " p l x , N x,y plq and propositions 11 and 12 yield the following:

Corollary 4. EpΦpL α q p L x α q " α ż EpΦpL α Y tγuqqp γ x µpdγq " α ż EpΦpL α Y tγuqqµ x,x pdγq and if x ‰ y EpΦpL α qN pαq x,y q " α ż EpΦpL α YtγuqqN x,y pγqµpdγq " αC x,y ż EpΦpL α Ytγuqqμ x,y pdγq. Exercise 4. Extend corollary 4 to p L x α p L y α , for x ‰ y.

Variation of the energy form

The loop measure µ depends on the energy e which is defined by the free positive parameters C and κ. It will sometimes be denoted by µ e . When X is assumed to be finite, we shall denote by Z e the determinant detpGq " detpM pλq ´Cq ´1, which is a positive number, as G and its inverse M pλq ´C are positive definite. Then, by remark d) in section 2.1 µpp ą 1q " logpZ e q řxPX logpλ x q.

Z α e is called the partition function of L α . We wish to study the dependance of µ on C and κ. The following result is suggested by an analogy with quantum field theory (Cf [START_REF] Gawedzki | Conformal field theory[END_REF]).

Proposition 15. i) Bµ

Bκx " ´p l x µ ˝.

ii) If C x,y ą 0, Bµ BCx,y " ´T x,y µ ˝with T x,y plq " p p l x `p l y q ´Nx,y Cx,y plq ´Ny,x Cx,y plq. Proof. Recall that µ ˚pp " 1, ξ " x, τ P dtq " e ´λxt dt t and for k ą 1, according to equation (2.3), as we have C x,y " C y,x " λ x P x,y ,

µ ˚pp " k, ξ i " x i , τ i P pt i , t i `dt i qq " 1 k ź x,y C Nx,y x,y ź x λ ´Nx x ź iPZ{pZ λ ξi e ´λξ i ti dt i . " 1{k ź x,y C Nx,y x,y ź i e ´λξ i ti dt i Moreover we have λ x " κ x `řy C x,y .
The two formulas follow by elementary calculation.

If the graph is finite, proposition 15 is in fact the infinitesimal form of the following formula.

Proposition 16. Consider another energy form e 1 defined on the same finite graph (i.e. such that C 1 vanishes on edges where C vanishes). Then we have the following identity:

Bµ e1 Bµ e " e ř Nx,y logp C 1 x,y Cx,y q´řpλ 1 x ´λxq p l x .
Consequently, if X is finite,

µ e pe ř Nx,y logp C 1 x,y Cx,y q´řpλ 1 x ´λxq p l x ´1q " log ˆZe 1 Z e ˙(4.9)
and therefore

Ep ź px,yq " C 1 x,y C x,y  Nx,ypLαq e ´xλ 1 ´λ, p Lαy q " ˆZe 1 Z e ˙α . ( 4 

.10)

Proof. The first formula is a straightforward consequence of (2.2) and (2.3).

The proof of (4.9) goes by evaluating separately the contribution of trivial loops, which equals ř x logp λx λ 1

x q. Indeed,

µ e pe ř Nx,y logp C 1 x,y
Cx,y q´řpλ 1 x ´λxq p l x ´1q " µ e 1 pp ą 1q ´µe pp ą 1q

`µe p1 tp"1u pe ´řpλ 1 x ´λxq p l x ´1qq.

The difference of the first two terms equals logpZ e 1 q `řx logpλ 1 x q ṕlogpZ e q ´řx logpλ x qq. The last term equals

ř x ż 8 0 pe ´pλ 1 x ´λxqt ´1q e ´λxt t dt
which can be computed as in (4.6):

µ e p1 tp"1u pe ´řx pλ 1 x ´λxq p l x ´1qq " ´ÿ x log ˆλ1 x λ x ˙. (4.11)
Integrating out the holding times, formula (4.9) can be written equivalently:

µ e p ź px,yq " C 1 x,y C x,y  Nx,y ź x " λ x λ 1 x  Nx`1 ´1q " log ˆZe 1 Z e ˙(4.12)
(the addition of 1 in the exponent over

" λx λ 1 x ı corresponding to trivial loops ),
and therefore

Ep ź px,yq " C 1 x,y C x,y  Nx,ypLαq ź x " λ x λ 1 x  NxpLαq`1 q " ˆZe 1 Z e ˙α .
Remark 14. These ratio

Z e 1
Ze determine, when e 1 varies with C 1 C ď 1 and λ 1 λ " 1, the Laplace transform of the distribution of the crossing numbers of non oriented edges N tx,yu " N x,y `Ny,x .

Remark 15. ( h-transforms) Note that if C 1

x,y " h x h y C x,y and κ 1

x " ´hx pLhq x (recall that L " ´Mλ `C) for some positive function h on E such that Lh ď 0, we have λ 1 " h 2 λ, rP 1 s x,y " 1 hx P x,y h y , and G 1 x,y "

Gx,y hxhy . For finite graphs

Z e 1 Ze " 1 ś phxq 2 .
Other variables of interest on the loop space are associated with elements of the space of one-forms on G, namely odd real valued functions ω on oriented edges (which can also be viewed as discrete magnetic fields): ω x,y " ´ωy,x .

Let us mention a few elementary results. The operator P pωq defined by P pωq x,y " P x,y exppiω x,y q is also self adjoint in L 2 pλq. Define:

e pωq pzq " 1 2 ÿ x,y
C x,y pzpxq ´eiω x,y zpyqqpzpxq ´e´iω x,y zpyqq `ÿ x κ x zpxqzpxq.

(4.13)
If z is finitely supported, e pωq pzq " ř x λ x rzpxq ´řy P pωq

x,y zpyqszpxq. The associated loop variable is ř x,y ω x,y N x,y plq. We will denote it by ş l ω. Note that if we set, for any function g on X, rdgs x,y " gpyq ´gpxq,

ş l ω is invariant if ω is replaced by ω `dg.
For any positive integer k, |rrP pωq s k s x,y | is bounded by rP s k x,y . rrP pωq s k s x,x is real-valued.

Define the Green function: G pωq x,y " 1 λy ř k rrP pωq s k s x,y . G pωq and e pωq are related in the same way as G and e.

If X is finite, we get from the definition of µ:

ż pe i ş l ω ´1qµpdlq " 8 ÿ k"1 1 k rT rppP pωq q k q ´T rppP q k qs. (4.14) 
Hence ż pe i ş l ω ´1qµpdlq " T rrlogppI ´P qs ´T rrlogpI ´P pωq qs " logp detpG pωq q detpGq q (4.15)

and as in proposition 16,

ż pe ř Nx,y logp C 1 x,y
Cx,y q´řpλ 1 x ´λxq p lx`i ş l ω ´1qµ e pdlq equals:

ż pe i ş l ω 1 pą1 qµ e 1 pdlq ´µe pp ą 1q `µe p1 tp"1u pe ´řpλ 1 x ´λxq p l x ´1qq " ż pe i ş l ω ´1qµ e 1 pdlq `µe 1 pp ą 1q ´µe pp ą 1q ´ÿ x log ˆλ1 x λ x ˙.
We can now extend the previous formulas (4.12) and (4.4) to obtain, setting

detpG pωq qq " Z e,ω ż pe ř Nx,y logp C 1 x,y Cx,y q´řpλ 1 x ´λxq p lx`i ş l ω ´1qµ e pdlq " log ˆZe 1 ,ω Z e ˙(4.16)
and Ep ź

x,y

" C 1 x,y C x,y e iω x,y  N pαq x,y e ´řpλ 1 x ´λxq y Lα x q " ˆZe 1 ,ω Z e ˙α (4.17)
or equivalently

Ep ź

x,y

" C 1 x,y C x,y e iω x,y  N pαq x,y " λ x λ 1 x  Nx`1 q " ˆZe 1 ,ω Z e ˙α . (4.18) 
Remark 16. Formulas (4.16) and (4.17) apply to the calculation of loop indices: If we consider for example a simple random walk on a planar graph, and if z 1 is a point of the dual graph X 1 , ω pz 1 q can be chosen such that for any loop l, ş l ω pz 1 q is the winding number of the loop around a given point z 1 of the dual graph X 1 . Then e iπ ř lPLα ş l ω pz 1 q is a spin system of interest which will be investigated in section 7.7.

Conditional expectations*

Recall that the Poisson process L tF u α " tl tF u , l P L α u has intensity µ tF u and is independent of L D α . Note that the vertex occupation field of

L tF u α , p L tF u α , is the restriction of p L α to F .
If χ is carried by D and if we set e χ " e `} } 2 L 2 pχq and denote its "trace" re χ s tF u by e tF,χu we have, with the notation of section 3.1,

C tF,χu x,y " C x,y `ÿ a,b C x,a C b,y rG D χ s a,b , p tF,χu x " ÿ a,bPD P x,a rG D χ s a,b C b,x
and λ tF,χu x " λ x p1 ´ptF,χu

x q.

Moreover, we can now apply the results of the previous section to get the following:

Epe ´x p Lα,χy |L tF u α q " Epe ´x p L D α ,χy q ź x,yPF r ż e ´xp γ,χy ν D x,y pdγqs Nx,ypL tF u α q ˆź xPF e pλx´λ tF u x qr p L tF u α s x ş pe ´x p γ,χy ´1qν D x pdγq " " Z e D χ Z e D α ź x,yPF « C tF,χu x,y C tF u x,y ff Nx,ypL tF u α q ź xPF e r´λ tF,χu x `λtF u x s p L x α .

Example: Branching processes with immigration *

An interesting example can be given by taking X " N ´t0u, C n,n`1 " 1 for all n ě 1, κ n " 0 for n ě 2 and κ 1 " 1. P is the transfer matrix of the simple symmetric random walk killed at 0. We can apply the previous considerations to check that the occupation field p L n α is a branching process with immigration.

The immigration at level n `1 is produced by the local times at n `1

of the loops whose infimum is n `1 and the branching mechanism by the excursions to level n `1 of the loops visiting level n. Set F n " t1, 2, ..., n ´1u

and D n " F c n . From the calculations of conditional expectations made above, we get that for any positive parameter γ,

Epe ´γ p L n α |L tFnu α q " Epe ´γr { L Dn α s n qe rλ tFn ,γδnu n´1 ´λtFnu n´1 s p L n´1 α in which r y L Dn α s n denotes the occupation field of the trace of L α on D n eval- uated at n.
From this formula, it is clear that p L n α is a branching Markov chain with immigration. To be more precise, note that for any n, m ą 0, the Green matrix G m,n equals n ^m and that λ n " 2. Moreover, by the generalized resolvent equation, rG γδ1 s 1,n " G 1,n ´G1,1 γrG γδ1 s 1,n so that rG γδ1 s 1,n " 1 1`γ . For any n ą 0, the restriction of the Markov chain to D n`1 is isomorphic to the original Markov chain. Then it comes that for all n, p tFn`1u n " 1 2 , λ tFn`1u n " 1, and λ tFn`1,γδn`1u n " 2 ´1 1`γ " 2γ`1 1`γ so that the Laplace exponent of the convolution semigroup ν t defining the branching mechanism λ tFn,γδnu n´1 λtFnu n´1 equals 2γ`1 1`γ ´1 " γ 1`γ " ş p1 ´e´γs qe ´sds. It is the semigroup of a compound Poisson process whose Levy measure is exponential.

The immigration law (on R `) is a Gamma distribution Γ pα, G 1,1 q " Γ pα, 1q. It is the law of p L 1 α and also of r y L Dn α s n for all n ą 1. The conditional law of p L n`1 α given p L n α is the convolution of the immigration law Γ pα, 1q with ν p L n α .
Exercise 5. Show that if we consider the occupation field defined by the loops whose infimum equals 1 (i.e. going through 1), we get a branching pro-cess without immigration (it is the classical relation between random walks local times and branching processes). Exercise 6. Show that more generally, if C n,n`1 " r p 1´p s n , for n ą 0 and κ 1 " 1,with 0 ă p ă 1, we get all asymetric simple random walks. Show that λ n " p n´1 p1´pq n and G 1,1 " 1. Determine the distributions of the associated branching and Galton Watson process with immigration.

Moments and polynomials of the vertex occupation field *

This section describe properties of certain polynomials of the vertex occupation field. These properties suggest appropriate renormalization procedures in the case of two dimensional and three dimensional continuous spaces (see chapter 10 of [START_REF] Jan | Markov paths, loops and fields[END_REF]).

It is easy to check (and well known from the properties of the gamma distributions) that the moments of p L x α are related to the factorial moments of N pαq x . Denoting by DL α the collection of non trivial discrete loops in L α , we have:

Epp p L x α q k |DL α q " pN pαq x `k ´1 `αqpN pαq x `k ´2 `αq...pN pαq x `αq λ k x .
It is also well known that Laguerre polynomials L are orthogonal for the Γ pαq distribution. They have mean zero and variance Γ pα`kq k!Γ pαq . Hence if we set σ x " G x,x and P α,σ k pxq " p´σq k L pα´1q k p x σ q, the random variables P α,σx k p p L x α q are orthogonal with mean 0 and variance

σ 2k x Γ pα`kq k!Γ pαq , for k ą 0. Note that P α,σx 1 p p L x α q " p L x α ´ασ x " p L x α ´Ep p L x α q.
It will be denoted by r L x α in the following.

Moreover, we have

ř 8 0 t k P α,σ k puq " ř p´σtq k L pα´1q k p u σ q " e ut 1`σt p1`σtq α . Note that by remark 11, Ep e t p L x α 1`σx t p1 `σx tq α e s p L y α 1`σy s p1 `σy sq α q " 1 p1 `σx tq α p1 `σy sq α pp1´σ x t 1 `σx t qp1´σ y s 1 `σy s q´t 1 `σx t s 1 `σy s pG x,y q 2 q ´α " p1 ´stpG x,y q 2 q ´α.
Therefore, we get, by developing in entire series in ps, tq and identifying the coefficients:

EpP α,σx k p p L x α qP α,σy l p p L y α qq " δ k,l pG x,y q 2k αpα `1q...pα `k ´1q k! . (4.19)
Let us stress the fact that σ x and σ y do not appear on the right hand side of this formula. This is quite important from the renormalisation point of view, in particular when we consider the loop ensembles defined by two dimensional Brownian motions for which the Green function diverges on the diagonal (Cf

([34])).
For finitely supported χ, from determinant expansions given in [START_REF] Jones | A generalization of permanents and determinants[END_REF] and [START_REF] Jones | Alpha permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions[END_REF], we have detpI`M ? χ GM ? χ q ´α " 1`8

ÿ k"1 p´1q k k! ÿ χ x1 ...χ x k Per α pG x l ,xm , 1 ď l, m ď kq. (4.20)
The α-permanent Per α is defined as

ř σPS k α mpσq G x1,x σp1q ...G x k ,
x σpkq with mpσq denoting the number of cycles in σ. Then, from corollary 2, it follows that:

Ep A p L α , χ E k q " ÿ χ x1 ...χ x k Per α pG x l ,xm , 1 ď l, m ď kq.
Poisson process of loops provides a natural probabilistic proof and interpretation of this combinatorial identity (see [START_REF] Jones | Alpha permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions[END_REF] for an historical view of the subject).

We can show in fact that more generally:

Proposition 17. For any px 1 , ...x k q in X k , Ep p L x1 α ... p L x k α q " Per α pG x l ,xm , 1 ď l, m ď kq.
Proof. The cycles of the permutations in the expression of Per α are associated with point configurations on loops. We obtain the result by summing the contributions of all possible partitions of the points x 1 ...x k into a finite set of distinct loops. We can then decompose again the expression according to ordering of points on each loop. We can conclude by using the formula

µp p l x1,...,xm q " G x1,x2 G x2,x3 ...G xm,x1
and Campbell formula (2.5) .

Let S 0 k be the set of permutations of k elements without fixed point. They correspond to point configurations without isolated points.

Set Per

0 α pG x l ,xm , 1 ď l, m ď kq " ř σPS 0 k α mpσq G x1,x σp1q ...G x k ,x σpkq . Then
an easy calculation shows that:

Corollary 5. Ep r L x1 α ... r L x k α q " Per 0 α pG x l ,xm , 1 ď l, m ď kq.
Proof. Indeed, the expectation can be written

ÿ pďk ÿ IĎt1,...ku,|I|"p p´1q k´p ź lPI c G x l ,x l Per α pG xa,x b , a, b P Iq and Per α pGx a , x b , a, b P Iq " ÿ JĎI ź jPIzJ G xj ,xj Per 0 α pG xa,x b , a, b P Jq.
Then, expressing Ep r L x1 α ... r L x k α q in terms of Per 0 α 's, we see that if J Ď t1, ...ku, |J| ă k, the coefficient of Per 0 α pG xa,x b , a, b P Jq is ř I,IĚJ p´1q k´|I| ś jPJ c G xj,xj which vanishes as p´1q ´|I| " p´1q |I| " p´1q |J| p´1q |IzJ| and ř IĚJ p´1q |IzJ| " p1 ´1q k´|J| " 0.

Remark 17. Set Q α,σ k puq " P α,σ k pu`ασq so that P α,σ k p p L x α q " Q α,σ k p r L x α q. From the recurrence relation of Laguerre polynomials nL pα´1q n puq " p´u `2n `α ´2qL pα´1q n´1 ´pn `α ´2qL pα´1q n´2 ,
we get that nQ α,σ n puq " pu ´2σpn ´1qqQ α,σ n´1 puq ´σ2 pα `n ´2qQ α,σ n´2 puq.

In particular Q α,σ 2 puq " 1 2 pu 2 ´2σu´ασ 2 q, Q α,σ 3 puq " 1 6 pu 3 ´6σu 2 `3uσ 2 p2ά q `4σ 3 αq.
We have also, from (4.19)

EpQ α,σx k p r L x α qQ α,σy l p r L y α qq " δ k,l pG x,y q 2k αpα `1q...pα `k ´1q k! . (4.21)
See ( [START_REF] Jan | Markov paths, loops and fields[END_REF]) for additional results.

Chapter 5

Primitive loops, loop clusters, and loop percolation

This chapter focuses on loop clusters distribution and related Markovian percolation results, which generalizes the well known notion of i.i.d percolation.

Primitive discrete loops

Let DLpGq denote the collection set of discrete loops. A discrete loop ξ is said to be primitive if it does not have a non-trivial period. Any discrete loop ξ can be represented as some multiple rηs multpξq of a primitive discrete loop η denoted by πξ. Let PLpGq denote the set of primitive discrete loops of length at least 2 and let PL α " πpL α q denote the set of primitive discrete loops in the collection of discrete loops DL α (see section 4.7).

Proposition 18. If η 1 , . . . , η i , . . . , η r are distinct elements of PLpGq, the r events E i " tDℓ P DL α , πℓ " η i u are independent with PpE i q " 1 ´p1 νpη i qq α .

Proof. Recall that µ induces ν on discrete loops (see remark d in section 2.1).

L i " tℓ P DLpGq, πℓ " η i u, i " 1, . . . , r are disjoint, hence the r events E i are independent and for every η P PLpGq,

Ppη P PL α q " PpDℓ P L α , πℓ " ηq " 1 ´expp´α `8 ÿ m"1
νpℓ, ℓ " rηs m qq.

As µprηs m q " 1 m µpηq m for every m ą 0, we deduce that 63 Ppη P PL α q " 1 ´exppα logp1 ´νpηqqq.

Remark 18. The loop ensembles L α induce random collections of discrete loops DL α which can be decomposed into multiple copies of concatenation powers rηs i of primitive loops η. More precisely, the set of collections of discrete loops can be identified to the product Σ PLpGq , Σ denoting the set of collections of positive integers.

For any primitive discrete loop η and positive integer i, let N η,i pL α q be the multiplicity in the collection DL α of the discrete loop rηs i . These variables are independent and determine completely DL α . N η,i pL α q follows a Poisson distribution of parameter ανpηq i i . For fix η, this defines a Poisson distribution on Σ.

It follows directly from proposition 13 a) that the total number of copies of η contained in the loop ensemble S η pL α q " ř i iN η,i pL α q follows a negative binomial distribution of parameters pα, νpηqq. These variables are independent as η varies. Moreover, proposition 13 b) provides the conditional distribution of the variables N η,i pL α q given the variables S η pL α q:

If ř i im i " n, PpN η,i pL α q " m i , i ą 0|S η pL α q " nq " n! αpα`1q...pα`n´1q ś i α m i i m i mi! . In partic- ular, it equals 1 ś i mi!i m i for α " 1.

Remark 19. Birth and death of primitive loops for α " 1

For each primitive loop η, S η pL 1 q " ř i iN η,i pL 1 q follows a geometric distribution: PpS η pL 1 q " kq " p1´pqp k with p " νpηq. This geometric distribution is stationary for the birth and death process of non-negative integers which increases by 1 with probability p 1`p and decreases by 1 with probability 1 1`p except in zero where it stays in zero instead of decreasing. For each η, this process can be extended to collections of integers, i.e. the set Σ. It is constructed as follows:

We denote by m i the multiplicity of i and set n " ř i im i . If there is a birth, m 1 is increased by 1 with probability 1 n`1 or, with probability imi n`1 , a positive m i is decreased by 1 and m i`1 is increased by 1. If there is a death, with probability imi n a positive m i is decreased by 1 and m i´1 is increased by 1 . Nothing changes if the birth and death process stays in zero.

Proposition 19. The product Poisson distribution of the N η,i pL 1 q, i ą 0 is a stationary distribution of this Markov chain on Σ, which is reversible.

Proof. The detailed balance relation between two elements of Σ which differ only by the mutiplicities at i and i `1 follows from the identity

p n 1 mi!i m i 1 mi`1!pi`1q m i`1 p 1`p imi n`1 " p n`1 1 pmi´1q!i m i ´1 1 pmi`1`1q!pi`1q m i`1 `1 1 1`p pi`1qpmi`1`1q n`1 .

Loop clusters inequalities

An It follows from Proposition 18 that Harris inequality, i.e positive correlation, holds for pairs of increasing events, namely events which if they occur on a given set of primitive loops still occur when new primitive loops are added to the set (see e.g. [START_REF] Werner | Percolation et modèle d'Ising[END_REF]). In particular let us say that a subset A of X is connected at time α if it is contained in a cluster of C α . Then by Harris inequality,

PpA and B are both connected at time αq ě PpA is connected at time αq PpB is connected at time αq.

These inequalities can be extended to any number of increasing events. In particular, for every partition π " pB i q iPI of X into non-empty blocks, the probability that C α is a coarser partition than π ( event denoted by C α ĺ π) satisfies:

PpC α ĺ πq ě ź iPI PpB i is connected at time αq.

Distribution of loop clusters in a finite graph

In this section, we assume that the graph G is finite. The probability that a given partition π of X is coarser than C α has a simple expression:

Proposition 20. Let us assume that the graph G " pX, Eq is finite. Given a partition π " pB i q iPI of X, PpC α ľ πq " ˆśiPI detpG Bi q detpGq ˙α .

(5.1)

Proof. The event 'π is coarser than C α ' means that every loop of PL α is included in a block of π. The number of non trivial loops is a Poisson variable of parameter α logp|ν|q " α logpdetpGq ś x λ x q which can be decomposed into the numbers of non trivial loops contained in blocks B i of π which are independent Poisson variables of parameters α logpdetpG Bi ś xPBi λ x q respectively. It follows that the number of loops which intersect at least two blocks is a Poisson variable of parameter α logpdetpGq ś xPX λ x q ři α logpdetpG Bi q ś xPBi λ x q. And C α ľ π iff this variable vanishes.

An explicit formula for PpC α " πq can be derived from proposition 20. Let us first introduce some notations. For a partition π, let |π| denote the number of non-empty blocks of π. For a subset A, let π |A denote the restriction of π to A: π |A is a partition of A, the blocks of which are the intersection of the blocks of π with A.

Proposition 21. Let us consider a finite graph G " pX, Eq. Let π be a partition of X with k non-empty blocks denoted by B 1 , . . . , B k ; then

PpC α " πq " ÿ πľπ p´1q |π|´k k ź i"1 p|π |Bi | ´1q! PpC α ľ πq. (5.2)
Proof. Let us first assume that π " tXu. To obtain equation (5.2), it is easily shown (see [START_REF] Jan | Markovian loop clusters on graphs[END_REF] for details) that it is sufficient to prove the following identity:

1I tCα"tXuu " |X| ÿ ℓ"1 p´1q ℓ´1 pℓ ´1q! ÿ π ℓ PP ℓ pXq 1I tCαľπ ℓ u . (5.3) 
where P ℓ pXq denotes the set of partitions of X with ℓ non-empty blocks. Let us assume that C α is a partition with j non-empty blocks. For ℓ ď j, we can construct a partition coarser than C α with ℓ non-empty blocks by choosing how to merge some blocks of C α , that is by choosing a partition of t1, . . . , ju with ℓ blocks. Therefore

ÿ π ℓ PP ℓ pXq 1I tCαľπ ℓ u " |P ℓ pt1, . . . , juq| 1I tℓďju
and the right-hand side of (5.3) is equal to ř j ℓ"1 p´1q ℓ´1 pℓ´1q!|P ℓ pt1, . . . , juq|. By an identity on the Stirling numbers of the second kind (see for example [START_REF] Pitman | Combinatorial stochastic processes[END_REF] equation (1.30) page 22), this sum is equal to 1 if j " 1 and 0 if j ě 2.

Remark 20. Let us consider the case of the complete graph K n endowed with unit conductances and a uniform killing measure of intensity κ. If π is a partition of the set of vertices X with k blocks B 1 , . . . , B k then, detpGq ´1 " κpn`κq n´1 and detpG Bi q ´1 " pκ`n´|B i |qpn`κq |Bi|´1 . Hence,

ś i detpG B i q detpGq " p κ κ`n q ś 1ďiďk p1 ´|Bi| n`κ q ´1 and PpC α ľ πq " p κ κ `n q α k ź i"1 p1 ´|B i | n `κ q ´α.
Let us note that p1 ´j n`κ q ´α is the j-th moment m j of the random variable Y " expp Z n`κ q where Z denotes a Gammapα, 1q-distributed random variable. Thus P π0 pC α ľ πq " m n ś k i"1 m |Bi| 1I tπ0ľπu . Let c n denote the n-th cumulant of Y . Formula (5.3) and the expression of cumulants in terms of moments (see formula (1.30) in [START_REF] Pitman | Combinatorial stochastic processes[END_REF] for example) yield that:

P π0 pC α " tXuq " c n m n .
The evolution as α increases of C α defines a partition-valued Markov chain in which clusters coalesce. See [START_REF] Jan | Markovian loop clusters on graphs[END_REF] for more results.

Computation using exit distributions

The probability that C α is finer than a partition π can also be expressed using exit distributions. This yields a formula which is easier to use than x,y is the probability that a Markov chain with transition matrix P starting from x exits D at y. Proposition 22. Let π " pB i q i"1,...,k be a partition of X. Let B " Ť k j"1 BB j denote the union of the boundary points of the blocks of π. Let H pπq denote the matrix indexed by B defined by:

H pπq x,y " " 1I tx"yu if x, y P BB i ´HB c i x,y if x P BB i , y P BB j and i ‰ j.
Then, if B is finite:

PpC α ľ πq " detpH pπq q α .
Proof.

First, let us assume that X is finite. Let K denote the product of the block diagonal matrix diagpG Bi , i P t1, . . . , kuq by the matrix G ´1 " M λ ´C. We can rewrite the expression of PpC α ľ πq given by proposition 20 as PpC α ľ πq " detpKq α . The restriction of K to B i ˆBi is the identity. The exit distribution from a subset D satisfies:

H D c x,y " ř zPD G D
x,z C z,y for every x P D and y P D c . Therefore,

PpC α ľ πq " detpKq α with K x,y " " 1I tx"yu if x, y P B i ´HB c i
x,y if x P B i , y P B j and i ‰ j.

(5.4)

Let pξ n q n denote a Markov chain with transition matrix P . The trace of pξ n q n on B defines a Markov chain denoted by p ξn q on B and thus a loop measure ν and a random set PL α which coincides with tℓ |B , ℓ P PL α u.

Let Cα be the partition of B induced by PL α . The non-empty subsets BB i , i P t1, . . . , ku define a partition of B denoted by Bπ. As tC α ľ πu is the event '@i, j P t1, . . . , ku such that i ‰ j, and edge tx, yu with x P BB i , y P BB j , tx, yu is not crossed by a loop of PL α ', it only depends on the restriction of the loops on B, hence PpC α ľ πq " Pp Cα ľ Bπq.

For a subset V of B, let HBzV denote the exit distribution from V for p ξn q.

It follows from formula (5.4) applied to Cα that PpC α ľ πq " detp Kq α where Kx,y " " 1I tx"yu if x, y P BB i ´H pBzBBiq x,y if x P BB i , y P BB j and i ‰ j.

To conclude, it remains to note that HBzBBi

x,y " H

B c i
x,y for every x P BB i and y P BzBB i .

As B is assumed to be finite, the countable case is easily treated by considering an increasing sequence of finite subsets pX k q k such that X "

Ť `8 k"1 X k
(see [START_REF] Jan | Markovian loop clusters on graphs[END_REF] for details). 

ρ pκq " logp1 `κ 2 `bκ `κ2 4 q,
• the probability that a given edge is closed is equal to p1 ´e´2ρ pκq q α ;

• given that t0, 1u is closed, the probability that tn, n `1u is also closed is equal to ´1´e ´2ρ pκq 1´e ´2ρ pκq pn`1q ¯α for every n P N.

Proof n,n`1 q α These Poisson matrices can be computed from the solutions of equation p2 `κqupxq ´upx `1q ´upx ´1q " 0, which are linear combinations of exppρ pκq xq and expp´ρ pκq xq.

We obtain

H pn`1`Nq c n`k,n " H pn´Nq c
n`1´k,n`1 " expp´ρ pκq kq for every k P N. For positive n, let q pκq pnq denote the probability that tn, n `1u is closed given that t0, 1u is closed. To compute q pκq pnq, we consider a simple random walk on N killed at rate κ and at point 0; we denote it by pζ k q k . As PL N α is the primitive loop set associated with pζ k q k , by proposition 22 we obtain:

q pκq pnq " p1 ´Hpt0,...,nuq c n H pn`1`Nq c n`1
q α where the exit distribution are those

of pζ k q k : H pt0,...,nuq c k " sinhpρ pκq kq sinhpρ pκq pn `1qq for 1 ď k ď n`1 and H pn`1`Nq c k " e ρ pκq pn´kq for k ě n.
Therefore q pκq pnq " p1 ´sinhpρ pκq nq sinhpρ pκq pn`1qq e ´ρpκq q α " p 1´e ´2ρ pκq 1´e ´2ρ pκq pn`1q q α . Remark 21. In the case of the simple random walk on N killed at 0, a similar argument (detailed in [START_REF] Jan | Amas de lacets markoviens[END_REF]) shows that: Proof. For a partition π " tB i , i P Iu of X, let Lpπq denote the set of edges linking different blocks of π.

• For 0 ă α ď 1,
The law of Bernoulli percolation of parameter 1 ´e´u denoted by Pp1 ´e´u q is characterized by the identities: PpPp1 ´e´u q ľ πq " e ´u|Lpπq| for every partition π of X.

To prove the convergence of PpC pκq α ľ πq, we apply proposition 22: PpC pκq α ľ πq " detpH pπq q α where H pπq is defined as in proposition 22. We note then that H pπq x,y is equivalent to κ ´1 if tx, yu belongs to Lpπq and of order less or equal to κ ´2 otherwise. Indeed, if x P BB i and y P BB j for i ‰ j, H pBiq x,y " ř zPBi P x,z H pBiq z,y `Px,y and P i,j ď 1 κ for all pi, jq P X ˆX. A second-order Taylor expansion shows that logpdetpH pπq qq " T rplogpH pπq qq is equivalent to ´1 2 T rpQ 2 q, with Q x,y " κ ´1 1I ttx,yuPLpπqu . b) θpα, κq ą 0 for every α ą 0 and κ ą 0 such that p1 ´1 p2d`κq 2 q α ă 1 ´pc . c) For any α ą 0, θpα, κq vanishes for κ large enough.

Loop percolation on

Proof. a) θpα, κq is a non-decreasing function of α since α Þ Ñ PL pκq α is increasing. To show that θpα, κq is a non-increasing function of κ, we can use an independent thinning procedure. b) From proposition 18, it is clear that the partition induced by the set of primitive discrete loops of length 2 at time α has the same law as the Bernoulli percolation with parameter 1 ´p1 ´1 p2d`κq 2 q α . It follows from Bernoulli percolation on Z d that if 1 ´p1 ´1 p2d`κq 2 q α ą p c then θpα, κq ą 0. c) To prove that θpα, κq vanishes for κ large enough, we show that there exists a finite real C α ą 0 such that any self-avoiding path x " px 1 , x 2 , ..., x L q of length L P 2 N ˚is open at time α with probability less than p Cα κ q L . We can then conclude with the usual path-counting argument: for every L P 2 N ˚, θpα, κq is bounded above by the probability that there exists an open self-avoiding path of length L at time α starting from the origin, hence θpα, κq ď lim sup LÑ`8 p2dq L p Cα κ q L " 0 for κ ą 2dC α . Let us first introduce some notation. Let Pp2, t1, . . . , Luq consist of partitions of t1, . . . , Lu in which all blocks have at least two elements (the number of blocks of such a partition π is denoted by |π| and blocks are denoted by π 1 , π 2 , ...).

For a vertex v and a discrete loop ℓ in Z d , recall that N v pℓq denotes the number of times ℓ passes through v.

Let us consider a self-avoiding path of even length L denoted by x " px 1 , x 2 , . . . , x L q and let E x denote the set of edges tx 2i´1 , x 2i u, 1 ď i ď L{2.

If x is open, its edges can be covered by the edges of N ď L loops of DL α , which can be used to define a partition π P Pp2, t1, . . . , Luq as follows: let ℓ 1 be a loop in DL α covering edge tx 1 , x 2 u. The first block π 1 of π consists of the indices of the endpoints of e P E x covered by ℓ 1 . If π 1 ‰ t1, . . . , Lu, let j be the smallest integer i such that x i is not in π 1 and let ℓ 2 be a loop covering tx j , x j`1 u. The second block π 2 of π is defined as the set of indices of endpoints of e P E x covered by ℓ 2 that are not in π 1 , and so on until all elements of t1, . . 

ź iPπj N xi pℓ j q ¯.
By Campbell formula (2.5), for every k ą 0 and every positive functions

F 1 , . . . , F k E ´ÿ ℓ1,...,ℓ k PDLα, pairwise distinct k ź i"1 F i pℓ i q ¯" k ź i"1 ´ż F i pℓqαµpdlq ¯.

Therefore,

Ppx is open at time αq ď ÿ πPPp2,t1,...,Luq

|π| ź j"1 ż ´ź iPπj N xi pℓq ¯αµpdℓq.
For a finite set A, let S A denote the set of permutations of elements of A.

For every k ě 2 and for every vertices y 1 , . . . , y k , 

ż k ź i"1 N yi pℓqµpdlq " 1 k ´k ź i"
α |π| |π| ź j"1 ´1 |π j | ÿ σPSπ j G x σp1q ,x σp2q G x σp2q ,x σp3q . . . G x σp|π j |q ,x σp1q
¯.

(5.5)

The blocks of a partition π P Pp2, t1, . . . , Luq in (5.5) can be seen as the orbits of a permutation without fixed point. Since a circular order on k integers corresponds to k different permutations of these integers, S α pxq can be rewritten as follows:

S α pxq " ÿ σPS 0 t1,...,Lu α mpσq G x1,x σp1q ...G xL,x σpLq . (5.6)
where

• mpσq denotes the number of cycles in a permutation σ,

• S 0 t1,...,Lu denotes the set of permutations of t1, . . . , Lu without fixed point.

The right-hand side of equality (5.6) is nothing but Per 0 α pG xi,xj , 1 ď i, j ď Lq defined in section 3.4.

To conclude we use that

P er 0 1 pG xi,xj , 1 ď i, j ď Lq ď L ź i"1 ´ÿ 1ďjďn, j‰i G xi,xj ¯ď p ÿ yPZ d zt0u
G 0,y q L since the vertices x i are pairwise distinct. As ř y rP s x,y " 2d 2d`κ for every

x P Z d , ÿ yPZ d zt0u λ y G 0,y " `8 ÿ k"1 ÿ y rP k s 0,y " 2d κ .
Thus Ppx is open at time αq ď p 2d κ maxpα, 1qq L which ends the proof.

Remark 22.

a) It follows from Proposition 25 that for every α ą 0, there is a finite value of κ, we can denote by κ c pαq, above which θpα, κq vanishes; Morever κ c is an increasing function that converges to `8 as α Ñ 8.

b) As the simple random walk in Z 2 is recurrent, for d " 2 the probability that a fixed edge is open at time α ą 0 converges to 1 as κ tends to 0. c) Loop Percolation for κ " 0 and d " 3 has been studied in [START_REF] Chang | Phase transition in loop percolation[END_REF]. See also [START_REF] Lupu | Convergence of the two-dimensional random walk loop-soup clusters to CLE[END_REF].

Chapter 6

The Gaussian Free Field

The Gaussian free field φ is defined in this chapter and the identity in law between the vertex occupation field of L 1 2 and 1 2 φ 2 is proved. This formula, which appeared in [START_REF] Jan | Markov loops, determinants and Gaussian fields[END_REF], and [START_REF] Jan | Markov loops and renormalization[END_REF], is related to an identity combining bridge local times with the Gaussian free field which is known as Dynkin's (or BFS Dynkin's) isomorphism (cf [START_REF] Brydges | The Random Walk Representation of Classical Spin[END_REF], [START_REF] Dynkin | Local times and Quantum fields[END_REF], [START_REF] Jan | On the Fock space representation of functionals of the occupation field and their renormalization[END_REF]). 

Definition and first properties

E φ pe ´1 2 ăφ 2 ,χą q " detpI `M? χ GM ? χ q ´1 2
and E φ pφpxqφpyqe ´1 2 ăφ 2 ,χą q " pG χ q x,y detpI `M? χ GM ? χ q ´1 2 Proof. By a well known linear change of variable on the Gaussian density, if we assume, to begin, that X is finite, for any χ P R X `,

a detpM λ ´Cq p2πq |X|{2 ż R X e ´1 2 ř χuvpuq 2 e ´1 2 epvq ź uPX dvpuq " d detpG χ q detpGq and a detpM λ ´Cq p2πq |X|{2 ż R X vpxqvpyqe ´1 2 ř χuvpuq 2 e ´1 2 epvq ź uPX dvpuq " pG χ q x,y d detpG χ q detpGq .
Then, using the resolvent equation, we have

E φ pe ´1 2 ăφ 2 ,χą q " b detpG χ G ´1q " detpI `GM χ q ´1 2
and E φ pφpxqφpyqe ´1 2 ăφ 2 ,χą q " pG χ q x,y b detpG χ G ´1q " pG χ q x,y detpI`GM χ q ´1 2 .

Note finally that detpI `GM χ q " detpI `M? χ GM ? χ q.

We can remove the finiteness assumption by approximating X by an increasing sequence of finite sets X k containing the support of χ. Then the Green functions G X k increase to G, and the associated free fields converge a.s. (possibly by taking a subsequence). The left side converges by bounded convergence. The convergence of the right side is obvious as the determinant is a polynomial in terms of the coefficients of G restricted to the support of χ.

Free field and occupation fields

Recalling corollary 2, we see that detpI `M? χ GM ? χ q ´1 2 " Epe ´xχ, p L 1 2 y q. (6.1)

Then, from remark 10, e), we get

pG χ q x,y detpI `GM χ q ´1 2 " ż Epe ´xχ, p L 1 2
`p γy qµ x,y pdγq. (6.2)

Then using Stone-Weierstrass and monotone class theorems, we can deduce the following from proposition 27 and equations (6.1) and (6.2) :

Theorem 9. i) The fields p L 1 2 and 1 2 φ 2 have the same distribution. ii) For any bounded functional F of a non negative field,

E φ ppφpxqφpyqF p 1 2 φ 2 qq " ż EpF p p L 1 2 `p γqqµ x,y pdγq.
Remark 23. a) Note that i) implies immediately that the process φ 2 is infinitely divisible. See [START_REF] Eisenbaum | A characterization of the infinitely divisible squared Gaussian processes[END_REF] and its references for a converse and earlier proofs of this last fact.

b) This theorem implies the result known as Dynkin's isomorphism (Cf [START_REF] Dynkin | Local times and Quantum fields[END_REF], [START_REF] Brydges | The Random Walk Representation of Classical Spin[END_REF]). Applying i) to the right side of ii), we get that

E φ pφpxqφpyqF p 1 2 φ 2 qq " ż EpF p 1 2 φ 2 `p γqqµ x,y pdγq.
c) For x " y, ii) follows from i) and corollary 4. Also, by the same corollary

if C x,y ‰ 0, b) implies that E φ pφpxqφpyqF p 1 2 φ 2 qq " 2 C x,y EpF p p L 1 2 qN p 1 2 q
x,y q (as µ x,y and tmu x,y coincide on functions of the occupation fields.

d) Note also that in the finite case, if φ is the Gaussian free field associated with the energy e and e 1 denotes a different energy, by equation (4.10) ,

Ep ź px,yq " C 1 x,y C x,y  Nx,ypL 1 2 q e ´Bλ 1 ´λ, p L 1 2 F q " " Z e 1 Z e  1 
2 " E φ pe ´1 2 re 1 ´espφq q. (6.3) e) An analogous result can be given when α is any positive half integer, by using real vector valued Gaussian field, or equivalently complex fields for integral values of α (in particular α " 1q: If Ý Ñ φ " pφ 1 , φ 2 , ..., φ k q are k independent copies of the real free field, the fields p

L k 2 and 1 2 › › › Ý Ñ φ › › › 2 " 1 2 ř k 1 φ 2 j
have the same joint distributions and

EÝ Ñ φ p A Ý Ñ φ pxq, Ý Ñ φ pyq E F p 1 2 }φ} 2 qq " k ż EpF p p L k 2
`p γqqµ x,y pdγq.

f) The complex free field φ 1 `iφ 2 will be denoted by ϕ. If we consider k independent copies ϕ j of this field, p

L k and 1 2 } Ý Ñ ϕ } 2 " 1 2 ř k 1 ϕ j ϕ j have the same distribution.
g) This result can be extended to non-symmetric generators (Cf [START_REF] Jan | Dynkin isomorphism without symmetry[END_REF]). h) Note also that in the finite case, if ϕ " φ 1 `iφ 2 is the complex Gaussian free field associated with e, recalling the definition of e pωq given in (4.13), and equation (4.17), we get:

Ep ź x,y " C 1 x,y C x,y e iω x,y  N p1q
x,y e ´řpλ 1 x ´λxq x L1

x q " Z e 1 ,ω Z e " E ϕ pe ´1 2 re 1pωq ´espϕq q. (6.4)

Exercise 7. Show that for any bounded functional F of a non negative field, if x i are 2k points:

E φ pF p 1 2 φ 2 q 2k ź 1 φpx i qq " ż EpF p p L 1 2 `k ÿ 1 p γ j qq ÿ pairings ź pairs µ yj ,zj pdγ j q
where ř pairings means that the k pairs y j , z j are formed with all the 2k points x i , in all p2kq! 2 k k! possible ways.

Hint: As in the proof of theorem 9, we take F of the form e ´1 2 ă¨,χą . Then use the classical expression for the expectation of a product of Gaussian variables known as Wick theorem (see for example [START_REF] Neveu | Processus aléatoires gaussiens[END_REF], [START_REF] Simon | The P pφ 2 q Euclidean (quantum) field theory[END_REF]).

Remark 24. We can also use the identity in law of theorem 9 to give a simple proof of a result known as the generalized second Ray-Knight theorem pr8s, r72s, r61sq. Let x 0 be a point of X, and assume that κ is supported by x 0 . Set D " X ´tx 0 u. Then it follows from the Markovian decomposition that ϕ " φ D `φpx 0 q and φ D (the real free field associated with G D ) is independent of φpx 0 q.

On the other hand,

L 1 2 " LD 1 2 `L px0q 1 2
where Lpx0q

1 2
denotes the occupation field of the set of loops of L 1 2 hitting x 0 and LD

1 2
denotes the occupation field of the set of loops of L 1 2 contained in D.

The two terms of the decomposition are clearly independent.

Moreover, from excursion theory in section 3.3, we know that given that its value at x 0 is ρ, the field Lpx0q

1 2
has the same distribution as the occupation field γτρ of an independent copy of the Markov chain started at x 0 and stopped when the local time at x 0 equals ρ.

The identity in law between L 1 2 and 1 2 φ 2 can be desintegrated taking Lx0

1 2
" 1 2 φ 2 px 0 q " ρ. Denoting by η the sign of φpx 0 q , we get that

LD 1 2 `γ τρ pdq " 1 2 pφ D `ηa 2ρq 2
but we have also, by symmetry of φ D , as η is independent of the other variables, 1 2 pφ D `η? 2ρq 2 pdq " 1 2 pφ D `?2ρq 2 pdq " 1 2 pφ D ´?2ρq 2 . So that finally (as the identity in law holds as well as between LD 1 2 and 1 2 pφ D q 2 ), we have proved:

Proposition 28. 1 2 pφ D q 2 `γ τρ pdq " 1 2 pφ D `a2ρq 2 .

Wick products *

We now introduce the renormalized (or Wick) powers of φ. Denoting as before σ x " G x,x , set :φ n pxq: " pσ x q n 2 H n pφpxq{ ? σ x q where H n in the n-th Hermite polynomial (characterized by

ř t n n! H n puq " e tu´t 2 2
). These variables are orthogonal in L 2 and E φ p:pφ n pxqq: 2 q " σ n

x n!

The purpose of this section is to determine the relation between Wick powers of the free field and renormalized powers of the vertex occupation field, which were introduced in chapter 3.

From the relation between Hermite polynomials H 2n and Laguerre polyno-

mials L ´1 2 n , H 2n pxq " p´2q n n!L ´1 2 n p x 2 2 q
then, it follows from the definition of polynomials P α,σ n given in section 4.7 that:

:φ 2n pxq: "

2 n n!P 1 2 ,σ n p φpxq 2 2 q.
More generally, if φ 1 , φ 2 , ..., φ k are k independent copies of the free field, we can define:

:

k ź j"1 φ nj j pxq: " k ź j"1 :φ nj j pxq:
and set:

:p k ÿ 1 φ j q 2 q n pxq: " ÿ n1`..`n k "n n! n 1 !...n k ! k ź j"1
:φ 2nj j pxq:. On the other hand, from the generating function of the polynomials P k 2 ,σ n , we get easily that

P k 2 ,σ n p k ÿ 1 u j q " ÿ n1`..`n k "n k ź j"1 P 1 2 ,σ nj pu j q.
Therefore,

P k 2 ,σ n p ř φ j pxq 2 2 q " 1 2 n n! :p k ÿ 1 φ j pxq 2 q n :. (6.5)
Note that in particular, : ř k 1 φ j pxq 2 : equals ř k 1 φ j pxq 2 ´σx . These variables are orthogonal in L 2 . Let r l x " p l x ´σx denote the centered occupation field.

It follows from theorem 9 is that the fields 1 2 :

ř k 1 φ 2 j : and r L k 2
have the same law.

If we use complex fields, P k 2 ,σ n p ř ϕjpxqϕ j pxq 2

q " 1 2 n n! :p ř k 1 pϕ j pxqϕ j pxqq n :. Let us now consider the relation of higher Wick powers with self intersection local times.

Recall that in section 4.7 the renormalized n-th self intersections field r L x,n α " P α,σ n p p L x α q " Q α,σ n p Ă L α x q have been defined by orthonormalization in L 2 of the powers of the occupation time.

Proposition 29. a)The fields r L ¨,n k 2 and 1 n!2 n :p ř k 1 φ 2 j q n : have the same law. In particular r L ¨,n k and 1 n!2 n :p ř k 1 ϕ j ϕ j q n : have the same law.

This follows directly from (6.5).

Remark 25. As a consequence, we obtain from (4.21) and (6.5) that:

kpk `2q...pk `2pn ´1qq 2 n n! " ÿ n1`...`n k "n ź 2n i ! p2 ni n i !q 2 . (6.6)
Chapter 7

Networks, Ising Model, Flows, and Configurations

In this chapter, we show that edge occupation fields have remarkable distributions for intensity 1 ( considering oriented edges) and 1/2 (considering non-oriented edges). Moreover, after conditioning by the vertex occupation field, the loop ensemble of intensity 1 defines a remarkable distribution on flows with integral intensity defined on the graph. We also show, following [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF] and [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF], that after conditioning by the vertex occupation field, the clusters of the loop ensemble of intensity 1{2 can be used to construct the F-K Ising model, which provides a coupling between this loop ensemble and the real free field. A relation is also established between these loops ensembles and configuration models.

Networks and loop ensembles

We define a network to be a N-valued 1 function defined on oriented edges of the graph. It is given by a matrix k indexed by X with N-valued coefficients which vanishes on the diagonal and on entries px, yq such that tx, yu is not an edge of the graph. We say that k is Eulerian iff

ÿ y k x,y " ÿ y k y,x .
1 N denotes the set of non-negative integers.
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For any Eulerian network k, we define k x to be ř y k x,y " ř y k y,x and set |k| " ř x k x . It is obvious that the edge occupation field N pαq ( we can also denote by N pL α q) defines a random network which satisfies the Eulerian property.

Following [START_REF] Penrose | Angular momentum: an approach to combinatorial space-time in[END_REF], we call spin network a set of non-negative integers q x,y " q y,x " q tx,yu attached to non oriented edges such that all q x " 1 2 ř y q tx,yu are integers. x,y the matrix P x,y Z x,y and by P Z pk x , x P Xq is the p|k|, |k|q matrix obtained by repeating k x times each column of P Z of index x and then k y times each line of index y.

Denote by N

For any Eulerian network k, we have PpN pαq " kq " Cpkq detpI ´P q α , where Cpkq denotes the coefficient of ś x,y Z kx,y

x,y in the polynomial Per α pP Z pk x , x P Xqq.

Similarly, let S be a symmetric matrix indexed by X ˆX. For any spin network q, PpN pαq " kq " Kpkq detpI ´P q α where Kpkq denotes the coefficient of ś x,y S qx,y

x,y in the polynomial Per α pP S pk x , x P Xqq.

Proof. : Assume that Z x,y ă 1 for all edges. We have the identity:

Ep ź x‰y Z N pαq
x,y

x,y q " " detpI ´P Z q detpI ´P q  ´α .

This is in fact a special case of (4.17) .

More generally, for any nonnegative χ, setting P Z,χ x,y " P x,y Z x,y e ´δx,yχx , we have

Ep ź x‰y Z N pαq x,y
x,y e ´řx χx Lx 1 q " " detpI ´P Z,χ q detpI ´P q  ´α .

The proposition follows from the expansion of detpI ´P Z q α using a well known expansion formula for determinants powers using α-permanents (Cf [START_REF] Jones | Alpha permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions[END_REF], [START_REF] Moller | A Model for Positively Correlated Count Variables[END_REF]).

Merge and split Markov chains

A Eulerian network can be induced by various sets of loops. Inspired by the results of [START_REF] Pitman | Poisson-Dirichlet and GEM invariant distributions for split-and merge transformations of an interval partition[END_REF], we can now construct a class of reversible stationary Markov chains on such sets which preserve the induced network. Given a fixed vertex

x, a finite sequence of discrete loops pl i P DLpGqq can be decomposed into the numbers of visits N x pl i q of each loop to x and the set of excursions out of x between them. Under the Poisson distribution of intensity ν ˝, these excursions are i.i.d. (cf section 3.2). The distribution of the finite sequence pN x pl i qq conditioned by their total sum to be n is given by in proposition 14 which follows from proposition 13. Let us denote it by σ n . It is the invariant distribution of a simple Markov chain:

Lemma 2. A transition matrix can be defined on finite sequences of integers as follows: Given a finite sequence of integers ti j , 1 ď j ď ku such that ř i j " n, with probability

ij 1 ij 2 n 2
the pair of elements i j1 and i j2 disappears and their sum is placed randomly to complete the sequence in one of the k possible positions, which gives a transition probability equal to

ij 1 ij 2 kn 2 . With probability ij pij ´1q n 2
, the element i j splits into a pair of elements pi, i j ´iq with 0 ă i ă i k i being chosen uniformly between 1 and i j ´1. i k disappears and these two elements are placed randomly in one of the kpk `1q possible positions, which gives a transition probability equal to ij kpk`1qn 2 . Finally, there is no change with probability 1 n . Then the sum of the sequence elements is invariant and for each integer n the corresponding Markov chain on sequences of sum n is irreducible, reversible and positive recurrent, σ n being its stationary probability.

Proof. First we can check that we defined a transition probability, as

ÿ j1‰j2 i j1 i j2 `ÿ j i j pi j ´1q `n " p ÿ j i j q 2 ´ÿ j i j `n " n 2 .
Given j 1 ‰ j 2 and j 3 " j 1 `j2 , the detailed balance relation follows obviously from the expression of σ n ppi j qq as 1 k! ś ij and the identity p 1 k`1q!k " 1 k!kpk`1q . The irreducibility is deduced from the fact that any sequence can be decomposed by multiple splittings into n copies of 1 and then reconstructed by a sequence of merges.

Remark 26. A reversible stationary Markov chains on the sequences of discrete loops l i " pξ i,j q visiting x n times in total can then be naturally constructed as follows: two indices are chosen uniformly and independently among the n indices i, j such that ξ i,j " x. If they belong to different loops, these loops are concatenated at these indices. If they are distinct but on the same loop, the loop is cut at these indices to form two loops by connecting the two ends of each part. There is no change when the two choices coincide.

One checks easily that the map N x from loops into integers projects this Markov chain on loop sequences on the Markov chain on integer sequences constructed in lemma 2. Combining these Markov chains for all values of n, we obtain a reversible stationary Markov chains on collections of loops in which the loops which do not visit x are fixed. Note that this transition mechanism does not depend on the loops order. We finally get a Markov chain on collections of discrete loops. Its transition probability will be denoted by Q pxq in the following. This follows from the fact that a collection of discrete loops can be decomposed into the numbers of visits N x plq of each loop l to x for which σ n 's, induced by ν ˝are stationary, and the set of excursions out of x between them which are i.i.d.. The irreducibility of the recurrence classes can be proved by noticing that for any pair of loop collections inducing the network, given any loop l 0 from the second collection, merging successively loops from the first collection allows to construct one oriented edge after the other a loop containing l 0 which can then be recovered by splitting it. We then repeat this process on the remaining loops of the second collection and the new first loop collection (from which l 0 has been removed) to get a second loop. Iterating this process allows to conclude. As this process does not uses the conductances in its definition, the last assertion is obvious. It can also be checked Assuming the graph is finite, if we let px, yq vary, they can be combined with jump rates N 2

x,y to get a continuous time Markov chain, and we can check that a results similar to proposition 31 hold. In particular, the restriction of the Poisson distribution of intensity ν ˝to any network is an invariant measure for all transition probabilities K px,yq and for the combined process. c) We could also apply lemma 2 to construct a similar stationary reversible Markov chain on collections of discrete loops in which merging and splitting occurs only inside the set of loops which are powers of a given primitive loop η. It can be combined with the chain defined in remark 19.

Eulerian networks and loop ensembles for α " 1

The case α " 1 is of special interest for Eulerian networks (Cf [START_REF] Jan | Markov loops, free field and Eulerian networks[END_REF], [START_REF] Jan | Random flows defined by Markov loops[END_REF]). ii) For any Eulerian network k, PpN p1q " kq " detpI ´P q

ś x k x ! ś x,y k x,y ! ź x,y
pP x,y q kx,y .

iii) For any Eulerian network k, and any nonnegative function ρ on X PpN p1q " k , L1 P pρ, ρ `dρqq "

1 detpGq ź x,y p ? ρ x C x,y ? ρ y q kx,y k x,y ! ź x e ´λxρx dρ x .
In the case of a space with two points a and b, we recover that the number of jumps N p1q a,b follows a geometric distribution.

Proof. i) Both sides equal ´detpI´P q detpI´P Z,χ q ¯.
iii) From i), we get

Ep ś x‰y Z N p1q
x,y

x,y e ´řx χx Lx 1 q " Epe x pλx`χxqr 2

x ´řx,y Cx,yZx,yrxrye ipθx ´θy q q ś x r x dr x dθ x

" 1 detpGq ş pR`ˆr0,2πqq |X| e ´1 2 ř x pλx`χxqr 2 x ś x,y E x,y ś x rx 2π dr x dθ x , with E x,y " ř 8 nx,y"0 1 nx,y! p 1 2 C
x,y Z x,y r x r y e ipθx´θyq q nx,y .

Let E be the additive semigroup of Eulerian networks. Integrating in the θ x variables, we see that this expression vanishes unless n P E. Hence this last expression equals

1 detpGq ş R |X| `e´1 2 ř x pλx`χxqr 2 x ř nPE ś x,y 1 
nx,y! p 1 2 C x,y Z x,y r x r y q nx,y ś x r x dr x .

It follows that for any functional F of a field on X, Ep ś x‰y Z N p1q

x,y

x,y F p L1 qq "

1 detpGq ş R |X| `e´1 2 ř x λxr 2 x ř nPE ś x,y 1 
nx,y! p 1 2 C x,y Z x,y r x r y q nx,y F pr 2 q ś x r x dr x .

We conclude the proof of the proposition by letting F be an infinitesimal indicator function, performing the changes ρ x " r 2 x {2, and by identifying the coefficients of ś x,y Z kx,y

x,y . Note that finally that ii) follows by writing the right-hand side of iii) as detpI ´P q ś

x,y p ? ρxCx,y ? ρy q kx,y kx,y! ś

x λ x e ´λxρx dρ x and integrating out the ρ variables.

From this theorem follows a Markov property for the loop occupation fields of L 1 . Corollary 6. Let X be the disjoint union of X i , i " 1, 2 and G i be the restriction of G to X i . Given the values of N p1q

x,y and N p1q y,x for x P X 1 and y P X 2 , the restrictions of the fields pN p1q , p L 1 q to G 1 and G 2 are independent.

Proof. We can check on the expressions given in theorem 10 iii) that after fixing the values of the conditioning, the joint density function factorizes, including the Eulerian condition.

The Markov property is preserved if we modify P by a factor of the form ś x e ´βΦx and a normalization constant, with Φ x a non-negative function of p L x 1 and of tN p1q

x,y , N p1q y,x , y ‰ xu.

Random flows

Definition 6. We say that a Eulerian network j is a flow iff j x,y j y,x " 0 for all edges tx, yu.

Note that it defines an orientation on edges on which it does not vanish.

We can define the flow Jpkq associated to any Eulerian network k by Jpkq x,y " 1 tkx,y´ky,xą0u rk x,y ´ky,x s.

We will say that a collection of discrete loops is minimal if the corresponding network is a flow. loop, this loop can be decomposed into the crossing of px, yq followed by a bridge from y to y followed by the crossing of py, xq , followed finally by a bridge from x to x . These bridges induce two loops which we say are produced by a negative tx, yu-split. If these crossings occur on different loops, these loops can be decomposed respectively in a crossing of px, yq followed by a bridge from y to x and a crossing of py, xq followed by a bridge from x to y. Then these two bridges can be merged in one loop. This construction provides a transition probability on loop collections which we denote by K tx,yu .

Assuming the graph is finite, if we let tx, yu vary, the corresponding Markov chains can be combined with jump rates N x,y N y,x to generate a continuous time Markov chain. Note finally that this Markov chain will be absorbed by the set of minimal loop collections.

We now show that a simple expression of the joint distribution of the flow JpN p1q q and the vertex occupation field L1 can be derived from Theorem 10.

Recall the definition of the modified Bessel function:

I ν pxq " 8 ÿ m"0 1 m!Γ pν `m `1q ´x 2 ¯2m`ν .
Proposition 32. For any flow h, setting h tx,yu " maxph x,y , h y,x q, we have PpJpN p1q q " h, L1 P pρ, ρ`dρqq " 1 detpGq ź tx,yu

I h tx,yu p2 ? ρ x C x,y ? ρ y q ź x e ´λxρx dρ x .
Proof. Let C be the set E N . For any flow h on G:

tJpN p1q q " hu " ď cPC t č tx,yuPE tN p1q
x,y " c tx,yu `hx,y , N p1q y,x " c tx,yu `hy,x uu.

From theorem 10 iii), it follows that PpJpN p1q q " h, L1 P pρ, ρ `dρqq equals

ÿ kPc 1 detpGq ź x,y p ? ρ x C
x,y ? ρ y q kx,y`hx,y pk x,y `hx,y q! ź x e ´λxρx dρ x .
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7.5 Spin networks and loop ensembles for α " 1 2 .

The spin network defined by L 1 2 is of special interest. Theorem 11. i) For any symmetric matrix S,

Ep ź x‰y S N p 1 2 q x,y
x,y e ´řx χx Lx 1 q " Epe ii) For any spin network q, PpN p 1 2 q tu " qq "

1 a detpGq ś x p2q x q! ś x 2 qx q x ! ź tx,yu
pC x,y q qx,y q tx,yu ! .

iii) For any spin network q, and any nonnegative function ρ on X PpN

p 1 2 q
tu " q, L 1 2 P pρ, ρ`dρqq "

1 a detpGq ź tx,yu p ? ρ x C x,y ? ρ y q qx,y q x,y ! ź x 1 ? 2πρ e ´1 2 λxρx dρ x .
Proof. i) Both sides equal ´detpI´P q detpI´P S,χ q ¯1{2 .

iii) Denote by V the set of spin networks. Note that on one hand, for any

symmetric matrix S Ep ź tx,yu S N p 1 2 q tx,yu
x,y e ´řx χx Lx 1{2 q "

ÿ qPV Epe ´řx χx Lx 1{2 1 N p 1 2 q
tu "q ź tx,yu S q tx,yu

x,y q.

On the other hand, from i), Ep ś tx,yu S N p 1 2 q tx,yu ´řx χx Lx 1 2

x,y q equals:

1 a detpGq ż R |X| e ´1 2 p ř x pλx`χxqux 2 ´řx‰y Cx,ySx,yuxuyq ź x du x ? 2π .
Expanding the exponential of the double sum, and noting that only monomials with even degree in each u x contribute to the integral, we get that this expression equals

1 a detpGq ż R |X| e ´1 2 ř x pλx`χxqu 2 x ÿ qPV ź tx,yu 1 q tx,yu ! C x,y pS x,y u x u y q q tx,yu ź x du x ? 2π .
It follows that for any functional

F on R |X| , Ep ś x‰y S N p 1 2 q x,y x,y F p L 1 2 qq equals 1 a detpGq ż R |X| e ´1 2 ř x pλxqu 2 x ÿ qPV ź tx,yu 1 q tx,yu ! pC x,y S x,y u x u y q q tx,yu F p 1 2 u 2 q ź x du x ? 2π .
A change of variable ρ " u 2 concludes the proof of iii) and ii) follows by integrating out the ρ variables.

Remark 29. A spatial Markov property can also be derived for spin networks:

Let X be the disjoint union of X i , i " 1, 2 and G i be the restriction of G to

X i . Given the values of N p 1 2 q
tx,yu for x P X 1 and y P X 2 , the restrictions of the fields pN

p 1 2 q
tu , p L 1 2 q to G 1 and G 2 are independent. We can check on the expressions given in theorem 11 iii) that after fixing the values of the conditioning, the joint density function factorizes, including the parity condition.

The Markov property is preserved if we modify P by a factor of the form ś

x e ´βΦx and a normalization constant, with β ą 0 and Φ x a non-negative function of p L x 1 2

and of tN

p 1 2 q
tx,yu , y ‰ xu.

FK-Ising Model

The result of this section appeared in [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF], [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF].

We can deduce from theorem 11 iii) that the N p 1 2 q field conditioned by the vertex occupation field has the following distribution:

For any spin network q,

PpN p 1 2 q tu " q | L 1 2 " ρq " 1 Z ρ ź tx,yu
pC x,y ? ρ x ρ y q qx,y q x,y ! , Z ρ being a normalization constant.

This distribution is known as the random current model defined by the conductances ? ρ x C x,y ? ρ y (as observed in [START_REF] Werner | On the spatial Markov property of soups of unoriented and oriented loops[END_REF]). Note that the random current allows to specify a random subset O of odd edges i.e. of all edges such that

N p 1 2 q
tx,yu is odd, and a random subset N of null edges i.e. of all edges such that N p 1 2 q tx,yu " 0. As N p 1 2 q is a spin network the number of odd edges incident to any vertex is necessarily even. Let O the set of subsets of E which for each vertex has an even number of incident edges. Given F P O, maps assigning an odd integer to each element of F and an even integer to each element of F c are exactly spin networks such that F " O, and therefore, by theorem 11, we obtain:

Lemma 3. Set C x,y ? ρ x ρ y " C pρq x,y . We have PpO " F, N " K | L 1 2 " ρq " 1 Z ρ ź tx,yuPF sinhpC pρq x,y q ź tx,yuPK c XF c
rcoshpC pρq x,y q´1s.

In particular

PpO " F | L 1 2 " ρq " 1 Z ρ ź tx,yuPF sinhpC x,y ? ρ x ρ y q ź tx,yuPF c coshpC x,y ? ρ x ρ y q.
Consider the percolation process obtained by attaching to each edge tx, yu P E a variable U tx,yu P t0, 1u whose conditional distribution given

N p 1 2 q
tu " q , L 1 2 " ρ is a product of Bernoulli distributions of parameter 1 é´?ρxCx,y ?

ρy " 1 ´e´C pρq x,y . Set V " ttx, yu such that N p 1 2 q tx,yu ą 0 or U tx,yu " 1u and note that O is included in V and V c is included in N . Lemma 3 allows to compute the distribution of V: For any V Ď E,

PpV " V | L 1 2 " ρq " Er ź tx,yu r1 VXV ptx, yuq `1V c XV c ptx, yuqs| L 1 2 " ρs " Er ź tx,yu pp1 ´e´C pρq x,y q1 N XV ptx, yuq `1N c XV ptx, yuq `e´C pρq x,y 1 N XV c ptx, yuqq| L 1 2 " ρs " ÿ F PO,F ĎV ÿ V c ĎKĎF c ź tx,yuPV rp1 ´e´C pρq x,y q1 K ptx, yuq `1K c ptx, yuqs ź tx,yuPV c e ´Cpρq x,y PpO " F, N " K | L 1 2 " ρq " 1 Z ρ |tF P O, F Ď V u| ź tx,yu
r1 V ptx, yuq sinhpC pρq x,y q `1V c ptx, yuq e Lemma 4. Given any set of edges V , denote by kpV q the number of connected components of the graph pX, V q. Then:

|tF P O, F Ď V u| " 2 |V |´|X|`kpV q .
This topological lemma is a direct consequence of proposition 42 which will be proved in chapter 10. Finally, by changing the normalization constant to

Z 1 ρ " 2 |X| Zρ ś tx,yuPE e C pρq x,y
, noting that the 2 |V | factor cancels with the denominator of sinh on V ,we get:

Theorem 12. For any set of edges V and any nonnegative function ρ on X, we have

PpV " V | L 1 2 " ρq " 2 kpV q Z 1 ρ ź tx,yuPV
p1 ´e´2Cx,y ? ρxρy q ź tx,yuPV c e ´2Cx,y ? ρxρy which is by definition the distribution of the FK-Ising model of parameters

C x,y ? ρ x ρ y .
Note that V induces a partition C of X coarser than the loop cluster partition Proof. Conditionaly to V " V the random configuration σ can equivalently be obtained by sampling one spin configuration among those in which spin coincides at both ends of each edge of V . There are 2 kpV q such configurations.

Then Ppσ " s| V " V, L 1 2 " ρq " 2 ´kpV q ś tx,yuPV 1 sx"sy Hence,

Ppσ " s| L 1 2 " ρq " 1 Z 1 ρ ÿ V ĎE ź tx,yuPV 1 sx"sy p1´e ´2C pρq x,y q ź tx,yuPV c pexpp´2C pρq x,y qq " 1 Z 1 ρ ÿ V ĎE ź tx,yuPV p1 ´e´2C pρq x,y 1s x "sy q ź tx,yuPV c pexpp´2C pρq x,y qq " 1 Z 1 ρ ź tx,yuPE
rexpp´2C pρq x,y 1 sx‰sy `1sx"sy qs "

1 Zρ ź tx,yuPE expp2C pρq x,y s x s y q with Zρ " Z 1 ρ ś tx,yuPE exppC pρq x,y q .
Remark 30. It is easy to check from the definitions that this Ising model can also be realized as the sign of the free field φ conditioned to |φ| " ? 2ρ. This together with theorem 9 provides a coupling between φ and L 1 2 .

Kramers-Wannier duality *

Assume in this section that the graph is represented by an oriented planar map, made of a finite number of polygonal faces including an infinite external face z ext . The set of faces (identified with vertices of the dual graph) is denoted by X ˚. Adjacent faces z 1 , z 2 share one edge e z1,z2 oriented in such a way that the angle with the normal oriented from z 1 to z 2 is positive. Recall that the endpoints of an oriented edge e are denoted by pe ´, e `q. Then, if w z plq denotes the winding number of a loop l around a dual vertex z, for any set of loops L, σ z pLq " e iπ ř lPL wz plq is, (as mentioned in [START_REF] Jan | Markov paths, loops and fields[END_REF]), a spin system of interest. It was observed in [START_REF] Van De Brug | Spin systems from loop soups[END_REF] that if z 0 , z 1 , z 2 , ..., z n " z ext is any sequence of distinct faces, two consecutive ones being adjacent, from z 0 to z ext , the winding number w z0 plq of a loop l around z 0 is equal to ř i rN ez i ,z i`1 plq ´Nezi`1,z i plqs and moreover, that ř lPL w z0 plq is odd if and only the number of odd edges in t˘e zi`1,zi i " 0, ..., n ´1u is odd. It was also established in [START_REF] Van De Brug | Spin systems from loop soups[END_REF] that this allows to identify these spin variables with those defined by Kramer-Wannier duality and to compute their distribution, as shown in the following.

Theorem 13. For any pair of adjacent faces a " b, set:

k ta,bu " ´1 2 log " tanh ´Ce a,b b ρ e à,b ρ e á,b
¯ı.

Then, for any set of spins ǫ " tǫ z , z P X ˚u, with ǫ zext " 1,

PpσpL 1 2 q " ǫ| L 1 2 " ρq " 1 Z ρ expp ÿ a"b k ta,bu ǫ a ǫ b q, with 1 Z ρ " 1 Zρ ś a"b b 1 2 sinhp2C e a,b a ρ e à,b ρ e á,b
q. This is exactly the distribution of the Ising model on the dual graph defined by the parameters k ta,bu .

Proof. Note that any oriented edge can be represented as e a,b , separating two adjacent faces a and b. Then σ a pL 1 2 qσ b pL 1 2 q " ´1 iff ˘ea,b belongs to O. It is clear that O determines σpL 1 2 q and conversely. The crucial point is that this bijection maps any set of spins tǫ z , z P X ˚u, with ǫ zext " 1 into O. Indeed, considering the faces around one vertex of X, it is clear that the corresponding signs have to alternate an even number of times, so that the set of spins defines a spin network. Therefore, 1 Opta,buq " 1 2 r1 ´σa pL 1 2 qσ b pL 1 2 qs and, by lemma 3, PpσpL 1 2 q " ǫ| L 1 2 " ρq equals:

1 Z ρ ź a"b,ǫaǫ b "´1 sinhpC e a,b b ρ e à,b ρ e á,b q ź a"b,ǫaǫ b "1 coshpC e a,b b ρ e à,b ρ e á,b q " 1 Z ρ ź a"b coshpC e a,b b ρ e à,b ρ e á,b q expr 1 2 p1 ´ǫa ǫ b q logptanhpC e a,b b ρ e à,b ρ e á,b qs " 1 Z ρ expp ÿ a"b
k ta,bu ǫ a ǫ b q.

Networks and configurations

The distribution of N p1q on Eulerian networks can be obtained differently when G is finite. We introduce a specific type of configuration model.

Let C be the space of configurations c defined as follows: attach to each vertex

x c x entering half edges and c x exiting half edges, both numbered from 1 to c x . Then provide a coupling between entering and exiting half-edges in such a way that they define an oriented edge of G.

For each oriented edge px, yq, there are c x,y half edges exiting from x coupled with c x,y half edges entering in y. For each vertex x, ř y c x,y " ř y c y,x is equal to c x and we see that such a configuration c defines a Eulerian network c. Moreover each Eulerian network k is the image by this projection map c ÝÑ c of ś x pkx!q 2 ś px,yqPE o kx,y! different configurations. Indeed, there are ś x kx! ś y kx,y ! way of partitioning exiting half edges and ś

x kx! ś y ky,x! ways of partitioning entering half edges according to the oriented edge of G they define, and then k x,y ! ways to couple half edges defining the same oriented edge px, yq.

We can now conclude easily from theorem 10 b) that: Theorem 14. The probability Q defined on C by

Qpcq " detpI ´P q 1 ś x c x ! ź x,y pP x,y q cx,y
is such that, for any Eulerian network k, Qpc " kq " PpN p1q " kq.

Conditionally to the Eulerian network they determine, configurations are uniformly distributed.

We can deduce from this result an expression for counting configurations with given vertex degrees: x ix! , defined for 0 ď s x ă 1 dx , is given by the inverse of the determinant of the matrix δ x,y ´sx A x,y (A denoting the adjacency matrix of Gq.

Proof. Taking unit unit conductances and variable killing rates 1 ´dx s x , we rewrite ř c Qpcq " 1 in terms of cardinalities.

Remark 31. A similar construction can be made for the spin networks defined by the edge occupation field N p 1 2 q of a loop ensemble L 1 2 of intensity 1 2 µ. A configuration inducing a spin network q assigns 2q x half-edges at each vertex x, numbered from 1 to 2q x , and for any vertex y, q x,y half edges at x are coupled with q x,y half edges at y. At each vertex x there are p2qxq! ś y q tx,yu ! way of partitioning the 2q x half-edges and there are ś tx,yuPE q tx,yu ! ways to couple the numbers assigned to the edges between x and y. Each spin network q is the image of ś

x p2qxq! ś tx,yuPE q tx,yu ! different configurations and the distribution of these configurations is uniform conditionally to the network.

Chapter 8 Loop Erasure, Spanning Trees and Combinatorial Maps

In this chapter, we introduce loop-erased random walks and present an extended version of Wilson's algorithm which yields a loop ensemble of intensity 1 and a spanning forest of the graph. They are independent. We then show how a remarkable distribution on combinatorial maps can be derived from a configuration model. Discrete loops of L 1 can be constructed as face contours of this random combinatorial map.

Loop erasure

A self avoiding path is defined as a discrete time trajectory which visits each vertex at most once.

We denote by ν x,y ‰ the measure induced by C on discrete self-avoiding paths between x and y: ν x,y ‰ px, x 2 , ..., x n´1 , yq " C x,x2 C x1,x3 ...C xn´1,y . Another way to define a measure on discrete self avoiding paths from x to y from a measure on paths from x to y is loop erasure. In any graph, given a finite path ω, the loop erased path ω LE is defined by removing progressively all based loops imbedded in the path, starting from the origin. It produces a self avoiding path.

(see [START_REF] Lawler | A self avoiding random walk[END_REF] , [START_REF] Minping | Circulation for recurrent Markov chains[END_REF], [START_REF] Lawler | Loop erased random walks. H. Kesten Festshrift: Perplexing problems in probability[END_REF] and [START_REF]Loop erased Random Walks, Spanning Trees and Hamiltonian Cycles[END_REF]). In the context of continuous time paths with holding times, the loops, which can be reduced to points, include holding times, and loop erasure produces a discrete path without holding times. It We have the following: Theorem 15. Denote by tηu the set of points in the path η. The image of the bridge measure µ x,y by the loop erasure map γ Ñ γ LE is denoted by µ x,y LE . For x ‰ y, µ x,y LE pηq " ν x,y ‰ pηq detpG |tηuˆtηu q.

Moreover, µ x,x LE " G x,x δ H .

Proof. By definition: µ x,x LE " G x,x δ H as the mass of µ x,x is G x,x . For x ‰ y, first consider the case of a finite graph. Set η " px 1 " x, x 2 , ..., x n " yq and η m " px, ..., x m q, for any m ą 1. Then,

µ x,y pγ LE " ηq " 8 ÿ k"0 rP k s x,x P x2,x µ x2,y txu c pγ LE " θηq " G x,x C x,x2 µ x2,y txu c pγ LE " θηq
where µ x2,y txu c denotes the bridge measure for the Markov chain killed as it hits x and θ the natural shift on discrete paths. By induction, this clearly equals

G x,x C x,x2 G txu c x2,x2 ...G tηn´1u c xn´1,xn´1 C xn´1,y G tηu c y,y " ν x,y ‰ pηq detpGq detpG tηu c q as rG tηm´1u c s xm,xm "
detprpM pλq ´Cs |tηmu c ˆtηmu c q detprpM pλq ´Cs |tηm´1u c ˆtηm´1u c q " detpG tηm´1u c q detpG tηmu c q for all m ď n by Cramer's rule. We conclude ( as in section 2.5) by Jacobi's identity.

The case of an infinite graph is treated by approximation, using a sequence of finite subsets of X increasing to X.

Remark 32. It is worth noticing that, though the operation of loop erasure clearly depends on the orientation of the path (as shown in the picture below), the distribution of the loop erased bridge is reversible. Also, by remark 10 e) which was derived from Feynman-Kac formula, we obtain that for any self-avoiding path η: ż e ´ăp γ,χą 1 tγ LE "ηu µ x,y pdγq " detpG χ q |tηuˆtηu qν x,y ‰ pηq " detpG χ q |tηuˆtηu q detpG |tηuˆtηu q µ x,y LE pηq.

Therefore, recalling that by the results of section 2.5 conditionally on η, Proof. It is enough to consider the finite case. We will use the notations of section 4.4. Let N pL γ q be the associated edge occupation field (which is a Eulerian network). First an elementary calculation shows that µ x,y e 1 pe i ş γ ω 1 tγ LE "ηu q equals µ x,y e ´1tγ LE "ηu

ź r C 1 ξi,ξi`1 C ξi,ξi`1 e iω ξ i ,ξ i`1 λ ξi λ 1 ξi s " C 1 x,x2 C 1 x1,x3 ...C 1 xn´1,y C x,x2 C x1,x3 ...C xn´1,y e i ş η ω µ x,y e ´ź u‰v r C 1 u,v C u,v e iωu,v s Nu,vpLγ q e ´Aλ 1 ´λ,p γ E 1 tγ LE "ηu ¯.
Recall the notation Z e " detpGq. By the proof of theorem 15 applied to the Markov chain defined by e 1 perturbed by ω, we have

µ x,y e 1 pe i ş γ ω 1 tγ LE "ηu q " C 1 x,x2 C 1 x1,x3 ...C 1 xn´1,y e i ş η ω Z e 1 ,ω Z re 1 s tηu c ,ω .
Therefore, by theorem 15,

µ x,y e p ź u‰v r C 1 u,v C u,v e iωu,v s Nu,vpLγ q e ´Aλ 1 ´λ,p γ E |γ LE " ηq " Z e tηu c Z e 1 ,ω Z e Z re 1 s tηu c ,ω . 
Moreover, by (4.17) and the properties of the Poisson processes,

Ep ź u‰v r C 1 u,v C u,v e iωu,v s Nu,vpL1zL tηu c 1 q e ´Aλ 1 ´λ, p L1´p L tηu c 1 E
q " Z e tηu c Z e 1 ,ω Z e Z re 1 s tηu c ,ω .

The proposition follows.

Similarly for η " px 1 , ..., x n , ∆q, one can define the image of the continuous Markov chain path distribution P x by loop erasure and check it is given by

P x LE pηq " δ x x1 C x1,x2 ...C xn´1,xn κ xn detpG |tηu´∆ˆtηu´∆ q.
Note that in particular, P x LE ppx, ∆qq " κ x G x,x . Slightly more generally, one can determine the law of the image, by loop erasure, of a path killed if it hits a subset F , the hitting point being now the end point of the loop erased path (instead of ∆, unless F is not hit during the lifetime of the path). If x P D " F c is the starting point and y P F Y t∆u, the P x LE -probability of η " px 1 , ..., x n , yq is

δ x x1 C x1,x2 ...C xn´1,xn C xn,y detpG D |tηu´yˆtηu´y q. (8.1)
which can be written

δ x x1 C x1,x2 ...C xn´1,xn C xn,y detpG D q detpG DXtηu c q . (8.2)
in the case of a finite graph.

Wilson's algorithm and random spanning trees

On a finite graph, Wilson's algorithm (see [START_REF] Lyons | Probability on trees and networks[END_REF]) iterates this last construction, starting with the vertices arranged in an arbitrary order. The first step of the algorithm is the construction of a loop erased path starting at the first point and ending at ∆. This loop erased path is the first branch of the spanning tree. Each step of the algorithm reproduces this first step except it starts at the first point which is not visited by the already constructed tree of self avoiding paths, and stops when it hits that tree, or ∆, producing a new branch of the tree. This algorithm provides a construction, branch by branch, of a random spanning tree rooted in ∆.

More precisely, we start at x 0 a Markov chain path ω 1 killed at ∆, then if n 1 denotes infpi, x i R ω LE 1 q, we start at x n1 a Markov chain path ω 2 killed as it hits tω LE 1 u or ∆, etc...until X is covered by the branches ω LE j , which form a spanning tree Υ pωq rooted in ∆, in at most |X| steps.

We now show that the distribution of this spanning tree is very simple, and does not depend on the ordering chosen on X.

Theorem 16. For any spanning tree T ∆ rooted in ∆,

P e ST,∆ pT ∆ q " detpGq ź ξPT∆ C ξ .
Proof. Given T ∆ a spanning tree rooted in ∆, denote by η 1 the geodesic in T ∆ between x 0 and ∆, then by η 2 the geodesic between x n1 and tη 1 Y ∆u etc...Then:

PpΥ " T ∆ q " Ppω LE 1 " η 1 qPpω LE 2 " η 2 | ω LE 1 " η 1 q...
In the figure below, the construction of the branches by loop erasure and the resulting tree are illustrated. (5)

(3)

(1) (2) 
(3) (5) 3 The distribution of Υ is a probability measure P e ST,∆ (defined by the energy e) on the set ST X,∆ of spanning trees of X rooted at the cemetery point ∆ and oriented towards the root (the superscript e can often be omitted). The weight attached to each oriented edge g " px, yq of X ˆX is the conductance and the weight attached to px, ∆q is κ x which we can also denote by C x,∆ . As the determinants appearing in formula (8.2) simplify in the iteration, except for the first one, we find that the distribution of the random tree produced by the algorithm is given by this formula.

Remark 33. Note first that there is a natural bijection between spanning trees rooted in ∆ and forests of rooted trees spanning X (the roots of the forest trees are the vertices next to ∆ in the spanning tree). If all conductances are equal to 1 and κ is constant, Z ´1 e " detpM λ ´Cq is a polynomial of degree |X| in κ. The coefficient of κ n is then the number of forests of n rooted trees spanning X. In particular, the coefficient of κ is divisible by |X| and the quotient is equal to the number of (unrooted, i.e. non oriented) spanning trees of the graph G.

More generally, if all conductances are equal to 1, given n distinct vertices x 1 , x 2 , ...x n , the coefficient of κ x1 κ x2 ...κ xn is the number of spanning forests composed of n trees containing x 1 , x 2 , ...x n .

Exercise 8. Show that -for the tetrahedron, 1 Ze " κpκ `4q 3 and there are 16 spanning trees; -for the cube, 1 Ze " κpκ`6qpκ`4q 3 pκ`2q 3 and there are 384 spanning trees.

We can easily obtain the probability that a given oriented edge belongs to the tree.

Proposition 35. We have the following identities: a) Pppx, yq P Υ q " C x,y pG x,x ´Gx,y q; b) Pppx, ∆q P Υ q " κ x G x,x .

Proof. a)By decomposing rP k s y,x according to the values of T x and Markov property, we have G y,x " P y pT x ă 8qG x,x , and therefore, starting the algorithm from x:

Pppx, yq P Υ q " P x pγ LE 1 " yq " ÿ kě0 rP k s x,x P x,y P y pT x " 8q

" C x,y G x,x p1 ´Gx,y G x,x q.
b) is proved in a similar way.

In addition, consider now the set L W " tl x , x P Xu of erased based loops produced by this algorithm. l x denotes the erased based loop which is formed by the algorithm from the time at which the vertex x is hit for the first time until the last exit from x. It can possibly be a trivial loop defined by the holding time at x, if the random walk which hits x does not return to x, but in general, it is the concatenation of a set of excursions outside x. Then the following result follows easily from proposition 34, more precisely from the analogous result one obtains under the assumptions of (8.1). 

P x,∆ " 1 Z e ź xPX λ x .
Then, it follows that, for any e 1 for which conductances (including κ 1 ) are positive only where the conductances of e do not vanish, E ¨ź px,yqPΥ P x 1 ,y P x,y ź x,px,∆qPΥ

P x 1 ,∆ P x,∆ '" ś xPX λ x ś xPX λ 1 x Z e Z e 1
and equivalently

E ¨ź px,yqPΥ C 1 x,y C x,y ź x,px,∆qPΥ κ 1 x κ x '" Z e Z e 1 . (8.4) 
Remark 34. The symmetry is not crucial in this algorithm. In particular, the same argument shows that for any submarkovian transition matrix P 1 , detpI ´P 1 q " ÿ T∆PSTX,∆ ź px,yqPT∆ rP 1 s x,y ź

x,px,∆qPT∆ p1 ´ÿ y rP 1 s x,y q.

It follows that for any matrix L 1 , with rL 1 s x,y ď 0 for all x ‰ y and rL 1 s x,x ´řy rL 1 s x,y ě 0 for all x, we have:

detpL 1 q " ÿ T∆PSTX,∆ ź px,yqPT∆
rL 1 s x,y ź

x,px,∆qPT∆ prL 1 s x,x ´ÿ y rL 1 s x,y q.

The result extends to any complex matrix L 1 by the principle of isolated zeros.

In particular, given any 1-form ω x,y , it follows that: ÿ T∆PSTX,∆ ¨ź px,yqPT∆ C x,y e iω x,y ź

x,px,∆qPT∆ rκ x ´ÿ y C x,y pe iω x,y ´1qs '" detpM λ ´Ce iω q

or equivalently E ¨ź px,yqPΥ e iω x,y ź

x,px,∆qPΥ

r1 ´1 κ x ÿ y C x,y pe iω x,y ´1qs '" Z e Z e,ω .
More generally

E ¨ź px,yqPΥ C 1 x,y C x,y e iω x,y ź x,px,∆qPΥ 1 κ x pλ 1 x ´ÿ y C 1 x,y e iω x,y q '" Z e Z e 1 ,ω . (8.5) 
Exercise 9. Show that for any tree T rooted in ∆,

PpT Ď Υ q " detpG |tT u´∆ˆtT u´∆ q ś ξPEdgespT q C ξ , tT u denoting the vertex set of T .

(As usual, C x,∆ " κ x . Hint: Run Wilson's algorithm starting from the leaves of T ).

Reconstruction of L 1

Corollary 8 can be made more precise with the help of corollary 3, and provides a construction of L 1 . Recall that L W " tl x , x P Xu denotes the set of based loops erased in the algorithm.

Theorem 17. Let t x be the total time spent in x by l x . Attach to each vertex x an independent set of Poisson-Dirichlet variables u x,n to split p0, t x q and consequently l x into a sequence l x,n of loops based at x, whose time spent in x equals pu x,n ´ux,n´1 qt x . Then:

i) The set of unbased loops associated with all the l x,n is a sample of L 1 ;

ii) This set is independent of the random spanning tree produced by the algorithm.

Proof. We prove the theorem by induction on |X|. i) Note first that t 0 is a sum of N independent exponential holding times of parameter λ x0 , N following a geometric distribution with mean value ř kě0 P k x0,x0 . Hence it is an exponential random variable of mean G x0,x0 . If there is only one vertex, the result follows immediately from proposition 4 and from the fact that in that case, G x0,x0 "

1 λx 0 " 1 κx 0 .
To prove the induction relation, we can assume that the property holds for

L tx0u c 1 . Then, as L 1 zL tx0u c 1 is independent of L tx0u c 1
, it is enough to show that the set of loops L 1 zL tx0u c 1 has the same distribution as the set obtained by splitting the first erased loop. But p L x 1 follows also an exponential distribution of mean G x0,x0 and therefore we can conclude by applying corollary 3.

ii) The first edge of the rooted spanning tree we get from the algorithm, px 0 x 1 q, is independent of l x0 . And it is clear that under P ST,∆ , the oriented edge starting from x 0 is independent of the restriction of the spanning tree to tx 0 u c . We can therefore extend the previous induction to the pairs formed by the loop ensembles and the spanning trees. 

ś k 1 pnj ´1q! nx i !
occurring in the so-called "Chinese restaurant process" and fundamentaly related to the Poisson Dirichlet distribution (see [START_REF] Pitman | Combinatorial stochastic processes[END_REF],sections 2-1 and 3-1). The EPPF

ś k 1 pnj ´1q! nx i !
is the probability to get any given unordered partition of a set of n elements into k subsets of sizes tn j u.The distribution of the subsets sizes n j arranged in random order is [START_REF] Pitman | Combinatorial stochastic processes[END_REF]). Note for future reference that if these sizes are put in a sized biased random order, the probability of the composition pn 1 , n 2 , ..., n k q becomes 1 n k pn k `nk´1 q...pn k `...`n2`n1q (see formula 2-6 in [START_REF] Pitman | Combinatorial stochastic processes[END_REF]).

1 k! nx i ! ś k 1 nj ! ś k 1 pnj ´1q! nx i ! " 1 k! ś k 1 nj (cf formula 2-7 in
For each x i , we can then concatenate the excursions in each part according to their original order. We will obtain the same distribution for excursions blocks if we concatenate these excursions randomly in each part, or if, considering only the random composition n j we concatenate the n 1 first excursions, then the n 2 following ones etc. in their original order. Define L to be the associated set of (unbased) discrete time loops. By mimicking the induction on |X| used to prove theorem 17 using proposition 14 instead of proposition 4, we get that L has the same distribution as the Poissonian discrete loop ensemble of intensity ν ˝and is independent of the random spanning tree. This result on the discrete Wilson algorithm can also be deduced directly from theorem 17.

The recurrent case

Let us now consider the case of a finite graph G with conductances and κ " 0.

In that case, the Markov chain is recurrent. A probability is defined on the set ST pGq of non oriented spanning trees of G by the conductances: P e ST pGq pT q is defined by the product of the conductances of the edges of T normalized by the sum of these products on all spanning trees. Note that any non oriented spanning tree T of G defines uniquely an oriented spanning tree I x0 pT q if we choose a root x 0 in X. The orientation is taken towards the root which can be viewed as a cemetery point. Then, if we consider the associated Markov chain killed as it hits x 0 defined by the energy form e tx 0 u c , the previous construction yields a probability P e tx 0 u c ST,x0 on spanning trees rooted at x 0 which by theorem 16 coincides with the image of P e ST by I x0 . This implies in particular that the normalizing factor Z e tx 0 u c is independent of the choice of x 0 as it has to be equal to p ř T PST pGq ś tx,yuPT C x,y q ´1. We denote it by Z 0 e . Then from theorem 16, we can deduce: Corollary 9. Set α x0 pT q " ś px,yqPIx 0 pT q P x,y , then:

ÿ T PST pGq α x0 pT q " Kλ x0 , with K " Z 0 e ś xPX λ x .
This fact is known as the matrix-tree theorem ( [START_REF] Lyons | Probability on trees and networks[END_REF]).

Proof. Note that α x0 pT q " ś px,yqPIx 0 pT q C x,y ś x‰x0 1 λx . Then the result follows directly. Remark 36. Using example 1, we prove Cayley's Theorem: the complete graph K n has n n´2 spanning trees. More generally, taking all conductances equal to 1, the expression of the number of spanning trees as the inverse of the determinant Z 0 e is also known as Cayley's Theorem (see for example [START_REF] Lyons | Probability on trees and networks[END_REF]).

We also deduce from proposition 35:

Corollary 10. (Kirchhoff 's theorem) P e ST ptT, ˘px, yq P T uq " C x,y pG tx0u c

x,x `Gtx0u c y,y ´2G tx0u c x,y q.

This also holds for y " x 0 provided we set

G tx0u c x,x0 " G tx0u c x0,x0 " 0.
Proof. Denoting by Υ x0 the random spanning tree rooted in x 0 defined by e tx0u c , we have P e ST ptT, ˘px, yq P T uq " Pppx, yq P Υ x0 q `Pppy, xq P Υ x0 q " C x,y pG tx0u c

x,x `Gtx0u c y,y ´2G tx0u c x,y q.

Remark 37. We refer to sections 1-2 and 1-4 in [START_REF] Jan | Markov paths, loops and fields[END_REF] for some generalities on the recurrent case, in particular the existence of a Green operator G acting on measures of zero mass.

Kirchhoff's theorem shows that pG

tx0u c x,x `Gtx0u c y,y ´2G tx0u c
x,y q does not depend on the choice of x 0 . It is the image of the measure δ x ´δy by the Green operator G.

In section 8.3 in [START_REF] Jan | Markov paths, loops and fields[END_REF], it is shown that the normalizing factor Z 0 e can also be expressed as |X| detp Gq. This determinant is the inverse of the product of the non-zero eigenvalues of M pλq ´C.

Exercise 10. Give an alternative proof of Kirchhoff's theorem by using (8.4), taking C 1

x,y " sC x,y and C 1 u,v " C u,v for tu, vu ‰ tx, yu.

Dynamics on spanning trees

We still consider the case of a finite graph G with κ " 0. Proof. Note first that every spanning tree T has |X| ´1 edges and therefore that |E| ´|X| `1 edges are external. Adding one external edge e creates a unique self avoiding loop γ which can be broken in two different ways by removing one of the two edges of T adjacent to e in γ to produce a spanning tree T 1 adjacent to T (as a subgraph with no loops is necessarily a tree).

Note that we can repeat this add and remove action step by step around γ to connect T by a chain of neighboring trees to any spanning tree obtained by adding e and removing one of the edges of γ. If our aim is to connect T to another tree T 1 , we will take e in T 1 zT and remove an edge of γ which is not in T 1 . This can be iterated |T 1 zT | times until we get to T 1 .

The last result follows by remark 2 from the identity ś ePT1YT2 C e " P ST pGq pT 1 qC e2 " P ST pGq pT 2 qC e1 , valid for two neighboring trees, from which we deduce that the sum of all conductances between a spanning tree T and its neighboring trees is 2P ST pGq pT q ř eRT C e ( as each external edge is included in two neighbors of T ).

Configurations and Wilson algorithm

This construction of discrete loop ensembles can also be related to random configurations introduced in section 7.8. Let us call exit configuration a class c ex of configurations with the same partition of exiting half edges. In other terms, an exit configuration is determined by assigning to each exiting half edge the vertex to which the oriented edge will lead, without specifying which entering half edge is used at that vertex. All configurations c in such a class c ex have equal probability and by theorem 14, the image of Q on the set of exit configurations C ex is Qpc ex q " detpI ´P q ś x,y P cx,y

x,y . All exit configurations inducing the same network have equal probability.

Such an exit configuration c ex , with the choice of an order on X, allows to construct a sample of the set of discrete based loops l i considered in remark [START_REF] Jan | Markov loops, free field and Eulerian networks[END_REF]. The first loop is based at the first vertex x 1 and visits it c ex x1 times. It starts with the first exiting half-edge, continues to the vertex to which it is associated, then with the first half edge exiting this vertex and so on, using and taking at each vertex exiting half edges in increasing order until all have been used at x 1 . Then iterate this procedure with the remaining configuration, starting at the first vertex it contains, according to the order initially defined on X.

This correspondence is a bijection, and if we start with a random exit configuration, the distribution obtained on the sequence of based loops is the same as in Wilson's algorithm. Note for the following that we get the same distribution if exiting half edges are used in random order.

Configurations and combinatorial maps *

The relations between configurations and Poissonian loop ensembles appears to be deeper than that, as shown in the following.

-Recall that a combinatorial map can be defined as a graph, with possibly multiple (non-oriented) edges between vertices, equipped with a combinatorial embedding, i.e. a cyclic ordering of edges around each vertex (see [START_REF] Mohar | Graphs on Surfaces[END_REF], [START_REF] Lando | Graphs on Surfaces and their Applications[END_REF]). This ordering allows to define facial loops (termed facial walks in section 4-1 of [START_REF] Mohar | Graphs on Surfaces[END_REF]) as cycles of the permutation φ on the set of oriented edges obtained by composing the edge orientation reversal ρ by the shift ϑ defined by the cyclic order on oriented edges exiting the same vertex: φ " ϑ ˝σ.

Note that the facial walks may visit a vertex several times. Such a map can be drawn on a surface with possibly several connected components (see [START_REF] Mohar | Graphs on Surfaces[END_REF], p.85). Let us say that a combinatorial map is a G-map if its vertex set is contained in X and if its edges are multiple copies of elements of E (if G is complete, the second condition is redundant). Let us say a combinatorial map is numbered if a first edge is chosen at every vertex and oriented if an orientation is assigned to every edge (then the two corresponding oriented edges are respectively positive and negative).

-An element c of C defines a numbered, oriented, G-map Mpcq with an even number of incident edges at each vertex. At any given vertex, the first edge is determined by the first exiting half edge and the half edge it is coupled to, the second by the first entering half edge and the half-edge it is coupled to, the third by the second exiting half edge and the half-edge it is coupled to, and so on, alternating entering and exiting half edges according to their original cyclic order. We actually get in addition an orientation on the edges of this map. At each vertex, the cyclic order on edges alternates exiting and entering edges. The number of oriented edges carried by px, yq is equal to cx,y (recall that c is the network defined by c). Definition 8. We say two configurations are opposite if they are exchanged by reversing the orientation of all half edges. We say they are equivalent if they can be exchanged by a circular permutation at each vertex, acting simultaneously on entering and exiting half-edges.

It is clear that two equivalent configurations define the same G-map.

-An equivalence class of configurations, since it specifies an orientation for each edge of the associated G-map, defines also signs on the facial loops of this map. Indeed any positively oriented edge begins with an exiting half edge and ends with an entering half edge. The following edge will have the same property thanks to the alternating order between exiting and entering half edges.

Therefore the shift ϑ preserves positive or negative orientation and we get positive and negative facial loops F `and F ´. Taking the opposite class of configurations exchanges F `and F ´.

Each edge of the map is in this way part of two facial loops of opposite signs, which confer it opposite orientations. Note that F `determines the configu-ration, up to equivalence. The same holds for F ´. Note also that in general, the loops of F ´are not simply obtained by reversing the orientation in the loops of F `.

The image on G of the sets of oriented face contours of F `and F ´are collections of loops denoted by pL `and L ´q.

-We can now state our main result, which relates the facial loops to the discrete loops of L 1 . Proof. Note first that (in contrast with the algorithm presented in section 8.3), this construction does not require additional independent partitions. We can again choose an arbitrary order on the vertices to run a different version of Wilson algorithm in order to construct L `. This algorithm can be viewed as a way, starting from c ex (i.e. the partition of exiting half edges) to sample the random coupling with entering edges progressively. This determines a configuration c sampled uniformly in c ex . We start a based loop at the first vertex with the first exiting half edge, then move to the vertex attached to it in c ex , and choose an entering half edge to couple it. Then follow the exiting half edge following this entering edge in the alternating cyclic order, and so on until we reach again the base point. Then, a based loop corresponding to a facial loop is created iff the exiting half-edge following the last entering one in the cyclic order coincides with the first exiting half-edge. We iterate the process until this happens, and create a based loop by concatenating the excursions we constructed. Note that conditioning on the initially given partition of exiting half edges and on the partial coupling with entering half edges done until a return time (this includes the excursions out of x 1 up to this return time), the creation of a based loop occurs with probability one over the number of unused entering half edges at the base point. Then, we restart at the same vertex with the next free exiting half-edge, and iterate until all half edges at the first vertex have been used.

We can then restart the algorithm at the next vertex with unused exiting half-edges, starting with the first one, and iterate until all half edges of all vertices have been used. If we start with a random initial exit configuration, the concatenation of the based loops l i,j , 1 ď j ď k i created at each vertex has the same distribution as the family of based loops tl i u defined by Wilson algorithm as mentioned at the end of the previous section (the exiting half edges here are used in random order). Conditionally on the total number of excursions at a given vertex x i , the sequence numbers n i,j , 1 ď j ď k i of numbers of excursions in the based loops l i,j , 1 ď j ď k i have the same distribution as the size-biased presentation of the random partition defined by the "Chinese restaurant process', i.e. more precisely the distribution of the size biased random composition given in remark 35 . Indeed if a vertex x i is visited n i times, the probability to get the first loop created after n i,1 return, the second after n i,2 returns etc.. is 2`ni,1q . This observation and remark 35 complete the proof of the theorem, as the case of L ´can be treated in the same way.
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The study of the geometrical properties of the random combinatorial maps defined by random configurations might be pushed further. We presented a few results in this direction in the last section of [START_REF] Jan | On Markovian random networks Electron[END_REF].

Chapter 9

Fock spaces and supersymmetry

In this chapter, we define fermionic fields from creation and annihilation operators on skew symmetric Fock space, and show how they can be used to prove two versions of the transfer current theorem for spanning trees. We also establish the supersymmetry relation which the corresponding bosonic fields, which are identical to the free fields. We finally give an example of an interaction between trees and loops, which can be represented by an interaction between bosonic and fermionic fields.

The bosonic Fock space

For any positive integer n and any symmetric ( i.e. invariant under any permutation of the variables) function v on X n , set

ǫ n pvq :" ÿ x,yPX n vpxqvpyq PerpG xi,yj , 1 ď i, j ď nq.
As G is positive definite, it is always positive for v ‰ 0 and ǫ n induces naturally a scalar product ă, ą ǫn on the space of functions on which it is finite.

Note that for any x p0q P X n , setting A x p0q pxq " 1

? n! ř σPSn ś i pδ x σpiq ,x p0q i λ x p0q i Ćx σpiq ,x p0q i q, we have ǫ n pA x p0q q " Perpδ x p0q i ,x p0q j λ x p0q i ´Cx p0q i ,x p0q j
q and for any finitely supported symmetric function v, ă v, A x p0q ą ǫn " ? n!vpx p0q q which implies that |vpx p0q q| 2 ď 1 n! ǫ n pA x p0q qǫ n pvq Then, let D n be the Hilbert space of complex functions obtained by taking the closure, for the ǫ n -norm, of the space of finitely supported symmetric functions defined on X n . By definition, we set D 0 " C.

Note that if v 1 , ...v n belong to D 1 , 1 ? n! ř σPSn v σp1q px 1 q...v σpnq px n q, denoted by v 1 d ... d v n px 1 , ..., x n q, belongs to D n with ǫ n pv 1 d ... d v n q " Perp ÿ x,y G x,y v i pxqv j pyq, 1 ď i, j ď nq,
and linear combinations of such elements are dense in D n . In particular, If v belong to D 1 , ǫ n pv dn q " n!ǫ 1 pvq n . The symmetric Fock space F B is defined as the space of sequences u " pu n , n ě 0q, u n P D n such that the series ǫpuq " ř ǫ n pu n q converges. In particular, If v belong to D 1 , exp d pvq belongs to F B , with energy

ǫpexp d pvqq " exppǫ 1 pvqq.
The construction of F B is known as the bosonic second quantization. It is endowed with the Hermitian product defined by polarization, namely for u, v P F B by ă u, v ą FB :" ř n ă u n , v n ą ǫn . Note that in particular for u, v P D 1 we then have ă exp d puq, exp d pvq ą FB " exppă u, v ą ǫ1 q. Proof. The isomorphism mentioned above is an isometry as

E φ pexpr ř x φpxqupxq´1 2 ř
x,y G x,y upxqupyqs expr

ř x φpxqvpxq´1 2 ř
x,y G x,y vpxqvpyqsq " expp ř x,y G x,y upxqvpyqq " exppă u, v ą ǫ1 q " xexp d puq, exp d pvqy FB . The proof is completed by observing firstly that linear combinations of elements of the form expp ÿ

x φpxqupxq ´1 2 ÿ

x,y G x,y upxqupyqq form a dense algebra in the space of real square integrable functionals of the Gaussian field, secondly that s ´n ś 1ďiďn pexp d ps u i q ´1q converges towards u 1 d ... d u n in F B as s converges to 0.

The n-th Wick power :φpxq n : is the image of rδ x s dn . More generally, for any u in D 1 , we will denote by :p ř x φpxqupxqq n : the image of u dn and by :φpx 1 qφpx 2 q...φpx n q: the image of δ x1 d ... d δ xn . Elements of the non completed Fock space ' 8 0 D n , i.e. the space of finite sequences are mapped by the isomorphism onto square integrable polynomial functions of the free field which can be computed from identity (9.1).

For any v P D 1 , the annihilation operator a v and the creation operator a v are defined as follows, on the uncompleted Fock space ' 8 0 D n : For all v in D 1 , a v 1 " 0 and a v 1 " v. For any u n in D n ,

a v u n px 1 , .., x n´1 q " ? n ÿ y,z G y,z vpyq ÿ 1ďkďn u n px 1 ...x k´1 , z, x k , ..., x n´1 q a v u n px 1 , .., x n`1 q " 1 ? n ÿ 1ďkďn`1 vpx k qu n px 1 ...x k´1 , x k`1 , ..., x n`1 q.
In particular, for µ 1 , ..., µ n P D 1 :

a v pµ 1 d ... d µ n q " ÿ k ÿ x,y G x,y vpxqµ k pyqµ 1 ... d µ k´1 d µ k`1 ... d µ n , a v pµ 1 d ... d µ n q " v d µ 1 d ... d µ n .
These operator a v and a v are easily seen to be dual of each other. Set a x " a δx and a x " a δx . These operators satisfy the bosonic canonical commutation relations: ra x , a ẙ s " G x,y , ra x , a ẙ s " ra x , a y s " 0.

which determine the whole structure. The isomorphism allows to represent these operators on polynomials of the free field as follows:

a x Õ ÿ y G x,y B Bφpyq a x Õ φpxq ´ÿ y G x,y B Bφpyq .
Here, φpxq is identified with the operator of multiplication by φpxq. Hence,

φpxq Õ a x `ax .
Therefore, the Fock space structure is entirely transported on the space of square integrable functionals of the free field. Conversely, expectation calculations of functionals of the Gaussian free field can be expressed in terms of Remark 38. Another symmetric Fock space structure is defined on the spaces of L 2 -functionals of the Poissonnian loop ensemble (see section 5.4 in [START_REF] Jan | Markov paths, loops and fields[END_REF]).

The fermionic Fock space

For any positive integer n and any complex function w on X n which is skew-symmetric, i.e such that for any permutation σ, wpx σp1q , ..., x σpnq q " p´1q mpσq wpx 1 , ..., x n q (with mpσq denoting the number of cycles in σ as before), set

ε n pwq :" ÿ x,yPX n wpxq wpyq detpG xi,yj , 1 ď i, j ď nq.
As G is positive definite, it is always positive for v ‰ 0 and ε n induces naturally a scalar product ă, ą εn on the space of skew-symmetric functions on which it is finite. Note that for any x p0q P X n , setting B x p0q pxq "

1 ? n! ř σPSn p´1q mpσq ś i pδ x σpiq ,x p0q i λ x p0q i ´Cx σpiq ,x p0q i q, we have ε n pA x p0q q " detpδ x p0q i ,x p0q j λ x p0q i ´Cx p0q i ,x p0q j
q and for any finitely supported skew-symmetric function w, ă w, A x p0q ą εn " ? n!wpx p0q q which implies that |wpx p0q q| 2 ď 1 n! ε n pA x p0q qε n pwq. Then let I n be the Hilbert space of complex functions obtained by taking the closure, for the ε n -norm, of the space of finitely supported skew-symmetric functions on X n . By definition, I 0 " C.

If v 1 , ..., v n belong to D 1 , 1 ? n!
ř σPSn p´1q mpσq v σp1q px 1 q...v σpnq px n q is denoted by v 1 ^... ^vn px 1 , ..., x n q and belongs to I n with ǫ n pv 1 ^... ^vn q " detp ÿ

x,y G x,y v i pxqv j pyq, 1 ď i, j ď nq.

The skew-symmetric Fock space F F is defined as the space of sequences u " pw n , n ě 0q, w n P I n such that the series ǫpwq " ř ǫ n pw n q converges. Note that if X is finite, these series have at most |X| `1 non vanishing terms. The construction of F F is known as the fermionic second quantization.

For any x P X, the annihilation operator c x and the creation operator c x are defined as follows, on the uncompleted Fock space ' 8 0 I n of finite sequences. For all v in D 1 " I 1 , c v 1 " 0 and c v 1 " v. For any u n in I n , F F . F F is generated by the vector 1 b 1 and creation/annihilation operators c x , c x , d x , d x with rc x , c ẙ s `" rd x , d ẙ s `" G x,y and all others anticommutators vanishing.

Anticommuting Grassmann operators ψpxq, ψpxq are defined as operators on the Fermionic Fock space F F by: ψpxq " ? 2pd x `cx q and ψpxq " ? 2p´c x `dx q.

The following anticommutation relations hold rψpxq, ψpyqs `" rψpxq, ψpyqs `" rψpxq, ψpyqs `" 0.

In particular, p ř x λ x ψpxqq 2 " p ř x λ x ψpxqq 2 " 0. Note that ψ x is not the dual of ψ x , but there is an involution I on F F such that ψ " Iψ ˚I.

I is defined by its action on each tensor power: it multiplies each element in I m b I p by p´1q m . We can also define another set of anticommuting operators:

̟pxq " 1 ? 2 pd x ´cx q and ̟pxq " 1 ? 2 pd x `cx q.

They satisfy the anticommutation relations:

r̟pxq, ψpyqs `" r̟pxq, ψpyqs `" 0; r̟pxq, ψpyqs `" r̟pxq, ψpyqs `" 2G x,y .

Exercise 11. Show that in contrast with the bosonic case, all these operators are bounded.

Simple calculations yield these properties of the scalar product on F F : @ 1, ψpx m q...ψpx 1 qψpy 1 q...ψpy n q1 D FF " δ nm 2 n detprG xi,yj s 1ďi,jďn q. (9.3)

Therefore, as all ψ and ψ anticommute, @ 1, ψpx n qψpy n q...ψpx 1 qψpy 1 q1 D FF " 2 n detpG xi,yj q.

For X finite, we have Proposition 37. If e 1 is a Dirichlet form defined by another set of conductances and another killing measure:

B 1, expp´1 2 epψ, ψq `1 2 e 1 pψ, ψqq1 F FF " detpGq detpG 1 q " Z e Z e 1 . (9.4) 
Proof. Indeed, if f i is an orthonormal basis of the Dirichlet space in which e 1 is diagonal with eigenvalues λ i , applying (9.3), the first side equals

C 1, ź i expp 1 2 p´1 `λi q xψ, f i y @ ψ, f i D q1 G FF " C 1, ź i p1 `1 2 p´1 `λi q xψ, f i y @ ψ, f i D q1 G FF " 1 `ÿ k ÿ i1ă...ăi k p´1 `λi1 q...p´1 `λi k q " ź i λ i .
Note finally that GrG 1 s ´1 is the matrix defining e 1 when one uses the scalar product defined by e. Therefore ś i λ i " detpGq detpG 1 q .

In particular, for any positive function χ on X,

C 1, expp 1 2 ÿ x χ x ψpxqψpxqq1 G FF " detpGq detpG χ q .
If ω is a one-form, we set: More results on Fock spaces calculations and their relation to Grassmann integration and Wick products can be found in [START_REF] Jan | On the Fock space representation of functionals of the occupation field and their renormalization[END_REF].

e 1pωq pψ,

A more elementary approach to Grassmann variables

If X is finite, we can find a fermionic analogue for the elementary definition of the free field through the Gaussian density function and provide a more elementary approach to fermionic calculations based on the use of the finite dimensional exterior algebra, and its canonical scalar product.

Proposition 38. Let u x and ūx be the canonical basis of two copies of R |X| .

Set η " Ź x u x ^ū x , σ " ř x λ x u x ^ū x ´řx,y C x,y u x ^ū y and ν " 1 `ř|X| Here P ^denotes the polynomial in which the product is replaced by the wedge product.

Proof. It is clear that to get a non-vanishing result, the total degree of P in u and ū have to be equal. Note that 1 `ř|X| 1 σ ^k k! is formally equal to exp ^pe ^pu, ūqq and that η does not depend on an order on vertices. Moreover, for any ONB α i " ř x a i x u x of R |X| (pa i x q being an orthogonal matrix for any numbering of X), setting ᾱi " ř x a i x ūx , we have η "

Ź i α i ^ᾱ i .
We choose the α i to be unit eigenvectors of M pλq ´C and denote by r i the associated eigenvalues, so that G x,y " ř i 1 ri a i x a i y and σ " 

ř i r i α i ^ᾱ i . x Ź n j"1 u xj ^ū yj ^1 k! σ ^k
detpa x l h l , 1 ď l ď nq detpa y l h l , 1 ď l ď nq n ź l"1 1 r h l " detprG xi,yj s 1ďi,jďn q detpGq .
The proof then follows directly from equation (9.3).

The Transfer Current Theorem

We consider a finite graph. Let us define a root ∆ outside X and set G x,∆ " G ∆,∆ " C ∆,∆ " 0, and C x,∆ " κ x . The symmetric transfer matrix K px,yq,pu,vq , indexed by pairs of oriented edges, is defined to be:

K px,yq,pu,vq " G y,v ´Gy,u ´Gx,v `Gx,u for x, y, u, v P X Y t∆u, with C x,y C u,v ą 0. Grassmann variables provide an easy proof of the following result, known as the transfer current theorem (see for example [START_REF] Lyons | Determinantal Probability Measures[END_REF], [START_REF] Lyons | Probability on trees and networks[END_REF]).

Theorem 20. Transfer Current Theorem

For distinct edges ˘ξ1 , ... ˘ξk , with ξ i " px i , y i q:

Pp˘ξ 1 , ... ˘ξk P Υ q " p k ź i"1 C ξi q detpK ξi,ξj , 1 ď i, j ď kq " 2 ´k ˜k ź i"1 C xi,yi ¸C1, ˜k ź i"1
pψpy i q ´ψpx i qqpψpy i q ´ψpx i qq

¸1G FF .
In particular,

Pppx i , ∆q P Υ, 1 ď i ď kq " detpGpx i , x j qq k ź i"1 κ xi " 2 ´k ˜k ź i"1 κ xi ¸C1, ˜k ź i"1 ψpx i qψpy i q ¸1G FF .
Note that detpK ξi,ξj q does not depend on the orientation of the edges.

Proof. Recalling equations (8.4) and (9.4),

Ep ź px,yqPΥ C 1 x,y C x,y q " Z e Z e 1 " B 1, expp´1 2 epψ, ψq `1 2 e 1 pψ, ψqq1 F FF .
The Transfer Current Theorem follows directly, by calculation of Pppx i , y i q P Υ, 1 ď i ď kq "

k ź i"1 C xi,yi B k BC 1 x1,y1 ...BC 1 x k ,y k | C 1 "C Ep ź px,yqPΥ C 1 x,y C x,y q " k ź i"1 C xi,yi B k BC 1 x1,y1 ...BC 1 x k ,y k | C 1 "C B 1, expp´1 2 epψ, ψq `1 2 e 1 pψ, ψqq1 F FF " 2 ´k k ź i"1 C xi,yi C 1, ˜k ź i"1
pψpy i q ´ψpx i qqpψpy i q ´ψpx i qq ¸1G FF " detprK pxi,yiq,pxj,yj q s 1ďi,jďk q

k ź i"1 C xi,yi .
The last identity follows from (9.3), extended by multilinearity.

Note that in the third line we use the identity C x,y " C y,x to show that B BC 1

x,y e 1 pψ, ψq " pψpyq ´ψpxqqpψpyq ´ψpxqq.

Corollary 11. Given any function g on non oriented edges, Epe ´řξPΥ gpξq q " detpI ´M?

Cp1´e ´g q KM ? Cp1´e ´g q q.

Note that the determinant is taken on a matrix indexed by E.

Proof.

Epe ´řξPΥ gpξq q " Ep ź ξ p1 `pe ´gpξq ´1q1 ξPΥ qq

" 1 `|E| ÿ k"1 ÿ ˘ξ1‰˘ξ2‰...‰˘ξk k ź i"1 pe ´gpξiq ´1qPp˘ξ 1 , ..., ˘ξk P Υ q " 1 `|E| ÿ k"1 ÿ ˘ξ1‰˘ξ2‰...‰˘ξk k ź i"1
C ξi pe ´gpξiq ´1q detpK ξi,ξj , 1 ď i, j ď kq

" 1 `|E| ÿ k"1
T rppM Cpe ´g ´1q Kq ^kq " detpI `KM Cpe ´g ´1q q.

Remark 39. This is an example of the Fermi point processes (also called determinantal point processes) discussed in [START_REF] Soshnikov | Determinantal Random Point Fields[END_REF] and [START_REF] Shirai | Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes[END_REF]. It is determined by the matrix M ? C KM ? C . Note that it follows also easily from the previous proposition that the set of edges which do not belong to the spanning tree also form a Fermi point process defined by the matrix I ´M?

C KM ? C . In particular, under P ST,∆ , the set of points directly connected to the root ∆ is a Fermi point process the law of which is determined by the matrix

Q x,y " ? κ x G x,y ? κ y . For example, if X is an interval of Z, with C x,y " 0 iff |x ´y| ą 1, it is easily verified that for x ă y ă z, Q x,z " Q x,y Q y,z Q y,y .
Then using the remark following theorem 6 in [START_REF] Soshnikov | Determinantal Random Point Fields[END_REF], we see that the spacings of this point process are independent (in the sense that given any point of the process, the spacings on his right and on his left are independent).

The edges of X which do not belong to the spanning tree form a determinantal process of edges, of the same type, intertwinned with the points connected to ∆.

Corollary 12. (Negative association) Given any disjoint sets of edges E 1 and E 2 ,

PpE 1 Y E 2 Ď Υ q ď PpE 1 Ď Υ qPpE 2 Ď Υ q.
Proof. Denote by K # pi, jq the restriction of K # " p a C ξ K ξ,η a C η , ξ, η P Eq to E i ˆEj . Then, theorem 20 entails

PpE 1 Y E 2 Ď Υ q PpE 1 Ď Υ qPpE 2 Ď Υ q " detpK # q detpK # p1, 1qq detpK # p2, 2qq " det ˆ" I F F ˚I ẇ ith F " K # p1, 1q ´1 2 K # p1, 2qK # p2, 2q ´1 2 .
Finally, note that logpdet

ˆ" I F F ˚I ˙q " T rplog ˆ" I F F ˚I ˙q " ´ř8 1 1 k T rppF F ˚qk q ď 0.
Finally, we prove an extension of the transfer current theorem to oriented edges of rooted spanning trees. Recall the convention: C x,∆ " κ x , G x,∆ " 0 and set ψp∆q " ψp∆q " 0. Then:

Theorem 21. If tx j , j " 1, ..., nu are distinct vertices different from ∆, for any ty j , j " 1...nu:

Pppx j , y j q P Υ, j " 1...nq "

n ź 1 1 2 C xj ,yj C 1, n ź 1 pψpx j q ´ψpy j qqψpx j q1 G FF " detpG xj ,x k ´Gyj,x k q ź j C xj ,yj .
In particular

Pppx j , ∆q P Υ, j " 1...nq " n ź 1 1 2 Cκ xj C 1, n ź 1 ψpx j qqψpx j q1 G FF " detpG xj ,x k q ź j κ xj .
Proof. Recalling equation (9.6) and (8.5), in which Υ denotes the random spanning tree oriented towards the root ∆, we get that:

E ¨ź px,yqPΥ C 1 x,y C x,y e iωx,y ź px,∆qPΥ λ 1 x ´řy C 1 x,y e iω x,y κ x '" B 1, expp 1 2 pe 1pωq ´eqpψ, ψqq1 F FF .
To any oriented edge px 0 , y 0 q, associate the differential operator

D x0,y0 " 1 2 C 1 x0,y0 p B BC 1 x0,y0 `B Bκ 1 x0 ´B Bκ 1 y0 q ´i 2 B Bω x0,y0
.

The definition can be extended to include edges of the form px, ∆q using the

differential operator D x0,∆ " κ 1 x0 B Bκ 1 x 0 .
On one hand:

D x0,y0 | C 1 "C,ω"0,κ 1 "κ ś px,yqPΥ C 1 x,y
Cx,y e iωx,y ś px,∆qPΥ

λ 1 x ´řz C 1
x,z e iω x,z κx is equal to 1 if px 0 , y 0 q is an edge of Υ and zero otherwise.

To check this, we note that D x0,y0 λ 1 x0 " C 1 x0,y0 ; and therefore:

D x0,y0 C 1 x 0 ,y 0 Cx 0 ,y 0 e iωx 0 ,y 0 " C 1
x 0 ,y 0 Cx 0 ,y 0 e iωx 0 ,y 0 and r

C 1 x 0 ,y 0 Cx 0 ,y 0 e iωx 0 ,y 0 s | C 1 "C,ω"0,κ 1 "κ " 1; D x0,∆ pλ 1 x 0 ´řz C 1 x 0 ,z e iωx 0 ,z q κx 0 " κ 1 x 0 κx 0 and κ 1 x 0 κx 0 |C 1 "C,ω"0,κ 1 "κ " 1; D x0,y0 C 1 x 0 ,y 0 Cx 0 ,y 0 e ´iωx 0 ,y 0 " 0, D x0,y0 pλ 1 y0 ´řz C 1 y0,z e iωy 0 ,z q " 0; D x0,y0 pλ 1 x0 ´řz C 1 x0
,z e iωx 0 ,z q " C 1 x0,y0 p1 ´eiωx 0 ,y 0 q and C 1 x0,y0 p1 ´eiωx 0 ,y 0 q | C 1 "C,ω"0,κ 1 "κ " 0. and all other derivatives vanish trivially.

Consequently, Pppx j , y j q P Υ, j " 1, ..., nq equals:

n ź j"1 D xj ,yj | C 1 "C,ω"0,κ 1 "κ E ¨ź px,yqPΥ C 1 x,y C x,y e iωx,y ź px,∆qPΥ λ 1 x ´řz C 1 x,z e iω x,z κ x '.
On the other hand,

D x0,y0 1 2 pe 1pωq ´eqpψ, ψq " Cx 0 ,y 0 2
pψpx 0 q ´ψpy 0 qqψpx 0 q and D x0,∆ pe 1pωq´e qpψ, ψqq "

κx 0 2 ψpx 0 qψpx 0 q. Hence ś D xj,yj | C 1 "C,ω"0,κ 1 "κ @ 1, expp 1 2 pe 1pωq ´eqpψ, ψqq1 D FF equals ś 1 2 C xj ,yj @ 
1, ś pψpx j q ´ψpy j qqψpx j q1 D FF . The proof is now complete, due to the formula displayed at its beginning, and to (9.3) that allows to derive the last equality of the statement.

Remark 40. On an infinite graph, this formula also defines the distribution of a random spanning tree rooted in ∆, or equivalently of a random forest of oriented trees on G. This can be proved by taking an increasing sequence of subgraphs. One can also directly check from the formula that each vertex is the origin of a single "occupied" oriented edge with probability one and that any loop has probability zero to be occupied. The same holds for theorem 20.

Supersymmetry and bridges local times*

Note that, using (6.4), (9.2) and (9.4), if X is finite:

B 1, expp´1 2 epψ, ψq `1 2 e 1 pψ, ψqq1 F FF " detpGq detpG 1 q " B 1, expp 1 2 epϕ, ϕq ´1 2 e 1 pϕ, ϕqq1 F ´1 FB .
From this we can deduce that, without finiteness assumption on X, B 1, expp´1 2 epψ, ψq `1 2 e 1 pψ, ψqq1

F FF B 1, expp 1 2 epϕ, ϕq ´1 2 e 1 pϕ, ϕqq1 F FB " 1. (9.7) 
We thus observe a "Supersymmetry" between ϕ and ψ.

In particular, for any positive measure χ on X, C

1, expp ÿ x χ x ψpxqψpxqq1 G FF C 1, expp´ÿ x χ x ϕpxqϕpxqq1 G FB " 1 (9.8)
and therefore, for any exponential or polynomial function

H @ 1, Hpϕϕ ´ψψq1 D FBbFF " Hp0q. (9.9) 
(1 denotes 1 pBq b 1 pF q ). By Taylor formula, if H is a polynomial of degree n, Hpϕϕ´ψψq "

n ÿ k"0 ÿ x1‰x2...‰x k p´1q k k! H pkq x1x2...x k pϕϕqψpx 1 qψpx 1 q...ψpx k qψpx k q.
(9.10)

Hence, from equation (9.9), and the identity in law between L1 and 1 2 ϕϕ (recall remark f) following theorem 9):

n ÿ k"0 ÿ x1‰x2...‰x k p´1q k k! ErH pkq x1x2...x k p2 L1 qsPppx i , ∆q P Υ, 1 ď i ď kq " Hp0q. (9.11) 
Equation (9.7) allows to prove results similar to equation (9.11) for the edge occupation fields.

The relations we have established can be summarized in the following diagram:

(Wilson Algorithm) Loop ensemble L 1 ÐÑ Random Spanning Tree Ù Ù
Free field ϕ, ϕ ÐÑ Grassmann field ψ, ψ ("Supersymmetry") NB: ϕ and ψ can also be used jointly to represent bridge functionals (Cf [START_REF] Jan | On the Fock space representation of functionals of the occupation field and their renormalization[END_REF]): in particular, for any exponential or polynomial function H ż Hp p lqµ x,y pdlq " @ 1, ϕpxqϕ y Hpϕϕ ´ψψq1

D FBbFF " @ 1, ψ x ψ y Hpϕϕ ´ψψq1 D FB bFF .
Exercise 12. Define the supersymmetry generator Q as follows:

Q " ÿ

x,y rM pλq ´Cs x,y pψpxqπpyq `ψpxqπpyq `ϕpxq̟pyq ´ϕpxq̟pyqq.

Show that: Q " ř x,y rM pλq ´Cs x,y p´d x b ẙ `cx a ẙ `bx d ẙ `ax c ẙ q and that: rQ, ψ x s `" ϕ x , rQ, ψ x s `" ϕ x , rQ, ϕ x s " ψ x , rQ, ϕ x s " ´ψx .

Interactions between trees and loops and in Fock space *

In this section we show that certain natural interactions between spanning trees and loop ensembles are related to local interactions between bosonic and fermionic fields.

Given a parameter 0 ă β ă 1 we can define an interacting pair pT , Lq by the joint distribution:

P pβ`q T ,L pT, dLq " 1 Z pβ`q ˜ź ePT β NepLq ¸PL1 pdLq P ST,∆ pT q,
Z pβ`q denoting the normalization constant ř T `śePT β NepLq ˘PL1 pdLq P ST,∆ pT q.

As β tends to 0, the loops of L tend to avoid the tree. If β " 1 T and L are independent. We can also define another interaction by the joint distribution:

P pβ´q T ,L pT, dLq " 1 Z pβ´q ˜ź eRT β NepLq ¸PL1 pdLq P ST,∆ pT q,
Z pβ´q being a normalization constant.

As β tends to 0, with this second interaction, the loops of L tend to be carried by T . In particular, they tend to be contractible to a point.

The independent pair associating a spanning tree and a Poissonian loop ensemble can be interpreted in the framework of symmetric and skew-symmetric Fock spaces. First note that ϕ denoting the complex Bose field, it follows from identities (6.4) and (9.2) that for any complex function q, |q| ď 1, defined on the set E o of oriented edges, and χ ě 0 defined on X,

Ep ź e o q N e o pL1q e o e ´řx χx Lx 1 q " x1, e 1 2 ř 
x,y Cx,yrqx,y ´1sϕpxqϕpyq´1 2 ř

x χx|ϕpxq| 2 1y.

(9.12)

Then note that for any pair of functions b and c defined on edges, setting Cx,y rβ´1spϕϕpx,yqq ´1q 1y and for any positive functional F ,

|dψ tx,yu | 2 " 1 2 C x,
ÿ T ż F p LqP pβ`q T ,L pT, dLq " 1 Z pβ`q x1, F p 1 2 ϕϕq e ř tx,yu r|dψ tx,yu | 2 pe 1 2
Cx,y r1´βspϕϕpx,yqq ´1qs 1y.

Proof. It is enough to prove the result for Laplace transforms. ř tx,yu rpCx,yrβ´1spϕϕpx,yqq`|dψ tx,yu | 2 pe ´1 2 Cx,y rβ´1spϕϕpx,yqq ´1qs 1y.

Note that for β close to 1, the joint distribution P pβ˘q T ,L is a perturbation of the product P L1 b P ST,∆ . The Fock space representation allows to expand the partition function and related expressions according to powers of 1 ´β.

Chapter 10

Groups and Covers

This chapter focuses on topological properties of loops and graphs. Notions of universal cover and fundamental group are introduced. We show there is a one to one correspondence between geodesic (i.e. non backtracking) loops and conjugacy classes of the fundamental groups. Distributions of loop homotopy classes and homologies are studied. Galois covers which are intermediate between the graph and its universal cover are introduced.

Universal cover and fundamental group

A n-tuple of elements of X, say px 0 , x 1 , ..., x n q is called a path segment on G iff tx i , x i`1 u P E for all i and a geodesic arc if moreover x i´1 ‰ x i`1 (no backtracking). The set of geodesic arcs γ x,y starting at x and ending at y is denoted by Γ x,y . The reversed arc is denoted by γ y,x . For any x, y, z P X, we can define an operation of concatenation on geodesic arcs, with (possibly) cancellation of two inverse subarcs ending and beginning at y: Γ x,y ˆΓy,z Ñ Γ x,z . This operation provides a groupoid structure. In particular for any x P X, Γ x,x , denoted by Γ x , is a group. Conjugation by any element γ x,y of Γ x,y defines an isomorphism between Γ x and Γ y . Note that this isomorphism is not canonical as it depends on the choice of γ x,y , but the induced bijection between conjugacy classes is canonical as it is easy to check that it does not 135 depend on this choice. This common group structure defines the fundamental group of the graph. We say that Γ x is the fundamental group based at x.

Definition 9. A graph r G " p r X, r
Eq is a non-ramified covering of G if there exists a map p from r X onto X such that, for every vertex u in r X, the projection p induces by restriction to the set of neighbors of u a bijection with the set of neighbors of ppuq.

Given two such coverings r

G 1 and r G 2 of r G, a bijection j from r X 1 onto r X 2 is a covering isomorphism iff p 2 ˝j " p 1 .
If the graph is connected, all fibers have the same cardinality, as any lift of a geodesic between two vertices x 1 and x 2 to the covering determines a bijection between their fibers p ´1px i q. Each oriented path segment on X can be lifted to the covering in a unique way, given an inverse image of its starting point. The projection of a geodesic arc in the covering is always a geodesic arc on the base. Conversely any lift of a geodesic arc is a geodesic arc.

Given a non-ramified covering r G " p r X, r Eq, the killing measure and the conductances are naturally defined on it so that they project on C and κ. The 

From the Green functions identity (10.1), we deduce that if the fibers are finite, of order denoted by d, the free field of the covering denoted by φ is related to ϕ by the following identity:

ϕpxq d " 1 ? d ÿ x P p ´1pxq φpxq.
Proposition 40. For finite graphs, the characteristic polynomial of the graph divides the characteristic polynomials of all its finite non ramified covers.

Proof. Note that if g is an eigenvector of G, g ˝p is an eigenvector of r G, hence eigenvalues of G are eigenvalues of r G, with at least the same multiplicity.

The universal cover of G is a tree Ĝ " p X, Êq, which is a non ramified cover of G. It is unique, up to isomorphism, and it is the universal cover of any non ramified cover of G. We denote by p the canonical projection from X onto X. Given any pair of points x and ŷ projecting respectively on x and y, there exists a unique element of Γ x,y whose lift starting at x ends at ŷ. It is the image by p of the geodesic arc px, ŷq, i.e. of the unique non-backtracking path in Ĝ starting at x and ending at ŷ. In particular, Γ x acts freely and transitively on the fiber p´1 pxq.

Assume till the end of this section that the graph is finite. Recall that a spanning tree T is by definition a subgraph of G which is a tree and contains all points in X. It has necessarily |X| ´1 edges.

The inverse images of a spanning tree by the canonical projection from a universal cover X onto X form a tesselation on Ĝ, i.e. a partition of Ĝ in isomorphic subtrees. This holds more generally on any non-ramified cover.

Conversely, a section of the canonical projection from the universal cover with connected image determines a spanning tree of the graph. Its edges are the projections of the edges in the image of the section.

Fixing a spanning tree determines a geodesic between any two points of X.

Therefore, it determines conjugacy isomorphisms between the fundamental groups Γ x which can then be identified and denoted by Γ .

The fundamental group Γ is a free group with |E|´|X|`1 " r generators.

For example, in the case of a complete graph, with k vertices, r " pk´1qpk´2q 2 .

To construct a set of generators, we choose an orientation on each of the r remaining edges e i which are not included in the spanning tree T . For any base point x 0 , with the tree branches from x 0 to e í and from e ì to x 0 , they define r elements γ i of Γ x0 which form a set of free generators. (See [START_REF] Massey | Algebraic Topology: An Introduction Springer[END_REF] or

Serre ([63]) in a more general context).

Below is a picture of the universal covering of K 4 , and of the action of the fundamental group with the tesselation defined by a spanning tree.

Given a fundamental domain, i.e a lift of a spanning tree, the elements of the tesselation are in bijection with the fundamental group.

1 4 2 3 α β α 3 β 2 γ 4 γ 1 γ 2 γ 3 α ´1 3 α ´1 4 α ´1 1 α ´1 2 γ ´1 3 β ´1 4 
γ Fig. 10.1 Universal cover and tesselation of K 4

Geodesic loops and conjugacy classes

Given ω any finite path in X with starting point x 0 , the reduced path ω R is defined as the geodesic arc defined by projection of the geodesic arc between the starting point and the endpoint of any lift of ω to Ĝ.

Tree-contour-like based loops can be defined as discrete based loops whose lifts to the universal covering are still based loops. The reduced path ω R can equivalently be obtained by removing all tree-contour-like based loops imbedded into it. This can be done iteratively by removing pairs of opposite consecutive edges. In particular each discrete based loop l 0 defines an element l R 0 in Γ x0 , x 0 being its base point.

Recall that loops are defined as equivalence classes of based loops under the natural shift θ defined as follows:

If ξ " pξ 1 , ..., ξ ppξq q, θξ " pξ 2 , ..., ξ ppξq , ξ ppξq`1 " ξ 1 q.

A geodesic based loop is tailless if its first and last edge are different. Then all its images under the shift are tailless geodesic based loops. Their class is by definition a geodesic loop. Given a loop l, there is a canonical geodesic loop l R associated with it. It is obtained by removing recursively all tail edges (i.e.

pairs of consecutive inverse oriented edges of the loop), i.e. by removing all tree-contour-like based loop imbedded into it.

Proposition 41. Geodesic loops are in bijection with the set of conjugacy classes of the fundamental group.

Proof. If we fix a reference point x 0 , a geodesic loop defines the conjugacy class formed of the elements of Γ x0 obtained by choosing a base point z on the loop and a geodesic arc (a "tail") linking x 0 to z, traversed first from x 0 to z and then, after traversing the geodesic loop, backwards from z to x 0 .

Any element of Γ x0 admits a decomposition of this form and two elements associated to the same geodesic loop are easily seen to be conjugate. Indeed, if z 1 and z 2 are the respective ends of their tails t 1 and t 2 they are conjugated by the element of Γ x0 defined by the based loop obtained by concatenation of t 1 , the arc from z 1 to z 2 on the geodesic loop, and t 2 oriented backwards.

Among geodesic loops, we can distinguish specific types: Primitive geodesic loops, which are in bijection with primitive conjugacy classes, circuits in which the same edge is not visited twice and simple circuits in which the same vertex is not visited twice.

Proposition 43. If G is a d-regular graph, with unit conductances and κ constant, for any closed geodesic γ, the number of discrete loops in L α homotopic to γ is a Poisson r.v. of expectation αµ γ with:

µ γ " 1 multpγq ˜d `κ 2pd ´1q p1 ´d1 ´4pd ´1q pd `κq 2 q ¸|γ| ,
denoting by |γ| the number of jumps of γ.

In particular, for κ " 0, µ γ " 1 mult pγq pd ´1q ´|γ| .

Remark 41. If κ " 1 u `upd ´1q ´d, the associated generating function

ř γ u |γ| µ γ " ř γ 1
multpγq u |γ| coincides with the logarithm of Ihara's zeta function (Cf [START_REF] Stark | Zeta functions on finite graphs and coverings[END_REF], [START_REF] Kotani | Zeta functions of finite graphs[END_REF] [49], [START_REF] Jan | Markov paths, loops and fields[END_REF]):

ÿ γ 1 multpγq u |γ| " ´logrp1 ´u2 q |E|´|X| detpI ´uA `u2 pd ´1qIqs
where A denotes the adjacency matrix of the graph.

The result stated in the previous proposition follows from a more general one: If px, yq is an edge, let us denote by r x,y the probability that the Markov chain starting at y returns to y following a tree-contour-like subloop without visiting x at the first step. Note that: r x,y " ÿ z‰x P y,z P z,y 8 ÿ n"0 rr y,z s n and, if we set ρ x,y " ř 8 n"0 rr x,y s n , ρ x,y " 1 `ÿ z‰x P y,z ρ y,z P z,y ρ x,y . (

In the expression of νplq, for any discrete loop l such that l R " γ, we can decompose the product of transition probabilities into those relative to the crossing of edges of γ and products of those relative to the edges traversed by the tree-like excursions following each crossing of an edge of γ. There are |γ| such excursions and their period is a multiple of the period of γ, say If G is a d-regular graph, with C e " 1, κ constant, lifting the tree-contour-like subloop to the universal cover of the graph (which is a d-regular tree), we see that the r x,y are all equal to the return probability of a random walk starting from the root of any of the two halfd-regular trees obtained by cutting an edge of the d-regular tree. We then get from the quadratic equation ( 10.2) satisfied by ρ that ρ x,y " pd `κq 2 2pd ´1q ˜1 ´d1 ´4pd ´1q pd `κq 2 and recover the result of [START_REF] Mnëv | Discrete Path Integral Approach to the Selberg Trace Formula for Regular Graphs[END_REF].

This argument is close to the proof of Ihara's formula in [START_REF] Stark | Zeta functions on finite graphs and coverings[END_REF].

Note that one can consider another type of Poisson distribution on the set of geodesics loops, namely the Poisson distribution of intensity αν ˝pγq. µ γ and ν ˝pγq differ in general but under the assumptions of proposition 43, by remark 41, they can coincide with an appropriate relation between constant killing factors. The following proposition gives a general formula which allows in particular to determine the total mass of geodesic loops under ν ˝. It was proved in [START_REF] Fukumizu | Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation[END_REF] by adapting the proof of Ihara's formula in [START_REF] Kotani | Zeta functions of finite graphs[END_REF] as we do below. Note that in particular, ν ˝pG 0 q " IZp1q Proof. On the set E o of oriented edges of G we define a transfer matrix Q by Q px,yq,py 1 ,zq " δ y 1 y 1 tz‰xu . Let U be the diagonal E o ˆEo matrix defined by the function u. Then, as logpdetpI ´U Qq ´1q " ř 1 n T rpU Q n q, we have

IZpsq " detppI ´U Qq ´1
Denote by τ be the matrix indexed by E o ˆEo : τ px,yq,py 1 ,x 1 q " 1 x"x 1 ,y"y 1 , by T , the matrix indexed by X ˆEo : T x,px 1 ,yq " 1 x"x 1 and by S the matrix indexed by E o ˆX: S px,yq,y 1 " 1 y"y 1 .

Note first that Q " ´τ `ST . detppI ´U Qq " detpI ´U ST `U τ q " detpI ´U ST pI `U τ q ´1q detpI `U τ q. And detpI ´U ST rI `U τ s ´1q " detpI T rI`U τ s ´1U Sq, the last identity being a consequence of the following lemma: Therefore, detpI `U τ q " ś tx,yuPE p1 ´upx, yqupy, xqq and pI`U τ q ´1 is made of the diagonal blocks ı α is the generating function of the total numbers of crossings of oriented edges by geodesic loops. These results are similar to proposition 10 and corollary 2. In particular, denoting by Q P the transfer matrix U Q if upx, yq " P x,y on E 0 , we see from the first step of the proof that the generating function of the total number of crossings of a single oriented edge e is p1 `spI ´QP q ´1q e,e q ´α. Therefore it follows a negative binomial distribution, as in the case of loops. Remark 13 holds as well for these ensembles of geodesic loops.

Loop homologies

Consider the commutator subgroup rΓ x , Γ x s also denoted by Γ p1q

x , i.e the subgroup generated by commutators rg 1 , g 2 s " g 1 g 2 g ´1 1 g ´1 2 of elements of Γ x . If the graph is finite, in terms of any system of r " |E| ´|X| `1 generators, it is also the set of elements whose total degree in each generator is zero (see exercises 1,2,3 in section 2-2 of [START_REF] Magnus | Combinatorial Group Theory[END_REF]). The factor group Γ x {Γ p1q x , is, by definition, the first homology group H 1

x pZq. The image of an element of Γ x by the projection map depends only of its conjugacy class. In contrast with the Γ x , these Abelian groups are canonically isomorphic (as conjugate elements are equal) and will be denoted by H 1 pG, Zq. The homology of a set of loops is defined as the sum of the loop homologies.

Assume the graph is finite. If we fix a spanning tree and an orientation for the external edges e j p1 ď j ď rq, i.e. the edges which do not belong to the spanning tree, the homologies of the associated simple circuits γ j form a basis of the homology group.

Define for any oriented edge px, yq, q N x,y plq " N x,y plq ´Ny,x plq. Then, the q N pγ j q's form a basis of the Abelian group formed by all matrices q N plq. Indeed, these matrices are clearly independent (consider the entries defined by the edges e j ). Moreover, for any loop l, q N plq ´ř q N ej plq q N pγ j q is a Eulerian network carried by a tree and such a network vanishes necessarily. Therefore, the matrix q N plq, namely, the antisymmetric part of the network defined by the loop, provides a faithful representation of its homology, independently of the choice of a spanning tree. It can equivalently be represented by the associated flow (see section 7.4). The same holds for sets of loops.

We now compute the distributions of the homologies of the loop ensembles L α . Let θ 1 , ..., θ r be r real parameters. Set P pθq x,y " P x,y if tx, yu ‰ e j for all 1 ď j ď r and P pθq x,y " P x,y e ˘2π ? ´1θj if px, yq " ˘ej . By formula (4.16), we have:

ż pe

ř j 2π ? ´1 | Ne j plqθj ´1qµpdlq " ´log ˆdetpI ´P pθq q detpI ´P q ˙.
Hence for any ph i q P Z r , using an inverse Fourier transform, we have:

Proposition 46. The integers |tl P L α , q N ej plq " h j , j " 1...ru| are independent Poisson r.v. with expectations:

αµptl, q N ej plq " h j , j " 1...ruq " ´α ż r0,1s r log ˆdetpI ´P pθq q detpI ´P q ˙r ź j"1 e ´2π ? ´1 hj θi dθ i .

Consequently, denoting by q N i pL α q the sum of the homologies defined by the loops of L α , P p q N i pL α q " h i , i " 1...rq " ż r0,1s r " detpI ´P q detpI ´P pθq q  α r ź

i"1 e ´2π ? ´1 hiθi dθ i .

Remark 43. -An intrinsic (not relying on the choice of the spanning tree), but less explicit, expression is given in [START_REF] Jan | Markov loops, free field and Eulerian networks[END_REF]. It involves harmonic forms (Cf [START_REF] Jan | Markov paths, loops and fields[END_REF], section 1-5), i.e. the space of one-forms ω such that ř y C x,y ω x,y " 0. The Fourier integration is done on the Jacobian torus ( [START_REF] Kotani | Jacobian Tori Associated with a Finite Graph and Its Abelian Covering Graphs[END_REF]), i.e. the quotient of the space of harmonic one-forms H 1 pG, Rq by H 1 pG, Zq, the space of harmonic one-forms with Z-valued integrals on loops.

-For α " 1, recall that an alternative expression in terms of Bessel functions (and without inverse Fourier transform) is given in section 7.4.

An example: (Cf [START_REF] Jan | Markov loops, free field and Eulerian networks[END_REF]) Consider the case of the discrete circle with N vertices, conductances equal to 1 and constant killing rate κ.

The homology group is Z. q N i,i`1 plq is constant in i for any loop l and q N can therefore be viewed an an integer. P and P e 2πiω are circulant matrices and therefore, their determinants can be computed.

If we set u ˘" 1 2 p´1 ˘c1 ´4 p2 `κq 2 q,

detpI ´P q " u N ``u N ´`2p´1q N `1 p2 `κq N and detpI ´P e 2πiω q " u N ``u N ´`p´1q N `12 cosp2πN ωq p2 `κq N .
Hence for any integer j, we get

P p q N pαq " jq " N ż 1{N 0 » - - - u N ``u N ´`2p´1q N `1 p2 `κq N u N ``u N ´`p´1q N `12 cosp2πN ωq p2 `κq N fi ffi ffi fl α e ´2πN jω dω.
Hence we have, with C N pκq " p´1q N p2 `κq N pu N ``u N ´q ´2, P p q N pαq " jq "

ż 1 0 " C N pκq C N pκq `2p1 ´cosp2πωqq  α e ´2πjω dω.
Note that C N is a polynomial of degree N with leading order coefficient equal to 1.

Letting N increase to infinity with the scaling κ " k N 2 , k ą 0, we get that P p q N pαq " jq converges towards

ż 1 0 « coshp ? kq ´1 coshp ? kq ´cosp2πωqq 
ff α e ´2πjω dω.

Factorizing the first term in the integrand, it appears that this is the distribution of the difference of two independent variables with the same negative binomial distribution of parameters pα, e ´?k q. This result can be interpreted in terms of Brownian loops.

Galois coverings

There are various non-ramified coverings, intermediate between G " pX, Eq and the universal cover. Given a non-ramified covering r G, a point x of X and a point x in the fiber above x , the closed geodesics based at x whose lift to the covering starting at x are still closed form a subgroup r Γ x of Γ x . If this subgroup is normal, it is clearly independent of the choice of x in the fiber and will be denoted by r Γ x . We say that the covering is Galois (or normal) if this holds for some x, as it then holds for any point in X. Indeed, if ỹ1 and ỹ2 are two points above y and if γ y,x is a geodesic between y and x, the lifts of this geodesic starting at ỹ1 and ỹ2 end respectively in x1 and x2 . Conjugation by γ y,x maps r Γ ỹi i " 1, 2 on r Γ xi i " 1, 2 which are identical. Note that r Γ x can be canonically identified with the fundamental group of the cover at any point of the fiber above x by lifting the corresponding geodesic loop based at

x.

The groups r Γ x are isomorphic by conjugation, but in general, not canonically, as for the groups Γ x . Their conjugacy classes are canonically isomorphic and represented by loops whose lift to the cover are still loops. The monodromy groups M x :" Γ x { r Γ x are also isomorphic. Note that in particular, the monodromy groups M x are canonically isomorphic if they are Abelian. Their common group structure defines the monodromy group of the covering.

An example is the cube, which, by central symmetry, is a twofold covering of the tetrahedron with monodromy groups isomorphic to Z{2Z. It is the quotient of the free group with 3 generators by the subgroup of elements of even total degree.

M

x acts freely and transitively on the fiber in X above x, which means that given two points x1 and x2 in the fiber, there exists a unique element in

M x mapping x1 to x2 . 1
In particular, a choice of an element of M x on each fiber defines an automorphism of the cover.

Note however that two non isomorphic covers can have their monodromy groups isomorphic to the same group: see, in the next section, example e) in remark 46.

Conversely, if r Γ x0 is a normal subgroup of Γ x0 , for any x, conjugation by any element γ x0,x of Γ x0,x defines a normal subgroup r Γ x of Γ x independent of the choice of γ x0,x . And then, for any x, y and any element γ x,y of Γ x,y , γ x,y r Γ y γ y,x " r Γ x (as there exists γ x0,x and γ x0,y such that γ x,y " γ x,x0 γ x0,y ).

Again, the quotient groups M x " Γ x { r Γ x are all isomorphic.

Proposition 47. In that case, a Galois covering with fundamental groups r Γ x and monodromy groups M x can be constructed. It is unique up to isomorphism.

Proof. First an equivalence relation is defined on X as follows: uRv iff ppuq " ppvq and the geodesic loop obtained by projecting the arc pu, vq on the base X is in r Γ ppuq . A natural graph structure is defined on the quotient set X " X{R, making it into an unramified cover of X. Indeed, if ppuq " ppvq " x, if x is adjacent to y, and if pu, u 1 q and pv, v 1 q are the lifts of px, yq to Ĝ, we can check that u 1 and v 1 are R-equivalent in X.

Examples

A very important example is the commutator subgroup rΓ x , Γ x s also denoted by Γ Their dimensions are given by Witt formula (Cf theorem 5-11 in [START_REF] Magnus | Combinatorial Group Theory[END_REF]). One can define the covers G pn,dq in a similar way.

Other similar Abelian covers can be defined, for example, cylindrical covers with monodromy groups isomorphic to Z ˆpZ{dZq r´1 .

Remark 44. If the graph is finite, note that any choice of a spanning tree of G determines a tesselation of r X and bijections between the fibers of the covering.

The spanning tree also determines isomorphisms between the groups Γ x as

x varies in X, which induce isomorphisms between the normal subgroups r Γ x and between the quotient groups M x , which can then be identified and denoted respectively by r Γ and by M .

This choice of a spanning tree determines an action of M on r G which preserves the tesselation and the energy form such that X " r X{M . Moreover, a choice of the lift x0 of any vertex x 0 of X then determines a section of the canonical projection from r X onto G which allows to represent (in a non canonical way) X by X ˆM . Equivalently, given a fundamental domain of the cover, i.e a lift of the spanning tree, the elements of the tesselation are in bijection with the monodromy group M .

Remark 45. Assume that the monodromy group is finite. Let L 0 α be the set of loops of L α whose lift to the cover is still a loop. Let tL 0,m α u be independent copies of L 0 α indexed by M . We can lift each loop of ď m L 0,m α to the cover, the base points being chosen uniformly on the loops and its lift uniformly on the fiber above the base point.

The union of these lifts is identical to r L α in distribution.

defined on this set: m is equivalent to m 1 if and only if there exists an element h of the gauge group such that m 1 px, yq " hpyq ´1mpx, yqhpxq (mpx, yq is seen as acting on the left to map a fiber above x onto a fiber above y, as the action of the linear group on frame bundles in differentiable geometry). By b) For any base point x, the geodesic based loops with holonomy equal to the identity form a normal subgroup K x of Γ x , and these subgroups are all isomorphic by conjugation: For any x, y and any element γ x,y of Γ x,y , γ x,y K y γ y,x " K x . Consequently, their conjugacy classes are canonically isomorphic. The factor groups M x " Γ x {K x are also isomorphic.

By proposition 47, a Galois covering with monodromy groups M x can be constructed. This covering is the universal cover iff K x " Γ x . Different connections can define the same cover.

The set of loops of L α whose lift to the cover is still a loop (that we denoted by L 0 α in remark 45) is the set of loops of L α whose holonomy equals the identity. Conversely, given a spanning tree rooted in x 0 and a map m P MpG, N q, define a equivalent map m by conjugation, using the gauge group element g x , x P X in which g x is the product of the values of m along the unique geodesic in the tree from the root to x. We can check that m assigns the identity to all tree edges. Moreover, if m 1 is equivalent to m, i.e. there exists a gauge group element pg 1 x , x P Xq such that m 1 x,y " rg 1 x s ´1m x,y g 1 y , then m1 " rg 1 x0 s ´1mg 1 x0 . Connections are therefore in one to one correspondence with equivalence classes of N r under simultaneous conjugation. Example: One-forms. Recall the definition given in section 4.4: One-forms on G are real valued functions ω on oriented edges such that ω x,y " ´ωy,x .

Exact forms are one-forms defined by some function f on vertices: df x , y " f pyq ´f pxq. We denote by H 1 pG, Rq the quotient of the space of real valued one forms by the space of real-valued exact forms. It is identified with the space of R-connections. The modules H 1 pG, Zq and H 1 pG, Z{dZq, defined in the same way, are respectively Z and Z{dZq-connections.Note that for a oneform ω, the holonomy of a loop l is a scalar given by ş l ω. Holonomy provides a duality between H 1 pG, Zq and the homology group H 1 pG, Zq defined in section 10.5.

When the group N is Abelian, rΓ x , Γ x s is a normal subgroup of K x and the monodromy group M is therefore a quotient of the first homology group.

Example: The Pauli group.

Recall that this group of 16 elements can be faithfully represented as the group of unitary matrices generated by the three anticommuting Pauli matrices σ 1 , σ 2 , σ 3 . They satisfy the identities σ 2 j " I and σ j σ j`1 " iσ j`2 with j " 1, 2, 3 pmod 3q. The center is t˘I, ˘iIu and there are 6 other conjugacy classes formed by opposite elements ˘σj and ˘iσ j .

A Pauli connection can be defined on the tetrahedron abcd by assigning σ 1 , σ 2 , σ 3 respectively to the oriented edges ab, bc, and ca and the identity matrix to edges incident to d. Similarly, a Pauli connection can be defined on Z 3 by by assigning σ 1 , σ 2 , σ 3 to the oriented edges px, yq such that y ´x " p1, 0, 0q, p0, 1, 0q, p0, 0, 1q respectively. Exercise 13. Check that the monodromy groups of these Pauli connection are respectively t˘Iu for Z 3 and the whole Pauli group for the tetrahedron.

Theorem 23. Assume that the graph is finite. If we consider all finite groups N , and all N -connections, the variables th A plqu determine the geodesic loop l R .

Proof. Free groups are conjugacy separable: Two conjugacy classes can be separated by a morphism in some finite group ( [START_REF] Stebe | A Residual Property of Certain Groups[END_REF]). In other terms, given two elements belonging to different conjugacy classes, there exists a finite quotient of the free group in which they are not conjugate. Fix a base point x 0 , a spanning tree rooted at the base point, and an orientation of the external edges, to identify Γ x0 to the free group with r " |E| ´|X| `1 generators. By proposition 41, two loops l 1 and l 2 inducing different geodesic loops, l R 1 and l R 2 , define two different conjugacy classes. There is a morphism from the free group into a finite group N such that the images of these two classes are different. We can define a map from oriented edges into N such that the external oriented edges are mapped to the images of the corresponding generators by the morphism and such that edges of the spanning tree are mapped to the identity. This defines a N -connection for which the holonomies of the two loops l 1 and l 2 are different.

Another important result about holonomies is the following, in which we denote by U pdq the group of unitary d ˆd matrices.

Theorem 24. On a finite graph, two U pdq-connections are equal if all traces of loop holonomies coincide.

Proof. From remark 46 d), it is equivalent to show that given r unitary matrices, the traces of all products formed with these matrices and their inverse determine these matrices up to simultaneous conjugation. This highly non-trivial fact is proved in section 11 of [START_REF] Procesi | The Invariant Theory of n ˆn matrices[END_REF] and in [START_REF] Levy | Wilson loops in the light of spin networks[END_REF]. Then, for any finite dimensional unitary representation ρ of N , we define an extended transition matrix P ρ,m with indices in X ˆt1, 2, ... dimpρqu by P ρ,m px,iq,py,jq " P x,y ρpmpx, yqq ij .

Distribution of non-Abelian holonomies

The following proposition, as equation (4.15), follows directly from the expression of the based loop measure inducing µ:

Proposition 48. ÿ l χ ρ ph A plqqµplq " ´1 dimpρq logpdetpI ´P ρ,m qq.
Similarly, define an extended transition matrix P bm with indices in X ˆN by P bm px,n1q,py,n2q " P x,y 1 tn1mpx,yq"n2u .

:

Corollary 13. If N is finite, µptl, h A plq " Iduq " ´1 |N | logpdetpI ´P bm qq.
This corresponds to the regular representation of N .

Remark 48. A similar result holds for the gauge group. Given an element tgu of the gauge group X we can associate to any discrete loop ξ " px 0 , x 1 , ..., x n´1 , x 0 q the conjugacy class q tgu plq of the product ś n´1 0 tgupx i q.

Given a unitary representation ρ, we define an extended transition matrix As hereinabove, we will use the superscript bg instead of ρ, tgu when N is finite and we use the regular representation.

B ρ,
Remark 49. a) It follows from this proposition or as well from a direct calculation that detpI ´P ρ,m q is invariant under gauge transformations. As in section 4.4, introduce the notation Z e,A,ρ " x,y,i,j Cx,yp 1 2 ϕx,irδi,j ´ρrmpx,yqsi,j s φy,j q, (11. 

1 ś λx detpI´P ρ,m q and, if N is finite, Z e,A " 1 ś λx detpI´P m q . Then ř l χ ρ ph A plqqµplq "
, C 2 , ..., C k q the number of k-uples pγ 1 , γ 2 , ..., γ k q, γ i P C i such that γ 1 γ 2 ...γ k " I.
Note that it is invariant by permutation of the C i and that given another class C 0 , NpC 1 , C 2 , ..., C k , C ´1 0 q is the number of k-uples whose product is in C 0 .

Denote by h A pL α q the set of holonomies of loops in L α .

For any conjugacy class C 0 of N , set K pαq A pC 0 q " N phApLαq,C ´1 0 q ś lPLα |hAplq| . K pαq A is a probability on the set of conjugacy classes of N . It represents the proportion of product of holonomies representatives of loops of L α which are in this conjugacy class C 0 . We can compute K pαq A using Frobenius formula (Cf. for example the appendix in [START_REF] Lando | Graphs on Surfaces and their Applications[END_REF]). We get that

K pαq A pC 0 q " ÿ πPR dimpπq 2 ś lPLα χ π ph A plqqχ π pC 0 q |M | ,
and therefore:

EpK pαq A pC 0 qq " ÿ π Z α Z α dimpπq e,A,π dimpπq 2 χ π pC 0 q |M | .
11.3 Fields decompositions and gauge invariant fields.

Given a finite dimensional unitary representation ρ of N , recall that in the previous section, we have defined for any representative m of the connection A a transfer matrix P ρ,m on X ˆCdimpρq . Let G ρ,m denote the associated Green function:

G ρ,m px,iq,py,jq " λ ´1 y pI `8 ÿ

k"1 rP ρ,m s k q px,iq,py,jq .

G ρ,m is positive semidefinite. Therefore we can define a Gaussian vector field ϕ ρ,m ¨with covariance equal to G ρ,m p¨, ¨q. If h is an element of the gauge group, recall that m phq px, yq " h ´1pyqmpx, yqhpxq represents the same connection A. Then We note that for any representation ρ, if we perform a change of gauge by a gauge group element h, we see that the fields ϕ ρ,m are transformed by ρphq.

Therefore we can see them as representatives in a particular gauge of intrinsic fields taking values in the sections of a vector bundle above the graph.

If N is finite, we can consider P bm , and define in the same way G bm px,n1q,py,n2q

and ϕ bm n with ϕ bm phq x,n " hpxqϕ bm x,n .

We now present examples of gauge invariant field. Note that for any representation ρ and vertex x,

ř dimpρq i"1 ϕ ρ,m x,i ϕ ρ,m
x,i is invariant under the action of the gauge group. We can denote this field by rϕϕs pρ,Aq .

Note that if G is finite, as in proposition 27, it follows from our definitions and Gaussian integration rule that: From the decomposition of the regular representation of N into irreducible representations given in Peter-pation field of loops of null holonomy on G. The projection of spanning forests on the cover defines interesting processes assigning an integer of r0, |N |s to each edge or to each vertex of G (e.g the number of roots of this spanning forest in the fiber of each vertex). We will now study their relation with the gauge invariant quadratic fields defined hereinabove.

Epe ´1 2 xχ,rϕϕs
Assume that N is the image of the monodromy group (as defined in remark 46 c). As explained in remark 44, the choice of a section s of the projection from r X onto X allows to represent r X by X ˆN . Recall that in the case of a finite graph, this is equivalent to the choice of a spanning tree and of an element in one fiber. Let us fix such a section. We denote by px, nq s the element of r X represented by the pair px, sq and mpA, sq the representative of A which vanishes on the edges of the tree defining s. The same identities hold for fermionic fields and, denoting by n Υ

x,δ the number of edges px, ∆q in Υ , with x in the fiber above x, we have, for any px j , l j 0q 1 ď j ď k in X ˆN:

Ep k ź j"1 rn Υ xj,δ pn Υ xj ,δ ´1q...pn Υ xj,δ ´lj `1qsq " k ź j"1 κ lj xj 2 lj C 1, k ź j"1 ´rψψs pAq xj ¯lj 1 G F b|N | F .
Proof. The first identities follow from the identity r P px,n1q s ,py,n2q s " P bmpA,sq px,n1q,py,n2q

which is a direct consequence of the definitions. The last identity follows from theorem 21 applied to the edges connecting the roots of the spanning forest on the cover to ∆ since n Υ x,δ pn Υ x,δ ´1q...pn Υ x,δ ´l `1q is the number of distinct l-tuple of elements in the fiber above x connected to ∆ by Υ . to define the fields, it appears that the these fields can be interpreted as euclidean quantum fields interacting with a gauge field ( [START_REF] Seiler | Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics[END_REF]).

Random connections, and Yang-Mills measure

Let N be any topological group equipped with a finite bi-invariant Haar measure. In the case of a finite group, it is proportional to the counting measure. On any graph G " pX, Eq, the normalized Haar measure defines a product measure on the set of maps from E to N . Any choice of orientation on E defines a bijection between maps from oriented edges to N and the group If N is finite and we take the regular representation, from proposition 13, we get the weights

Λ α pAq " Pph A pγqq " I, @γ P L α q " Z α e Z α |N | e,A . 
After normalization, all these weights define probabilities on N -connections.

Example: If we consider the case of the eight Z{2Z connections defined on the tetrahedron (see remark 46 f), taking conductances equal to 1 and κ constant we obtain this set of weights:

rκpκ`6qppκ`4q 3 qpκ`2q It can be easily extended to products of traces of loop holonomies. A similar formula, though much more intricate, can be obtained for U pnq using the Weingarten functions (Cf. [START_REF] Collins | Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability[END_REF], Proposition 3-2).

The measures on connections defined by the weights Λ α ρ are natural from the point of view that we choose in this text. Let us now investigate their relation with the class of measures which is usually considered in discrete field theory, namely Yang-Mills measures.

Let ρ be a finite dimensional unitary representation of N . Let c ρ be the positive symmetric central function vanishing at the identity defined by c ρ phq " 1 ´1 dimpρq rT rρphq `T rpρphqs 2 .

On the discrete torus rZ{LZs n , with n ě 2, we can define the set of plaquettes P as the set of geodesic loops of (shortest) length 4. Then the measure of density Y ρ,k , properly normalized, is known as a Yang-Mills measure.

Note that there are npn ´1qL n plaquettes and therefore npn´1q

2

L n distinct terms in the exponent, as reversing the orientation of η leaves c ρ ph A pηqq invariant.

By remark 46 d) , the set of connections on rZ{LZs n can be identified with a set of r " L n pn ´1q `1 elements of N defined up to simultaneous conjugacy. In particular, if N " U p1q the set of connections can be identified with the torus rR{2πRs r . Exercise 14. For n " 2 and N " U p1q, using a spanning tree formed by one horizontal and L vertical segments, check that the holonomies phpl H q, hpl V qq of the loops l H " Z{LZ ˆt0u and l V " t0u ˆZ{LZ are independent, uniformly distributed and independent of the plaquettes holonomies.

Then check that the distribution of the positively oriented plaquettes holonomies

tθ i,j , 1 ď i, j ď Lu is 1 Z δ 0 p ř 1ďi,jďL θ i,j q ś 1ďi
,jďL e ´kp1´cospθi,j qq , Z being a normalizing constant.

Let now ε be a parameter converging to 0. Consider the loop ensemble L pεq on this discrete torus defined by unit conductances, κ " 1 ε ´2n (i.e. so that λ " 1 ε ) and α " kε ´4. We see that: Proof. logrΛ α ρ pAqs " α ż pχ ρ rh A plqs ´1qµpdlq. This µ -integral is the sum of two integrals: the integral on the plaquettes and the integral on the loops of length larger than 4. The number of based loops of length K can be bounded by L n r2ns K , hence, their αµ-measure can be bounded by k K L n r2ns K ε K´4 . If ε ă 1 2n , the contribution of the loops of length higher than 4 (hence ě 6) can be bounded by a geometric series whose sum is of order kCε 2 , C being some constant. Loops of smaller length with zero holonomy do not contribute and the α µ-integral restricted to plaquettes converges towards k ř ηPP c ρ ph A pηqq.

Note that given any integer M , we can choose ε " rk{M s 1 4 so that it converges to 0 as M increases to infinity. Then, from (11.3), if ϕ pεq is the complex free field defined by taking unit conductances and λ " 1 ε , we get the following:

Corollary 15. If ϕ .,i are dimpρq independent copies of ϕ pεq , as M Ò 8 ,

Ere ´1 2 ř
x,y,i,j ϕx,iρrI´mApx,yqsi,j φy,j s M converges towards to Y ρ,k pAq for any Nconnection A.

Therefore, the Yang-Mills field appears to be the limit as M Ò 8 of an uncorrelated gauge field interacting with a heat bath of M vector bosons of squared mass rM {ks Gibbs measures can also be defined on Z n but uniqueness does not hold in general [START_REF] Seiler | Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics[END_REF]. It would be interesting to determine whether the previous propositions can be extended to the thermodynamic limit.

-rZ{LZs n is an Abelian cover of a graph with one vertex and n loop edges.

Such "bouquet graphs" do not satisfy our standing assumptions but can be transformed into graphs which fit in our framework by adding two or more intermediate points on each loop edge.

There are other examples of lattices which can be treated similarly such as the toroidal cover of the tetrahedron with monodromy group equal to pZ{LZq 3 , for which the plaquettes are easily seen to be decagons. Proposition 51 can be extended to this example by setting α " kε ´10 .

-The construction of Yang-Mills measures could be extended to graphs which are not necessarily Abelian covers. Plaquettes could be defined as geodesic simple circuits which can intersect at most in one edge.

Split-and-merge and Casimir operators

In this section, we assume that the graph G is finite. Let us also assume that N is the unitary group U pdq. The Killing form on the Lie algebra of antihermitian matrices defined by T rpW W ˚q provides it with a Hermitian structure.

Given any antihermitian matrix E, let L E denote the left Lie derivative: For any smooth function f on U pdq, L E f pgq " lim ǫÑ0 1 ǫ pf pexppǫEqgq ´f pgqq. In particular, given any fixed matrix a, L E T rpgaq " T rpEgaq and L E T rpg ˚aq " ´T rpgEaq.

Given an orthonormal base W l , the second order operator A " For any smooth functions f 1 and f 2 on U pdq, we define the energy density

ř l L W l 2 ,
Γ pf 1 , f 2 q " 1 2 rArf 1 f 2 s ´f1 Af 2 ´f2 Af 1 s.
It has a derivation property:

Γ pf 1 f 2 , f 3 q " f 2 Γ pf 1 , f 3 q `f1 Γ pf 2 , f 3 q.
For d " 1, the Lie algebra is the line tiω, ω P Ru, and A " d 2 dω 2 . Note that for any n-tuple of smooth functions f i , and any m-tuple g j

Ar

ź f i s " ÿ i Arf i s ź j‰i f j `2 ÿ iăk Γ pf j , f k q ź l‰j,k f l , (11.13) 
Γ p ź i f i , ź j g j q " ÿ i,j Γ pf i , g j q ź i 1 ‰i f i 1 ź j 1 ‰j g j 1 .
(11.14)

The Casimir operator extends naturally to an operator A pX q on smooth functions on the gauge group X . A pX q is the sum ř xPX A pxq of the Casimir operators A pxq acting on each coordinate of X " U pdq X . We can define in the same way the Casimir operator ř tx,yuPE A ptx,yuq on smooth functions on U pdq E which induces after choosing an arbitrary orientation o on each edge, an operator A pM,oq on smooth functions on MpG, U pdqq. The next theorem will in particular prove that this operator induces an operator A pCq on an algebra of smooth functions of U pdq-connections (defined by products of traces of loop holonomies: see theorem 24) which does not depend on the choice of the orientation.

Γ pX q and Γ pM,oq are defined as Γ and satisfy with A pX q and A pM,oq respectively the equations (11.13) and (11.14). Most importantly, the next theorem also relates the Casimir operators on connections and on the gauge group to generators of split-and-merge processes on ensembles of discrete loops defined in proposition 31, remark 27 b) and remark 28.

The generator of the split-and-merge process on collections of discrete loops defined in proposition 31 is ř x N 2 x rQ x ´Is will be denoted by B SM . The two other processes defined in remarks 27 and 28 will be used on collections of geodesic loops. It is clear that for any oriented edge px, yq, the operations of splitting and merging defined in remark 27 to construct K px,yq preserve geodesic loops. We get a Markov chain on collections of geodesic loops. We introduce the corresponding generator

B SM`" ÿ x,y N 2 
x,y rK px,yq ´Is.

Note that the restriction to collections of geodesic loops inducing a given network of the Poisson measure of intensity ν ˝is stationary for the induced Markov chain (since by remark 27, the Poisson measure of intensity ν ˝on collections of loops inducing a given network is stationary for the Markov chain on collections of loops). We can also refer to remark 42 in which the distributions of edges crossing are determined.

The merging operation defined in remark 28 may produce a loop with backtracking. Therefore we will apply the reduction map l ÝÑ l R (Cf. section 10.2) to each merging output and denote by K ´R tx,yu the modified transition kernel. This may produce an empty collection. We introduce the corresponding generator B SM´" ÿ

x,y N x,y N y,x rK ´R tx,yu ´Is.

Moreover, we shall use the notation:

V " ÿ x N 2 
x , S "

ÿ x N x " ÿ x,y N x,y , V `" ÿ tx,yu pN 2 x,y `N 2 y,x q, V ´" 2 ÿ tx,yu N x,y N y,x .
Theorem 25. a) A pM,oq induces an operator A pCq on smooth functions of connections independent of the orientation choice o and such that for any connection A, and collection of geodesic loops L, setting τ A p Lq " ś lP L T rph A plqq and τ A pHq " d, we have the intertwining property1 A pCq τ A p Lq " ´rpd ´1qS `V `´V ´`B SM`´BSM´s τ A p Lq.

In particular, for any collection of geodesic loops L f lw whose induced network is a flow, A pCq τ A pL f lw q " ´rpd ´1qS `V ``B SM`s τ A pL f lw q. b) For any gauge group element tgu and collection of loops L, set, with the notation introduced in remark 48, T tgu pLq " ś lPL T rpq tgu plqq. Then:

A pX q T tgu pLq " ´rpd ´1qS `V `BSM sT tgu pLq. Proof. We start the proof of the proposition with the following: Lemma 6. Let a, b and g be unitary matrices in U pdq, and let t a pgq, r a pgq, u a,b pgq, v a,b pgq and w a,b pgq denote respectively T rpgaq, T rpg ˚aq, T rpgagbq, T rpg ˚ag ˚bq and T rpgag ˚bq. Then:

At a " ´d t a , Ar a " ´d r a Au a,b " ´2d u a,b ´2t a t b , Av a,b " ´2d v a,b ´2r a r b , Aw a,b " ´2d w a,b `2t a r b ,
Γ pt a , t b q " ´ua,b , Γ pr a , r b q " ´va,b and Γ pt a , r b q " T rpabq. 2 . One can check easily that these d 2 antihermitian matrices define an orthonormal base of the Lie algebra equipped with the scalar product defined by the Killing form, and the following relation ÿ i ru piq s 2 `ÿ iăj ru pi,jq s 2 `ÿ iăj rv pi,jq s 2 " ´dI which implies the first two identities. Then, as u a,b pgq " T rpgagbq it follows that Au a,b pgq " ´2 dT rpgagbq`2 ř i T rru piq gau piq gbs`2 ř iăj T rru pi,jq gau pi,jq gbs2 ř iăj T rrv pi,jq gav pi,jq gbs " ´2 dT rpgagbq´2 ř i rgas ii rgbs ii `řiăj prgas ij rgbs ij `rgas ji rgbs ji ´rgas ii rgbs jj ŕgas jj rgbs ii q ´řiăj prgas ij rgbs ij `rgas ji rgbs ji `rgas ii rgbs jj `rgas jj rgbs ii q " ´2 dT rpgagbq ´2T rpgaqT rpgbq.

The fourth and fifth identities are proved in the same way: Av a,b pgq " ´2 dT rpg ˚ag ˚bq`ř i T rrg ˚upiq ag ˚upiq bs`2 ř iăj T rrg ˚upi,jq ag ˚upi,jq bs2 ř iăj T rrg ˚vpi,jq ag ˚vpi,jq bs " ´2 dT rpg ˚ag ˚bq´2 ř i rag ˚sii rbg ˚sii `řiăj prag ˚sij rbg ˚sij `rag ˚sji rbg ˚sji ŕag ˚sii rbg ˚sjj ´rag ˚sjj rbg ˚sii q´ř iăj prag ˚sij rbg ˚sij `rag ˚sji rbg ˚sji `rag ˚sii rbg ˚sjj rag ˚sjj rbg ˚sii q " ´2 dT rpg ˚ag ˚bq ´2T rpag ˚qT rpbg ˚q.

Aw a,b pgq " ´2 dT rpgag ˚bq´2 ř i T rru piq gag ˚upiq bs´2 ř iăj T rru pi,jq gag ˚upi,jq bs2 ř iăj T rrv pi,jq gag ˚vpi,jq bs " ´2 dT rpgagbq ´2 ř i rgag˚s ii rbs ii `řiăj prgag˚s ij rbs ij `rgag˚s ji rbs ji ŕgag ˚sii rbs jj ´rgag ˚sjj rbs ii q´ř iăj prgag ˚sij rbs ij `rgag ˚sji rbs ji `rgag ˚sii rbs jj rgag ˚sjj rbs ii q " ´2 dT rpgag ˚bq ´2T rpgag ˚qT rpgbq " 2 dT rpgag ˚bq ´2T rpaqT rpbq.

Note that Aw a,b vanishes if a or b " I.

Let us now prove the sixth identity: Γ pt a , t b q " ř i T rru piq gasT rru piq gbs řiăj T rru pi,jq gasT rru pi,jq gbs `řiăj T rrv pi,jq gasrv pi,jq gbs " ´ři rgas ii rgbs ii `1 2 ř iăj prgas ij ´rgas ji qprgbs ij ´rgbs ji q ´1 2 ř iăj prgas ij rgas ji qprgbs ij `rgbs ji q " ´ři rgas ii rgbs ii ´řiăj prgas ij rgbs ji `rgbs ij rgas ji q " ´T rpgagbq.

The seventh identity is proved in the same way. Let us finally prove the last one:

Γ pt a , r b q " ´ři T rru piq gasT rrg ˚upiq bs ´řiăj T rru pi,jq gasT rrg ˚upi,jq bs řiăj T rrv pi,jq gasrg ˚vpi,jq bs " ř i rgas ii rbg ˚sii ´1 2 ř iăj prgas ij ´rgas ji qprbg ˚sij ´rbg ˚sji q `1 2 ř iăj prgas ij rgas ji qprbg ˚sij `rbg ˚sji q " ´ři rgas ii rbg ˚sii `řiăj prgas ij rbg ˚sji `rgas ji rbg ˚sij q " T rpgabg ˚q " T rpabq.

Let us first complete the proof of theorem 25 b), which is easier, using definitions and notation given in proposition 31, remark 48, and in the introduction to the present proposition. It follows by linear combination from the identity: ´Apxq T tgu pLq " pd ´1q N x pLqT tgu pLq `N 2

x pLqrQ pxq T tgu spLq (11.15) in which N x pLq denotes ř lPL N x plq. To prove (11.15), note first that, using (11.13), A pxq T tgu pLq can be decomposed into a sum of terms corresponding to the action of A pxq on the holonomy trace of a single loop ξ, (with N x pξq insertions of tgupxq in the expression of T rpq tgu pξqq) and the actions of Γ pxq on the holonomy traces of a pair of loops pξ 1 , ξ 2 q (with N x pξ 1 qN x pξ 2 q pairs of tgupxq insertions if ξ 1 ‰ ξ 2 and 1 2 N x pξqpN x pξq ´1q pairs if ξ 1 " ξ 2 q " ξ. As A pxq acts only on single and pairs of insertions, the first and third identities in lemma 6 above are easily extended to show that for any discrete loop ξ " pξ i q, ´Apxq T rpq tgu ppξqq equals d N x pξqT rpq tgu pξq `2 ÿ i1ăi2, ξi 1 "ξi 2 "x T rpq tgu pξ ri1,i2r qT rpq tgu pξ ri2,i1`ppξqr q, in which ξ ri1,i2r and ξ ri2,i1`ppξqr denote the loops obtained by splitting ξ at points of indices i 1 and i 2 and connecting the endpoints of each part.

Moreover, the sixth identity gives that for any pair of discrete loop pξ p1q , ξ p2q q, Γ pxq pT rpq tgu pξ p1q qq, T rpq tgu pξ p2q qqq " ř pi1,i2q, ξ

p1q i 1 "ξ p2q i 2
"x T rpq tgu pξ p1,i1q ¨ξp2,i2q qq in which ξ p1,i1q ¨ξp2,i2q denotes the concatenation of the loops ξ p1q and ξ p2q at the base points of respective indices i 1 and i 2 . Using equation (11.13) and the definition of Q pxq in remark 26, (which includes diagonal entries Q pxq pL, Lq " 1 NxpLq , giving d ´1 instead of d in front of the first term), this completes the proof of equation (11.15) and therefore the proof of theorem 25 b).

Let us finally complete the proof of theorem 25 a), using the notations of remarks 27 and 28. After noting that h A plq " h A pl R q implies that K tx,yu τ A " K ´R tx,yu τ A , it follows by linear combination from the identity: ´Aptx,yuq τ A p Lq " rpd´1q N tx,yu `N 2 x,y K px,yq `N 2 y,x K py,xq ´2N x,y N y,x K tx,yu sτ A p Lq. (11.16) The proof of (11.17) is almost the same as the proof of identity (11.15), but, after choosing any representative m of the connection A and an orientation o, one has to consider the insertions of mpx, yq and m ˚px, yq in τ A pLq, now using all identities in lemma 6, applied to three different types of pairs of crossing.

The only essential difference lies in the occurrence of the term ´Kt x,yu which is arising from the expressions for Aw a,b pgq and Γ pt a , r b qpgq given in lemma 6, in which g and g ˚cancel each other.

For any geodesic loop γ, if px, yq is positively oriented, ´Aptx,yuq τ A pγq " dN x,y pγqτ A pγq `dN y,x pγqτ A pγq `2 ř ti1ăi2,γi 1 "γi2 "x,γi 1 `1"γi 2 `1"yu τ A pγ ri1,i2r qτ A pγ ri2,i1`ppγqr q `2 ř ti1ăi2,γi 1 "γi 2 "y,γi 1 `1"γi 2 `1"xu τ A pγ ri1,i2r qτ A pγ ri2,i1`ppγqr q ´2 ř ti1ăi2,γi 1 "γi 2 `1"x,γi 1 `1"γi 2 "yu τ A pγ ri1`1,i2r qτ A pγ ri2`1,i1`ppγqr q ´2 ř ti1ăi2,γi 1 "γi 2 `1"y,γi 1 `1"γi 2 q"xu τ A pγ ri1`1,i2r qτ A pγ ri2`1,i1`ppγqr q. We get the first four terms from the four first identities in lemma 6, in the same order, and the last two terms, in which two opposite edges are cancelled, from the fifth one. Note that we get the same result if px, yq is negatively oriented, but we get the first term from the second identity, the second from the first, the third from the fourth and the fourth from the third. This expression can be rewritten as dN x,y pγqτ A pγq `dN y,x pγqτ A pγq2 ÿ tγ p1q ,γ p2q uPSplit tx,yu pγq τ A ptγ p1q , γ p2q uq´2 ÿ tγ p1q ,γ p2q uPSplit tx,yu pγq τ A ptγ p1q , γ p2q uq in which Split tx,yu pγq are the two collections of splitting outputs (unordered pairs of geodesic loops) defined just above (Split tx,yu being the one involving edge cancellation). We verify that this expression depends only on the connection A, which allows to replace A pM,oq by A pCq .

From the definitions of K px,yq and K tx,yu in remark 27 and 28, (noting that K tx,yu also includes diagonal entries giving d ´1 instead of d in front of the first term), this completes the proof of equation (11.17) for a single geodesic loop γ.

Note that ř tx,yuPE N tx,yu pγq " ppγq Then denoting the collections 'Split tx,yu pγq 2 by Split ˘pγq, the term ´ApCq τ A qpγq can be rewritten: d ppγqτ A pγq`ÿ tγ p1q ,γ p2q uPSplit `pγq 2τ A ptγ p1q , γ p2q uq´ÿ tγ p1q ,γ p2q uPSplit ´pγq 2τ A ptγ p1q , γ p2q uq. (11.17) For any pair of geodesic loops pγ p1q , γ p2q q, we get from the three last identities in lemma 6 that Γ pCq pτ A pγ p1q q, τ A pγ p2q qq " ´ÿ pγ p1q τ A pγ p1,i1q ¨γp2,i2`1q q in which γ p1,iq ¨γp2,jq denotes the concatenation, with cancelation of inverse edges, of the geodesic loops γ p1q and γ p2q at the base points of respective indices i and j.

Note that in the last term, two opposite edges are cancelled. Again, Γ pCq pτ A pγ p1q q, τ A pγ p2q qq can be rewritten as ´ÿ γPMerge `pγ p1q ,γ p2q q τ A pγq `ÿ γPMerge ´pγ p1q ,γ p2q q τ A pγq (11.18) in which M erge ˘pγ p1q , γ p2q q are the two collections of merging outputs defined just above.

Considering a collection of geodesic loops instead of a single one, the extension of equation (11.13) to A pM,oq , allows to complete the proof of the existence of A pCq and of the first identity in a). Finally, note that negative split or merge cannot occur on collections of loops inducing a flow, and that in this case, V ´" 0 and B SM´" 0.

Denote by x¨y the integration against the Haar measure on U pdq. For any set of loops L, xrpd ´1qS `V `BSM sT tgu pLqy pXq " 0.

(in which npn ´1qL n is the number of plaquettes), we have A pCq Y k pAq " r´kpd´1qP pAq`k 2 p´ÿ η1"`η2 τ A pη 1 η 2 q`ÿ η1"´η2 τ A pη 1 η 2 qqsY k pAq.

We will now see how the intertwining relation of theorem 25 between generators on connections and generators on collections of loop can be extended to heat kernels. Tensor products of heat convolution semigroup on

U pdq naturally define one on U pdq E and hence, once an orientation o has been chosen, a heat semigroup H M,o t on MpG, U pdqq: Let u t ptx, yuq be independent H t -distributed r.v. indexed by E. Then, to get a sample of the distribution H M,o t pm, dm 1 q, set, for each positively oriented edge px, yq, m t x,y " u t ptx, yuqm x,y and m t y,x " m x,y u t ptx, yuq " m y,x u t ptx, yuq. One can then check that the distribution of the random connection defined by m t is unchanged if we change the gauge or the orientation choice:

If we perform a gauge transformation in which m is replaced by m pgq , with m pgq x,y " g x m x,y g y , for all positively oriented px, yq, replace each u t ptx, yuq by g x u t ptx, yuqg x , which does not change the joint distribution, to get m tpgq instead of m t . If we reverse the orientation of one positively oriented edge px, yq, we now have m t

x,y " m x,y u t ptx, yuq ˚. Replace u t ptx, yuq by m x,y u t ptx, yuqm x,y , which has the same distribution, to get this new value.

We denote by H pCq t the heat semigroup on connections defined in this way.

Note that this provides another proof that A pM,oq induces an operator A pCq .

Note also that H Markov chain generated by B SM`s tarting from L0 , for any collection of geodesic loops L f lw whose induced network is a flow, we have ż H pCq t pA 0 , dAqτ A pL f lw q " e ´tpd´1qSpL f lw q E SML f lw rp´1q m t τ A0 p Lt qs.

Proof. a) The Markov property of p Ls s ą 0q implies that the matrices HSM t p L1 , L2 q indexed by finite collections of geodesic loops defined by: HSM t p L1 , L2 q " E SM L1 rp´1q mt e ´şt 0 r´pd´1qS`2V ´sp Lsqds 1 L1 t " L2 s form a semigroup. Noting that the first jump T 1 of the process of p Ls , s ą 0q starting from L1 occurs at a random exponential time of mean pV ``V ´qp L1 q, and that the probability of a second jump before time ǫ can be bounded by Opǫ 2 q, we have HSM ǫ p L1 , L2 q " E SM L1 pe ş ǫ 0 r´pd´1qS`V ´´V `sp Lsqds r1 T1ąǫ 1 L1 " L2 `1T1ďǫ ˆřx,y r´N 2 x,y p L1 q pV ``V ´qp L1 q K px,yq p L1 , L2 q `Nx,yNy,xp L1 q pV ``V ´qp L1 q K ´,R tx,yu p L1 , L2 qsq `Opǫ 2 q Hence, as pd ´1qS `V `´V ´" rV ``V ´s `rd ´1qS ´2V ´s, HSM ǫ p L1 , L2 q " 1 L1 " L2 e ´ǫrpd´1qS`V `´V ´sp L1 q `şǫ 0 e ´srpd´1qS`V `´V ´sp L1 q´pǫ´sqrpd´1qS`V `´V ´spL 2 q pV ``V ´qp L1 qds ˆřx,y r´N 2 x,y p L1 q pV ``V ´qp L1 q K px,yq p L1 , L2 q `Nx,yNy,xp L1 q pV ``V ´qp L1 q K ´,R tx,yu p L1 , L2 qs `Opǫ 2 q " 1 L1 " L2 p1´ǫpd´1qSp L1 q´ǫpV `´V ´qpL 1 qq`ǫ ř x,y r´N 2 x,y p L1 qK px,yq p L1 , L2 qǸ x,y N y,x p L1 qK ´R tx,yu p L1 , L2 qs `Opǫ 2 q " 1 L1 " L2 `ǫrp´pd´1qS´V ``V ´qp L1 q´B SM`p L1 , L2 q`B SM´p L1 , L2 qsÒ pǫ 2 q. Hence this semigroup solves the Fokker-Planck equation Therefore it coincides with H pCq t (as product of traces determine collections of loops), which we just showed to be the unique solution of this equation.

Finally, note as before that negative split or merge cannot occur on collections of loops inducing a flow, so that S and V `are constant, V ´" 0 and B SM´" 0.

Remark 57. The process Ls is always absorbed in finite time by the recurrence class defined by the flow induced by L0 .

Remark 58. A similar result can be derived from theorem 25 b) for the heat semigroup on the gauge group.

Deformation and Marchenko-Migdal equation

Consider a second order differential operator T defined on an algebra D of smooth functions, without zero-order term and self-adjoint with respect to some measure m. For any non-vanishing element h of D, T can be modified by conjugacy as in remark 15 in order to obtain an operator which is selfadjoint relatively to an equivalent measure with density h 2 . We define Γ and T phq such that for any function f in D: Γ ph, f q " 1 2 rTrhf s ´f Th ´hTf s and T phq f " 1 h pTrhf s ´f Thq " Tf `2 h Γ ph, f q " Tf `2Γ plogphq, f q. T and T phq satisfy formula (11.13). Moreover, for any pair f, g P D, ´ş f Tgdm " ş Γ pf, gqdm and therefore, ´ş f T phq gh 2 dm " ş Γ pf h, ghqdm´ş Γ ph, f ghqdm " ş Γ pf, gqh 2 dm. Γ pCq pP pAq, τ A p Lqq " rB D´´BD`s τ A p Lq.

Consequently, from theorem 25 and equation (11.19), we obtain the following identity:

Theorem 26. For any geodesic loops collection L, ´ApC,kq τ A p Lq " rpd´1qS`V `´V ´`B SM`´BSM´`k pB D`´BD´q sτ A p Lq.

Remark 60. As in remark 53, if the pγ i q's are non-intersecting circuits, the theorem's identity simplifies to ´ApC,kq τ A p Lq " rpd ´1qS `kpB D`´BD´q sτ A p Lq.

As in corollary 16, denoting by x¨y pC,kq the integration with respect to the Yang-Mills measure, we have Corollary 18.

xrpd ´1qS `V `´V ´`B SM`´BSM´`k rB D`´BD´s sτ A p Lqy pC,kq " 0.

Proof. Let us first assume that the graph is finite and that σ has no fixed point. Let us use σ to see X ´as a copy of X `and then write write G in the form " A ´Cpσq ´Cpσq A  ´1 with A " M λ ´C (restricted to pX `q2 ). Then G "

" A ´1 2 0 0 A ´1 2  " I ´A´1 2 C pσq A ´1 2 ´A´1 2 C pσq A ´1 2 I ´1 " A ´1 2 0 0 A ´1 2  .
The symmetric matrix A ´1 2 C pσq A ´1 2 is non negative definite as C pσq . As

A is invertible, A ´1 2 C pσq A ´1 2 has the same eigenvalues as A ´1C pσq . By the Perron-Frobenius theorem, we can check that A ´1C pσq is a contraction. Indeed, applying proposition 1 a) we get that A ´1C pσq is given by a pair of balayage kernels, from X `onto X ´and conversely. It follows from the transience hypothesis that these balayage kernels are submarkovian, but are not One can check that the corresponding 4 ˆ4 matrix is positive definite for κ ą 0 but it is not a Green matrix, as its inverse has some positive off diagonal coefficients.

Let us denote X `Y X 0 by X 0,`.

Theorem 28. (Reflection positivity) i) For any square integrable function Σpφq of the real free field restricted to X 0,`, E φ pΣpφqΣpφ ˝σqq ě 0.

ii) For any square integrable function Γ pϕ, ϕq of the complex free field restricted to X 0,`, E φ pΓ pϕ, ϕqΓ pϕ ˝σ, ϕ ˝σqq ě 0.

iii) For any square integrable functional Φ of t p L x 1 2

, N p 1 2 q tx,yu , x, y P X 0,`u :

EpΦpL 1 2 qΦpσpL 1 2 qqq ě 0. iv) For any square integrable functional Φ of t p L x 1 , N p1q

x,y , x, y P X 0,`u :

EpΦpL 1 qΦpσpL 1 qqq ě 0.

If C pσq vanishes or if X 0 is empty and C pσq is the identity matrix, this property is well known in the context of field theory and is called reflexion positivity: Cf for example [START_REF] Simon | The P pφ 2 q Euclidean (quantum) field theory[END_REF], [START_REF] Gawedzki | Conformal field theory[END_REF] and their references. Reflection positivity is a keystone in the bridge between statistical and quantum mechanics.

Proof. i) Let us take Σ of the form ř λ j e xφ,χj y . Then, if the χ j 's are supported by X 0,`:

E φ pΣpφqΣpφ ˝σq " ÿ λ j λq E φ pe xφ,χj y`xφ,σpχqqy q " ÿ λ j e 

Fermi fields

Assume now that X 0 is empty.

On polynomials Πpψ, ψq of the fermionic field there is a unique involution S such that SrΠ 1 Π 2 s " SrΠ 2 sSrΠ 1 s, and Srψ x s " ψσpxq . Using (9.3) and the σ-invariance of G, we see that x1, SrΠs1y " x1, Π1y.

Theorem 29. i) For any polynomial Π of the field restricted to X `, SrΠs is a polynomial of the field restricted to X ´and:

x1, ΠSrΠs1y ě 0.

ii) For any set of edges tξ i u in X `ˆX `, the matrix K i,j " P ST pξ i P T, σξ j P T q is positive semidefinite.

Proof. i) Assume first that the graph is finite. We can conclude as the exterior powers of the matrices C x,σpyq are positive semidefinite.

The case of an infinite graph can be treated by approximation. ii) follows directly from i) and from the transfer current theorem.

Corollary 20. On polynomials Rpψ, ψ, ϕ, ϕ, q of the fermionic field restricted to X `whose coefficients are L 2 functionals of the complex free field restricted to X `, we can define a unique extension of the involution S such that SrR 1 R 2 s " SrR 2 sSrR 1 s, Srψ x s " ψσpxq and Srϕ x s " φσpxq . Then, the following reflection positivity property holds:

x1, R SrRs1y ě 0.

Proof. If fields functionals Q satisfy a reflection positivity property of the form x1, Q SrQs1y ě 0, it is clear that matrices of the form B i,j " x1, Q i SrQ j s1y ě 0 are positive semidefinite. The property follows from Schur theorem stating that the product of two positive semidefinite matrices is positive semidefinite.

12.5 Physical Hilbert space and time shift This situation applies to the fields we considered previously, when the graph is a torus or a cylinder.

Let N be the subspace tF P H `, xF, ρpF qy H " 0u. The physical Hilbert space K is by definition the closure of the quotient space H `{N for the topology induced by the scalar product defined by ρ. For F P H `, we denote by F " the equivalence class of F . K is equipped with the scalar product defined unambiguously by xF " , G " y K " xF, ρpGqy H .

In quantum mechanics, observables are represented by self adjoint operators on K.

Proposition 52. There exist a self adjoint contraction of K, we will denote by Π pθq , such that for any F in H `, rθpF qs " " Π pθq pF " q.

Proof. Note first that given any F in N , θpF q P N , as xθpF q, ρpθpF qqy H is nonnegative and equals xθpF q, θ ´1pρpF qqy H " xθ 2 pF q, ρpF qy H ď a xθ 2 pF q, ρpθ 2 pF qqy H a xF, ρpF qy H which vanishes.

The existence of Π pθq follows from this observation. Moreover, it follows from the identity ρθ " θ ´1ρ that xθpF q, ρpGqy H " xF, ρpθpGqqy H .

Therefore, Π pθq is self adjoint on K. unless F vanishes, the contraction inequality follows.

In quantum mechanics, the eigenvectors of Π pθq represent the stationary states of the system and if a k 's denote the corresponding eigenvalues, ´logpa k q represent their energies. 

Proposition 1 .

 1 a) For y P F and x P X, we haverH F s x,y " 1 tx"yu `1txPDu ÿ zPD G D x,z C z,y .b) The Green matrix admits the following decompositionG " G D `HF G.c) Denoting by G |F ˆF the restriction of the Green matrix to F ˆF and by HF the transposed of H F , we have G " G D `HF G |F ˆF HF .

  ˝pξ ˝q " P eriodpξq ppξq P x1,x2 P x2,x3 ...P xp,x1 , where ppξq P eriodpξq , denoted by multpξq is by definition the multiplicity of the loop. Loops of multiplicity 1 cannot be obtained as the concatenation of several identical loops. They are called primitive loops. A loop with multiplicity m can be obtained as the equivalence class of the concatenation of m identical primitive loops. A loop in continuous time is represented by a discrete loop ξ ˝formed by the ξ i in circular order (i.e. up to translation by shift) and the associated holding times.

Remark 4 .

 4 a) It is clear that µ ˚induces ν on discrete based loops with jumps and that |ν| " µ ˚pp ą 1q. Under µ ˝, conditionally on the discrete loop, the holding times of the loop which we denoted by τ i are independent exponential variables of parameter λ ξi . b) Time change A time change σ, the inverse of the additive functional ż t 0

Definition 4 .

 4 Bridge measures in D allow to define natural probability measures on excursions: Let µ a,b D (ν a,b D ) denote the (discrete) bridge measures (with mass G D a,b ) defined by the Markov chain killed at the exit of D, associated with e D . For x and y in F, define the excursion measures:

tx0u c x0 )

 x0 follows a Poisson distribution of parameter pλ x0 ´κx0 q p l x0 . Proposition 6. a) The non-normalized excursion measure ρ D " pλ x0 ´κx0 qν D x0 " ÿ a,bPD C x0,a C b,x0 µ a,b D satisfies the following property: for any finite subset K of D, ρ D ptγ, γ X K ‰ Huq " Cap e D pKq. b) Under ρ D , the non-normalized hitting distribution of any K Ď D is the e D -capacitary measure of K. 1 The same property holds for the last hitting distribution. c) Under ρ D pdγq, the conditional distribution of the path γ between T K pγq

  parameters p0, αq. Remark 11. a) Note also that for α ą 1, Epp1 ´expp´p L x α Gx,x qq ´1q " ζpαq. b) For two points, it follows easily from corollary 2 that:

3 :

 3 .7) a discrete version of corollary Proposition 14. Let L pxq be the set of loops of L α visiting x which are not one-point loops. Conditionally to N pαq x

  edge e P E is said to be open at time α if e is traversed by at least one loop of L α . The set of open edges defines a subgraph G α with set of vertices X. The connected components of G α define a partition of X denoted by C α .The elements of the partition C α are the loop clusters defined by L α . If we consider the ensembles L α as increasing with time α (as described at the beginning of section 2.4, these partitions get coarser and coarser as α increases. This chapter is mostly devoted to the study of C α which clearly depends only on PL α .

( 5 . 1 )

 51 for graphs such as tori, trees . . . and is valid for infinite graphs. Let us first introduce some notation. For a subset D of X, let BD denote the inner boundary of D: BD " tx P D, C x,y ą 0 for some y P D c u and recall that H D c denotes the exit distribution (or Poisson kernel) from D: for x P X and y P D c , H D c

5. 5

 5 Renewal processes * On the graph Z, the clusters of C α are the intervals between closed edges (i.e. the edges which are not crossed by any loop of L α ). The loop clusters induced by a simple random walk killed at constant rate κ have the following properties: Proposition 23. Let us consider the random partition C α on the graph Z endowed with unit conductances and a uniform killing measure with intensity κ. The midpoints of the closed edges form a renewal process. Moreover, setting

  the midpoints of the closed edges at time α form a renewal process pY pαq n q ně1 ; The generating function of Y pαq n is 1 ´s Liαpsq where Li denotes the polylogarithm: @ |s| ă 1, Li α psq " ř `8 k"1 s k k α . • For α ą 1, there are only a finite number of clusters.

5. 6

 6 Bernoulli percolation and loop percolation * Let s " ts e , e P Eu be a family of coefficients in r0, 1s. In Bernoulli percolation model of parameter s on the graph G " pX, Eq, every edge e is, independently of each other, called 'open' with probability s e and 'closed' with probability 1 ´se . Vertices connected by open paths define a partition of X denoted by Ppsq. We can compare Ppsq to the partition induced by the set of primitive discrete loops. Bernoulli percolation clusters on a graph appear to be a limiting case of partitions defined by loop clusters in which only two points loops contribute asymptotically. Proposition 24 ([26],[28]). Let us consider a finite graph G " pX, Eq endowed with unit conductances and a uniform killing measure with intensity κ ą 0. Let C pκq α be the partition induced by the Poisson loop set on G at time α. Fix u ą 0. If κ and α tend to `8 such that α is equivalent to uκ 2 , then C pκq α converges in law towards the Bernoulli percolation of parameter 1 ´e´u .

  Z d with d ě 2 * Let us consider the Poisson loop process induced by the simple random walk on Z d , d ě 2, killed at a constant rate κ ą 0: P x,x`u " 1 2d`κ for every x P Z d and u P t˘1u d . Let θpα, κq denote the probability of percolation at time α i.e. the probability of any fixed point to be connected to infinity by an open path at time α. The following Proposition presents some properties of the function pα, κq Þ Ñ θpα, κq: Proposition 25. Let p c denote the critical probability for bond percolation on Z d (d ě 2). a) θpα, κq is a non-decreasing function of α and a non-increasing function of κ.

Definition 5 .

 5 The real Gaussian free field is the real centered Gaussian process indexed by X whose covariance function is given by the Green functionG.As for any orthonormal base b n of the Dirichlet space D, G x,y " ř n b n pxqb n pyq, the Gaussian free field can be constructed from an i.i.d. normal sequence g n as:φpxq " ÿ n g n b n pxq.The Gaussian free field φ is Markovian: Proposition 26. a) Given any subset F of X, denote H F the Gaussian space spanned by tφpyq, y P F u. Then, for x P D " F c , the projection of φpxq on H F , i.e. the conditional expectation of φpxq given tφpyq, y P F u, is ř yPF rH F s x,y φpyq. b) Moreover, φ D " φ ´HF φ is the Gaussian free field on D associated with G D . Proof. The result follows directly from the decomposition G " G D `HF G, theorem 3 and from the fact that for Gaussian vectors, correlation vanishing implies independence. Proposition 27. If χ has finite support,

  is always even, N pαq tu is a spin network. On a finite graph, the distribution of the random network defined by L α is given in the following: Proposition 30. Assume the graph is finite. Let Z be a Hermitian matrix indexed by X ˆX. Denote by P Z

Proposition 31 .

 31 Assume the graph is finite. If we let x vary, the corresponding Markov chains can be combined into a continuous time Markov chain using independent exponential jump times of rates N 2 x . The recurrence classes of the resulting stationary reversible continuous time chain on collections of discrete loops are the collections which induce the same network. On each recurrence class, the stationary distribution is obtained by restriction of the Poisson distribution of intensity ν ˝to this class, and normalization. It depends only on the graph structure (and not on the choice of conductances). Proof. The Poisson distribution of intensity ν ˝is invariant under all Q pxq .

  directly on the expression of the restriction of ν ˝to the collections of loops inducing a given network. The weight of each collection L is proportional to the product ś lPL 1 nplq! multplq nplq in which nplq represents the number of copies of l contained in the collection and multplq its multiplicity. . Remark 27. a) We obtain a connected weighted graph structure on the set of loops which induce any given network.b) From remark 13, we see that a similar construction can be done for an oriented edge px, yq. Two indices are chosen uniformly among those at which starts a px, yq-crossings in some loop. If they belong to different loops, these loops are merged as described above. If they are distinct but on the same loop, the loop is disconnected in two paths from x to x, both starting with the edge px, yq, to form two loops. Finally, nothing happens if the points are identical. The corresponding transition probability on collections of discrete loops is denoted by K px,yq .

Theorem 10 .e ´řx χx Lx 1 q " Epe ř x‰y 1 2

 101 i) For any Hermitian matrix Z that Z x,y ă 1 for all edges, Cx,ypZx,y´1qϕpxqϕpyq e ´1 2 ř x χxϕpxqϕpxq q.

ř x‰y p 1 2 2 řx

 12 Cx,ypZx,y´1qϕpxqϕpyqq e ´1 pλx`χxqϕpxqϕpxq´ř x,y Cx,yZx,y ϕpxqϕpyqq ś ,2πqq |X| e ´1 2 p ř

Remark 28 .

 28 By analogy with remark 27 b), we can define another split-andmerge transition matrix on collections of discrete loops which merges involve a cancelation of two opposite edge crossings. Consider an oriented edge px, yq and a collection of loops. If both px, yq and py, xq are traversed by at least one loop in that collection, we can define a random collection as follows: sample uniformly a random element among all loop crossings of px, yq and another one among all loop crossings of py, xq. If these crossings occur on the same

ř x‰y 1 2

 1 Cx,ypSx,y´1qφpxqφpyq e ´1 2 ř x χxφpxq 2 q.

C 1 2 .

 2 Proposition 33. By attaching independently a sign to each element of C, equal to ˘1 with probability 1{2, we can get a representation σ of the Ising model defined by the parameters C x,y ? ρ x ρ y . For any s P t1, ´1u X , Ppσ " s| L 1 2 " ρq " exppC x,y ? ρ x ρ y s x s y q.

Corollary 7 .

 7 Denote by C pix,xPXq the set of configurations with vertex degrees i x : C pix,xPXq " tc P C, @x P X, c x " i x u. Then the joint exponential generating function of the cardinalities of these sets, ř pix,xPXq |C pix,xPXq | ś x s ix
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 82 Fig. 8.2 Orientation dependance
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 11341 are independent, we see that under µ x,y , the conditionaldistribution of p γ given γ LE " η is the distribution of p L 1 ´p L tηu c 1i.e. the occupation field of the loops of L 1 which intersect η.This property can be extended to include edge occupation fields. Let L γ be the set of loops progressively erased from γ to obtain γ LE , one loop (possibly trivial) being attached to each point of γ LE : Under µ x,y , the conditional joint distribution, given that γ LE " η, of the vertex and edge occupation fields of L γ is identical to the joint distribution of the occupation fields defined by L 1 zL tηu c .e. by the loops of L 1 which intersect η.

4 Fig. 8 . 3

 483 Fig. 8.3 Wilson algorithm

Remark 35 .

 35 There is a discrete version of this theorem: While running Wilson algorithm, we can restrict our attention to the discrete time Markov chains. It produces a random spanning tree and a sequence of at most |X| non-trivial discrete loops l i based in distinct points x i . If l i visits x i n xi times, we can view each discrete based loop l i as a set of n xi excursions out of x i and partition it randomly according to the exchangeable partition probability function (EPPF)

Theorem 18 .

 18 The loop ensembles L `and L ´defined by a random configuration under the probability Q have both the distribution of the Poissonian discrete loop ensemble of intensity ν ˝.

Theorem 19 .

 19 There exists a unique isomorphism of Hilbert spaces mapping F B onto the space of square integrable functionals of the Gaussian free field, such that, for any real function u in D 1 , exp d puq Õ e ř x φpxq upxq´1 2 ř x,y Gx,yupxqupyq . (9.1)

y pψpxq ´ψpyqqpψpxq ´ψpyqq, we have Ep ź e pb e 1 ePI c e ś ePI c b e Ep ś ePI p1 ePΥ ś ePI c p1 ´1ePΥ qq " ř IĎE ś ePI c e ś ePI c b eř

 1 eRΥ `ce 1 ePΥ qq " x1, ź e pb e p1 ´|dψ e | 2 q `ce |dψ e | 2 q 1y. (9.13) Indeed, the right hand side equals: ř IĎE ś JĎI c p´1q |J| PpI Y J Ď te P Υ uq and the identity then follows from the transfer current theorem. We can now obtain the following: Theorem 22. For 0 ă β ď 1, setting ϕϕpx, yq " ϕpxqϕpyq `ϕpyqϕpxq, we have Z pβ`q " x1, e ř tx,yu |dψ tx,yu | 2 pe 1 2

  Dirichlet form and the associated Markov process can be naturally lifted to any non ramified covering. Transience is preserved but recurrence is not, unless fibers are finite. We denote by ẽ the lift of e and by r L α the corresponding loop ensembles on r G. The Green function and the free field on G are defined by ẽ. The Green function of the covering denoted by r G is related to G by the following identity: For any x in p ´1pxq, Gpx, yq " ÿ ỹ P p ´1pyq r Gpx, ỹq. (

mProposition 44 .

 44 |γ| multpγq , with m dividing multpγq, in which case the number of different loops decomposed into γ and this periodic sequence of excursions is m and their multiplicity multpγq m so that m cancels in the following expression of µ γ : If γ varies in the set of geodesic loops (i.e. the set of conjugacy classes), |tl P L α , l R " γu| are independent Poisson r.v. with mean values αµ γ with: µ γ " 1 multpγq p ź edges of γ P e ´,e `ρe ´,e `qmultpγq .

Proposition 45 .

 45 For any function s on oriented edges, such that for any oriented edge px, yq, |spx, yq| ď 1, setting upx, yq " P x,y spx, yq and denoting by G 0 the set of geodesic loops, IZpsq :" ř γPG0 ν ˝pγq multpγq ś edges of γ spγ i , γ i`1 q converges absolutely and equals detrI `Dpuq ´Apuq s ź tx,yuPE p1 ´upx, yqupy, xqq with D puq x,y " 1 x"y ř z, tx,zuPE upx,zqupz,xq 1´upx,zqupz,xq and A puq x,y " upx,yq 1´upx,yqupy,xq .

Lemma 5 .

 5 For any m ˆn matrix A and n ˆm matrix B, detpI ´ABq " detpI ´BAq Proof. It is enough to prove the result in a neighborhood of zero. Then ´logpdetpI ´ABqq " ř 1 n T rprABs n . But T rprABs n " T rprBAs n . The matrix of I `U τ is made of |E| diagonal blocks ˆ1 upx, yq upy, xq 1 ġiving all non zero entries relative to indices px, yq and py, xq.

  H 1 pG, Zq is a free Abelian group of rank r isomorphic to Z r . Definition 10. The homology class in H 1 pG, Zq of a loop l is the image under the projection map of the conjugacy class represented by the geodesic loop l R .

p1q x defined in section 10 . 5 .

 105 The factor group Γ x {Γ p1q x are canonically isomorphic and define the first homology group H 1 pG, Zq which is a free Abelian group of rank r. The associate covering is the universal Abelian covering which can be denoted by G p1q . Its monodromy group is the first homology group. Recall that rΓ x , Γ x s can be canonically identified with the fundamental group of the covering G p1q at any point of the fiber above x.For example, the universal Abelian cover of the graph made of two triangles OAB and OCD can be represented by a square lattice of points marked O, with two points marked A and B dividing each horizontal edge and two points marked C and D dividing each vertical edge.Let Γ p1,dq x be the normal subgroup of Γ x generated by all commutators and all d powers. In terms of any system of r generators, is also the set of elements whose total degree in each generator is a multiple of d (see exercises 4, 5 in section 2-2 of[START_REF] Magnus | Combinatorial Group Theory[END_REF]). The factor group Γ x {Γ p1,dq x is a free Abelian group of rank r and exponent d, isomorphic to pZ{dZq r . The associate toroidal cover can be denoted by G p1,dq . More generally, the lower central series Γ pnq " rΓ pn´1q , Γ s of the fundamental groups are the fundamental group of a series of Galois covers G pnq . The monodromy groups of G pnq relative to G pn´1q are again free Abelian groups.

Definition 12 .

 12 definition, N -connections are the corresponding equivalence classes. The set of N -connections on G is denoted by CpG, N q. Given any discrete loop l x based at x and m a representative of a connection A, let h m pl x q be the element of N obtained by multiplying the images under m of the oriented edges of the loop in cyclic order, starting from the base point. The holonomy of the corresponding loop l is defined as the conjugacy class of this product. It depends only on the connection and on the loop, and will be denoted by h A plq.Remark 46. a) Note that the holonomy depends only on the geodesic loop associated with l (recall that geodesic loops represent the conjugacy classes of the fundamental group).

c)

  If we fix a gauge namely a representative m for the connection A, h m induces a morphism from Γ x into N . Its image is a subgroup N x,m of N , isomorphic to M x " Γ x {K x . The subgroups defined by different choices of base point x or of gauge m are conjugate. Their conjugacy classes are canonically isomorphic. If N " N x,m (it occurs for all pairs px, mq as soon as it occurs for one), we can say that N coincides with the monodromy group. More gen-erally, as soon as one of these subgroups is normal, they are identical to the same normal subgroup of N , denoted by M . Then the connection is actually a M -connection and M coincides with the monodromy group. d) If the graph is finite, given a spanning tree and an orientation of the r " |E| ´|X| `1 external edges, connections can be defined by attaching an element of N to each external edge, i.e. by choosing r elements of N , and assigning the identity to all tree edges. Note that if we replace these r, elements n i by simultaneously conjugate elements un i u ´1, they define the same connection.

  e) In particular, on a finite graph, there are 2 r different Z{2Z connections.In the case of the tetrahedron, ta, b, c, du, r " 3 and the associated 8 covers are: i) two copies of the tetrahedron ii) a cube with each pair of opposite vertices projecting on a vertex of ta, b, c, du iii) six isomorphic graphs obtained by taking two copies of the tetrahedron, by choosing one of the six edges (e.g. ta, bu), then by removing the two copies of this edge (e.g. ta 1 , b 1 u and ta 2 , b 2 u, and finally by connecting the two copies by the two connecting edges projecting on this edge (e.g by ta 1 , b 2 u and ta 2 , b 1 u ).

If

  N is a group, and C a conjugacy class of N , given any finite dimensional unitary representation ρ of G, denote by χ ρ pCq the normalized trace of the image by ρ of any element in the conjugacy class C. χ ρ is a character of the group N . Remark 47. The following properties hold: a) χ ρ pCq ď 1. b) If π 1 and π 2 are two unitary representations of the group, χ ρ1`ρ2 " χ ρ1 χρ2 and χ ρ1bρ2 " χ ρ1 χ ρ2 . c) If l is a loop and A is a N -connection, χ ρ ph A plqq depends only on the geodesic loop l R . d) In the case of compact (in particular finite) groups, as traces of unitary representations separate the conjugacy classes (Cf [64]), the functions l Þ Ñ χ ρ ph A plqq span an algebra of loop functions and determine the holonomy h A .Assume now that the graph is finite. Fix now a group N and a N -connection A. Let m be a representative of the connection A.

1 dimpρq 2 L 2

 122 logpZ e,A,ρ śx λ x q and if N is finite, µptl, h A plq " Iduq " 1 |N | logpZ e,A ś x λ x q. Then we have: Corollary 14. If N is finite, the set of loops in L α with identity holonomy is a Poisson process of intensity α |N | logpZ e,A ś x λ x q. b) Given a finite dimensional unitary representation ρ of N , the expectation of the product of the characters of the holonomies h A plq, l P L α can be computed: e χ " e `} } pχq ). c) Loop holonomies in L dimpρq are therefore related to the complex free field ϕ. More precisely, it follows from the above that if ϕ .,i are d " dimpρq independent copies of ϕ, then Ep ź lPL d χ ρ ph A plqqq " Epe

  ř

G

  ρ,m phq px,iq,py,jq " ÿ k,l ρph ´1pyqq j,l G ρ,m px,kq,py,lq ρphpxqq i,k and ϕ ρ,m phq x,i " ÿ k ρphpxqq i,k ϕ ρ,m x,k .

Remark 50 .

 50 a) Using again theorem 21, the last identity of proposition 50 can be extended to any set of oriented edges. If for any oriented edge x, yq of G, we denote by n Υ x,y the number of oriented edges px, ỹq in Υ which project on px, yq, and set rdψ ψs pAq x,y :" ř nPN pψ bm y,n ´ψbm y,n qψ bmx,n , we have we have for any ppx j , y j q, l j 0q 1 ď j ď k in E o ˆN: ...pn Υ xj ,yj ´lj `1qsq " Gaussian integrals and Grassmann variables (as in proposition 38)

NDefinition 13 .

 13 E such that opposite edges have inverse images. Moreover the image of the product Haar measure on the group N E does not depend on the orientation choice. It is by definition the Haar measure on MpG, N q. Then the Haar measure on N -connections is defined as the image of this measure by the quotient map. Assume that the graph is finite. Let ρ be a finite-dimensional unitary representation of N . Define the weights Λ α ρ pAq " Ep ź γPLα χ ρ rh A pγqsq "

Definition 14 .

 14 Consider the Haar measure on the set of N -connections on rZ{LZs n defined by the Haar measure on N . For any positive constant k, we can assign to each connection on this graph the weight Y ρ,k pAq " e ´k ř ηPP cρphApηqq .

Proposition 51 .

 51 As ε ÝÑ 0, the weights Λ α ρ pAq " Epś γPL pεq χ ρ rh A pγqsq "converge to the Yang-Mills weight Y ρ,k pAq for any N -connection A.

Remark 52 .

 52 -The Yang-Mills measure on the discrete torus rZ{LZs n can be extended to the set of connections on the cylinder Z ˆrZ{LZs n´1 . Yang-Mills

Remark 53 .

 53 If L is a collection of non-intersecting circuits, A pCq τ A p Lq " ´d Sp Lqτ A p Lq. Remark 54. a) In the Abelian case pd " 1q, A can be represented by a oneform ω, with τ A pLq " ś x,y e ? ´1ωx,yNx,ypLq . We can check directly that the theorem holds, but B SM˘v anish. b) By remark 46 d), and theorem 24, the functions τ A p Lq defined in a) determine the connection A. c) If we consider an arbitrary representation ρ of U pdq instead of the regular representation, then the same result holds, with d replaced by the dimension of the representation and τ A pLq by ś lPL T rpρph A qqplqq. This result could also be extended to other Lie groups.

Proof. For 1

 1 ď i ď d, let u piq denote the matrix whose only non zero entry is u piq ii " ? ´1. For 1 ď i ă j ď d, let u pi,jq and v pi,jq denote the matrices whose only non zero entries are respectively u

  For any pair of smooth functions f and g on U pdq, and any antihermitian matrix E, we have xf L E gy " ´xgL E f y, and consequently, xf Agy " xgAf y. In particular, xAf y vanishes. This self-adjointness property extends to the pairs of Haar measures and Casimir operators (x¨y pXq , A pXq ) and (x¨y pCq , A pCq ) defined respectively on the gauge group U pdq X and on U pdq-connections. Then, from theorem 25 we get the following identities Corollary 16. For any set of geodesic loops L, xrpd ´1qS `V `´V ´`B SM`´BSM´s τ A p Lqy pCq " 0.

  pCq t operates on smooth functions on C which are identified to smooth functions on MpG, U pdqq invariant under the action of the gauge group by conjugation, on which H M,o t clearly operates. H M,o t and therefore H pCq t inherit from H t the verification of Fokker-Planck equations with respect to the corresponding generators. A semigroup satisfying these equations is necessarily unique, by the same argument as in remark 1 (and the argument shows in fact that a semigroup satisfying one equation is unique as soon as there exists a semigroup satisfying the other equation). Corollary 17. Let H SM t be the semigroup defined by the generator B SM`B SM´a nd, for any finite collection of geodesic loops L0 , denote by P SM L0 the distributions of the corresponding split-and-merge Markov chain p Ls , s ą 0q on collections of geodesic loops starting from L0 . Then, for any connection A 0 , we have: ż H pCq t pA 0 , dAqτ A p L0 q " E SM L0 rp´1q m t e ş t 0 r´pd´1qS`2V ´sp Lsqds τ A0 p Lt qs in which m t denotes the number of positive merges or splits between 0 and t. In particular, denoting by P SML 0 the distributions of the split-and-merge

Remark 59 . 0 Thh 2 P

 5902 If T generates a semigroup U t which operates on D, satisfies Fokker-Planck equations, and is associated with a diffusion process x t , the semigroup U phq t px, yq " 1 hpxq Epe ´şt pxsqds |x 0 " x, x t " yq satisfies the Fokker-Planck equations relative to T phq . This applies to the various Casimir operators defined in the previous section.Consider now the case of the discrete torus rZ{LZs n as in section 11.4 and remark 56. We can use the Casimir operator A pCq to define an operator A pC,kq self adjoint with respect to the Yang Mills measure given (up to a multiplicative constant) by the weights e kP . For any smooth function f on C, setA pC,kq f " A pCq pe k q f " A pCq f `kΓ pCq pP, f q. (11.19) By formula (11.18), we get that Γ pCq pP pAq, τ A p Lqq " ÿ ηPP r ÿ γPMerge ´pt L,ηuq τ A pγq ´ÿ γPMerge `pt L,ηuq τ A pγqs. (11.20) This suggests to introduce, on collections of geodesic loops, the generators B D`a nd B D´r espectively defined as follows. For each oriented edge px, yq, the transition probability D px,yq is constructed by choosing one crossing uniformly among the px, yq-crossings of all loops and merging the corresponding loop at this position with one plaquette chosen uniformly among the 2pn ´1q plaquettes containing the oriented edge px, yq. D ṕx,yq is constructed by choosing one crossing uniformly among the px, yq-crossings of all loops and merging, with cancellation and reduction, the corresponding loop at this position with one plaquette chosen uniformly among the 2pn ´1q plaquettes containing the opposite oriented edge py, xq. They can be combined with jump rates 2pn ´1qN x,y to get two continuous time Markov chains with generator B D˘" ř px,yq 2pn ´1qN x,y rD px,yq ´Is. Then we have, from equation (11.20)

be µi 1´µ 2 i.

 2 Markovian. Hence the leading positive eigenvalue λ 0 of A ´1C pσq belongs to the open interval p´1, 1q and all others eigenvalues have their absolute values bounded by λ 0 .Note that if a symmetric positive semidefinite matrix K has eigenvalues µ i in p´1, 1q, the eigenvalues of the symmetric matrix E defined by " Taking K " A ´1 2 C pσq A ´1 2 , it follows that the symmetric matrix E , (and in our particular case G pσq " A ´1 2 EA ´1 2 ) is positive semidefinite.Let us now consider the case in which there are fixed points. Recall the Green matrix decomposition given in proposition 1 -c G " G D `HF G |F ˆF HF . and set D " X `Y X ´and F " X 0 . We know from the aforementioned result that rG D s pσq is positive semidefinite. On the other hand, it is clear that H F is invariant under σ. Hence, rH F G |F ˆF HF s x,σpyq " rH F G |F ˆF HF s x,y which is also positive semidefinite, as G |F ˆF is.Example: Consider the cube, with conductances equal to 1, κ constant, and σ the reflection exchanging two parallel square faces, ABCD and A'B'C'D'. `4qpκ`6q , and the other coefficients are obtained by permutation.

1 2 xχj ,Gχj y λq e 1 2Fig. 12

 1112 Fig. 12.1 A counter example

  Remark 1. If X is finite, a semigroup which satisfies one of the Fokker-Planck equations and p 0 " I is necessarily equal to p t . Indeed, if p

	p1q t
	and p rectly that d p2q t satisfy respectively the first and second equation, we check di-ds ř z p p2q s px, zqp

p1q

t´s pz, yq vanishes for all s in p0, tq, so that p p1q t px, yq " p p2q t px, yq.

  Each time the Markov chain on X ˆZ defined by r e jumps from a point above x to a point above y, z x and z y are resampled according to the uniform distribution on Z{n x Z ˆZ{n y Z, while the other indices z w are unchanged. It

	follows that					
	r r P k s px,zq,px,zq "	ÿ x1,...,x k´1	P x,x1 P x1,x2 ...P x k´1 ,x	ź yPtx,x1,...,x k´1 u	1 n y	.

1 n x

νplq " |r ν| " ´logpdetpI ´r P qq.

In particular, if n x " n for all x, n |X| ÿ l νplqn ´#tx, nxplqą0u " |r ν| " ´logpdetpI ´r P qq.

Proof.

  1, either H 21 1 is strictly less than 1, and therefore, H 12 H 21 and H 12 H 21 are strict contractions. From the ex-H 21 s k `rH 12 H 21 s k q.

	pansion of ´logp1 ´xq, we get that: log ´detpGq detpG X1 q detpG X2 q ¯" 8 ÿ 1	1 k	T r	" ´0 H 12 H 21 0	¯k	.
	As odd terms have obviously zero trace, it follows that
	logp	detpGq detpG X1 q detpG X2 q	q "	8 ÿ 1	1 2k	T rprH 12

  More generally, setting σ x " G x,x , we have, for any x, y P X,

	and this determines the sequence tµptl, N x plq " n, n ą 0uq uniquely. On the other hand, from equations (4.5) and (4.6), λx`t ¯. We µp1 tpplqą1u p1 ´e´t lx qq " logp1 `tG x,x q ´logp1 `t λx q " log ´λx`tλxGx,x can then check that µptl, N x plq ą 0uq " ´lnpp x q for p x " 1 λxGx,x , then that
		µptl, N x plq " nuq "	p1 ´px q n n	.	(4.7)
	e) For a bridge γ, p γ is defined in the same way as for loops. Feynman-Kac
	formula (i.e. a) in theorem 5) implies by integrating in time that
		ż				
		pe ´xp γ,χy qµ x,y pdγq " rG χ s x,y .
	Here is another application of the Laplace transform formula given in
	proposition 10: Considering the polynomials D k with generating function
		8 ÿ 1	t k D k puq " e	ut 1`t	´1
	and we have:				
	c) Note that for one point loops: Corollary 1. For any x P X, the variables t mal in L 2 pµq. and j, k ą 0: Epσ k x D k p p l x σ x qσ j y D j p p l y σ y qq "	? 1 k	1 s σx q, k ě 1u are orthonor-expp´s G x,x qds. p l x δ k,j pG x,y q 2k . kD k p
	ż Proof. By proposition 10 , p1 ´e´α p l x q1 tpplq"1u µpdlq " Indeed, noticing that ş b a pe ´cx ´e´dx q dx ż 8 0 p1 ´e´αt q ż p1 ´e p l x t 1`σx t qp1 ´e p l y s 1`σy s qµpdlq x is symmetric in pa, bq and pc, dq, by e ´λxt dt t " logp1 `α λ x q. (4.6) Fubini's theorem, we get that ş 8 0 e ´λxt p1 ´e´αt q dt t " ş λx`α λx dt t . In particular, p p l x 1 tpplq"1u qµpdlq " λ x . 1 ż " logp1 ´σx t 1 `σx t q `logp1 ´σy s 1 `σy s q ´log det ´1 ´σxt 1`σxt 1`σxt ´tGx,y ´sGx,y 1`σys 1 ´σys 1`σys
	d) If l is not a one point loop, p l x can be decomposed into the sum of N x
	independent exponential variables of parameter λ x . Therefore,
	ż	p1 ´e´t p l x q1 tpplqą1u µpdlq "	ną0 ÿ	µptl, N x plq " nqr1	λ x ´ˆλ x `t	˙ns

  . An edge tx ´1, xu is closed if and only if PL α " PL x`N

	PL x`N α	, and previous closed edges are defined by PL x´1´N α	which is inde-
	pendent of PL x`N α PL pNq α . For n P N, let r . Stationarity is obvious as PL x`N α pκq n denote the probability that tn, n `1u is closed. By ´x is distributed like proposition 22, r pκq n " p1 ´Hpn`1`Nq c n`1,n H pn´Nq c
	α The next closed edge is the first edge which is not crossed by any loop of α . Y PL x´1´N

  . , Lu belong to a block written down Therefore, 1I tx open at time αu ď ÿ πPPp2,t1,...,Luq ´ÿ ℓ1,...,ℓ |π| PDLα

		|π| ź j"1	iPπj ź	1I tNx i pℓjqą0u	ď
	pairwise distinct			
	ÿ πPPp2,t1,...,Luq ´ÿ ℓ1,...,ℓ |π| PDLα pairwise distinct	|π| ź j"1		

  Corollary 8. The Eulerian network and the vertex occupation field defined by the random set of based loops L W constructed in Wilson's algorithm is independent of the random spanning tree, and independent of the ordering. It has the same distribution as the Eulerian network and the vertex occupation field defined by the loops of L 1 .

	This result will be proved differently (and in fact much improved) in theorem
	17 below.					
	The distribution of the random spanning tree is clearly independent of the
	ordering chosen initially. Now note that, since P e ST,∆ is a probability, we get
	ÿ T∆PSTX,∆	ź px,yqPT∆	C x,y	ź x,px,∆qPT∆	κ x " Z ´1 e	(8.3)
	or equivalently					
	ÿ	ź	P x,y	ź
	T∆PSTX,∆	px,yqPT∆			

x,px,∆qPT∆

  Definition 7. Two spanning trees T 1 and T 2 are neighbors if they differ only by two adjacent edges e 1 and e 2 such that T 1 contains e 1 but not e 2 and T 2 contains e 2 but not e 1 . The conductance of the edge tT 1 , T 2 u is defined by ś ePT1YT2 C e . Proposition 36. The set of spanning trees ST pGq has a connected 2p|E| |X| `1q-regular graph structure. Consider the continuous time Markov chain on spanning trees associated with the conductances defined hereinabove. P ST pGq is the unique stationary distribution of the time changed Markov chain obtained by dividing the holding time at each spanning tree T by 2 ř eRT C e .

  , ηy vanishes if k ‰ |X| ´n, and for k " |X| ´n: xj ^ū yj ^αi1 ^ᾱ i1 ^... α i k ^ᾱ i k .Note that for h 1 ă ... ă h n , α h1 ^... ^αhn are unit eigenvectors of G ^n with

	n ľ j"1	u xj ^ū yj	^1 k!	σ ^k "	ÿ i1ă...ăi k	˜k ź l"1	r i l	¸n ľ j"1
	eigenvalues, 1 ś n l"1 r h l and ūx " ř i a x i ᾱi . Then for k " |X| ´n: . In particular detpGq "	ś |X| 1	1 ri . Moreover, u x "	ř	i a x i α i
	x	n ľ j"1	u xj ^ū yj	^1 k!	σ ^k, ηy "	1 detpGq	ÿ h1ă...ăhn

u

  NepLq P L1 pdLq P ST,∆ pT q equals tx,yu e |dψ tx,yu | 2 pe ´1 2 Cx,y rβ´1spϕϕpx,yqq ´1q 1y Cx,yrβ´1spϕϕpx,yqq p1 ´|dψ tx,yu | 2 q `|dψ tx,yu | 2 s 1y Cx,yrβ´1spϕϕpx,yqq r1`|dψ tx,yu | 2 pe ´1 2 Cx,yrβ´1spϕϕpx,yqq ´1qs 1y tx,yu rpCx,yrβ´1spϕϕpx,yqq`|dψ tx,yu | 2 pe ´1 2 Cx,y rβ´1spϕϕpx,yqq ´1qs 1y.

	ř T	ż	e ´řx χx Lx	ź
	ř T " x1, e ´1 2 ż x1, e ´1 2 ř x χxϕpxqϕpxq ś ř x χxϕpxqϕpxq tx,yu re ź tx,yuPT 1 2 Cx,yrβ´1spϕϕpx,yqq |dψ tx,yu | 2 `1´|dψ tx,yu | 2 s 1y e 1 2 Cx,yrβ´1spϕϕpx,yqq 1yP ST,∆ pT q (by theorem 20) " x1, e ´1 2 ř x χxϕpxqϕpxq ś tx,yu r1 ´|dψ tx,yu | 2 p1 ´e 1 2 Cx,yrβ´1spϕϕpx,yqq qs 1y
	" x1, e ´1 2	ř	x χxϕpxqϕpxq ś
	ř by the anticommutation relations of section 9.2. x χxϕpxqϕpxq e ř tx,yu |dψ tx,yu | 2 pe 1 2 Cx,y rβ´1spϕϕpx,yqq ´1q 1y " x1, e ´1 2
	Similarly, for P
	Proof.	ř			
	T " x1, ż 2 " x1, x1, ź tx,yuRT ś 1 tx,yu re ś tx,yu re 1 e 2 Cx,yrβ´1spϕϕpx,yqq `|dψ tx,yu | 2 p1 1 2 Cx,yrβ´1spϕϕpx,yqq 1y P ST,∆ pT q	´e 1 2 Cx,yrβ´1spϕϕpx,yqq qs 1y
	" x1, 2 " x1, e ś 1 tx,yu e 2 1 ř
	More generally,	ř	T	ż	F p LqP	pβ´q T ,L pT, dLq equals
	1 Z pβ´q x1, F p	1 2	ϕϕq e	1 2

ePT β pβ´q T ,L : Proposition 39. Assuming in addition κ ą 1 ´β so that e 1 2 Cx,yrβ´1spϕϕpx,yqq is well defined in Fock space, we have: Z pβ´q " x1, e 1 2 ř tx,yu rpCx,yrβ´1spϕϕpx,yqq`|dψ tx,yu | 2 pe ´1 2 Cx,y rβ´1spϕϕpx,yqq ´1qs 1y. T ż ź eRT β NepLq P L1 pdLq P ST,∆ pT q equals ř

  ,xq pupx, zq1 z"y ´upx, zqupz, xq1 x"y q and the formula follows now directly from the definitions given in the proposition.

	1 1´upx,yqupy,xq	ˆ1 ´upx, yq	1 ´upy, xq ˙.
	We get that pT rI `U τ s ´1U Sq x,y " ř z,px,zqPE o 1 1´upx,zqupz,xq prU Ss px,zq,y ´upx, zqrU Ss pz,xq,y q ř z,px,zqPE o prI `U τ s ´1U Sq px,zq,y ř z,px,zqPE o 1 1´upx,zqupz,xq pupx, zqS px,zq,y ´upx, zqupz, xqS pz,xq,y q ř 1 z,px,zqPE o 1´upx,zqupzRemark 42. For a Poissonian loop ensemble of geodesic loops of intensity " " " αν IZpsq ˝, " IZp1q

  tgu with indices in X ˆt1, 2, ... dimpρqu by B

	Then:	ÿ l	χ ρ pq tgu plqqµplq "	´1 dimpρq	ρ,tgu px,iq,py,jq " P x,y ρptgupxqq ij . logpdetpI ´Bρ,tgu qq.

  Assume N is finite and let R denote the set of irreducible unitary representations of N . It follows from proposition 48 and group representation theory that |tl P L α , h A plq " Cu| are independent Poisson r.v. with

									3)
	and for F any positive functional,	
	EpF p Ld q	ź lPL d	χ ρ ph A plqqq " EpF p	1 2	ÿ i	ϕ .i s ϕ .i qe	ř	x,y,i,j pCx,y 1 2 ϕx,irδi,j ´ρrmpx,yqsi,js φy,j q.
									(11.4)
	d) expectations:						
	αµptl, h A plq " Cuq " α	ÿ πPR	χ π pCq	|C| |N |	dimpπq logpZ e,A,π	ź

x λ x q. e) Given any finite group and k of its conjugacy classes C 1 , C 2 , ..., C k , we denote by NpC 1

  pρ,Aq y q " Assuming moreover that N is a finite group, denote by R the set of its irreducible unitary representations.

							Z eχ,A,ρ Z e,A,ρ	.	(11.5)
	It follows from equation (11.2) that, for any positive functional F ,
	EpF p Ldimpρq q Ep ś lPL dimpρq χ ρ ph A plqqq ś lPL dimpρq χ ρ ph A plqqq	" EpF p	1 2	rϕϕs pρ,Aq qq.	(11.6)
	Moreover, if N is finite, the total occupation field of loops of zero holonomy can be similarly expressed as follows, setting rϕϕs pAq x " ř nPN ϕ bm x,n φbm x,n :
	EpF p L|N| q|	č lPL |N |	th A plqq " Iuq " EpF p	1 2	rϕϕs pAq sqq.	(11.7)
	Proposition 49. We have	
	G bm px,n1q,py,n2q "	ÿ πPR	dimpπq	dimpπq ÿ i,j"1
		ϕ bm px,nq "	ÿ πPR	dimpπq ÿ i,k"1	ϕ π,mpA,sq,pkq px,iq	πpnq ik ,	(11.9)
	in which the fields ϕ π,mpA,sq,pjq are i.i.d Gaussian vector fields with covari-
	ance equal to G π,mpA,sq , and the fields associated with different irreducible
	representations are independent.
	Then	rϕϕs pAq s " dimpπq	ÿ πPR rϕϕs pπ,Aq .	(11.10)
	and if G is finite,					Z e,A "	πPR ź	Z e,A,π . dimpπq	(11.11)
	Proof. First note that that duction, ř gPN rP bm s k px,Iq,py,nq qπpgq ij " rP π,mpA,sq s k ř gPN P bm px,Iq,py,nq πpgq ij " P px,iq,py,jq . Then by in-π,mpA,sq px,iq,py,jq and it follows that ř nPN G bm px,Iq,py,nq πpnq ij " G π,mpA,sq px,iq,py,jq .

G π,mpA,sq px,iq,py,jq πpgn ´1 2 n 1 q ij .

(11.8)

We can also decompose the free field:

  Then we haveProposition 50. For any section s, r G px,n1q s ,py,n2q s " G

	fore:	bmpA,sq px,n1q,py,n2q . There-
	In particular, (11.7).	φpx,nq s " ϕ bmpA,sq x,n ř xPp ´1pxq r ϕ x r ϕ x " rϕϕs and ψpx,nq s " ψ bmpA,sq x,n pAq x , which is equivalent to equation .

  3 s α{2 rκpκ`4q 3 s α Remark 51. a) Denoting by N c pL α q the number of loops in L α such that l g is the geodesic loop c, we have, by proposition 3 (Palm formula), taking ΦpLq " ś lPL χ ρ ph A plqq and F plq " 1 tl"cu :

			for the cube				
	rκ 2 pκ`4q 6 s α{2 rκpκ`4q 3 s α " 1 for two tetrahedrons rκpκ`4q 4 pκ`2qpκ 2 `6κ`4qs α{2 for the six intermediate cases. rκpκ`4q 3 s α These results are given in remark 33 for the two first cases. The last one is	
	treated similarly.					
	For α " 2, the normalizing factor is 8κpκ`4q 3 pκ 4 `12κ 3 `48κ 2 `72κ`30q rκpκ`4q 3 s 2 converge to 0, for α " 2 we get a probability 1/5 for the cube, 2/15 for each . Letting κ intermediate case and zero for the two tetrahedrons.	
		Λ α ρ pAq					
	ş	Epe 2π ş Epe 2π ? ´1 ř ? ´1 ř lPLα lPLα Ť tcu ř	ř x,y Ňx,yplqωx,y q x,y Ňx,yplqωx,y q ś ś tx,yu dω x,y tx,yu dω x,y	"	Pp @px, yq, Pp @px, yq, ř	lPLα ř lPLα Ňx,y plq " 0q Ť tcu Ňx,y plq " 0q	.

l ź 1 αµpcqχ ρ ph A pcqq " Ep ź lPLα χ ρ rh A plqsN c pL α qq.

b) Consider now the case N " U p1q in which the connection is defined by a 1form ω x,y . Then expectation of a trace of loop holonomy under the probability on connections defined by the weights Λ α can be computed:

  Then, by proposition 38, for any antisymmetric polynomial P : x1, P pψ, ψq1qy FF " detpGqxP ? 2 ūq ^ν, ηy R |X| ' R |X| . Denoting by the superscript ˘the restrictions to X ˘, we have: x1, ΠSrΠs1y " detpGqxΠ ^SrΠ s `,x ´pu x `^ū x ´`u x ´^ū x `qs, η `η´y Ź R |X| ' R |X| C x piq ,x ṕiq in which x pďkq denotes a k-tuple of distinct elements of X ˘, H xďk " detpGqxΠ ^^ν `ź u x ì , η `yR |X| ' R |X| and H xďk " detpGqxSpΠq ^^ν ´ź u x í , η ´yR |X| ' R |X| .

	^p? 2 u,	
	^p? 2 u,	? 2 ūqν, ηy R |X| ' R |X|
	" detpGqxΠ ^SrΠ s ˘r1`C x " detpGq ^p? 2 u, ? 2 ūqν `ν´ź x ˘PX ÿ ÿ H x pďkq H x ṕďkq ź k kě0 x pďkq ,x ṕďkq 1

  Assume we are given a Hilbert space H and two unitary operators ρ and θ such that ρ 2 " Id and ρθρ " θ ´1. Assume there exists a Hilbert subspace H `such that θpH `q Ď H `and for any F P H `, xF, ρpF qy H ě 0. It defines a scalar product on H `for which Cauchy-Schwarz inequality holds: xF, ρpGqy H ď a xF, ρpF qy H a xG, ρpGqy H . Moreover xF, ρpF qy H ď xF, F y H by Cauchy-Schwarz inequality in H.

  To prove that it is a contraction, it is enough to show that xθpF q, ρpθpF qqy H ď xF, ρpF qy H for all F P H But as shown above, xθpF q, ρpθpF qqy H ď a xθ 2 pF q, ρpθ 2 pF qqy H a xF, ρpF qy H .By recursion, it follows that:xθpF q, ρpθpF qqy H ď A θ 2 n pF q, ρpθ 2 n pF qq E 2As @ θ 2 n pF q, ρpθ 2 n pF qq D 2

	`.

´n H xF, ρpF qy 1´2 ´n H ´n H ď xF, F y 2 ´n H which converges to 1 as n Ñ 8

  Index Cx,y, 13 G D , 16 G x , 17 G tF u , C tF u λ tF u , 33 Gx,y, 15 H F , 16 Ht, 167 K tx,yu , 87 K tx,yu , 90
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Markov chains and Potential theory on Graphs

Potential theoretical notions defined on X in chapter 1 are here applied to D.

We denote by f ˚m the image of a measure m by a map f .

Indices q `j are evaluated modulo n.

A subordinator is an increasing Levy process. See for example reference[START_REF] Bertoin | Levy processes[END_REF].

Occupation fields

Primitive loops, loop clusters, and loop percolation

Networks, Ising Model, Flows, and Configurations

This gives to the fiber at x a Mx-torsor structure.

Note that on the right hand side, the Casimir operator acts on τ A p Lq with L fixed and on the left hand side, the split and merge operators act on τ A p Lq with A fixed.

We use ', not Y, as we deal with collections and multiplicities are added

the Fock space scalar product and φpxq identified with the operator a x `ax .

For any polynomial P pφq, EpP pφqq " xP pφq1, 1y FB This structure is fundamental in the area of stochastic analysis known as Malliavin Calculus.

In the case of a complex field ϕ, the space of square integrable functionals of ϕ and ϕ is isomorphic to the tensor product of two copies of the symmetric Fock space F B , which is the closure of ' n,m D n b D m , and which we will denote by F B . We now get two commuting sets of creation and annihilation operators satisfying the Bososnic canonical commutation relations. The Fock space stucture is transported as before to the space of square integrable functionals of ϕ and ϕ using these two commuting sets of adjoint creation and annihilation operators defined on polynomials of the field: `ax q and ϕpxq " ? 2pa x `bx q, and for any polynomial P pϕ, ϕq:

EpP pϕ, ϕqq " xP pϕ, ϕq1, 1y FB .

In quantum theory, one also uses another set of commuting operators:

πpxq " 1 ? 2 pb x ´ax q and πpxq " 1 ? 2 pa x ´bx q.

They satisfy the commutation relations:

rπpxq, ϕpyqs " rπpxq, ϕpyqs " 0; rπpxq, ϕpyqs " rπpxq, ϕpyqs " 2G x,y .

In particular

We set c x " c δx and c x " c δx . It can be easily checked that c ẙ is the dual of c y . The anticommutator c x c ẙ `cẙ c x denoted by rc x , c ẙ s `equals G x,y and all others anticommutators vanish.

We will work on the complex fermionic Fock space F F defined as the tensor product of two copies of F F . The complex Fock space structure is defined by the two sets of creation and annihilation operators acting on the two copies of

Even subsets

Recall that by definition, even subsets of E, are subsets which, for every vertex of X, contain an even number of edges incident to it.

Proposition 42. Assume that the graph is finite and connected. Then there are 2 |E|´|X|`1 even subsets of E.

Proof. Note that edges of circuits are even subsets. Note that indicator functions of even subsets form a vector subspace V pX, Eq of the Z{2Z -vector space of Z{2Z -valued functions defined on E. It is the subspace of functions whose sums of values on edges adjacent to any given vertex vanishes. Let M pX, Eq be the number of even subsets in the graph pX, Eq. It is clear that M pX, Eq " 2 dimpX,Eq where dimpX, Eq denotes the dimension of this subspace. We have to show it is equal to r " |E| ´|X| `1. Fix a spanning tree and let e i be the r edges not included in the tree and γ i the non-oriented simple circuits they define with the tree. The indicator functions u i of the set of edges in γ i are clearly linearly independent as u i is the only one which does not vanish on e i . Hence, dimpX, Eq ě r. On the other hand, the indicator functions of the |X| ´1 edges of the trees are also clearly independent and do not belong to V pX, Eq so that dimpX, Eq ď |E| ´p|X| ´1q " r.

10.4 Homotopies and geodesic loops distributions.

In this section, we assume that the graph is finite. Recall that we denoted by L α the Poisson point process of intensity αµ. The ensemble L α can be decomposed into independent sets of loops of distinct homotopies i.e. inducing different geodesic loops. For any geodesic loop γ, the number of discrete loops l P L α such that l R " γ is a Poisson variable of parameter proportional to α, say αµ γ .

In the case of the regular graphs with unit conductances and constant κ, a simple expression of µ γ is obtained directly from the results of section 4.2 of [START_REF] Mnëv | Discrete Path Integral Approach to the Selberg Trace Formula for Regular Graphs[END_REF]:

Chapter 11

Holonomies and Gauge fields

In this chapter, given a group N , we introduce N -connections on a graph, loop holonomies, and associated bosonic and fermionic field. When the group is discrete, connections induce Galois covers. Loops and spanning forests on the cover are related to bosonic and fermionic fields which can be decomposed using group representation theory into the fields interacting with the connection.

We introduce the measure on connections given by the expectation of the product of holonomies of a loop ensemble and show that for high intensity and high killing rate this measure can approximate the Yang-Mills measure.

Then we present an intertwining relation between merge-and-split generators on loop ensembles (which were introduced in Chapter 7) and Casimir operators on U pdq-connections. By adding a deformation part to the generator on loops, this result is extended to the Casimir operator modified in order to be self adjoint with respect to Yang-Mills measure. A consequence of this result is the Schwinger-Dyson equation obtained in [START_REF] Chatterjee | Rigorous solution of strongly coupled SOpN q lattice gauge theory in the large N limit[END_REF] as an essential step in the proof of the t'Hooft expansion for large d.

Connections

Definition 11. Consider any group N . Define the gauge group X to be the direct product N X , and let MpG, N q be the set of maps m from oriented edges into N such that mpx, yq " mpy, xq ´1. An equivalence relation is naturally

Weyl theorem, we know that the functions u π i,j defined on N by u π i,j pgq " a dimpπqπpgq i,j form an orthonormal base of the L 2 space defined by the normalized counting measure. We get the decomposition:

" G bm px,Iq,py,gq .

G bm px,g1q,py,g2q "

G π,m px,iq,py,jq πpg 1 q i,k πpg 2 q j,k .

The decomposition of the field follows straightforwardly. The last identity follows easily from the second one. As for the last identity, it follows from the definition given in remark 49 a) and from the decomposition of G bm .

The fields ϕ ρ,m can also be interpreted as fields of operators acting on the bosonic Fock space associated with G ρ,m . Then, similar definitions can be given for the fermionic field. When N is finite, we get a decomposition of the fermionic field ψ bm associated with G bm similar to (11.9):

For any representation ρ and vertex x, rψψs pρ,Aq pxq :"

x,i and rψψs pAq :" The occupation fields of loop ensembles on the cover correspond to the occu-Remark 55. Using the extension of equation (11.13) and (11.14) to A pCq , formulas (11.17) and (11.18) extend to to products of traces of geodesic loop holonomies. Using the notation introduced in the proof of theorem 25, we can reformulate the first identity as follows: For any finite sequence of geodesic loops pγ i q, pd ´1qx

Remark 56. For any U pdq-connection A, denoting by G 0 the set of geodesic loops, if we set LpAq " ř γPG0 rµ γ pτ A pγq ´1q, we have A pCq Λ α pAq " A pCq e αLA " rαA pCq LpAq `2α 2 Γ pCq pLpAq, LpAqqse αLA . These quantities can be calculated using expressions from the last part of the proof of theorem 25 :

tγ p1q ,γ p2q uPSplit ´pγq τ A ptγ p1q , γ p2q uqs;

µ γ1 µ γ2 r ÿ γPMerge ´pγ p1q ,γ p2q q τ A pγq ´ÿ γPMerge `pγ p1q ,γ p2q q τ A pγqs.

We can get a similar result for the Yang-Mills weights defined in section 11.4.

Set P pAq " ř ηPP τ A pηq. Then, since plaquettes, being simple circuits, cannot split, we have ´ApCq P pAq " dP pAq. Note also that two adjacent plaquettes η 1 , η 2 can be merged positively or negatively (i.e. with cancelation of the common edge) depending on whether their common edge is crossed in the same direction (we write η 1 " `η2 ) or not (we write η 1 " ´η2 ). If we denote the output of this merge by η 1 η 2 , then we have Γ pCq pP pAq, P pAqq " ´řη1"`η2 τ A pη 1 η 2 q `řη1"´η2 τ A pη 1 η 2 q. Consequently, defining as in section 11.4 the Yang Mills weights Y k pAq by e krP pAq´npn´1qL n s Remark 61. As in remark 55, we can reformulate this identity as follows: For any finite sequence of geodesic loops pγ i q, pd´1qx ÿ

As in remark 60, if the pγ i q's are non-intersecting circuits, the right hand side simplifies to

This equation is almost identical to the Schwinger-Dyson equation previously obtained (with a similar proof, though it deals with SOpdq and does not mention Casimir operators) in [START_REF] Chatterjee | Rigorous solution of strongly coupled SOpN q lattice gauge theory in the large N limit[END_REF], as an essential step in the proof of the t'Hooft expansion for large d " n. In continuous spaces, such equations, which originate from physics, are often referred to as Marchenko-Migdal equations (Cf. [START_REF] Levy | The master field on the plane[END_REF] for a proof in dimension two).

We can also derive a heat kernel identity:

Corollary 19. Let J pC,kq t be the semigroup generated by A pC,kq and H SMD t be the semigroup defined by the generator B SM``BSM´`k rB D``BD´s and, for any finite collection of geodesic loops L0 , denote by P SMD L0 the distributions of the corresponding merge-and-split Markov chain p Ls , s ą 0q on collections of geodesic loops starting from L0 . Then:

in which mt denotes the total number of positive merges or splits between 0 and t (now including merges with plaquettes).

Knowing from remark 59 that J pC,kq t is the unique solution to the Fokker-Planck equation associated with A pC,kq , the proof is essentially the same as in corollary 17, after noting that the first jump of the process occurs at a random exponential time of mean pV ``V ´`2kpn ´1qSqp L1 q in order to determine the right integral term in the exponential.

Remark 62. One can show that the semigroup J pC,kq t satisfies Harris recurrence conditions (Cf. [START_REF] Revuz | Markov chains[END_REF]) on the set of connections, which is compact. It follows that given any collection of geodesic loops L0 , the integral of τ A p L0 q by the normalized Yang-Mills measure can be represented as

in which we denote by I the trivial connection.

Chapter 12

Reflection Positivity and Physical Space

Yang-Mills measure, together with the fields defined in section 11.3 provide a discrete model of interacting quantum field theory [START_REF] Seiler | Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics[END_REF]. In order to establish a relation with quantum mechanics, it is necessary to prove that reflection positivity holds. It is the purpose of this chapter.

Loops and Bosons

Recall that a graph automorphism σ is a bijection from X onto X such that if tx, yu P E, tσpxq, σpyqu P E. An involution of the graph is an automorphism such that σ 2 " Id.

In this section, we assume there exists an involution σ of the graph and a partition of X: X " X `Y X ´Y X 0 , with X ´" σpX `q and X 0 denoting the set of fixed points, such that: a) C and κ are σ-invariant; b) the matrix C pσq x,y :" C x,σpyq " C σpxq,y , defined for x, y P X `is positive semidefinite. Note that this holds for example if C pσq vanishes or if C pσq is a nonnegative diagonal matrix.

Then the following holds: Theorem 27. The matrix G pσq x,y :" G x,σpyq " G σpxq,y , px, yq P tX `Y X 0 u 2 is positive semidefinite.

As G pσq is positive definite, we can conclude since, denoting by w the Gaussian field on X 0,`w ith covariance G pσq , e xχj,G pσq χqy " E w pe xw,χjy e xw,χqqy q and the previous expression can be written as E w p| ř λ j e 1 2 xχj ,Gχj y e xw,χj y | 2 q. By equation (6.3), the reflection positivity of the real free field i) implies iii).

The proof of the reflection positivity of the complex free field ii) is similar.

The property iv) can then be derived by equation (6.4).

Remark 63. Reflection positivity holds also for d-dimensional free fields.

Remark 64. Reflection positivity can be generalized into a Markov property.

For loops, see [START_REF] Werner | On the Spatial Markov Property of Soups of Unoriented and Oriented Loops[END_REF], and section 3.2.

A counter example

Let show that the reflexion positivity does not hold under µ for functions of the loop local times. Therefore, it will be clear it does not hold for functionals of the occupation field when α is small. Consider the graph formed by a cube ˘a, ˘b, ˘c, ˘d and the mid-points ˘α, ˘β, ˘γ, ˘δ of the sides ˘ab, ˘cd, ˘ad, ˘bc. The edges are given by the sides of the cube, as in the picture. We can take for example all conductances and killing rates to be equal.

Then the symmetry ρ : x Ñ ´x defines an involution satisfying the assumption of theorem 28. Define the set of loops A " tl, p l αp l β ą 0u, A 1 " tl, p l α " p l β " 0u, B " tl, p l γ p l δ ą 0u and B 1 " tl, p l γ " p l δ " 0u.

Note that A X B 1 X ρpAq X ρpB 1 q, A 1 X B X ρpA 1 q X ρpBq are empty. But A 1 X B X ρpAq X ρpB 1 q and A X B 1 X ρpA 1 q X ρpBq are not (consider the loop aαbp´bqp´δqp´cqcβdp´dqp´γqp´aqa).

Then, if we set Φ " 1 AXB 1 ´1A 1 XB , it is clear that µpΦ.Φ ˝ρq " ´2µpA X B 1 X ρpA 1 q X ρpBqq ă 0.

12.3 Fermi fields

Random connections

Le N be a finite group. If we consider the finite set CpG, N q of N -connections random variables generated by holonomies of loops contained in X `and X

´, reflection positivity holds for the measures of density Λ dimpρq ρ (see definition 13) as well as for the Yang-Mills measures. The involution σ naturally extends to MpG, N q and therefore to connections.

Theorem 30. Assume the following:

(H) If tx `, x ´u is an edge connecting X `and X ´, then x ´" σpx `q.

Let KpAq be any bounded function of the A-holonomies of a set of loops contained in X `, then: ÿ APCpG,N q KpAq KpσpAqqΛ dimpρq ρ pAq ě 0.

In the case of the discrete torus, the same inequality holds for the Yang-Mills measures.

Proof. The idea (used in ( [START_REF] Seiler | Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics[END_REF]) for Yang-Mills measures) is that under assumption (H), gauge invariance allows to take a representative m of A such that mpx `, x ´q " I if tx `, x ´u is an edge connecting X `and X ´. The functions K and Y ρ,k on CpG, N q induce gauge invariant functions K and Ỹρ,k on MpG, N q. Denote by E ˘the set of edges connecting X `and X ´, by M ˘pG, N q the set of elements of MpG, N q such that m x `,x ´" I if tx `, x ´u is an edge connecting X `and X ´. Then, with d " dimpρq: Then the inequality follows from the reflection positivity of the free field and from (11.3) which allows to write this quantity as

ř mPM`pG,N q Dpm, ϕqs r ř mPM`pG,N q Dpm ˝σ, ϕ ˝σqsq with Dpm, ϕq " KpmqEpe ř xPX `,yPX `,i,j 1 2 ϕx,iCx,yrδi,j ´ρrmpx,yqsi,j s φy,j q, in which M `pG, N q denotes the set of elements of MpG, N q restricted to edges connecting vertices of X `.

The Yang-Mills case follows from corollary 15. It can also be proved directly, as in ( [START_REF] Seiler | Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics[END_REF]).