
HAL Id: hal-03655239
https://hal.science/hal-03655239v2

Submitted on 14 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Offline Constrained Backward Time Travel Planning
Quentin Bramas, Jean-Romain Luttringer, Sébastien Tixeuil

To cite this version:
Quentin Bramas, Jean-Romain Luttringer, Sébastien Tixeuil. Offline Constrained Backward Time
Travel Planning. 25th International Symposium, SSS 2023, Oct 2023, Jersey City, NJ, United States.
pp.466–480, �10.1007/978-3-031-44274-2_35�. �hal-03655239v2�

https://hal.science/hal-03655239v2
https://hal.archives-ouvertes.fr

Offline Constrained

Backward Time Travel Planning

Quentin Bramas1, Jean-Romain Luttringer1, and Sébastien Tixeuil2,3

1 ICUBE, Strasbourg University, CNRS, Strasbourg, France
2 Sorbonne University, CNRS, LIP6, Paris, France
3 Institut Universitaire de France, Paris, France

This version of the article has been accepted for publication in the proceedings
of the International Symposium on Stabilizing, Safety, and Security of

Distributed Systems (SSS 2023), after peer review and is subject to Springer
Nature’s AM terms of use, but is not the Version of Record and does not
reflect post-acceptance improvements, or any corrections. The Version of

Record is available online at:
https://doi.org/10.1007/978-3-031-44274-2_35

Abstract. We model transportation networks as dynamic graphs and
introduce the ability for agents to use Backward Time-Travel (BTT)
devices at any node to travel back in time, subject to certain constraints
and fees, before resuming their journey.
We propose exact algorithms to compute travel plans with constraints
on BTT cost or the maximum time that can be traveled back while min-
imizing travel delay (the difference between arrival and starting times).
These algorithms run in polynomial time. We also study the impact of
BTT device pricing policies on the computation of travel plans with
respect to delay and cost and identify necessary properties for pricing
policies to enable such computation.

1 Introduction

Evolving graphs (and their many variants) are graphs that change over time
and are used to model real-world systems that evolve. They have applications
in many fields in Computer Science, where they arise in areas such as com-
pilers, databases, fault-tolerance, artificial intelligence, and computer networks.
To date, such graphs were studied under the hypothesis that time can be trav-
eled in a single direction (to the future, by an action called waiting), leading to
numerous algorithms that revisit static graph notions and results.

In this paper, we introduce the possibility of Backward time travel (BTT)
(that is, the ability to go back in time) when designing algorithms for dynamic
graphs. In more details, we consider the application of BTT devices to trans-
portation networks modeled by evolving graphs. In particular we focus on the
ability to travel from point A to point B with minimal delay (that is, minimiz-
ing the time difference between arrival and start instants), taking into account

https://doi.org/10.1007/978-3-031-44274-2_35

2 Q. Bramas et al.

meaningful constraints, such as the cost induced by BTT devices, or their span
(how far back in time you are allowed to go).

To this paper, BTT was mostly envisioned in simple settings (with respect to
the cost associated to time travel or its span). For example, the AE model [12]
considers that a single cost unit permits to travel arbitrarily in both space
and time, trivializing the space-time travel problem entirely. Slightly more con-
strained models such as TM [11] and BTTF [16] consider devices that either:
(i) only permit time travel [11] (but remain at the same position), or(ii) permit
either time travel or space travel, but not both at the same time [16]. However,
the cost involved is either null [11], or a single cost unit per time travel [16].

Instead, we propose to discuss BTT in a cost-aware, span-aware context,
that implies efficiently using BTT devices within a transportation system (from
a simultaneous delay and cost point of view), and the computation of the cor-
responding multi-modal paths. More precisely, in this paper, we address the
problem of space-time travel planning, taking into account both the travel de-
lay of the itinerary and the cost policy of BTT device providers. The context
we consider is that of transportation systems, where BTT devices are always
available to the agents traveling. Using each BTT device has nevertheless a cost,
decided by the BTT device provider, and may depend on the span of the back-
ward time jump. Although BTT devices are always active, the ability to go from
one location to another (that is, from one BTT device to another) varies across
time. We consider that this ability is conveniently modeled by a dynamic graph,
whose nodes represent BTT devices, and whose edges represent the possibility
to instantly go from one BTT device to another. Given a dynamic graph, we aim
at computing travel plans, from one BTT device to another (the closest to the
agent’s actual destination), considering not only travel delay and induced cost,
but also schedule availability and common limitations of BTT devices.

In the following, we study the feasibility of finding such travel plans, depend-
ing on the pricing policy. It turns out that when the schedule of connections
is available (that is, the dynamic graph is known), very loose conditions on the
pricing policy enable to devise optimal algorithms (with respect to the travel de-
lay and induced cost) in polynomial time, given a cost constraint for the agents,
or a span constraint for the BTT devices.

Related Work. Space-Time routing has been studied, but assuming only for-
ward time travel, i.e., waiting, is available. The idea of using dynamic graphs
to model transportation network was used by many studies (see e.g. Casteigts
et al.[2] and references herein), leading to recently revisit popular problems pre-
viously studied in static graphs [1,4,10]. In a dynamic (or temporal) graph, a
journey represents a temporal path consisting in a sequence of edges used at
given non-decreasing time instants. The solvability of a problem can depend on
whether or not a journey can contain consecutive edges occurring at the same
time instant. Such journeys are called non-strict, as opposed to strict journey
where the sequence of time instants must be strictly increasing. In our work, we
extend the notion of non-strict journey to take into account the possibility to
go back in time at each node, but one can observe that our algorithm also work

Offline Constrained Backward Time Travel Planning 3

with the same extension for strict journey by adding one time unit to the arrival
of each edge in our algorithms.

The closest work in this research path is due to Casteigts et al [3], who study
the possibility of discovering a temporal path between two nodes in a dynamic
network with a waiting time constraint: at each step, the traveling agent cannot
wait more than c time instants, where c is a given constant. It turns out that
finding the earliest arriving such temporal path can be done in polynomial time.
Perhaps surprisingly, Villacis-Llobet et al [14] showed that if one allows to go
several times through the same node, the obtained temporal path can arrive
earlier, and finding it can be done in linear time. As previously mentioned, this
line of work only considers forward time travel: a temporal path cannot go back
in time.

Constrained-shortest-paths computation problems have been extensively stud-
ied in the context of static graphs [5]. Although these problems tend to be
NP-Hard [7] (even when considering a single metric), the ones considering two
additive metrics (commonly, the delay and a cost) gained a lot of traction over
the years due to their practical relevance, the most common use-case being com-
puter networks [8,9]. In this context, each edge is characterized by a weight
vector, comprising both cost and delay. Path computation algorithms thus have
to maintain and explore all non-comparable paths, whose number may grow
exponentially with respect to the size of the network. To avoid a worst-case
exponential complexity, most practical algorithms rely on either approximation
schemes [13] or heuristics. However, these contributions do not study multi-
criteria path computation problems within a time travel context. Conversely, we
study and provide results regarding the most relevant time-traveling problems
while considering the peculiarities of this context (in particular, the properties
of the cost function). In addition, we show that most of these problems can be
solved optimally in polynomial-time.

Contributions. In this paper, we provide the following contributions:

– An in-depth analysis of the impact of the BTT device providers pricing poli-
cies on the computation of low-latency and low-cost paths. In particular, we
show that few features are required to ensure that the efficient computation
of such paths remains possible.

– Two exact polynomial algorithms able to compute travels with smallest delay
to a given destination and minimizing the cost of traveling back in time. The
first algorithm also supports the addition of a constraint on the backward
cost of the solution. The other one supports a constraint on how far back in
the past one can go at each given time instant.

2 Model

In this section, we define the models and notations used throughout this paper,
before formalizing the aforementioned problems.

4 Q. Bramas et al.

We represent the network as an evolving graph, as introduced by Ferreira [6]:
a graph-centric view of the network that maps a dynamic graph as a sequence
of static graphs. The footprint of the dynamic graph (that includes all nodes
and edges that appear at least once during the lifetime of the dynamic graph),
is fixed. Furthermore, we assume that the set of nodes is fixed over time, while
the set of edges evolves.

More precisely, an evolving graph G is a pair (V, (Et)t∈N), where V denotes
the finite set of vertices, N is the infinite set of time instants, and for each t ∈ N,
Et denotes the set of edges that appears at time t. The snapshot of G at time t is
the static graphG(t) = (V,Et), which corresponds to the state, supposedly fixed,
of the network in the time interval t, t+1). The footprint F(G) of G is the static
graph corresponding to the union of all its snapshots, F(G) =

(
V,
⋃

t∈N
Et

)
.

We say ((u, v), t) is a temporal edge of graph G if (u, v) ∈ Et. We say that an
evolving graph is connected if its footprint is connected.

Space-time Travel. We assume that at each time instant, an agent can travel
along any number of adjacent consecutive communication links. However, the
graph may not be connected at each time instant, hence it may be that the
only way to reach a particular destination node is to travel forward (i.e., wait)
or backward in time, to reach a time instant where an adjacent communication
link exists. In more detail, an agent travels from a node s to a node d using a
space-time travel (or simply travel when it is clear from the context).

Definition 1. A space-time travel of length k is a sequence ((u0, t0), (u1, t1),
. . . , (uk, tk)) such that

– ∀i ∈ {0, . . . k}, ui ∈ V is a node and ti ∈ N is a time instant,

– ∀i ∈ {0, . . . k−1}, if ui 6= ui+1, then ti = ti+1 and (ui, ui+1) ∈ Eti i.e., there
is a temporal edge between ui and ui+1 at time ti.

By extension, the footprint of a travel is the static graph containing all edges
(and their adjacent nodes) appearing in the travel. Now, the itinerary of a travel
((u0, t0), (u1, t1), . . . , (uk, tk)) is its projection (u0, u1, . . . , uk) on nodes, while its
schedule is its projection (t0, t1, . . . , tk) on time instants.

Definition 2. A travel ((u0, t0), (u1, t1), . . . , (uk, tk)) is simple if for all i ∈
{2, . . . , k} and j ∈ {0, . . . , i− 2}, we have ui 6= uj.

Intuitively, a travel is simple if its footprint is a line (i.e., a simple path) and
contains at most one time travel per node (as a consequence, no node appears
three times consecutively in a simple travel).

Definition 3. The delay of a travel T = ((u0, t0), (u1, t1), . . . , (uk, tk)), denoted
delay(T) is defined as tk − t0.

The Backward cost of a travel.

Offline Constrained Backward Time Travel Planning 5

Definition 4. The backward-cost is the cost of going to the past. The backward-
cost function f : N∗ → R

+ returns, for each δ ∈ N, the backward-cost f(δ) of
traveling δ time instants to the past. As we assume that there is no cost associated
to forward time travel (that is, waiting), we extend f to Z by setting f(−δ) = 0,
for all δ ∈ N. In particular, the backward-cost of traveling 0 time instants in the
past is zero. When it is clear from context, the backward-cost function is simply
called the cost function.

Definition 5. The backward-cost (or simply cost) of a travel T = ((u0, t0),
(u1, t1), . . . , (uk, tk)), denoted cost(T) is defined as follows:

cost(T) =

k−1∑

i=0

f(ti − ti+1)

Definition 6. Let T1 = ((u0, t0), (u1, t1), . . . , (uk, tk)) and T2 = ((u′
0, t

′
0),(u

′
1, t

′
1),

. . . , (u′
k′ , t′k′)) be two travels. If (uk, tk) = (u′

0, t
′
0), then the concatenated travel

T1 ⊕ T2 is defined as follows:

T1 ⊕ T2 = ((u0, t0), (u1, t1), . . . , (uk, tk), (u
′
1, t

′
1), . . . , (u

′
k′ , t′k′))

Remark 1. One can easily prove that cost(T1 ⊕ T2) = cost(T1) + cost(T2). In
the following, we sometimes decompose a travel highlighting an intermediate
node: T = T1 ⊕ ((ui, ti)) ⊕ T2. Following the definition, this means that T1

ends with (ui, ti), and T2 starts with (ui, ti), so we also have T = T1 ⊕ T2 and
cost(T) = cost(T1) + cost(T2).

Our notion of space-time travel differs from the classical notion of journey
found in literature related to dynamic graphs [6] as we do not assume time
instants monotonically increase along a travel. As a consequence, some evolving
graphs may not allow a journey from A to B yet allows one or several travels
from A to B (See Figure 3).

We say a travel is cost-optimal if there does not exist a travel with the same
departure and arrival node and times as T having a smaller cost. One can easily
prove the following Property.

Property 1. Let T be a cost-optimal travel from node u to node v arriving at
time t, and T ′ a sub-travel of T i.e., a travel such that T = T1 ⊕ T ′ ⊕ T2. Then
T ′ is also cost-optimal. However, this is not true for delay-optimal travels.

Problem specification. We now present the problems that we aim to solve in
this paper. First, we want to arrive at the destination as early as possible, i.e.,
finding a time travel that minimizes the delay. Among such travels, we want to
find one that minimizes the backward cost.

In the remaining of this paper, we consider a given evolving graph G =
(V, (Et)t∈N), a given a cost function f, a source node src and a destination node
dst in V . Travels(G, src, dst) denotes the set of travels in G starting from src at
time 0 and arriving at dst .

6 Q. Bramas et al.

Definition 7. The Optimal Delay Optimal Cost space-time travel planning
(ODOC) problem consists in finding, among all travels in Travels(G, src, dst),
the ones that minimize the travel delay and, among them, minimize the cost. A
solution to the ODOC problem is called an ODOC travel.

One can notice that this problem is not very hard as there is a single metric
(the cost) to optimize, because a travel with delay zero always exists (if the graph
is temporally connected). But in this paper we study the two variants defined
thereafter (see the difference in bold).

Definition 8. The C-cost-constrained ODOC problem consists in finding a-
mong all travels in Travels(G, src, dst) with cost at most C ≥ 0, the ones that
minimize the travel delay and, among them, one that minimizes the cost.

Definition 9. The H-history-constrained ODOC problem consists in finding
among all travels in Travels(G, src, dst) satisfying,

∀u, u′, t, t′, if T = T1 ⊕ ((u, t))⊕ T2 ⊕ ((u′, t′))⊕ T3, then t′ ≥ t−H,

the ones that minimize the travel delay and, among them, one that minimizes
the cost.

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

3

4

5

6

7

time

Fig. 1: Possible representation of an
evolving graph. Possible travels from
x0 to x7 are shown in red, green and
blue. Note that the blue and green
travels require to send an agent to the
past (to a previous time instant).

x0
x1

x2 x3 x4 x5 x6 x7

Fig. 2: Footprint of the evolving graph
represented in Figure 1.

Offline Constrained Backward Time Travel Planning 7

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

time

Fig. 3: Example of an evolving graph
for which there exists no journey, yet
there exists several travels from x0 to
x7. The two travels, in blue and green,
are 1-history-constrained.

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

3

time

Fig. 4: Example of an evolving graph
for which there exist at least three
travels from x0 to x7 with a cost con-
straint of 1 (assuming f : d 7→ d). The
blue travel has optimal delay.

Visual representation of space-time travels.. To help visualize the problem,
consider a set of n + 1 nodes denoted x0, x1, x2, . . . , xn. Then, the associated
evolving graph can be seen as a vertical sequence of graphs mentioning for each
time instant which edges are present. A possible visual representation of an
evolving graph can be seen in Figure 1. One can see the evolution of the topology
(consisting of the nodes x0 to x7) over time through eight snapshots performed
from time instants 0 to 7. Several possible travels are shown in red, green and
blue. The red travel only makes use of forward time travel (that is, waiting) and
is the earliest arriving travel in this class (arriving at time 7). The green and blue
travels both make use of backward time travel and arrive at time 0, so they have
minimal travel delay. Similarly, the red travel concatenated with ((x7, 7), (x7, 0))
(i.e., a backward travel to reach x7 at time 0) also has minimal travel delay.
However, if we assume that the cost function is the identity (f : d 7→ d) then the
green travel has a backward cost of 3, the blue travel has a backward cost of 4,
and the concatenated red travel has a backward cost of 7. Adding constraints
yields more challenging issues: assuming f : d 7→ d and a maximal cost C of 1, at
least three travels can be envision for the evolving graph depicted in Figure 4,
but finding the 1-cost-constrained travel that minimizes the delay (that is, the
blue travel) is not as straightforward in this case, even if the footprint of the
evolving graph is a line.

Similarly, in Figure 3 we show two H-history-constrained travels, with H = 1
(assuming f : d 7→ d). Here, clearly, the green travel is optimal with a cost of 2
(the blue travel has cost 3). The choice made by the green travel to wait at node
x1 two time instants is good, even if it prevents future backward travel to time 0
since H = 1; because it is impossible to terminates at time 0 anyway. So it seems
like the choice made at node x1 is difficult to make before knowing what is the
best possible travel. If we add more nodes to the graph and repeat this kind of
choice, we can create a graph with an exponential number of 1-history-constraint
travel and finding one that minimizes the cost is challenging. Surprisingly, we
show that it remains polynomial in the number of nodes and edges.

8 Q. Bramas et al.

3 Backward-cost Function Classes

The cost function f represents the cost of going back to the past. Intuitively,
it seems reasonable that the function is non-decreasing (travelers are charged
more it they go further back in time), however we demonstrate that such an
assumption is not necessary to enable travelers to derive optimal cost space-
time travel plans. As a matter of fact, the two necessary conditions we identify
to optimally solve the ODOC space-time travel planning problem are f to be
non-negative and that it attains its minimum (not just converge to it). These
conditions are shown to be sufficient by construction, thanks to the algorithm
presented in the next section (and Theorem 2). Due to space constrains, proofs
are omitted.

Definition 10. A cost function f is user optimizable if it is non-negative, and
it attains its minimum when restricted to any interval [C,∞), with C > 0. Let
UO be the set of user optimizable cost functions.

Theorem 1. If the cost function f is not in UO, then there exist connected
evolving graphs where no solution exists for the ODOC space-time travel planning
problem.

Proof. First, it is clear that if f(d) < 0 for some d ∈ N
∗, then we can construct

travels with arbitrarily small cost by repeatedly appending ((y, t), (y, t+d), (y, t))
to any travel arriving at node y at time t (i.e., by waiting for d rounds and going
back in time d rounds), rendering the problem unsolvable.

Now, let C ∈ N
∗ and f be a non-negative function that does not attain its

minimum when restricted to [C,∞). This implies that there exists an increas-
ing sequence (wi)i∈N of integers wi ≥ C, such that the sequence (f(wi))i∈N is
decreasing and converges towards the lower bound mC = inft≥C(f(t)) of f|[C,∞)

.
Consider a graph with two nodes x0 and x1 that are connected by a temporal
edge after time C and disconnected before. Since a travel from x0 to x1 arriving
at time 0 must contain a backward travel to the past of amplitude at least C,
its cost is at least equal to mC . Since mC is not attained, there is no travel with
cost exactly mC . Now, assume for the sake of contradiction that a cost-optimal
travel T to x1 arriving at time 0 has cost mC + ε with ε > 0. Then, we can
construct a travel with a smaller cost. Let iε such that f(wiε) < mC + ε (this
index exists because the sequence (f(wi))i∈N converges to mC).

Let T ′ = ((x0, 0), (x0, C), (x1, C), (x1, wiε), (x1, 0)). Then we have

cost(T ′) = f(wiε) < mC + ε = cost(T),

which contradicts the optimality of T .

We now present the set of user friendly cost functions that we use in the
sequel to ease proving optimization algorithms, as they allow simple solutions
to the ODOC problem (Lemma 1). We prove in Theorem 2 that we do not lose
generality since an algorithm solving the ODOC problem with user friendly cost
functions can be transformed easily to work with any user optimizable ones.

Offline Constrained Backward Time Travel Planning 9

Definition 11. A cost function f is user friendly if it is user optimizable, non-
decreasing, and sub-additive4. Let UF be the set of user friendly cost functions.

Lemma 1. If the cost function f is in UF and there exists a solution to the
ODOC space-time travel planning problem in an evolving graph G, then there
also exists a simple travel solution.

Proof. Let T be a solution to the ODOC space-time travel planning problem.
If there exists a node xi and two time instants t1 and t2, such that T = T1 ⊕
((xi, t1))⊕ T2 ⊕ ((xi, t2))⊕ T3, then we construct T ′ as follows

T ′ = T1 ⊕ ((xi, t1), (xi, t2))⊕ T3

and we show that cost(T ′) ≤ cost(T). Indeed, it is enough to show (thanks to
Remark 1) that

cost(((xi, t1), (xi, t2))) ≤ cost(T2).

By definition cost(((xi, t1), (xi, t2))) = f(t1 − t2). If t1 < t2, then the cost is
null by convention and the Lemma is proved. Otherwise t1 > t2. On the right
hand side, we have:

cost(T2) =

k∑

i=1

f(di)

where d1, d2, . . . , dk is the sequence of differences between the times appearing
in T2. Since T2 starts at time t1 and ends at time t2, then

∑k

i=1 di = t1 − t2.
Since the function is sub-additive and increasing, we obtain:

f(t1 − t2) <

k∑

i=1

f(di)

By repeating the same procedure, we construct a time-travel with the same
destination and same backward-cost as T but that does not contain two occur-
rences of the same node, except if they are consecutive.

Theorem 2. If an algorithm A solves the optimal cost space-time travel plan-
ning problem for any cost function in UF , then there exists an algorithm A′

solving the same problem with any f in UO.

Proof. We consider an algorithm A as stated. Let f be an arbitrary cost function
in UO, that is, f is non-negative, and always attains its minimum.

From f, we now construct a cost function finc as follows:

finc(t) = min
j≥t

(f(j))

4 sub-additive means that for all a, b ∈ N, f(a+ b) ≤ f(a) + f(b)

10 Q. Bramas et al.

By construction, finc is non-decreasing. Moreover, since f is in UO, it always
attains its minimum, and we have:

∀d, ∃dm such that finc(d) = f(dm). (1)

Then, we construct f̃ as follows:

f̃(t) = min
a∈α(t)

(
∑

ai∈a

finc(ai)

)

where α(t) is the set of all the non-negative sequences that sum to t. Now, f̃ is

sub-additive by construction, hence f̃ ∈ UF . Since α(t) is finite, the minimum is
attained.

Also, ∀t ≥ 1, f̃(t) ≤ f(t), so that for any travel, its backward cost with respect

to f is at least equal to its backward cost with respect to f̃.
Let G be a dynamic graph. Our goal is to construct an algorithm A′ finding a

cost-optimal (with respect to f) space-time travel in G. The algorithm A′ works

as follows. Let T̃ be an optimal solution found by algorithm A on G assuming
function f̃ is used. A′ now constructs, from T̃ , a time-travel T that is a cost-
optimal (with respect to f) on G.

The travel T is constructed from T̃ by replacing any sub-space-time travel
((xi, ti), (xi, ti− t)), with t ≥ 0, by the following sub space-time travel: ((xi, ti−

a1), (xi, ti − a1 − a2), . . . , (xi, ti −
∑k

j=1 aj)) satisfying:

a ∈ α(t) ∧ f̃(t) =

length of a∑

j=1

finc(aj)

Then, each ((u, t), (u, t − d)), with d ≥ 0, is replaced by ((u, t), (u, t − d +
dm), (u, t− d)) such that:

dm ≥ d ∧ finc(dm) = f(d)

We know that dm exists thanks to Equation 1. The space-time travel T uses
the same temporal edges as T̃ , so it is well defined. Moreover, by construction
f(T) = f̃(T̃), and T is optimal with respect to f because the backward-cost of a

travel with respect to f is at least equal to its backward-cost with respect to f̃, as
observed earlier. Hence, if a better solution exists for f, it is also a solution with
the same, or smaller, cost with f̃, contradicting the optimality of T̃ . The above
procedure defines an algorithm, based on A, that solves the ODOC problem with
function f.

4 Offline C-cost-constrained ODOC Algorithm

In this section, we present Algorithm 1 that solves the C-cost-constrained ODOC
problem in time polynomial in the number of edges. More precisely, since the

Offline Constrained Backward Time Travel Planning 11

Algorithm 1: Offline C-cost-constrained ODOC Algorithm (input:
G, f, C, src, dst)

/* nodeCost[u,t] stores the current best cost of travels from node

src to node u arriving at time t. minCost[u] stores a pair (c, t)
where c is the current known minimum cost of a travel towards u,
and t the smallest time where such travel arrives. pred[u, t]
stores the suffix of an optimal travel to u arriving at t. */

1 ∀u ∈ V,∀t, nodeCost[u, t] =∞ minCost[u] = (∞,∞);
2 nodeCost[src, 0]← 0; done← ∅;
3 while ∃(u, t) /∈ done such that nodeCost[u, t] <∞ do

4 (u, t)← argmin(u,t)/∈done
(nodeCost[u, t]) ;

5 done← done ∪ {(u, t)};
6 c← nodeCost[u, t];
7 for each neighbor v of u do

8 let tfuture the smallest time after (or equal to) t where edge
((u, v), tfuture) exists;

9 let (cmin, tmin) = minCost[v];
10 if nodeCost[v, tfuture] > c and (c < cmin or tfuture < tmin) then
11 nodeCost[v, tfuture]← c;
12 pred[v, tfuture]← ((u, t), (u, tfuture), (v, tfuture));
13 if (c, tfuture) <lexico minCost[v] then minCost[v]← (c, tfuture) ;

14 for each tpast such that (u, v) ∈ Etpast do

15 let cpast = c+ f(t− tpast);
16 if cpast ≤ C and nodeCost[v, tpast] > cpast then

17 nodeCost[v, tpast]← cpast ;
18 pred[v, tpast]← ((u, t), (u, tpast), (v, tpast));

19 let tmin be the minimum time instant such that ∃t,
nodeCost[dst , t] + f(t− tmin) ≤ C;

20 if tmin exists then return ExtractTimeTravel(dst , tmin, nodeCost, pred);
21 else return ⊥ ;

number of edges can be infinite, we only consider edges occurring before a certain
travel (see the end of the section for a more precise description of the complexity).
Algorithm 1 is different from existing shortest path algorithms because we need
to efficiently take into account the cost and the delay of travels. It is well-known
that constrained shortest path algorithms are exponential when considering two
additive metrics [15] but surprisingly, our algorithm is polynomial by using the
specificity of the time travel. Our algorithm works as follows. At each iteration,
we extract the minimum cost to reach a particular node at a particular time and
we extend travels from there by updating the best-known cost of the next node.
We reach the next nodes either by using the next temporal edge that exists in
the future (we prove that considering only the next future edge is enough) or
using each of the past temporal edge.

12 Q. Bramas et al.

We first prove that our algorithm terminates, even if the graph is infinite and
if there is no solution.

Lemma 2. Algorithm 1 always terminates.

Proof. Assume for the sake of contradiction that it does not terminates. First,
we observe that, for any u ∈ V , minCost[u] is non-increasing (using the lex-
icographical order), so it must reach a minimum value (cu,min, tu,min), which
represent, for a node u, the minimum cost a travel towards u can have and the
minimum time such a travel can arrive. Moreover, the cost associated with a
pair (u, t) extracted in Line 4 is non-decreasing (because we always extract a
pair with minimum cost), so either this cost reach a maximum or tends to in-
finity. In the former case, let cmax be that maximum i.e., after some time, every
time a pair (u, t) is extracted, nodeCost[u, t] = cmax. Since a pair is never ex-
tracted twice, pairs are extracted with arbitrarily large value t. Some, at some
point in the execution, for every pair (u, t) extracted, we have t > tu,min. More-
over, cmax ≥ cu,min. So, every time a pair is extracted, condition Line 10 is false.
Hence, cmax is not added into nodeCost anymore, which contradicts the fact
that cmax is associated with each extracted pair after some time. So the latter
case occurs i.e., the cost associated with extracted pairs tends to infinity. After
some time, this cost is greater than any cu,min. Again, since a pair is never ex-
tracted twice, pairs are extracted with arbitrarily large value t. Some, at some
point in the execution, for every pair (u, t) extracted, we have t > tu,min, and
the condition Line 10 is always false. Hence, from there, every time a value is
added into nodeCost, it is according to Line 17, so the associated time smaller
than the time extracted, which contradicts the fact that arbitrarily large value
t are added to nodeCost.

We now prove the correctness of our algorithm, starting with the main prop-
erty we then use to construct a solution. Let δC be the function that returns, for
each pair (u, t) where u is a node and t a time, the best backward-cost smaller
or equal to C, from src to u, for travels arriving at time t.

Lemma 3. When a pair (u, t) is extracted from nodeCost at line 4, then

δC(u, t) = nodeCost[u, t]

Proof. Assume for the sake of contradiction that this is not true, and let (u, t) be
the first tuple extracted such that the property is false. Let cu,t = nodeCost[u, t].
Let T be a C-cost-constrained backward-cost-optimal travel to u arriving at time
t (hence cost(T) < cu,t by assumption).

Let T ′ be the longest prefix of T , to (x, t′) (i.e., such that T = T ′ ⊕ (x, t′)⊕
T ′′, for some T ′′), such that (x, t′) was extracted from nodeCost and satisfies
δC(x, t

′) = nodeCost[x, t′]. Now, T ′ is well defined because the first element
in T is (src, 0) and, by Line 2, (src, 0) is the first extracted pair, and satisfies
nodeCost[src, 0] = 0 = δC(src, 0). Hence, prefix ((src, 0)) satisfies the property,
so the longest of such prefixes exists. Observe that T ′, resp. T ′′, ends, resp. starts,
with (x, t′), by the definition of travel concatenation.

Offline Constrained Backward Time Travel Planning 13

When (x, t′) is extracted from nodeCost, it is extended to the next future
edge (Lines 8 to 11), and all past edges (Lines 14 to 17). T ′′ starts either (a) with
((x, t′), (x, ta), (y, ta)), with ta < t′, (b) with ((x, t′), (x, ta), (y, ta)) with ta > t′,
or (c) with ((x, t′), (y, t′)), where y ∈ N(x).

In case (a), this means that the temporal edge ((x, y), ta) exists, hence, by
Line 17, we know that nodeCost[y, ta] ≤ nodeCost[x, t′] + f(t′ − ta). However,
since T ′ is a sub-travel, cost(T ′) = δC(x, t

′) = nodeCost[x, t′], hence

nodeCost[y, ta] ≤ cost(T ′ ⊕ ((x, t′), (x, ta), (y, ta))) = δC(y, ta),

and (y, ta) must have been extracted before (u, t), otherwise

δC(u, t) < nodeCost[y, t] ≤ nodeCost[y, ta] = δC(y, ta)

which is a contradiction (a sub-travel of a cost-optimal travel cannot have a
greater cost, see Property 1). So, T ′ ⊕ ((x, t′), (x, ta), (y, ta)) is a longer prefix of
T with the same property as T ′, which contradicts the definition of T ′.

In case (b), this means that the temporal edge ((x, y), ta) exists, hence,
by Line 11, we know that nodeCost[y, ta] ≤ nodeCost[x, t′]. Again, we have
cost(T ′) = δC(x, t

′) = nodeCost[x, t′], hence

nodeCost[y, ta] ≤ cost(T ′ ⊕ ((x, t′), (x, ta), (y, ta))) = δC(y, ta),

which contradicts the definition of T ′.
In case (c), this means that the edge ((x, y), t′) exists, which implies, using

a similar argument, a contradiction.

The previous lemma says that nodeCost contains correct information about
the cost to reach a node, but actually, it does not contain all the informa-
tion. Indeed, a node u can be reachable by a travel at a given time t and still
nodeCost[u, t] = ∞. This fact helps our algorithm to be efficient, as it does not
compute all the optimal costs for each possible time (in this case, the complexity
would depend on the duration of the graph, which could be much higher than the
number of edges). Fortunately, we now prove that we can still find all existing
travel using nodeCost.

Lemma 4. For all u ∈ V , t ∈ N, there exists a C-cost-constrained travel T
from src to u arriving at time t, if and only if there exists t′ ∈ N such that
nodeCost[u, t′] + f(t′ − t) ≤ C.

Theorem 3. If the cost function f is in UF , Algorithm 1 outputs a travel T if
and only if T is a solution of the C-cost-constrained ODOC problem.

Let us now analyze the complexity of Algorithm 1. We assume that retrieving
the next or previous edge after or before a given time takes O(1) time. For
example, the graph can be stored as a dictionary that maps each node to an
array that maps each time to the current, previous, and next temporal edges.

14 Q. Bramas et al.

This array can be made sparser with low complexity overhead to save space if
few edges occur per time-instant.

Since each temporal edge is extracted from nodeCost at most once and the
inner for loop iterates over a subset of edges, the time complexity is polynomial
in the number of temporal edges. We must also consider the time to extract the
minimum from nodeCost, which is also polynomial. If there are an infinite num-
ber of temporal edges5, Lemma 2 shows that our algorithm always terminates,
even if no solution exists. Therefore, its complexity is polynomial in the size of
the finite subset of temporal edges extracted from nodeCost.

Let E be the set of temporal edges ((u, v), t) such that (u, t) or (v, t) is
extracted in Line 4 of our algorithm during its execution.

Theorem 4. If the cost function f is in UF , then Algorithm 1 terminates in
O(|E|2).

5 Offline H-history-constrained ODOC Algorithm

Section 4 made the assumption that a given agent was able to go back to any
previous snapshot of the network. However, this hypothesis might not hold as
the difficulty to go back in time may depend on how far in the future we already
reach. Hence, we consider in this section that H denotes the maximum number of
time instants one agent can travel back to. In more detail, once an agent reaches
time instant t, it cannot go back to t′ < t−H, even after multiple jumps.

In this section, it is important to notice that the capability of BTT

devices does not depend on the time when the agent uses it but rather

on the largest time reached by the agent.

We present Algorithm 2 that solve the H-history-constrained ODOC prob-
lem. The algorithm uses dynamic programming to store intermediary results. At
each iteration, we update the optimal cost based on the best cost of previous
nodes. For each node xi and time t we need to store the best cost depending on
the maximum time reached by the agent.

Theorem 5. If the cost function f is in UF , then Algorithm 2 solves the H-
history-constrained ODOC problem and has O(n2H(tmin +H)) complexity, with
tmin the delay of a solution.

6 Conclusion

We presented the first solutions to the optimal delay optimal cost space-time
constrained travel planning problem in dynamic networks, and demonstrated
that the problem can be solved in polynomial time, even in the case when back-
ward time jumps can be made up to a constant, for any sensible pricing policy.
It would be interesting to investigate the online version of the problem, when
the future of the evolving graph is unknown to the algorithm.

5 An evolving graph with an infinite number of edges can exist in practice even with
bounded memory, e.g., when the graph is periodic.

Offline Constrained Backward Time Travel Planning 15

Algorithm 2: Offline H-history-constrained ODOC Algorithm

/* c[i, t− h, t] stores the cost of a cost optimal travel to node xi,

arriving before or at time t− h, that is H-history-constrained,
and never reaches a time instant greater than t.
pred[u, t− h, t] stores the suffix of an optimal travel to u
arriving at t− h that never reaches a time greater than t. */

1 c[∗]←∞; c[src, ∗]← 0 pred[∗]← ⊥;
2 tmax ← upper bound on the time reached by a cost-optimal travel to dst ;
3 for t = 0, 1, 2, . . . , tmax do

/* for simplicity, we assume c[u, t− h, t] =∞ if t− h < 0 */

4 for u ∈ V do

5 c[u, t− h, t]← min (c[u, t− h, t− 1], c[u, t− h− 1, t− 1]);

6 repeat |V | times

7 for u ∈ V do

8 for h = H,H− 1, . . . , 0 do

9 m← min
t′∈[t−H,t]
(u,v)∈Et′

(

c[v, t′, t] + f(t′ − (t− h))
)

;

10 if c[u, t− h, t] < m then

11 c[u, t− h, t]← m;
12 pred[u, t− h, t]← (v, t′) (with the corresponding min

arguments);

13 if the minimum time instant tmin such that c[dst , tmin, tmin +H] <∞
exists then

14 return ExtractHistoryConstrainedTravel(dst , tmin, tmin +H, c);

15 return ⊥;

References

1. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks. Int. J. Found. Comput. Sci. 26(4), 499–522 (2015),
https://doi.org/10.1142/S0129054115500288

2. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distributed Syst. 27(5), 387–408
(2012), https://doi.org/10.1080/17445760.2012.668546

3. Casteigts, A., Himmel, A., Molter, H., Zschoche, P.: Finding temporal
paths under waiting time constraints. Algorithmica 83(9), 2754–2802 (2021),
https://doi.org/10.1007/s00453-021-00831-w

4. Casteigts, A., Peters, J.G., Schoeters, J.: Temporal cliques ad-
mit sparse spanners. J. Comput. Syst. Sci. 121, 1–17 (2021),
https://doi.org/10.1016/j.jcss.2021.04.004

5. Chen, S., Nahrstedt, K.: An overview of qos routing for the next generation high-
speed networks: Problems and solutions. Network, IEEE 12, 64 – 79 (12 1998).
https://doi.org/10.1109/65.752646

6. Ferreira, A.: On models and algorithms for dynamic communication networks: The
case for evolving graphs. In: Quatrièmes Rencontres Francophones sur les Aspects

https://doi.org/10.1142/S0129054115500288
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1016/j.jcss.2021.04.004
https://doi.org/10.1109/65.752646

16 Q. Bramas et al.

Algorithmiques des Télécommunications (ALGOTEL 2002). pp. 155–161. INRIA
Press, Mèze, France (May 2002)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA (1990)

8. Garroppo, R.G., Giordano, S., Tavanti, L.: A survey on multi-constrained opti-
mal path computation: Exact and approximate algorithms. Computer Networks
54(17), 3081–3107 (Dec 2010). https://doi.org/10.1016/j.comnet.2010.05.017

9. Guck, J.W., Van Bemten, A., Reisslein, M., Kellerer, W.: Unicast qos rout-
ing algorithms for sdn: A comprehensive survey and performance evalu-
ation. IEEE Communications Surveys & Tutorials 20(1), 388–415 (2018).
https://doi.org/10.1109/COMST.2017.2749760

10. Luna, G.A.D., Flocchini, P., Prencipe, G., Santoro, N.: Black hole search in dy-
namic rings. In: 41st IEEE International Conference on Distributed Computing
Systems, ICDCS 2021, Washington DC, USA, July 7-10, 2021. pp. 987–997. IEEE
(2021), https://doi.org/10.1109/ICDCS51616.2021.00098

11. Pal, G.: The time machine (1960)
12. Russo, A., Russo, J.: Avengers: Endgame (2019)
13. Thulasiraman, K., Arumugam, S., Brandstädt, A., Nishizeki, T.: Handbook of

graph theory, combinatorial optimization, and algorithms (2016)
14. Villacis-Llobet, J., Bui-Xuan, B., Potop-Butucaru, M.: Foremost non-stop

journey arrival in linear time. In: Parter, M. (ed.) Structural Infor-
mation and Communication Complexity - 29th International Colloquium,
SIROCCO 2022, Paderborn, Germany, June 27-29, 2022, Proceedings. Lec-
ture Notes in Computer Science, vol. 13298, pp. 283–301. Springer (2022),
https://doi.org/10.1007/978-3-031-09993-9_16

15. Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia ap-
plications. IEEE Journal on Selected Areas in Communications 14(7), 1228–1234
(Sep 1996). https://doi.org/10.1109/49.536364

16. Zemeckis, R.: Back to the future (1985)

https://doi.org/10.1016/j.comnet.2010.05.017
https://doi.org/10.1109/COMST.2017.2749760
https://doi.org/10.1109/ICDCS51616.2021.00098
https://doi.org/10.1007/978-3-031-09993-9_16
https://doi.org/10.1109/49.536364

	Offline Constrained Backward Time Travel Planning

