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▪ Early precipitated micropyrite in microbialites:
A time capsule of microbial sulfur cycling

J. Marin-Carbonne1*, M.-N. Decraene1, R. Havas2, L. Remusat3, V. Pasquier4,
J. Alléon1, N. Zeyen5, A. Bouton2, S. Bernard3, S. Escrig6, N. Olivier7,

E. Vennin2, A. Meibom6,1, K. Benzerara3, C. Thomazo2,8

Abstract https://doi.org/10.7185/geochemlet.2209

Microbialites are organosedimentary rocks that have occurred throughout the Earth’s
history. The relationships between diverse microbial metabolic activities and isotopic
signatures in biominerals forming within these microbialites are key to understand-
ingmodern biogeochemical cycles, but also for accurate interpretation of the geologic
record. Here, we performed detailed mineralogical investigations coupled with
NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) analyses of pyrite S
isotopes in mineralising microbial mats from two different environments, a hypersa-
line lagoon (Cayo Coco, Cuba) and a volcanic alkaline crater lake (Atexcac, Mexico).
Both microbialite samples contain two distinct pyrite morphologies: framboids and
euhedral micropyrites, which display distinct ranges of δ34S values1. Considering

the sulfate-sulfur isotopic compositions associated with both environments, micropyrites display a remarkably narrow range
of Δpyr (i.e. Δpyr ≡ δ34SSO4

− δ34Spyr) between 56 and 62 ‰. These measured Δpyr values agree with sulfate-sulfide equilibrium
fractionation, as observed in natural settings characterised by low microbial sulfate reduction respiration rates. Moreover, the
distribution of S isotope compositions recorded in the studied micropyrites suggests that sulfide oxidation also occurred at
the microbialite scale. These results highlight the potential of micropyrites to capture signatures of microbial sulfur cycling
and show that S isotope composition in pyrites record primarily the local micro-environments induced by the microbialite.
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Introduction

Sulfate-reducing bacteria, i.e. microorganisms that use sulfate
as a terminal electron acceptor, are ubiquitous in Earth environ-
ments where they play amajor role both in S andC biogeochem-
ical cycles (e.g., Jørgensen et al., 2019).Microbial sulfate reduction
(MSR) reduces sulfate to dissolved S species, such as HS− and
H2S, and discriminates against heavy sulfur isotopes. The result-
ing sulfide δ34S values are relatively light and can be as much as
−70‰ relative to sulfate (Jørgensen et al., 2019). The fractiona-
tion induced by this metabolic activity (34εmic hereafter) depends
on the sulfate concentration, identity of the electron donor, bio-
available carbon (content and chemical form) and, perhaps most
importantly, the cell-specific sulfate reduction rates (csSRR;
Bradley et al., 2016). In modern environments, MSR can be iden-
tified by rate measurements with radiotracers or genomic and
proteomic approaches. However, since genetic markers are

not preserved in the geological record, the recognition of MSR
in palaeoenvironments mostly relies on the sulfur isotopic com-
positions of sedimentary sulfide and sulfate minerals (Visscher
et al., 2000; Fike et al., 2008).

MSR plays a key role in carbonate mineralisation, espe-
cially identified in microbialites and microbial mats (Visscher
et al., 2000). Microbial mats are stratified microbial communities
whose metabolic activities produce geochemical gradients and
drive elemental cycling (Canfield and Des Marais, 1993; Paerl
and Pinckney, 1996). In the geological record, such deposits
(often referred to as stromatolites) are considered among the
oldest trace of life on Earth (Allwood et al., 2009). Some
Archaean stromatolites contain carbonaceous laminae that have
been interpreted as fossil microbial mats or biofilms based on
textural evidence (Awramik, 1992; Lepot, 2020). Interestingly,
determining the precise nature of the fossil microbial community
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is challenging because these organosedimentary rocks resulted
from a complex balance between microbial activities, sedimen-
tation and intermittent lithification (Reid et al., 2000). In addition,
the biosignatures preserved in fossil biofilms are ambiguous,
especially after diagenesis and post-depositional history (Javaux,
2019; Alleon et al., 2021). The oldest evidence for MSR in the
Archaean geological record are sulfur isotopic signatures from
deep marine sediments (Kamber and Whitehouse, 2007; Shen
et al., 2009) and stromatolites (Shen and Buick, 2004). In modern
microbialites, numerous studies have reported dynamic MSR
activity based on H2S labelling (Visscher et al., 2000; Fike
et al., 2008; Pace et al., 2018; Gomes et al., 2021), but only a
few studies have investigated sulfur isotope signatures of indi-
vidual pyrite grains (Gomes et al., 2021).

The primary S isotopic signatures of pyrites (FeS2) are
often modified by fluid circulation during metasomatism or
metamorphism (Marin-Carbonne et al., 2020; Slotznick et al.,
2022), occurringmillions or billions of years after sediment dep-
osition. While late diagenesis can modify both pyrite crystallin-
ity and S isotope composition (Williford et al., 2011; Gomes
et al., 2018; Marin-Carbonne et al., 2020), early diagenesis in
microbial mats is thought to have a limited effect on the S
isotopic composition of pyrite, meaning that microbialitic
pyrites may preserve ‘pristine’ isotopic signatures. However,
the observation of large isotopic differences of about ∼30 ‰
(Raven et al., 2016) between pore water sulfur species
(SO4

2− and H2S) and pyrite shows that other S-bearing pools,
such as organic matter, should be considered in order to quan-
titatively and isotopically describe sulfur cycling in microbia-
lites. Pyrite often precipitates at the microbial mat surface

(Gomes et al., 2021) and its isotopic composition is more
representative of the local setting rather than global environ-
mental conditions, e.g., water column (Lang et al., 2020;
Pasquier et al., 2021). Decoding pyrite S isotopes at the micro-
scale in sedimentary rocks is required to better understand
how local conditions may affect the isotopic composition of
microbialite pyrites. Here, we focus our investigation on
two geographically independentmodernmicrobial mats, which
have not yet undergone (complete) lithification, and/or
metasomatism.

Syngenetic Microbialitic Pyrites

We studied two samples from 1) the Atexcac Lake, a monomic-
tic volcanic crater lake (Mexico; Zeyen et al., 2021) and 2)
Cayo Coco Lake, a shallow hypersaline lagoon in Cuba (Pace
et al., 2018; Bouton et al., 2020). These two depositional settings
exhibit contrasting water column sulfate concentrations of
2.1 and 62 mM for Lake Atexcac and Cayo Coco, respectively
(Figs. S-1 and S-2, SI). Both samples were produced by miner-
alising microbial mats and contained authigenic aragonite,
Mg-rich calcite, dolomite, authigenic hydrated Mg-silicates/
silica such as kerolite, and detrital phases such as feldspars
and illite (Figs S-1 and S-2, SI). In each locality, pyrite morphol-
ogies fall into two different categories (Fig. 1): framboidal pyri-
tes, ranging from 3 to 15 μm, and mono-crystal pyrites of a few
micrometres (>3 μm), hereafter called micropyrites (Figs. 1 and
2, SI). Transmission electron microscopy analyses revealed an
early origin of the micropyrite grains (SI). Considering both the

Figure 1 Secondary Electron microscopy pictures of (a, b) framboidal pyrites and (c, d) micropyrites from (a, c) Cayo Coco Lagoon and
(b, d)Atexcac. Framboidal pyrites are located at the surface of themineralisedmicrobialite (in dark) whilemicropyrites are entombedwithin
aragonite (in light grey) or Mg rich silicate (dark grey).
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alignment of the micropyrites within the organic lamination
and their crystallinity, micropyrites are likely formed during
an early lithification stage (SI).

NanoSIMS S Isotope Composition of
Pyrites

The S isotope compositions of 66 framboidal pyrites and 55 indi-
vidual micropyrites were measured by NanoSIMS with a repro-
ducibility better than 2‰ (2σ, see SI). Framboidal pyrites display
a∼20–30‰ range in δ34S values with an average of−26.1 ± 7‰
and−26.4 ± 9‰ (2 s.d.) for Atexcac and Cayo Coco, respectively
(Figs. 3 and 4). We have extracted S isotope composition of indi-
vidual crystallites from four framboids (Fig. 3, SI). All framboidal
pyrites (n = 4) show a large internal δ34S variability (∼40 ‰,
Fig. 3) characterised by a gradient from ∼+8.5 ± 1.5 ‰ to more
34S-depleted values ranging from −42 to −69 ‰. Micropyrites
also show large S isotope heterogeneities with δ 34S values rang-
ing from −86 to −17 ‰ with an average value of −61.4 ± 17 ‰

for Atexcac, and from −53 to −21 ‰ with an average value of
−34.5 ± 29 ‰ in Cayo Coco (Fig. 4).

Framboidal Pyrites Record a Mixing of
Reduction and Oxidation Processes

Framboidal pyrites display a large range of δ 34S values but also
an internal isotope variation across the length scale of individ-
ual framboidal grains (Fig. 3), best explained by a combination
ofMSR and partial sulfide oxidation (Fig. 3; Pellerin et al., 2019).
As framboidal pyrites are mostly observed at the surface of the
mat, S isotope variations reflect themixing of in situ production,
upward diffusion of sulfide in the mat and its subsequent reox-
idation at the mat surface. The fractionation required to pro-
duce such an isotopic gradient is well above abiotic sulfide
oxidation (i.e.∼+5‰; Fry et al., 1988), yet can also be consistent
with microbial sulfide oxidation in high pH environments
(Pellerin et al., 2019). Both sites are characterised by high pH
(pH > 8, see SI), which is known to promote large isotope frac-
tionation during sulfide oxidation (Pellerin et al., 2019).
Consequently, part of the observed range of δ 34S values may
be attributed to local variation of S speciation associated with
pH. As such, the internal gradient may be the result of micro-
bially mediated surface H2S oxidation. Alternatively, the inter-
nal isotope gradient across the framboidal pyrites (Fig. 2, SI) can
be due to Rayleigh isotope fractionation, as even under

Figure 2 (a) SEM picture ofmicropyrites. Locationwhere FIB sectionwas extracted is shown by the yellow line, (b) TEM picture of the pyrite
crystal and (e) its associated powder-like diffraction pattern, (c) false colour STEMEDXS image (Si in blue, Ca in green, Fe in red) and (d, f, g) Si,
C andO images of the submicrometric pyrites, respectively. (h) SEMpicture of framboidal pyritewith FIB section location (yellow line), (i) TEM
image and (l) associated single crystal diffraction pattern along the [112] zone axis of pyrite, (j) false colour STEM EDXS image of pyrite
crystallites (Fe in red, S in green, C in blue) and (k, m, n) Fe, C and O images, respectively.
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oxidising (abundant sulfate) conditions, consumption can occur
faster than diffusive replenishment (Goldhaber and Kaplan,
1980). Rather than reflecting water column conditions, the S

isotope composition of framboidal pyrites appears to be
strongly influenced by local redox conditions (i.e. at the micro-
bial mat scale).

Figure 3 (a) δ34S probability density function of all framboidal pyrites fromAtexcac and Cayo Coco uncertainties of analyses ranges from0.4
to 4 ‰, (b) δ34S probability density function of four individual framboidal pyrites containing up to 100 pyrite crystallites, (c) SEM and cor-
responding NanoSIMS 32S image of one framboidal pyrite; the arrow indicates the top of the mat, and (d) δ34S values reconstructed for
individual pyrite crystallites showing strong variations in S isotope composition across the framboidal pyrite.

Figure 4 (a) NanoSIMS 32S image of submicrometric pyrites, (b) δ34S probability density function, taking account of the range of uncertain-
ties from 1 ‰ to 8 ‰ of micropyrites from Cayo Coco and Atexcac, (c) Δpyr distribution calculated for both environments.
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Microbialitic Micropyrite Preserve
Primary Isotopic Microbial Fractionation
Signatures

The presence of Mg silicate rich rims (SI) suggests that micro-
pyrites were probably formed very early during lithification
(Fig. 2). Moreover, the small crystal size of micropyrites com-
posed of nanocrystals with different orientations has been high-
lighted as a possible biogenic signature (Picard et al., 2018). The
δ34S values of dissolved sulfate are +0.52 ‰ in Atexcac and are
assumed to be close to seawater composition (+21 ‰) for Cayo
Coco (SI). Considering these hugely contrasting isotopic compo-
sitions of sulfate, micropyrites display surprisingly similar Δpyr

values (i.e. Δpyr = δ34SSO4
− δ34Spyr) of 62 ± 17 ‰ and 56 ± 29

‰ for Atexcac and Cayo Coco, respectively (Fig. 4). These
Δpyr values are consistent with near thermodynamic equilibrium
fractionation as observed in i) MSR batch culture experiments
characterised by low growth rate and csSRR (Leavitt et al.,
2013; Bradley et al., 2016) and ii) natural environments (e.g.,
Cadagno Lake; Canfield et al., 2010). High 34εmic has been
observed in sulfate reducing strains only partially oxidising their
carbon substrate and is sometimes associated with the degrada-
tion of carbohydrate components, including exopolymeric
substances (EPS) (Sim et al., 2011), which are abundant inmicro-
bialite-forming mats. Atexcac waters have a high dissolved
organic carbon content (over 15 times that of the modern ocean)
which can sustain MSR activity, while Cayo Coco harbours con-
spicuous suspended EPS-rich organic slimes (Bouton et al.,
2016). Despite abundant sulfate (at Cayo Coco) and organic
matter, csSRR in these mats are intriguingly low and contrast
with previous occurrences of high SRR in surface microbial mats
(Canfield and Des Marais, 1993). Low csSRR and high S isotope
fractionations in both lakes could be explained by the refractory
nature of this organic matter (Bouton et al., 2020; Gomes et al.,
2021). At the microbial mat scale, strong gradients of sulfate
reduction within layered mats (Visscher et al., 2000; Fike et al.,
2009; Pace et al., 2018) have been attributed to small scale var-
iations in csSRR and/or localised MSR micro-niches (Fike et al.,
2009; Gomes et al., 2021). The observed laminations, which con-
tain micropyrites, likely reflect local high density microbe spots,
which can result from a more pronounced local distillation of
δ34S (Pasquier et al., 2021). Alternatively, the composition of
microbial consortia may affect the range of csSRR at the micro-
bial mat scale (Bradley et al., 2016), with guild diversity having
opposite effects on trophic group functions, thus modulating
csSRR (Bell et al., 2005; Peter et al., 2011).

Conclusions

Here, we have shown that the S isotope composition of fram-
boids and micropyrites reflects sulfur cycling at the scale of
the mat environment. While S isotope signatures in microbialite
micropyrites are primarily controlled by MSR, they can also be
influenced by oxidative sulfur cycling in high pH environments.
Notably, microbialites growing at different dissolved sulfate con-
centrations and in marine versus lacustrine environments dis-
play similar micropyrite morphologies and comparable Δpyr.
Such observations demonstrate that microbialites have the
potential to record the isotopic fractionation associated with
MSR irrespective of the depositional environment and sulfate
level. Consequently, we propose that microbialite micropyrites
can be used as a mineral signature for reconstructing past
Earth surface and microbial environments, as already suggested
for Archaean stromatolites (Marin-Carbonne et al., 2018). In
addition, this study clearly shows that caution should be used

in reconstructing past environmental parameters, such as water
body sulfate levels, from Δpyr. Finally, the respective influence
of different electron donors, sulfate concentration, and non-
actualistic microbial communities on the csSRR and associated
sedimentary pyrites δ34S remains to be explored in order to
deepen our understanding of the evolutionary trajectory of
biogeochemical sulfur cycling on Earth.
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