
HAL Id: hal-03655372
https://hal.science/hal-03655372v1

Submitted on 29 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reversibility in Erlang: Imperative Constructs
-Technical Report

Pietro Lami, Ivan Lanese, Jean-Bernard Stefani, Claudio Sacerdoti Coen,
Giovanni Fabbretti

To cite this version:
Pietro Lami, Ivan Lanese, Jean-Bernard Stefani, Claudio Sacerdoti Coen, Giovanni Fabbretti. Re-
versibility in Erlang: Imperative Constructs -Technical Report. [Research Report] Inria - Research
Centre Grenoble – Rhône-Alpes. 2022, pp.1-28. �hal-03655372�

https://hal.science/hal-03655372v1
https://hal.archives-ouvertes.fr

Reversibility in Erlang: Imperative Constructs -
Technical Report?

Pietro Lami1[0000−0002−1841−387X], Ivan Lanese2[0000−0003−2527−9995],
Jean-Bernard Stefani1[0000−0003−1373−7602], Claudio Sacerdoti

Coen3[0000−0002−4360−6016], and Giovanni Fabbretti1[0000−0003−3002−0697]

1 Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
2 Focus Team, Univ. of Bologna, INRIA, 40126 Bologna, Italy

3 Univ. of Bologna, 40126 Bologna, Italy

Abstract. A relevant application of reversibility is causal-consistent re-
versible debugging, which allows one to explore concurrent computations
backward and forward to find a bug. This approach has been put into
practice in CauDEr, a causal-consistent reversible debugger for the Er-
lang programming language. CauDEr supports the functional, concur-
rent and distributed fragment of Erlang. However, Erlang also includes
imperative features to manage a map (shared among all the processes of
a same node) associating process identifiers to names. Here we extend
CauDEr and the related theory to support such imperative features.
From a theoretical point of view, the added primitives create different
causal structures than those derived from the concurrent Erlang frag-
ment previously handled in CauDEr, yet we show that the main results
proved for CauDEr are still valid.

Keywords: Debugging · Erlang · Reversible computing · Causality

1 Introduction

Reversible computing is a programming paradigm in which programs run both
forwards (the standard computation) and backwards. Any forward computation
in a reversible language can be undone with a finite number of backward steps.
Reversible computing has applications in many areas, such as low-power com-
puting [12], simulation [1], robotics [18], biological modeling [19] and others. We
are particularly interested in applying reversible computing to debugging [2].

In a sequential system, undoing forward actions in reverse order of completion
starting from the last one produces a backward computation. Undoing a forward
action can be seen as a backward action. In a concurrent environment, one cannot
easily decide which is the last action since many actions can be executed at the
same time, and a total order of actions may not be available. Even if a total
order exists, undoing actions in reverse order may be too restrictive since the

? This work has been partially supported by French ANR project DCore ANR-18-
CE25-0007.

2 P. Lami et al.

order of execution of concurrent actions may depend on the relative speed of the
processors executing them and has no impact on the final state. For instance,
when looking for a bug causing a visible misbehavior in a concurrent system,
independent actions may be disregarded since they cannot contain the bug.

The first definition of reversibility in a concurrent setting has been proposed
by Danos and Krivine [4]: causal-consistent reversibility. In short, it states that
any action can be undone provided that all its effects (if any) have been undone.

The idea of a causal-consistent reversible debugger was introduced in [7]. The
main concept of [7] is to use causal-consistent reversibility to explore backward
a concurrent execution starting from a visible misbehavior looking for the bug
causing it. The CauDEr debugger [2], described in [15,21,6], applies these ideas
to provide a reversible debugger for the functional, concurrent and distributed
fragment of the Erlang programming language [5].

Here, we extend CauDEr and its underlying theory by adding the support
for some primitives that are not considered in the previous versions. These prim-
itives, namely register, unregister, whereis and registered, provide imperative be-
haviors inside the Erlang language whose core is functional. More precisely, they
define a map linking process identifiers (pids) to names. They make it possi-
ble to add, delete and read elements from the map. From the technical point
of view, supporting these primitives is not trivial since they introduce causal
dependencies that are different from those originating from the functional and
concurrent fragment of Erlang considered in [15,16,21]. In particular, read ac-
tions commute, but do not commute with add and delete actions. Such causal
dependencies cannot be reliably represented in the general approach to derive
reversible semantics for a given language presented in [13], because the approach
in [13] considers a causal relation based on resources consumed and produced
only, and does not support read operations. Similar dependencies are considered
in [6], to model the set of nodes in an Erlang network, but this model does not
include a delete operation, while we consider one. Similar dependencies are also
used in [8] to study operations on shared tuple spaces in the framework of the
coordination language Klaim, however they only access single tuples, while we
also access multiple tuples or check for the absence of a given tuple. Also, their
work is in the context of an abstract calculus and has never been implemented.

The paper is structured as follows. Section 2 briefly recalls the reversible
semantics on which CauDEr is based [21]. Then, in Section 3, we extend the
reversible semantics of Erlang to support imperative features. In Section 4 we
describe our extension to CauDEr. Finally, in Section 5 we discuss related work
and conclude the paper with hints for future work. Proofs and further technical
details are available in the Appendix.

2 Background

We build our technical development on the reversible semantics for Erlang in [21].
We give below a quick overview of it, while referring to [21] for further details.

2 Background 3

program ::= mod1 . . .modn
mod ::= fun def1 . . . fun defn

fun def ::= fun rule{′;′ fun rule}′.′
fun rule ::= Atom fun

fun ::= ([exprs]) [when expr]→ exprs
exprs ::= expr {′,′ expr}
expr ::= atomic | Var | ′{′[exprs]′}′ | ′[′[exprs|exprs]′]′ | if if clauses end

| case expr of cr clauses end | receive cr clauses end | expr ! expr
| pattern = expr | [Mod :]expr([exprs]) | fun expr | Opexprs

atomic ::= Atom | Char | Float | Integer | String
if clauses ::= expr → exprs {′;′ expr → exprs}
cr clause ::= pattern [when expr]→ exprs {′;′ pattern [when expr]→ exprs}
fun expr ::= fun fun {′;′ fun} end
patterns ::= pattern {′,′ pattern}
pattern ::= atomic | Var | ′{′[patterns]′}′ | ′[′[patterns|pattern]′]′

Fig. 1. Language syntax

The language syntax. Erlang is a functional, concurrent and distributed pro-
gramming language based on the actor paradigm [10] (concurrency based on
asynchronous message-passing).

The syntax of the language is shown in Fig. 1. A program is a collection of
module definitions, a module is a collection of function definitions, a function is a
mapping between the function name and the function expression. An expression
can be a variable, an atom, a list, a tuple, a call to a function, a case expression,
an if expression, or a pattern matching equation. We distinguish expressions and
patterns. Here, patterns are built from atomic values, variables, tuples and lists.
When we have a case expr of cr clauses end expression we first evaluate expr to
a value, say v, then we search for a clause that matches v and such that the guard
when expr is satisfied. If one is found then the case construct evaluates to the
clause expression. The if expression is very similar to the evaluation of the case
expression just described. Pattern matching is written as pattern = expr. Then,
expr1 ! expr2 allows a process to send a message to another one. Expression expr1
must evaluate either to a pid or to an atom (identifying the receiver process) and
expr2 evaluates to the message payload, indicated with v. The whole function
evaluates to v and, as a side-effect, the message will be sent to the target process.
The complementary operation of message sending is receive cr clauses end. This
construct takes a message targeting the process that matches one of the clauses.
If no message is found then the process suspends.

Erlang includes a number of built-in functions (BIFs). In [21], they only
consider self, which returns the process identifier of the current process, and
spawn, that creates a new process. BIFs supporting distribution are considered
in [6]. For a deeper discussion we refer to [21,6].

The language semantics. Here we describe the semantics of the language.
We begin by providing the definitions of process and system.

4 P. Lami et al.

(Op)
eval(op, v1, . . . , vn) = v

θ, C[op (v1, . . . , vn)], S
τ−→ θ, C[v], S

Fig. 2. A sample rule belonging to the expression level.

Definition 1 (Process). A process is a tuple 〈p, θ, e, S〉, where p is the process
pid, θ is the process environment, e is the expression under evaluation and S is
a stack of process environments.

Stack S is used to store away the process state to start a sub-computation of the
expression under evaluation and then to restore it, once the sub-computation
ends. We refer to [21] for a discussion on why it is needed.

Definition 2 (System). A system is a tuple Γ ;Π. Γ is the global mailbox,
that is a set of messages of the form (sender pid, receiver pid, payload). Π is
the pool of running processes, denoted by an expression of the form

〈p1, θ1, e1, S1〉 | . . . | 〈pn, θn, en, Sn〉

where ”|” is an associative and commutative parallel operator.

The semantics in [21] is defined in a modular way, similarly to the one pre-
sented in [15,6]: there is a semantics for the expression level and one for the
system level. This approach simplifies the design of the reversible semantics
since only the system one needs to be updated. The expression semantics is
defined as a labeled transition relation, where the label describes side-effects
(e.g., creation of a message) or requests of information to the system level. The
semantics, described in Appendix A.1 due to space constraints, is a classical
call-by-value semantics for a higher-order language. Fig. 2 shows a sample rule
of the expression level: the Op rule, used to evaluate arithmetic and relational
operators. This rule uses the auxiliary function eval to evaluate the expression
and an evaluation context C to find the redex in a larger term.

The system semantics uses the label from the expression level to execute the
associated side-effect or to provide the necessary information. Below we list the
labels used in the expression semantics:

– τ , denoting the evaluation of a (sequential) expression without side-effects;
– send(v1, v2), where v1 and v2 represent, respectively, the pid of the sender

and the value of the message;
– rec(κ, cln), where cln denotes the n clauses of a receive expression;
– spawn(κ, a/n, [vn]), where a/n represents the name and arity of the function

executed by the spawned process, while [vn] is the list of its parameters.

Symbol κ is a placeholder for the result of the evaluation, not known at the
expression level, that the system rules will replace with the correct value.

We do not show here the system rules, they are available in Appendix A.2.
We show instead below how sample rules are extended to support reversibility.

3 Reversible Erlang with Imperative Primitives 5

(Send)
θ, e, S

send(p′,v)−−−−−−→ θ′, e′, S′ λ is a fresh identifier

Γ ; 〈p, h, θ, e, S〉 |Π ⇀ Γ ∪ {(p, p′, {v, λ})}; 〈p, send(θ, e, S, {v, λ}):h, θ′, e′, S′〉 |Π

(Send) Γ ∪ {(p, p′, {v, λ})}; 〈p, send(θ, e, S, {v, λ}):h, θ′, e′, S′〉 | Π ↽ Γ ; 〈p, h, θ, e, S〉 | Π

Fig. 3. A sample rule belonging to the forward semantics and its counterpart.

A reversible semantics. Two relations describe the reversible semantics: one
forward (⇀) and one backward (↽). The former extends the system semantics
using a Landauer embedding [12]. The latter proceeds in the opposite direction
and allows us to undo an action by ensuring causal consistency, thus before
undoing an action we ensure that all its consequences have been undone.

Syntactically, every process is extended with a history, denoted with h, which
stores the information needed in the backward semantics to undo an action. In
the semantic rules we highlight the history in red. The history is composed of
history items, to distinguish the last rule executed by a process and track the
related information. The history items introduced in [21] are:

{τ(θ, e, S), send(θ, e, S, {v, λ}), rec(θ, e, S, p, {v, λ}), spawn(θ, e, S, p), self(θ, e, S)}

Fig. 3 shows a sample rule from the forward semantics and its counterpart
from the backward semantics. W.r.t. the standard semantics, here messages also
carry a unique identifier λ, without which messages with the same value could
not be distinguished. This choice is discussed in [15].

In the premises of rule Send, we can see the expression-level semantics in
action, transitioning from configuration (θ, e, S) to (θ′, e′, S′). The forward se-
mantics uses the corresponding label to determine the associated side-effect: the
message (p, p′, {v, λ}) is added to the set of messages Γ . Also, the history of
process p is enriched with the corresponding history item.

The reverse rule, Send, can be applied only when all the consequences of the
Send, in particular the reception of the sent message, have been undone. Such
constraint is enforced by requiring the message to be in Γ . Then we can remove
the message (p, p′, {v, λ}) from Γ and restore p to the previous state.

3 Reversible Erlang with Imperative Primitives

Syntax of imperative primitives. In our extension, atoms and pids are cen-
tral. An atom is a literal constant. Pid is an abbreviation for process identifier:
each process is identified by a pid. In Erlang, a pid can be associated to an atom.
Thus, one can refer the process, e.g., when specifying the target of a message,
using the associated atom instead of the pid. On the one hand, an atom is more
meaningful than a pid for a human. On the other hand, this allows one to decide
which process plays a given role. E.g., if a process crashes another one can be
registered under the same atom so that the replacement is transparent to other

6 P. Lami et al.

processes (provided that they use the atom to interact). All pairs 〈atom, pid〉
form a map, shared among the processes of the same node (we consider here a
single node, we discuss in Section 4 how to deal with multiple nodes).

Our extension is based on the syntax in Fig. 1, but we add the following
built-in functions (BIFs):

– register/2 (where /2 denotes the arity): given an atom a and a pid p, it inserts
the pair 〈a, p〉 in the map and returns the atom true. If either the atom a
or the pid p is already registered, an exception is raised;

– unregister/1: given an atom a, it removes the (unique) pair 〈a, p〉 from the
map and returns true if the atom a is found, raises an exception otherwise;

– whereis/1: given an atom, it returns the associated pid if it exists, the atom
undefined otherwise;

– registered/0: returns a list (possibly empty) of all the atoms in the map.

3.1 Semantics of imperative features

Standard semantics of imperative features. According to the official doc-
umentation [5], the BIFs above are implemented in Erlang using request and
reply signals between the process and the manager of the map. To simplify the
modelization, we opted to implement these BIFs as synchronous actions. This
choice does not alter the possible behaviors since the behavior visible to Erlang
users is determined by the order in which the request messages are processed
at the manager. We begin by providing the updated definition of system (the
definition of process is unchanged).

Definition 3 (System). A system is a tuple Γ ;Π;M. Γ and Π are as in
Def. 2. M is a set of registered pairs atom-pid of the form {〈a1, p1〉; . . . ; 〈an, pn〉},
where ai are atoms and pi pids. Given an atom a, Ma is the set {〈a, p〉|〈a, p〉 ∈
M}; given a pid p, Mp is the set {〈a, p〉|〈a, p〉 ∈ M}.

Sets Ma and Mp contain at most one element.
As in the previous section, we have a double-layered semantics: one level for

expressions (→) and one for systems (↪→).
To simplify the presentation w.r.t. [21], we extend rule Op (Fig. 4) to deal

also with built-in functions. To this end, we extend the operator eval to produce
also the label for functions with side-effects. We define eval on them as:

– eval(self) = (κ, self(κ));
– eval(spawn, fun() −→ exprs end) = (κ, spawn(κ, exprs));
– eval(register, atom, pid) = (κ, register(κ, atom, pid));
– eval(unregister, atom) = (κ, unregister(κ, atom));
– eval(whereis, atom) = (κ,whereis(κ, atom));
– eval(registered) = (κ, registered(κ)).

On sequential expressions eval returns (v, τ), with v the result of the evaluation.
Thanks to our extension, rule Op in Fig. 4 covers all function invocations, in-

cluding BIFs with side effects, while in [15,21] each such BIF requires a dedicated

3 Reversible Erlang with Imperative Primitives 7

(Op)
eval(op, v1, . . . , vn) = (v, label)

θ, C[op (v1, . . . , vn)], S
label−−−→ θ, C[v], S

Fig. 4. Standard semantics: evaluation of function applications, revised.

rule. Furthermore, new BIFs with side effects can be added without changing
the expression level (function eval needs to be updated though).

The other rules for evaluating expressions are collected in Appendix A.1.
The semantics of the system level can be found in Appendix A.2 (Figures 11

and 10). Equivalently, the rules describing the imperative primitives can be ob-
tained from the ones in Fig. 5, which describes the forward semantics, by drop-
ping the red part. Rules are divided into write rules (above the line), which
modify the map, and read rules (below the line), that only read it. This has an
impact on their concurrent behavior, as described later on. We highlight in blue
the parts related to the map.

In all the rules, the tuple representing the system includes the map M, where
we store all the registered pairs atom-pid.

Rule RegisterS defines the success case of the register BIF, which adds the
tuple 〈a, p′〉 to the map. The register fails either when the atom a or the pid p′

are already used, or when the pid p′ refers to a dead process (this is checked by
predicate isAlive), as described by rule RegisterF . Similarly, for the unregister,
the success case corresponds to rule UnregisterS, which removes from the map
the (unique) pair atom-pid for a given atom a. The failure case, when there is no
pid registered under atom a, corresponds to rule UnregisterF . Both failure cases
replace the current expression with ε and the current stack with []. This denotes
an uncaught exception (in this paper we do not consider exception handling).
The predicate isAlive takes a pid p and the pool of running processes and controls
that the process with pid p is alive (〈p, θ, e, S〉 with e 6= ⊥).

Rules SendS and SendF define the behavior of send actions when the receiver
is identified with an atom. The former is fired when the receiver is registered in
the map, resulting in the addition of the message to Γ , the latter when it is not,
resulting in an uncaught exception.

Rules Whereis1 , Whereis2 and Registered define the behavior of the respec-
tive primitives; these rules read M without modifying it. Rule Registered uses the
auxiliary function registered. We define it as: registered(M) = [a1, . . . , an] where
M = {〈a1, p1〉, . . . , 〈an, pn〉}.

Finally, we have two rules dealing with process termination. If the pid of the
process is not registered on the map, rule End simply changes the expression to
⊥, denoting a terminated process. Otherwise, rule EndUn applies, additionally
removing the pid from the map.

Reversible semantics. The definition of the forward semantics poses a number
of challenges, due to the need of balancing two conflicting requirements when
defining the history information to be stored. On the one hand, we need to keep
enough information to be able to define a corresponding backward semantics.

8 P. Lami et al.

(RegisterS)
θ, e, S

register(κ,a,p′)−−−−−−−−−→ θ′, e′, S′ t fresh Ma = ∅ Mp′ = ∅ isAlive(p′, Π)

Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, regS(θ, e, S, {〈a, p′, t,>〉}):h, θ′, e′{κ→ true}, S′〉 |Π; M ∪ {〈a, p′, t,>〉}

(UnregisterS)
θ, e, S

unregister(κ,a)−−−−−−−−→ θ′, e′, S′ Ma = {〈a, p′, t,>〉}
Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, del(θ, e, S,Ma,Ma ∪Mp′):h, θ′, e′{κ→ true}, S′〉 |Π; M \Ma∪ kill(Ma)

(EndUn)
e is a value ∨ e = ε Mp = {〈a, p, t,>〉}

Γ ; 〈p, h, θ, e, []〉 |Π; M ⇀ Γ ; 〈p, del(θ, e, [],Mp,Ma ∪Mp):h, θ,⊥, []〉 |Π; M \Mp∪ kill(Mp)

(RegisterF)
θ, e, S

register(κ,a,p′)−−−−−−−−−→ θ′, e′, S′ Ma 6= ∅ ∨Mp′ 6= ∅ ∨ ¬ isAlive(p′, Π)

Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, readS(θ, e, S,Ma ∪Mp′):h, θ, ε, []〉 |Π; M

(UnregisterF)
θ, e, S

unregister(κ,a)−−−−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, readF(θ, e, S, a,Ma):h, θ, ε, []〉 |Π; M

(SendS)
θ, e, S

send(a,v)−−−−−→ θ′, e′, S′ λ fresh Ma = {〈a, p′, t,>〉}
Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ∪ {(p, p′, {v, λ})}; 〈p, sendS(θ, e, S, {v, λ},Ma):h, θ′, e′, S′〉 |Π; M

(SendF)
θ, e, S

send(a,v)−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, readF(θ, e, S, a,Ma):h, θ, ε, []〉 |Π; M

(Whereis1)
θ, e, S

whereis(κ,a)−−−−−−−→ θ′, e′, S′ Ma = {〈a, p′, t,>〉}
Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, readS(θ, e, S,Ma):h, θ′, e′{κ→ p′}, S′〉 |Π; M

(Whereis2)
θ, e, S

whereis(κ,a)−−−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, readF(θ, e, S, a,Ma):h, θ′, e′{κ→ undefined}, S′〉 |Π; M

(Registered)
θ, e, S

registered(κ)−−−−−−−→ θ′, e′, S′ registered(M) = atoms

Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, readM(θ, e, S,M):h, θ′, e′{κ→ atoms}, S′〉 |Π; M

(End)
e is a value ∨ e = ε Mp = ∅

Γ ; 〈p, h, θ, e, []〉 |Π; M ⇀ Γ ; 〈p, readF(θ, e, [], p,Mp):h, θ,⊥, []〉 |Π; M

Fig. 5. Forward reversible semantics (standard semantics by dropping the red part).

This requires to understand when all the consequences of an action have been
undone, and to restore the state prior to its execution. On the other hand,
we need to avoid storing information allowing one to distinguish computations
obtained by only swapping independent actions (this would invalidate Lemma 2,
as discussed in Example 3).

We first extend the definition of system.

3 Reversible Erlang with Imperative Primitives 9

Definition 4 (System). A system is a tuple Γ ;Π;M. Γ and Π are as in Def. 3.
Now each element of M is a quadruple 〈a, p, t, s〉 where a and p are as in Def. 3,
t is a unique identifier for the tuple and s can be either > or ⊥.

Unique identifiers t are used to distinguish identical tuples existing at different
times. For example, if we have two successful pairs of register and unregister op-
erations of the same tuple, without a unique identifier we would not know which
unregister operation is connected to which register. This information is relevant
since the tuple generates a causal link between a register and the correspond-
ing unregister. This justification is similar to the one for unique identifiers λ for
messages, discussed in [16].

Tuples whose last field is > match the ones in the standard semantics, we
call them alive tuples. Those with ⊥ are ghost tuples, namely alive tuples that
have been removed from the map in a past forward action. We will discuss their
need in Example 2.

Given an atom a, Ma is the set {〈a, p, t,⊥〉|〈a, p, t,⊥〉 ∈ M}; similarly, given
a pid p, Mp = {〈a, p, t,⊥〉|〈a, p, t,⊥〉 ∈ M}. Dually, from now on, sets Ma and
Mp include only alive tuples. We define function kill, which takes a map and sets
to ⊥ the last field of all its tuples.

We describe below the forward and backward semantics of the imperative
primitives. The semantics of other constructs is as in the original work [21], but
for the introduction of the global map M, and can be found in Appendix A.3.

The forward semantics is defined in Fig. 5. The following history items have
been added to describe the imperative features: regS, readS, readF, sendS, readM,
and del. Notably, readS is created by both rules RegisterF and Whereis1 (which
both read some alive tuples), readF is created by rules UnregisterF , SendF ,
Whereis2 and End (which all require the absence of some alive tuple), del is
created by both rules UnregisterS and EndUn (which both turn an alive a
tuple 〈 , , ,>〉 into a ghost 〈 , , ,⊥〉).

All the new history items, like the old ones, carry the old state θ, e, S, thus
allowing the backward computation to restore it. Furthermore, they carry some
additional information to enable us to understand their causal dependencies:

– regS carries the tuple inserted in the map;
– readS carries the read tuple(s);
– sendS carries the read tuple as well, but also the sent message;
– readF carries the atom or the pid which the rule tried to read and the ghost

tuples for such atom or pid, if any;
– readM carries the whole map read by the rule;
– del carries the removed tuple and the ghost tuples on the same atom or pid.

Fig. 6 presents the backward semantics. In previous works [6,21,16] there
is one backward rule for each forward rule. Here, we were able to define one
backward rule for each kind of history item, thus some backward rule covers
more than one forward rule. This is possible because the history item contains
enough information to correctly reverse forward rules with similar effects. E.g.,
both rules RegisterF and Whereis1 read information from the map, and the

10 P. Lami et al.

(RegisterS)
Γ ; 〈p, regS(θ, e, S, {〈a, p′, t,>〉}):h, θ′, e′, S′〉 |Π; M ∪ {〈a, p′, t,>〉}↽ Γ ; 〈p, h, θ, e, S〉 | Π; M

if readop(t,Π) = ∅

(Del)

Γ ; 〈p, del(θ, e, S, {〈a, p′, t,>〉},M1):h, θ′, e′, S′〉 |Π; M ∪ {〈a, p′, t,⊥〉}
↽ Γ ; 〈p, h, θ, e, S〉 | Π; M ∪ {〈a, p′, t,>〉}

if Ma = ∅ ∧Mp′ = ∅ ∧ readmap(M ∪ {〈a, p′, t,⊥〉}, Π) = ∅ ∧ readfail(t,Π) = ∅ ∧M1 = Ma ∪Mp′

(ReadS) Γ ; 〈p, readS(θ, e, S,M1):h, θ′, e′, S′〉 | Π; M ↽ Γ ; 〈p, h, θ, e, S〉 | Π; M if M1 ⊆ M

(SendS)
Γ ∪ {(p, p′, {v, λ})}; 〈p, sendS(θ, e, S, {v, λ},M1):h, θ′, e′, S′〉 | Π; M ↽ Γ ; 〈p, h, θ, e, S〉 | Π; M

if M1 ⊆ M

(ReadF) Γ ; 〈p, readF(θ, e, S, ι,M1):h, θ′, e′, S′〉 | Π; M ↽ Γ ; 〈p, h, θ, e, S〉 | Π; M if Mι = ∅ ∧M1 = Mι

(ReadM) Γ ; 〈p, readM(θ, e, S,M1):h, θ′, e′, S′〉 | Π; M ↽ Γ ; 〈p, h, θ, e, S〉 | Π; M if M1 = M

Fig. 6. Backward reversible semantics.

history item tracks the read information. Hence, a single rule can exploit this
information to check that the same read information is still available in the map.

Rule RegisterS undoes the corresponding forward action, removing the ele-
ment that was added by it. To this end, rule RegisterS requires that the element
added from the corresponding forward rule is still in the map (ensuring that pos-
sible deletions of the same tuple have been undone) and, as a side condition, that
no process performed a read operation on a tuple with unique identifier t. This
last condition is checked by the predicate readop(t,Π), which scans the histories
of processes in Π looking for such reads.

Rule Del undoes either rule UnregisterS or rule EndUn, turning a ghost
tuple back into an alive one. Let us discuss its side conditions. The first two
conditions require that in M there is no alive tuple on the same atom a or
process p′. The third one ensures that no process performed a registered getting
M, while the fourth that no process read a ghost tuple with identifier t. Finally, we
require ghost tuples on both a and p′ to be the same as when the corresponding
forward action has been performed. The last condition ensures that rule Del will
not commute with pairs of operations that add and then delete tuples on the
same atom or pid, e.g., a pair register-unregister. This is needed to satisfy the
properties described in Section 3.2, such as causal consistency.

Rule ReadS reverses rules Whereis1 and RegisterF . The only side condi-
tions requires that the element(s) read by the forward rule must be alive. Rule
SendS is analogous, but it also requires that the sent message is in Γ .

Rule ReadF undoes actions from rules UnregisterF , SendF , Whereis2, and
End. As a side condition, we require that no alive tuple matching ι - which is
either a pid or an atom - exists and that the ghost tuples related to ι are the
same as when the corresponding forward action triggered.

Rule ReadM is used to undo rule Registered. It requires that the map M1

stored in the history is exactly the current map M.

3 Reversible Erlang with Imperative Primitives 11

3.2 Properties

Here we discuss some properties of the reversible semantics introduced in the
previous section. Since most of the properties are related to causality, we need
to study the concurrency model of the imperative primitives. Notably, this is
not specific to reversibility and the same notion can be useful in other contexts,
e.g., to find races [9].

To study concurrency for the imperative primitives we define for each history
item k the set of resources (atoms and pids) read or written by the corresponding
transition. The idea is that two transitions (including at least a forward one) are
in conflict on the map if they both access the same resource and at least one
of the accesses is a write (RegisterS, UnregisterS, EndUn). To obtain k, we
indicate with t = (s
p,r,k s

′) a (forward or backward) transition from system
s to system s′, where p is the pid of the process performing the action, r is
the applied rule and k the item added or removed to/from the history. We call
computation a sequence of consecutive transitions, and denote with ε the empty
computation. Two transitions are co-initial if they start from the same state,
co-final if they end in the same state.

Definition 5 (Resources read or written). We define functions read(k) and
write(k) as follows:

k read(k) write(k)
regS(θ, e,S, {〈a, p, t,>〉}) ∅ {a, p}
del(θ, e,S, {〈a, p, t,>〉},M) ∅ {a, p}
readS(θ, e,S,M) {a|Ma 6= ∅} ∪ {p|Mp 6= ∅} ∅
sendS(θ, e,S, {v, λ}, {〈a, p, t,>〉}) {a, p} ∅
readF(θ, e,S, ι,M) {ι} ∅
readM(θ, e,S,M) {a|a is an atom} ∅

Intuitively, items regS and del write on the resources a and p of the tuple
added or removed. Item readS reads one or two tuples, and accesses in read
modality all the involved pids and atoms. Item sendS just reads the atom and
pid of the accessed tuple. Item readF accesses in read modality either an atom
or a pid, as tracked in the history item. Finally, item readM exactly stores the
current map, and needs to be in conflict with any transition writing on the map,
even if it writes a tuple with atom and pid not previously used. Hence, we have
chosen as read resources the set of all possible atoms, independently on whether
they are currently used or not. We could also store all possible pids, but this will
not impact the semantics, since each write access touches on an atom.

Definition 6 (Concurrent transitions). Two co-initial transitions, t1 =
(s
p1,r1,k1 s1) and t2 = (s
p2,r2,k2 s2), are in conflict if one of these condi-
tions hold:

– if no transition is on the map, we refer to [16, Definition 12];
– if exactly one transition is on the map, they are in conflict if they are taken

by the same process, namely p1 = p2, and a SendS is in conflict with a
receive of the same message;

12 P. Lami et al.

– if both transitions are on the map, and at least one is forward, then they
are in conflict iff read(k1) ∩ write(k2) 6= ∅, read(k2) ∩ write(k1) 6= ∅ or
write(k1) ∩ write(k2) 6= ∅;

Two co-initial transitions are concurrent if they are not in conflict.

Intuitively, concurrent transitions can be executed in any order (we will formalize
this in Lemma 2). Notably, co-initial backward transitions are never in conflict.

Example 1 (Conflicting register). Consider a system S where two processes, say
p1 and p2, try to register two different pids under the same atom a, and a is not
already present in M (recall that an atom can be associated to one pid only). In
this scenario the order in which the two actions are performed matters, because
the first process to perform the action succeeds, while the second is doomed
to fail. The two possibilities lead us to two states of the system, one where p1
has succeeded and p2 failed, say S′, and the other where p2 succeeded and p1
failed, say S′′. Clearly S′ 6= S′′, hence the two operations are in conflict. Indeed,
write(k1) ∩ write(k2) = {a} 6= ∅. ♦

Example 2 (Register followed by delete). Consider a system S where a process,
say p1, can do a registered operation. Another process, say p2, performs a (suc-
cessful) register followed by a delete operation (e.g., unregister) of a same tuple.
In the standard semantics, executing first p1 and then p2 or vice versa would
lead to the same state. If we were not using ghost tuples, the histories of p1 and
p2 would be the same as well. However, we want to distinguish these two com-
putations, since undoing the unregister would change the result of the registered,
hence they cannot commute (cfr. Lemma 2). Ghost tuples are our solution to this
problem. We get a similar behavior also if we consider, instead of the registered
operation, any other read operation involving the added tuple. ♦

We can now discuss some relevant properties of the reversible semantics. As
standard (see, e.g., [16] and the notion of consistency in [14]) we restrict to
reachable systems, namely systems obtained from a single process with empty
history (and empty Γ and M) via some computation. First, each transition can
be undone.

Lemma 1 (Loop Lemma). For every pair of reachable systems, s1 and s2,
we have s1 ⇀ s2 iff s2 ↽ s1.

Let us denote with t the transitions undoing t, which exists thanks to the
Loop Lemma. Next lemma shows that concurrent transitions can be executed in
any order. It can be seen as a safety check on the notion of concurrency.

Lemma 2 (Square lemma). Given two co-initial concurrent transitions
t1 = (s
p1,r1,k1 s1) and t2 = (s
p2,r2,k2 s2), there exist two transitions
t2/t1 = (s1
p2,r2,k2 s3), t1/t2 = (s2
p1,r1,k1 s3). Graphically:

s
p1,r1,k1 /

p2,r2,k2
�

s1o

s2

O
=⇒

s
p1,r1,k1 /

p2,r2,k2
�

s1

p2,r2,k2
�

o

s2 p1,r1,k1

/

O

s3

O

o

3 Reversible Erlang with Imperative Primitives 13

Next example shows that in order to ensure that the Square Lemma holds
the semantics needs to be carefully crafted, in particular one should avoid to
store information allowing to distinguish the order of execution of concurrent
transitions.

Example 3 (Information carried by the register history item). If the history item
of the register would contain the whole map, it would be impossible to swap the
register action with an unregister action even if on a tuple with different pid and
atom, because of the Square Lemma (Lemma 2). Indeed, the Square Lemma
requires to reach the same state after two concurrent transitions are executed,
regardless of their order. If we save the whole map in the history item of the
register, we would reach two different states:

– if we execute the register operation first, the saved map would include the
tuple that the unregister operation will delete;

– if we execute the unregister operation first, the map saved by the register will
not contain the deleted tuple. ♦

We now want to prove causal-consistency [4,17], which essentially states that
we store the correct amount of causal and history information.

Definition 7 (Causal Equivalence). Let � be the smallest equivalence on
computations closed under composition and satisfying:

1. if t1 = (s
p1,r1,k1 s1) and t2 = (s
p2,r2,k2 s2) are concurrent and t3 =
(s1
p2,r2,k2 s3), t4 = (s2
p1,r1,k1 s3) then t1t3 � t2t4;

2. tt � ε and tt � ε

Intuitively, computations are causal equivalent if they differ only for swapping
concurrent transitions and for adding do-undo or undo-redo pairs of transitions.

Definition 8 (Causal Consistency). Two co-initial computations are co-final
iff they are causal equivalent.

Intuitively, if co-initial computations are co-final then they have the same causal
information and can reverse in the same ways: we want computations to reverse
in the same ways iff they are causal equivalent.

In order to prove causal consistency, we rely on the theory developed in [17].
It considers a transition system with forward and backward transitions which
satisfies the Loop Lemma and has a notion of independence. The latter is con-
currency in our case. The theory allows one to reduce the proof of causal con-
sistency and of other relevant properties to the validity of five axioms: Square
Property (SP), Backward Transitions are Independent (BTI), Well-Foundedness
(WF), Co-initial Propagation of Independence (CPI) and Co-initial Indepen-
dence Respects Event (CIRE). SP is proved in Lemma 2, BTI corresponds to
the observation that two backward transitions are always concurrent (see Def. 6),
and WF requires backward computations to be finite. WF holds since each back-
ward transition consumes an history item, which are in a finite number. CPI and

14 P. Lami et al.

Fig. 7. A screenshot of CauDEr.

CIRE hold thanks to [17, Prop. 5.4] because the notion of concurrency is defined
in terms of transition labels only. Hence, causal consistency follows from [17,
Prop. 3.6]. We obtain as well a number of other properties (a list can be found
in [17, Table 1]), including various forms of causal safety and causal liveness,
that intuitively say that a transition can be undone iff its consequences have
been undone. We refer to [17] for precise definitions and further discussion.

4 CauDEr with Imperative Primitives

We exploited the theory presented above to extend CauDEr [2,15,21,6], a Causal-
consistent reversible Debugger for Erlang. CauDEr is written in Erlang and
provides a graphical interface for user interaction. Previously CauDEr supported
only the sequential, concurrent and distributed fragment of Erlang, and we added
support for the imperative primitives. The updated code can be found at [3].

While the theory discussed so far does not consider distribution, we extended
the version of CauDEr supporting distribution [6], where systems can be com-
posed of multiple nodes. As far as the imperative primitives are concerned, the

4 CauDEr with Imperative Primitives 15

only difference is that each node has its own map, shared only among its pro-
cesses.

Fig. 7 shows a snapshot of the new version of CauDEr. The interface is
organized as follows. On the left, from top to bottom, we can see (i) the program
under debugging, (ii) the state, history and log (log is not discussed in this paper)
of the selected process, (iii) the map of the node of the current process (the main
novelty in the interface due to our extension, highlighted with a red square). On
the top-right we can find execution controls (they are divided in multiple tabs,
here we see the tab about rollback, described below), and on the bottom-right
information on the system structure and on the execution.

CauDEr works as follows: the user selects the Erlang source file, then CauDEr
loads the program and shows the source code to the user. Then, the user can
choose the function that will act as an entry point, specify its arguments, and
select the identifier of the node where the first process should run. The user can
perform single steps on some process (both forward and backward), n steps in
the chosen direction in automatic (a scheduler decides which process will execute
each step), or use the rollback operator.

The rollback operator allows one to undo a selected action (e.g., the send of
a given message) far in the past, including all and only its consequences. This is
convenient to look for a bug causing a visible misbehavior, as described below.
The semantics of the rollback operator roughly explores the graph of conse-
quences of the target action, and undoes them in a causal-consistent order using
the backward semantics. The rollback operator is formalized in Appendix A.5.

Case study. We consider as a case study a simple server dispatching requests
to various mathematical services, and logging the results of the evaluation on
a logger. Services can be stateful, and are spawned only when there is a first
request for them. Our example includes two stateless services, computing the
square and the logarithm, respectively, and a stateful service adding all the
numbers it receives. The logger keeps track of the values it receives, and answers
each request with the sequential number of the element in the log. The code of
our case study is depicted in Fig. 16 in Appendix, and is also available in the
repository [3].

In our sample scenario, we invoke the program with the list of requests
[{square, 10}, {adder, 20}, {log, 100}, {adder, 30}, {adder, 100}].

The two first requests are successfully answered, while the request to compute
the logarithm of 100 is not. By checking the history of the server (this is exactly
the one shown in Fig. 7, relevant items are grayed, most recent items are on
top) we notice that the request has been sent by the server as message 11. By
using CauDEr rollback facilities to undo the send of message 11 (including all
and only its consequences), one notice that the send has been performed at line
24 (also visible in the screenshot, upon rollback the line becomes highlighted),
which is used for already spawned services. This is wrong since this is the first
request for a logarithm. One can now require to rollback the register of atom log
(used as target of the send). We can now see that the system logger has been
registered under this atom in the main function:

16 P. Lami et al.

register (log ,spawn(?MODULE, logger,[0,[]])),

This is wrong. The bug is that the same atom has been used both for the system
logger and for logarithm service.

Finding such a bug without the support of reversibility, and rollback in par-
ticular, would not be easy. Also, rollback allows us to go directly to points of
interest (e.g., where atom log has been registered), even if we do not know
which process performed the action. Hence, debugging via rollback scales bet-
ter than standard techniques to larger programs, where finding the bug without
reversibility would be even more difficult.

5 Conclusion, Related and Future Work

We have extended CauDEr and the underlying reversible semantics of Erlang to
support imperative primitives used to associate names to pids. This required to
distinguish write accesses from read accesses to the map, since the latter com-
mute while the former do not. Also, the interplay between delete and read oper-
ations required us to keep track of removed tuples. Notably, a similar approach
needs to be used to define the reversible semantics of imperative languages, such
as C or Java.

While we discussed most related work, in particular work on reversibility in
Erlang, in the Introduction, we mention here some related approaches. Indeed,
reversibility of imperative languages with concurrency has been considered, e.g.,
in [11]. There however actions are undone (mostly) in reverse order of completion,
hence their approach does not fit causal-consistent reversibility. Generation of
reversible code is also studied in the area of parallel simulation, see, e.g., [20],
but there reversed code is sequential, and concurrency is added on top of it by
the simulation algorithm. Also, this thread of research lacks theoretical results.

The current approach, as well as the theory in [17] on which we rely to prove
properties, defines independence as a binary relation on transitions. We plan to
extend this approach in future work by defining independence as a binary relation
on sequences of transitions, since we found cases where single transitions do not
commute, while sequences can.

For instance, a registered() does not commute with either register(a,) or
unregister(a), but it can commute with their composition since the set of reg-
istered tuples is the same before and after. Notably, covering this case would
require to extend the theory in [17] as well.

References

1. C. D. Carothers, K. S. Perumalla, and R. Fujimoto. Efficient optimistic parallel
simulations using reverse computation. TOMACS, 9(3):224–253, 1999.

2. CauDEr repository. Available at https://github.com/mistupv/cauder, 2022.

3. CauDEr with imperative primitives repository. Available at https://github.com/
PietroLami/cauder, 2022.

https://github.com/mistupv/cauder
https://github.com/PietroLami/cauder
https://github.com/PietroLami/cauder

5 Conclusion, Related and Future Work 17

4. V. Danos and J. Krivine. Reversible communicating systems. In CONCUR, volume
3170 of LNCS, pages 292–307. Springer, 2004.

5. Erlang/OTP 24.1.5. Available at https://www.erlang.org/doc/index.html.
6. G. Fabbretti, I. Lanese, and J. Stefani. Causal-consistent debugging of distributed

Erlang programs. In Reversible Computation, LNCS, pages 79–95. Springer, 2021.
7. E. Giachino, I. Lanese, and C. A. Mezzina. Causal-consistent reversible debugging.

In FASE, volume 8411 of LNCS, pages 370–384. Springer, 2014.
8. E. Giachino, I. Lanese, C. A. Mezzina, and F. Tiezzi. Causal-consistent rollback

in a tuple-based language. J. Log. Algebraic Methods Program., 88:99–120, 2017.
9. J. J. González-Abril and G. Vidal. A lightweight approach to computing message

races with an application to causal-consistent reversible debugging. CoRR, 2021.
10. C. Hewitt, P. B. Bishop, and R. Steiger. A universal modular ACTOR formalism

for artificial intelligence. In IJCAI, pages 235–245. William Kaufmann, 1973.
11. J. Hoey and I. Ulidowski. Reversible imperative parallel programs and debugging.

In Reversible Computation, volume 11497 of LNCS, pages 108–127. Springer, 2019.
12. R. Landauer. Irreversibility and heat generation in the computing process. IBM

Journal of Research and Development, 5(3):183–191, 1961.
13. I. Lanese and D. Medic. A general approach to derive uncontrolled reversible

semantics. In CONCUR, volume 171 of LIPIcs, pages 33:1–33:24. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

14. I. Lanese, C. A. Mezzina, and J. Stefani. Reversibility in the higher-order π-
calculus. Theor. Comput. Sci., 625:25–84, 2016.

15. I. Lanese, N. Nishida, A. Palacios, and G. Vidal. CauDEr: A causal-consistent
reversible debugger for Erlang. In FLOPS, LNCS, pages 247–263. Springer, 2018.

16. I. Lanese, N. Nishida, A. Palacios, and G. Vidal. A theory of reversibility for
Erlang. J. Log. Algebraic Methods Program., 100:71–97, 2018.

17. I. Lanese, I. C. C. Phillips, and I. Ulidowski. An axiomatic approach to reversible
computation. In FoSSaCS, volume 12077 of LNCS, pages 442–461. Springer, 2020.

18. J. S. Laursen, U. P. Schultz, and L. Ellekilde. Automatic error recovery in robot
assembly operations using reverse execution. In IROS, pages 1785–1792. IEEE,
2015.

19. I. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the mod-
elling of the ERK signalling pathway. In RC, volume 7581 of LNCS, pages 218–232.
Springer, 2012.

20. M. Schordan, T. Oppelstrup, D. R. Jefferson, and P. D. Barnes Jr. Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Gener.
Comput., 36(3):257–280, 2018.

21. G. Vidal and J. J. González-Abril. Causal-consistent reversible debugging: Im-
proving CauDEr. In PADL, volume 12548 of LNCS, pages 145–160. Springer,
2021.

https://www.erlang.org/doc/index.html

18 P. Lami et al.

A Semantics

In this section we present the rules of the semantics that we could not include
in the paper due to space reasons. Explanations are quite terse, we refer to [21]
for a deeper discussion.

A.1 Expression level semantics

We divide the rules of the expression level semantics in two sets: the set of
sequential expressions, depicted in Fig. 8, and the set of concurrent expressions,
depicted in Fig. 9

(Var)
θ, C[X], S

τ−→ θ, C[θ(X)], S

(Seq1)
θ, C[v, e], S

τ−→ θ, C[e], S
(Seq2)

θ, v, seq(C[]) : S
τ−→ θ, C[v], S

(If)
eval guard(g1θ, . . . , gnθ) = i

θ, C[if g1 −→ e1; . . . ; gn −→ en end], S
τ−→ θ, ei, seq(C[]) : S

(Case)
match case(θ, v, cl1, . . . , cln) = 〈θi, ei〉

θ, C[case v of cl1; . . . ; cln end], S
τ−→ θθi, ei, seq(C[]) : S

(Match)
match(patθ, v) = σ

θ, C[pat = v], S
τ−→ θσ, C[v], S

(Fun)
θ, C[funfun1; . . . ; funmend], S

τ−→ θ, C[〈θ, funfun1; . . . ; funmend〉], S

(Call1)
match fun((v1, . . . , vn), def(f/n,P)) = (σ, e)

θ, C[f(v1, . . . , vn)], S
τ−→ σ, e, (θ, C[]) : S

(Call2)
match fun((v1, . . . , vn), 〈θ′, funfun1; . . . ; funmend〉) = (σ, e)

θ, C[〈θ′, funfun1; . . . ; funmend〉(v1, . . . , vn)], S
τ−→ σ, e, (θ, C[]) : S

(Return)
σ, v, (θ, C[]) : S

τ−→ θ, C[v], S

Fig. 8. Standard semantics: evaluation of sequential expressions.

The sequential expressions (in Fig. 8) define the behavior of some constructs
of the language without side-effects, like the case construct or the call of a func-
tion; these rules define also the evaluation of an expression inside the data struc-
tures of the language. We label the evaluation of sequential expressions with τ
since we do not need to distinguish them in the system semantics.

A Semantics 19

(Send)
θ, C[v1 ! v2], S

send(v1,v2)−−−−−−−→ θ, C[v2], S

(Receive)

θ, C[receive cl1; . . . ; cln end], S
rec(κ,cln)−−−−−−→ θ, κ, seq(C[]) : S

Fig. 9. Concurrent semantics: evaluation of concurrent expressions.

Fig. 9 shows the semantics of concurrent expressions. Rule Send, used to
send a message to a process, reduces an expression v1!v2 to v2. The side-effect
is that the message v2 is sent, i.e., the message is added to Γ . We label the
step with send(v1, v2) in this way the system rule Send can add the message to
the global mailbox Γ . Rule Receive, used to receive a message, returns a fresh
variable, κ, since the receive expression cannot be reduced at this level without
accessing to the global mailbox. Here, κ can be seen as a placeholder that the
system rules will replace with the correct value. Like before, we label the step
with enough information for rule Receive to complete the reduction.

A.2 System level semantics

Fig. 10 contains the same rules as Fig. 5, without all the red parts referring
to history and causal information. In Fig. 11 we show the rules of the system
semantics not related to the map, hence not depicted in Fig. 5 and in Fig. 10.
Let us describe rule Send as an example. We apply rule Send when a process
performs a send and, as side-effect, we update Π by adding the triple (p, p′,m),
where p is the pid of the sender, p′ of the receiver and m is the message.

Rule Receive searches in the queue of messages, from the oldest to the newest,
the first message that matches one of the n clauses (thanks to the auxiliary func-
tion matchrec). Then, the system semantics updates the process’ environment
with the new variables introduced by the selected branch, replaces κ with the
corresponding expression, and removes v from the process’ queue.

Now, let us discuss more in detail rule Spawn; this rule evaluates the spawn
expression, it chooses a fresh identifier p as the pid of the new process, replaces
κ with p and finally adds to Π the new process.

Finally, rule Seq is used for the expression without side-effects while rule
Self is used for the self function, which evaluates to the current process pid.

A.3 A reversible semantics

The forward reversible semantics, showed in Fig. 12 and defined by the relation
⇀, is the extension of the system semantics where each process has been updated
with a history of its previous configurations. More precisely, when a process
performs a forward step, the current configuration and if necessary additional
pieces of information are saved in the history and the process evolves in a new
state. The history is needed - while going backward - to check that all the
consequences of an action, if any, have been undone.

20 P. Lami et al.

(RegisterS)
θ, e, S

register(κ,a,p′)−−−−−−−−−→ θ′, e′, S′ Ma = ∅ Mp′ = ∅ isAlive(p′, Π)

Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, θ′, e′{κ→ true}, S′〉 |Π; M ∪ {〈a, p′〉}

(UnregisterS)
θ, e, S

unregister(κ,a)−−−−−−−−→ θ′, e′, S′ Ma = {〈a, p′〉}
Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, θ′, e′{κ→ true}, S′〉 |Π; M \Ma

(EndUn)
e is a value ∨ e = ε Mp = {〈a, p〉}

Γ ; 〈p, θ, e, []〉 |Π; M ⇀ Γ ; 〈p, θ,⊥, []〉 |Π; M \Mp

(RegisterF)
θ, e, S

register(κ,a,p′)−−−−−−−−−→ θ′, e′, S′ Ma 6= ∅ ∨Mp′ 6= ∅ ∨ ¬ isAlive(p′, Π)

Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, θ, ε, []〉 |Π; M

(UnregisterF)
θ, e, S

unregister(κ,a)−−−−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, θ, ε, []〉 |Π; M

(SendS)
θ, e, S

send(a,v)−−−−−→ θ′, e′, S′ Ma = {〈a, p′〉}
Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ∪ {(p, p′, {v})}; 〈p, θ′, e′, S′〉 |Π; M

(SendF)
θ, e, S

send(a,v)−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, θ, ε, []〉 |Π; M

(Whereis1)
θ, e, S

whereis(κ,a)−−−−−−−→ θ′, e′, S′ Ma = {〈a, p′〉}
Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, θ′, e′{κ→ p′}, S′〉 |Π; M

(Whereis2)
θ, e, S

whereis(κ,a)−−−−−−−→ θ′, e′, S′ Ma = ∅
Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, θ′, e′{κ→ undefined}, S′〉 |Π; M

(Registered)
θ, e, S

registered(κ)−−−−−−−→ θ′, e′, S′ registered(M) = atoms

Γ ; 〈p, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, θ′, e′{κ→ atoms}, S′〉 |Π; M

(End)
e is a value ∨ e = ε Mp = ∅

Γ ; 〈p, θ, e, []〉 |Π; M ⇀ Γ ; 〈p, θ,⊥, []〉 |Π; M

Fig. 10. Standard semantics: read and write system rules.

Fig. 13 depicts the uncontrolled backward semantics. The backward seman-
tics restores previous states of a process’ computation if all of the consequences
of the target action have been undone. Rule Receive puts back the received mes-
sage in the set of sent message (Γ) and can always be applied. Rule Send can
be applied when the message is in Γ because in this case we are sure that each
of its consequences has been undone already. Rule Spawn can be applied when
the child has an empty history. Finally, rules Seq and Self can always be applied
since they never have consequences.

A Semantics 21

(Seq)
θ, e, S

τ−→ θ′, e′, S′

Γ ; 〈p, θ, e, S〉 |Π; M ↪→ Γ ; 〈p, θ′, e′, S′〉 |Π; M

(Receive)
θ, e, S

rec(κ,cln)−−−−−−→ θ′, e′, S′ matchrec(θ, cln, v) = (θi, ei)

Γ ∪ {(p, p′, v)}; 〈p, θ, e, S〉 |Π; M ↪→ Γ ; 〈p, (θ′θi, e′{κ 7→ ei}), S′〉 |Π; M

(Spawn)
θ, e, S

spawn(κ,exprs)−−−−−−−−−→ θ′, e′, S′ p′ is a fresh pid

Γ ; 〈p, θ, e, S〉 |Π; M ↪→ Γ ; 〈p, θ′, e′{κ 7→ p′}, S′〉 | 〈p′, id, exprs, ()〉 |Π; M

(Self)
θ, e, S

self(κ)−−−−→ θ′, e′, S′

Γ ; 〈p, θ, e, S〉 |Π; M ↪→ Γ ; 〈p, θ′, e′{κ 7→ p}, S′〉 |Π; M

(Send)
θ, e, S

send(p′,v)−−−−−−→ θ′, e′, S′

Γ ; 〈p, θ, e, S〉 |Π; M ↪→ Γ ∪ {(p, p′, v)}; 〈p, θ′, e′, S′〉 |Π; M

Fig. 11. Standard semantics: system rules.

A.4 Proofs of reversibility properties.

Lemma 1 (Loop Lemma). For every pair of reachable systems, s1 and s2, we
have s1 ⇀ s2 iff s2 ↽ s1.

Proof. The proof that a forward transition can be undone follows by rule inspec-
tion. The other direction relies on the restriction to reachable systems: consider
the process undoing the action. Since the system is reachable, restoring the mem-
ory item would put us back in a state where the undone action can be performed
again (if the system would not be reachable the memory item would be arbi-
trary, hence there would not be such a guarantee), as desired. Again, this can
be proved by rule inspection. ut

We indicate with t = (s
p,r,k s
′) the transition from system s to system s′,

where p is the pid of the process performing the action, r is the rule applied to
perform the transition and k is the item added or removed to/from the history
by the applied rule.

Lemma 2 (Square lemma). Given two co-initial concurrent transitions
t1 = (s
p1,r1,k1 s1) and t2 = (s
p2,r2,k2 s2), there exist two transitions
t2/t1 = (s1
p2,r2,k2 s3), t1/t2 = (s2
p1,r1,k1 s3). Graphically:

s
p1,r1,k1 /

p2,r2,k2
�

s1o

s2

O
=⇒

s
p1,r1,k1 /

p2,r2,k2
�

s1

p2,r2,k2
�

o

s2 p1,r1,k1

/

O

s3

O

o

Proof. We distinguish the following cases depending on the applied rules:

22 P. Lami et al.

(Seq)
θ, e, S

τ−→ θ′, e′, S′

Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, τ(θ, e, S):h, θ′, e′, S′〉 |Π; M

(Receive)
θ, e, S

rec(κ,cln)−−−−−−→ θ′, e′, S′ matchrec(clnθ, v) = (θi, ei)

Γ ∪ ({p, p′, {v, λ}}); 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, rec(θ, e, S, p′, {v, λ}):h, (θ′θi, e′{κ 7→ ei}), S′〉 |Π; M

(Spawn)
θ, e, S

spawn(κ,exprs)−−−−−−−−−→ θ′, e′, S′ p′ is a fresh pid

Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, spawn(θ, e, S, p′):h, (θ′, e′{κ 7→ p′}), S′〉 | 〈p′, (), (id, exprs), ()〉 |Π; M

(Self)
θ, e, S

self(κ)−−−−→ θ′, e′, S′

Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ; 〈p, self(θ, e, S):h, (θ′, e′{κ 7→ p}), S′〉 |Π; M

(Send)
θ, e, S

send(p′,v)−−−−−−→ θ′, e′, S′ λ is a fresh identifier

Γ ; 〈p, h, θ, e, S〉 |Π; M ⇀ Γ ∪ {(p, p′, {v, λ})}; 〈p, send(θ, e, S, {v, λ}):h, θ′, e′, S′〉 |Π; M

Fig. 12. Forward reversible semantics.

(Seq) Γ ; 〈p, τ(θ, e, S):h, θ′, e′, S′〉 |Π; M ↽ Γ ; 〈p, h, θ, e, S〉 |Π; M

(Receive) Γ ; 〈p, rec(θ, e, S, p′, {v, λ}):h, θ′, e′, S′〉 | Π; M ↽ Γ ∪ {(p, p′, {v, λ})}; 〈p, h, θ, e, S〉 | Π; M

(Spawn) Γ ; 〈p, spawn(θ, e, S, p′):h, θ′, e′, S′〉 | 〈p′, (), (id, e′′), ()〉 | Π; M ↽ Γ ; 〈p, h, θ, e, S〉 | Π; M

(Self) Γ ; 〈p, self(θ, e, S):h, θ′, e′, S′〉 | Π; M ↽ Γ ; 〈p, h, θ, e, S〉 | Π; M

(Send) Γ ∪ {(p, p′, {v, λ})}; 〈p, send(θ, e, S, {v, λ}):h, θ′, e′, S′〉 | Π; M ↽ Γ ; 〈p, h, θ, e, S〉 | Π; M

Fig. 13. Backward reversible semantics.

1. Two forward transitions. We have the following cases:
– the two transitions are not on the map then, we can easily prove that by

applying rule r2 to p1 in s1 and rule r1 to p2 in s2 we have two transitions
t1/t2 and t2/t1 which are co-final;

– one of the two transitions is on the map and the other one is not on the
map we can apply the same reasoning here;

– both transitions are on the map, we have a case analysis on the applied
rules. We show a few examples, the others are similar.
• if r1 ∈ {UnregisterS,EndUn}, k1 = del(θ1, e1,S1,M1,M) and r2 ∈
{UnregisterS,EndUn}, k2 = del(θ2, e2,S2,M2,M

′) we have that
both M1 = {〈a1, p1, t1,>〉} and M2 = {〈a2, p2, t2,>〉} are in the
system map of s and by Definition 6 that a1 6= a2 and p1 6= p2. Then
applying k1 and after k2 or vice-versa leads us to the same state
because

(M\M1∪kill(M1))\M2∪kill(M2) = (M\M2∪kill(M2))\M1∪kill(M1)

A Semantics 23

The only side effect of the rule is to deactivate of a tuple from the
system map.

• if r1 = RegisterS and r2 ∈ {UnregisterS,EndUn}, k2 = del(, , ,M1,M2)
we know thanks to rule r1 that 〈a1, p1, t1,>〉 is not in the system
map. Thanks to rule r2 we know that the tuple M1 = 〈a2, p2, t2,>〉
is in the system map. By Definition 6 we have that a1 6= a2, p1 6= p2
and so for this reasonM2 is not affected by r1. We can see that adding
the tuple 〈a1, p1, t1,>〉 and then deactivating the tuple 〈a2, p2, t2,>〉,
or vice-versa, leads us to the same state because

(M∪{〈a1, p1, t1,>〉})\M1∪kill(M1) = (M\M1∪kill(M1))∪{〈a1, p1, t1,>〉}

The only side effects of the two rules are respectively an insertion
and a deactivation of a tuple from the system map.
• if r1 = RegisterS and r2 ∈ {UnregisterF, SendF,WhereIs2, End},
k2 = readF(, , , ι,M2) we know thanks to rule r1 that M1 = {〈a1, p1, t1,>〉}
is not in the system map. Thanks to rule r2 we know that the M2 is a
subset of the system map. By Definition 6 we have that a1 6= ι∧ι 6= p1
so M2 is not affected by r1, hence we can see that adding the tuple
〈a1, p1, t1,>〉 and then reading a ghost atom, or vice-versa, leads us
to the same state.

• if r1 ∈ {UnregisterS,EndUn}, k1 = del(θ1, e1,S1,M1,M) and r2 ∈
{UnregisterF, SendF,WhereIs2, End}, k2 = readF(, , , ι,M2) we
know thanks to rule r1 that M1 = {〈a1, p1, t1,>〉} is in the system
map. By Definition 6 we have that a1 6= ι ∧ ι 6= p1 so M2 is not
affected by r1, hence we can see that adding the tuple 〈a1, p1, t1,>〉
and then reading a ghost atom, or vice-versa, leads us to the same
state.

• if k1 = del(θ1, e1,S1,M1,M) and k2 = readS(, , ,M2) we know
thanks to rule r1 that M1 = {〈a1, p1, t1,>〉} is in the system map.
Thanks to rule r2 we know that the M2 is a subset of the system
map. By Definition 6 we have that M1 ∩ M2 = ∅ and so for this
reason M2 is not affected by r1. We can see that killing the tuple
〈a1, p1, t1,>〉 and then reading a tuple (or two), or vice-versa, leads
us to the same state.

• if r1 = RegisterS and r2 ∈ {RegisterF,WhereIs1}, k2 = readS(, , ,M2)
we know thanks to rule r1 that M1 = {〈a1, p1, t1,>〉} is not in the
system map. Thanks to rule r2 we know that the M2 is a subset of
the system map. By Definition 6 we have that 〈 , p1, , 〉 /∈ M2 and
〈a1, , , 〉 /∈ M2 and so for this reason M2 is not affected by r1. We
can see that adding the tuple 〈a1, p1, t1,>〉 and then reading a tuple
(or two), or vice-versa, leads us to the same state.

• if r1 = r2 = RegisterS we know thanks to rule r1 that M1 =
{〈a1, p1, t1,>〉} is not in the system map and thanks to rule r2 that
M2 = {〈a2, p2, t2,>〉} is not in the system map. By Definition 6 we
have that a1 6= a2 and p1 6= p2. We can see that adding the tuple M1

24 P. Lami et al.

and then adding the tuple M2, or vice-versa, leads us to the same
state.

(M \M1) ∪M2 = (M \M2) ∪M1

2. One forward transition and one backward transition. We have the following
cases:
– the two operations are on the map then we could have the following

cases:
• r1 = RegisterS, where M1 in k1 is {〈a1, p1, t1,>〉}, and r2 = Del,

where k2 = del(, , ,M2,) and M2 = {〈a2, p2, t2,>〉}. By Defini-
tion 6, we know a1 6= a2 and p1 6= p2 (because otherwise they would
be in conflict), then the system map contains the tuple 〈a2, p2, t2,⊥〉
(otherwise it would not possible to apply the rule r2) and we can see
that r1 and r2 commute because

(M ∪M1) \ kill(M2) ∪M2 = (M \ kill(M2) ∪M2) ∪M1

• r1 ∈ {UnregisterS,EndUn}, k1 = del(, , ,M1,M
′
1), where M1 =

{〈a1, p1, t1,>〉}, and r2 = RegisterS, where k2 = regS(, , ,M2)
and M2 = {〈a2, p2, t2,>〉}. By Definition 6 we have that a1 6= a2 and
p1 6= p2, then the system map contains the tuple 〈a1, p1, t1,>〉 and
moreover that system map contains 〈a2, p2, t2,>〉 as well. Hence we
can see that

(M \M1 ∪ kill(M1)) \M2 = (M \M2) \M1 ∪ kill(M1)

• r1 ∈ {UnregisterF, SendF,WhereIs2, End}, k1 = readF(, , , ι,M)
and r2 = RegisterS, where k2 = regS(, , ,M2) and M2 = {〈a2, p2, t2,>〉}.
By Definition 6 we have that a2 6= ι ∧ ι 6= p2 and so we can see that
the two operations commute.

• r1 ∈ {UnregisterS,EndUn}, k1 = del(, , ,M1,M
′
1), where M1 =

{〈a1, p1, t1,>〉}, and r1 = ReadS where k2 = readS(, , ,M2). By
Definition 6 we have that 〈 , , t1, 〉 6∈ M2, also we know that r2 does
not affect M′1 so we can conclude that the two operations commute.

• r1 ∈ {UnregisterS,EndUn}, k1 = del(, , ,M1,M
′
1), where M1 =

{〈a1, p1, t1,>〉}, and r1 = ReadF where k2 = readF(, , , ι,M2). By
Definition 6 we have that a1 6= ι ∧ ι 6= p1, so r1 does not affect M2,
also r2 does not affect M′1 since it is a read operation, so we can
conclude that the two operations commute.

• r1 ∈ {UnregisterS,EndUn}, k1 = del(, , ,M1,M
′
1), where M1 =

{〈a1, p1, t1,>〉}, r2 = Del and k2 = del(, , ,M2,M
′
2), where M2 =

{〈a2, p2, t2,>〉}. By Definition 6 we have that a1 6= a2 ∧ p1 6= p2, so
r1 does not affect M′2, and similarly r2 does not affect M′1, so we can
see that

(M\M1∪kill(M1))\kill(M2)∪M2 = (M\kill(M2)∪M2)\M1∪kill(M1)

• we can apply the same reasoning in the other cases.

A Semantics 25

– the claim of the other cases follows easily (see [15, Lemma 13] and [6,
Lemma 3.1]);

3. Two backward transitions. The claim follows easily (for more examples see
[15, Lemma 13] and [6, Lemma 3.1]):
– if the rules are co-initial then the side-conditions of both rules are re-

spected and it is equivalent apply before r1 or r2, then is easy to see that
t1/t2 = t2/t1. ut

A.5 Rollback semantics.

Now we introduce a rollback semantics that reverts the system back to a previous
state, specified in input by the user, by undoing several steps in an automatic
manner.

We denote a system in rollback mode with ddSee{p,ψ}, where we want to start
a backward derivation until the action ψ performed by the process p; we want
to undo all the actions that depend on it.

More generally, given ddSeeΦ, then Φ is the sequence of undo requests that
need to be satisfied; Φ can be seen as a stack where the first element is the most
recent request and once the stack is empty, the system has reached the state
desired by the user.

In this semantics we consider requests {p, ψ}, asking process p to undo a
specific action, namely:

– {p, s}: a single step back;
– {p, λ⇓}: the receive of the message uniquely identified by λ;
– {p, λ⇑}: the send of the message uniquely identified by λ;
– {p, spp′}: the spawn of process p′.
– {p, regS(t)}: the operation regS(, , , {〈 , , t,>〉}).
– {p, del(t)}: the operation del(, , , {〈 , , t,>〉},).
– {p, read(t)}: the operations readS(, , ,M ∪ { , , t, }),

sendS(, , , ,M ∪ { , , t, }) or readM(, , ,M ∪ {〈 , , t, 〉}).
– {p, notread(t)}: the operations readF(, , , ,M ∪ { , , t, }), or

readM(, , ,M ∪ {〈 , , t,⊥〉}).

Example 4. For example, if we have a request {p, regS(t)} we want to undo the
register made by the process with pid p that inserted the tuple 〈 , , t,>〉 in the
global map. ♦

Fig. 14 depicts the rollback semantics and relation indicates which back-
ward rule shall we apply and when. Rule U − Satisfy performs a single step
back using the backward semantics and removes the corresponding request.

Rule U−Act performs a single step back using the backward semantics when
the action that we require to undo ({p, ψ}) is not the most recent action in the
process history.

Rule Request is fired when in the system there is no backward transition
enabled for the process targeted by the first request on Ψ . This means that the
action is blocked by some operation in another process and with the help of the

26 P. Lami et al.

(U − Satisfy)
S ↽p,r,Ψ ′ S ′ ∧ ψ ∈ Ψ ′

ddSee{p,ψ}:Ψ ddS ′eeΨ
(U −Act) S ↽p,r,Ψ ′ S ′ ∧ {p, r} /∈ Ψ ′

ddSee{p,ψ}:Ψ ddS ′ee{p,ψ}:Ψ

(Request)
S = Γ ; 〈p, h, θ, e, S〉 |Π; M ∧ S 6↽p,r,Ψ ′ ∧ {p′, ψ′} = dep(〈p, h, θ, e, S〉,S)

ddSee{p,ψ}:Ψ ddS ′ee{p′,ψ′}:{p,ψ}:Ψ

Fig. 14. Rollback semantics

operator dep (in Fig. 15) the rule computes a new request, aimed at solving the
dependency, and pushes it on Ψ .

In Fig. 15, we show the dep operator, where we added the dependencies
generated by the imperative primitives. Let us discuss them in detail.

In the first case, a send cannot be undone since the message sent is not in
the global mailbox, so a request has to be made to the receiver p′ of undoing the
receipt of the message identified by λ.

If there are multiple dependencies to solve, we add them one by one. This
happens, for example, in the case of the registered primitive, where we need to
undo the regS of all the pairs which are accessible in the system map (M′) but
are not in the map read (M) and of all the pairs which are accessible in the map
read but are not accessible in the system map. We also want to undo all the del
operations of the pairs that are not in the map read but that are not accessible
in the system map.

If we were to add all the dependencies at once, it would be more complex,
since by resolving one dependency, we could also resolve some deeper ones; in
this way, we would need an additional check to avoid starting a computation to
cancel a dependency that no longer exists.

Adding dependencies one by one solves the problem, so the dep operator
non-deterministically selects one of them. The order in which dependencies are
resolved is not relevant.

dep(< , send(, , , {v, λ}):h, , , >, Γ ∪ {(p, p′, {v, λ})}; ;) = {p′, λ⇓}
dep(< p, sendS(, , , {v, λ},):h, , , >, Γ ∪ {(p, p′, {v, λ})}; ;) = {p′, λ⇓}
dep(< , sendS(, , , , {〈a, p, t,>〉}):h, , , >, ; ;M′) = {p′, del(t)} if 〈a, p, t,>〉 6∈ M′

dep(< , spawn(, , , p′):h, , , >, ;Π; ;) = {p′, s} if p′ ∈ Π
dep(< , readS(, , ,M ∪ {〈a, , t,>〉}):h, , , >, ; ;M′) = {p′, del(t)} if 〈a, , t,>〉 6∈ M′

dep(< , readS(, , ,M ∪ {〈 , p, t,>〉}):h, , , >, ; ;M′) = {p′, del(t)} if 〈 , p, t,>〉 6∈ M′

dep(< , readF(, , , a,M):h, , , >, ; ;M′ ∪ {〈a, , t, 〉}) = {p′, regS(t)} if 〈a, , t, 〉 /∈ M
dep(< , readM(, , ,M):h, , , >, ; ;M′ ∪ {〈 , , t,>〉}) = {p′, regS(t)} if 〈 , , t,>〉 /∈ M
dep(< , readM(, , ,M):h, , , >, ; ;M′ ∪ {〈 , , t,⊥〉}) = {p′, del(t)} if 〈 , , t,⊥〉 /∈ M
dep(< , regS(, , , {〈 , , t,>〉}):h, , , >, ; ;M′) = {p′, del(t)} if 〈 , , t,>〉 /∈ M′

dep(< , regS(, , , {〈 , , t,>〉}):h, , , >, ; ;) = {p′, read(t)}
dep(< , del(, , , {〈a, , t,>〉},M):h, , , >, ; ;M′ ∪ {〈a, , ta, 〉}) = {p′, regS(ta)} if 〈a, , ta, 〉 /∈ M
dep(< , del(, , , {〈 , p, t,>〉},M):h, , , >, ; ;M′ ∪ {〈 , p, tp, 〉}) = {p′, regS(tp)} if 〈 , p, tp, 〉 /∈ M
dep(< , del(, , , {〈a, p, t,>〉},):h, , , >, ; ;M′) = {p′, readfail(t)}

Fig. 15. Dependencies operator

Example 5. For example the case of the del is:

A Semantics 27

dep(< , del(, , , {〈a, p, t,>〉},M):h, , , >, ; ;M′)

This operation request will be to undo:

– if a is in the map of the system (M′) and not in the map of the del operator
(M), then the tuple 〈a, , ka, 〉 is in the map and there is a process that has
in its history the element regS(, , , {〈a, , ka,>〉}); this process has to undo
the register operation;

– the same reasoning could be applied with the pid p;
– undo all the registered and readF operations that have read a or p. ♦

A.6 Code of the case study.

The code of the case study can be found in Fig. 16.

28 P. Lami et al.

1 −module (s e r v e r) .
2 −export ([main/1]) .
3

4 main (A)−>
5 r e g i s t e r (se rver , spawn (?MODULE, se rver , [])) ,
6 r e g i s t e r (log , spawn (?MODULE, logger , [0 , []])) ,
7 sendRequest (A) .
8

9 s e r v e r () −>
10 r e c e i v e
11 { logged , Log} −>
12 i o : format (”LOGGED TIME: ˜ p\n” , [Log]) ;
13 { replay , Ris} −>
14 i o : format (”RESULT: ˜ p\n” , [Ris]) ,
15 l og ! Ris ;
16 {Atom, Val} −>
17 i o : format (”SEND REQUEST: ˜ p\n” , [{Atom, Val}]) ,
18 case where i s (Atom) o f
19 undef ined −>
20 r e g i s t e r (Atom, spawn (?MODULE, Atom, [])) ,
21 Atom ! Val ;
22 −>
23 Atom ! Val
24 end
25 end ,
26 s e r v e r () .
27

28 l o g g e r (N, L)−>
29 r e c e i v e
30 Val −>
31 s e r v e r ! { logged ,N} , l o g g e r (N+1,L++[Val])
32 end .
33

34 square () −>
35 r e c e i v e
36 N −>
37 s e r v e r ! { replay , { square ,N∗N}} , square ()
38 end .
39

40 l og () −>
41 r e c e i v e
42 N −>
43 s e r v e r ! { replay , { log , math : log10 (N) }} , l og ()
44 end .
45

46 adder () −> adder (0) .
47 adder (N)−>
48 r e c e i v e
49 Val −>
50 s e r v e r ! { replay , {addder , Val + N}} , adder (Val + N)
51 end .
52

53 sendRequest ([]) −> ok ;
54 sendRequest ([El | T]) −>
55 s e r v e r ! El , sendRequest (T) .

Fig. 16. Case study

	Reversibility in Erlang: Imperative Constructs - Technical Report

