
HAL Id: hal-03655239
https://hal.science/hal-03655239v1

Preprint submitted on 3 May 2022 (v1), last revised 14 Dec 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained Backward Time Travel Planning is in P
Quentin Bramas, Jean-Romain Luttringer, Sébastien Tixeuil

To cite this version:
Quentin Bramas, Jean-Romain Luttringer, Sébastien Tixeuil. Constrained Backward Time Travel
Planning is in P. 2022. �hal-03655239v1�

https://hal.science/hal-03655239v1
https://hal.archives-ouvertes.fr

Constrained Backward Time Travel Planning is in P

Quentin Bramas1 Jean-Romain Luttringer1 Sébastien Tixeuil2

1ICUBE, Strasbourg University, Strasbourg, France
2Sorbonne University, CNRS, LIP6, Paris, France

Abstract

We consider transportation networks that are modeled by dynamic graphs, and introduce the pos-
sibility for traveling agents to use Backward Time-Travel (BTT) devices at any node to go back in time
(to some extent, and with some appropriate fee) before resuming their trip. We focus on dynamic line
graphs.

In more detail, we propose exact algorithms to compute travel plans with constraints on the BTT
cost or on how far back in time you can go, while minimizing travel delay (that is, the time difference
between the arrival instant and the starting instant), in polynomial time. We study the impact of the
BTT devices pricing policies on the computation process of those plans considering travel delay and
cost, and provide necessary properties that pricing policies should satisfy to enable to compute such
plans. Finally, we provide an optimal online algorithm for the unconstrained problem when the cost
function is the identity.

1 Introduction

Backward time travel (BTT) (that is, the ability to go back in time) enables various applications, such as
increasing the ratio of sunny days when visiting Brittany for vacation, and allowing researchers to avoid
submitting papers to conferences that will not accept them (therefore boosting their productivity and
self-esteem). In this paper, we consider the application of BTT devices to transportation networks. In
particular we focus on the ability to travel from point A to point B with minimal delay (that is, minimizing
the time difference between arrival and start instants), taking into account meaningful constraints, such
as the cost induced by BTT devices, or their span (how far back in time you are allowed to go).

To this paper, BTT was mostly envisioned in unrealistic settings (with respect to the cost associated
to time travel or its span). For example, the AE model [11] considers that a single cost unit permits
to travel arbitrarily in both space and time, trivializing the space-time travel problem entirely. Slightly
more realistic models such as TM [10] and BTTF [13] consider devices that either: (i) only permit time
travel [10] (but remain at the same position), or(ii) permit either time travel or space travel, but not
both at the same time [13]. However, the cost involved is either null [10], or single cost unit per time
travel [13]. This paper is the first to discuss BTT in a realistic, cost-aware, span-aware context, that
implies efficiently using BTT devices within a transportation system (from a simultaneous delay and cost
point of view), and the computation of the corresponding multi-modal paths.

More precisely, in this paper, we address the problem of space-time travel planning, taking into account
both the travel delay of the itinerary and the cost policy of BTT device providers. The context we consider
is that of transportation systems, where BTT devices are always available to the agents traveling. Using
each BTT device has nevertheless a cost, decided by the BTT device provider, and may depend on the
span of the backward time jump. Although BTT devices are always active, the ability to go from one
location to another (that is, from one BTT device to another) varies across time. We consider that this
ability is conveniently modeled by a dynamic graph, whose nodes represent BTT devices, and whose edges
represent the possibility to instantly go from one BTT device to another. We consider that agents first
fix their itinerary (that is, the list of BTT devices they plan to visit to reach their destination) and that

1

their itinerary is simple (a given BTT device occurs only once in the list). Give an itinerary, we aim at
computing travel plans, from one BTT device to another (the closest to the agent’s actual destination),
considering not only travel delay and induced cost, but also schedule availability and common limitations
of BTT devices.

In the following, we study the feasibility of finding such travel plans, depending on the pricing policy.
It turns out that when the schedule of connections is available, very loose conditions on the pricing policy
enable to devise optimal algorithms (with respect to the travel delay and induced cost) in polynomial
time, given a cost constraint for the agents, or a span constraint for the BTT devices. Furthermore,
when the schedule of the transportation system is unavailable, we propose an online algorithm solving
the same problem with an optimal competitive ratio. We hope our study will help future BTT device
providers to clarify their price policy, and space-time travelers to maximize their travel experience without
compromising their wealth.

Related Work. Space-Time routing has been studied, but assuming only forward time travel, i.e.,
waiting, is available. The idea of using dynamic graphs to model transportation network was used by
many studies (see e.g. Casteigts et al.[2] and references herein), leading to recently revisit popular problems
previously studied in static graphs [1, 4, 9]. The closest work in this research path is due to Casteigts et
al [3], who study the possibility of discovering a temporal path between two nodes in a dynamic network
with a waiting time constraint: at each step, the traveling agent cannot wait more than c time instants,
where c is a given constant. As previously mentioned, this line of work only considers forward time travel:
a temporal path cannot go back in time.

Constrained-shortest-paths computation problems have been extensively studied in the context of
static graphs [5]. Although these problems may be NP-Hard even when considering a single metric, the
ones considering two additive metrics (commonly, the delay and a cost) gained a lot of traction over the
years due to their practical relevance, the most common use-case being computer networks [7, 8]. In this
context, each edge is characterized by a weight vector, comprising both cost and delay. Path computa-
tion algorithms thus have to maintain and explore all non-comparable paths, whose number may grow
exponentially with respect to the size of the network. To avoid a worst-case exponential complexity, most
practical algorithms rely on either approximation schemes [12] or heuristics. However, these contribu-
tions do not study multi-criteria path computation problems within a time travel context. Conversely,
we study and provide results regarding the most relevant time-traveling problems while considering the
peculiarities of this context (in particular, the properties of the cost function). In addition, we show that
most of these problems can be solved optimally in polynomial-time.

Contributions. In this paper, we provide the following contributions:

• An in-depth analysis of the impact of the BTT device providers pricing policies on the computation
of low-latency and low-cost paths. In particular, we show that few features are required to ensure
that the efficient computation of such paths remains possible.

• Two exact polynomial algorithms able to compute travels with smallest delay to a given destination
and minimizing the cost of traveling back in time. The first algorithm also supports the addition of
a constraint on the backward cost of the solution. The other one supports a constraint on how far
back in the past one can go at each given time instant.

• An online algorithm with optimal competitive ratio able to compute a travel with lowest latency
and having a cost of at most two times the optimal cost.

Our algorithms assume the footprint of the graph is a line.

2

2 Model

In this section, we define the models and notations used throughout this paper, before formalizing the
aforementioned problems.

We represent the network as an evolving graph, as introduced by Ferreira [6]: a graph-centric view
of the network that maps a dynamic graph as a sequence of static graphs. The footprint of the dynamic
graph (that includes all nodes and edges that appear at least once during the lifetime of the dynamic
graph), is fixed. Furthermore, we assume that the set of nodes is fixed over time, while the set of edges
evolves.

More precisely, an evolving graph G is a pair (V, (Et)t∈N), where V denotes the set of vertices, N is the
set of time instants, and for each t ∈ N, Et denotes the set of edges that appears at time t. The snapshot
of G at time t is the static graph G(t) = (V,Et), which corresponds to the state, supposedly fixed, of the
network in the time interval [t, t+1). The footprint F(G) of G is the static graph corresponding the union
of all its snapshots, F(G) =

(
V,
⋃

t∈NEt

)
. We say ((u, v), t) is a temporal edge of graph G if (u, v) ∈ Et.

Space-time Travel. We assume that at each time instant, an agent can travel along any number of
adjacent consecutive communication links. However, the graph may not be connected at each time instant,
hence it may be that the only way to reach a particular destination node is to travel forward (i.e., wait) or
backward in time, to reach a time instant where an adjacent communication links exists. In more details,
an agent travels from a node s to a node d using a space-time travel (or simply travel when it is clear
from the context).

Definition 1. A space-time travel is a sequence ((u0, t0), (u1, t1), . . . , (uk, tk)) such that

• ∀i ∈ {0, . . . k}, ui ∈ V is a node and ti ∈ N is a time instant,

• ∀i ∈ {0, . . . k − 1}, if ui 6= ui+1, then ti = ti+1 and (ui, ui+1) ∈ Eti i.e., there is a temporal edge
between ui and ui+1 at time ti.

By extension, the footprint of a travel is the static graph containing all edges (and their adjacent
nodes) appearing in the travel. Now, the itinerary of a travel ((u0, t0), (u1, t1), . . . , (uk, tk)) is its projection
(u0, u1, . . . , uk) on nodes, while its schedule is its projection (t0, t1, . . . , tk) on time instants.

Definition 2. A travel ((u0, t0), (u1, t1), . . . , (uk, tk)) is simple if for all i ∈ {2, . . . , k} and j ∈ {0, . . . , i−
2}, we have ui 6= uj .

Intuitively, a travel is simple if its footprint is a line (i.e., a simple path) and contains at most one
time travel per node (as a consequence, no node appears three times consecutively in a simple travel).

Definition 3. The delay of a travel T = ((u0, t0), (u1, t1), . . . , (uk, tk)), denoted delay(T) is defined as
tk − t0.

The Backward cost of a travel.

Definition 4. The backward-cost is the cost of going to the past. The backward-cost function f : N∗ → R
+

returns, for each δ ∈ N, the backward-cost f(δ) of traveling δ time instants to the past. As we assume that
there is no cost associated to forward time travel (that is, waiting), we extend f to Z by setting f(−δ) = 0,
for all δ ∈ N. In particular, the backward-cost of traveling 0 time instants in the past is zero. When it is
clear from context, the backward-cost function is simply called the cost function.

Definition 5. The backward-cost (or simply cost) of a travel T = ((u0, t0), (u1, t1), . . . , (uk, tk)), denoted
cost(T) is defined as follows:

cost(T) =

k−1∑

i=0

f(ti − ti+1)

3

Definition 6. Let T1 = ((u0, t0), (u1, t1), . . . , (uk, tk)) and T2 = ((u′0, t
′
0), (u

′
1, t

′
1), . . . , (u

′
k′ , t

′
k′)) be two

travels. If (uk, tk) = (u′0, t
′
0), then the concatenated travel T1 ⊕ T2 as follows:

T1 ⊕ T2 = ((u0, t0), (u1, t1), . . . , (uk, tk), (u
′
1, t

′
1), . . . , (u

′
k′ , t

′
k′))

Remark 1. One can easily prove that cost(T1⊕T2) = cost(T1)+cost (T2). In the following, we sometimes
decompose a travel highlighting an intermediate node: T = T1 ⊕ ((ui, ti)) ⊕ T2. Following the definition,
this means that T1 ends with (ui, ti), and T2 starts with (ui, ti), so we also have T = T1 ⊕ T2 and
cost(T) = cost(T1) + cost(T2).

Our notion of space-time travel differs from the classical notion of journey found in literature related
to dynamic graphs [6] as we do not assume time instants monotonically increase along a travel. As a
consequence, some evolving graphs may not allow a journey from A to B yet allows one or several travels
from A to B (See Figure 2).

Problem specification. We now present the problems that we aim to solve in this paper. First, we
want to arrive at the destination as early as possible, i.e., finding a time travel that minimizes the delay.
Among such travels, we want to find one that minimizes the backward cost.

Definition 7. The Optimal Delay Optimal Cost space-time travel planning (ODOC) problem consists,
given a cost function f, an evolving graph G = (V, (Et)t∈N), and two nodes x and y in V , in computing,
among all travels starting at node x at time 0, arriving at node y, and minimizing the travel delay, a
travel with minimum cost. A solution to the ODOC problem is called an ODOC travel.

Definition 8. The C-constrained ODOC problem consists in finding a ODOC travel with cost at most
C ≥ 0.

Definition 9. The H-history-constrained ODOC problem consists in finding a ODOC travel T satisfying,
∀u, u′, t, t′, if T = T1 ⊕ ((u, t)) ⊕ T2 ⊕ ((u′, t′))⊕ T3, then t′ ≥ t−H.

In the remaining, we consider evolving graphs whose footprint is a line graph. Arbitrary topologies are
left for “future” work. Thus, we assume that the graph has n+ 1 nodes denoted x0, x1, . . . , xn, and that
the footprint of the graph is the line graph connecting xi with xi+1 for all i ∈ [0, n− 1]. The problem we
want to solve is to find a time travel from x0 to xn starting at time 0 that minimizes the travel delay and,
among such travels, that has minimal backward cost (either C-constrained or H-history-constrained).

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

3

4

5

6

7

time

Figure 1: Possible representation of an evolving
graph. Possible travels from x0 to x7 are shown
in red, green and blue. Note that the blue and
green travels require to send an agent to the past
(to a previous time instant).

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

time

Figure 2: Example of an evolving graph for which
there exists no journey, yet there exists several
travels from x0 to x7 (in blue and green).

4

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

3

time

Figure 3: Example of an evolving graph for which
there exist at least three travels from x0 to x7
with a cost constraint o 1 (assuming f : d 7→ d).
The blue travel has optimal delay.

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

3

time

Figure 4: Example of an evolving graph for which
there exist at least three travels from x0 to x7 with
a cost constraint of 3 (assuming f : d 7→ d2). The
blue and green travels have optimal delay. Among
the travels with optimal delay, the blue travel has
optimal cost (2).

Visual representation of space-time travels.. Since the footprint of the graph is a line, the associated
evolving graph can be seen as a partial grid mentioning for each time instant which edges of the line are
present. A possible visual representation of an evolving graph can be seen in Fig. 1. One can see
the evolution of the line topology (consisting of the nodes x0 to x7) over time through eight snapshots
performed from time instants 0 to 7. Several possible travels are shown in red, green and blue. The red
travel only makes use of forward time travel (that is, waiting) and is the earliest arriving travel in this
class (arriving at time 7). The green and blue travels both make use of backward time travel and arrive
at time 0, so they have minimal travel delay. Similarly, the red travel concatenated with ((x7, 7), (x7, 0))
(i.e., a backward travel to reach x7 at time 0) also has minimal travel delay. However, if we assume that
the cost function is the identity (f : d 7→ d) then the green travel has a backward cost of 3, the blue travel
has a backward cost of 4, and the concatenated red travel has a backward cost of 7. Adding constraints
yields more challenging issues: assuming f : d 7→ d and a maximal cost C of 1, at least three travels can be
envision for the evolving graph depicted in Figure 3, but find ding the 1-constrained travel that minimizes
the delay (that is, the blue travel) is not as straighforward in this case. Similarly, in Figure 2 we show two
H-history-constrained travels, with H = 1 (assuming f : d 7→ d). Here, clearly, the green travel is optimal
with a cost of 2 (the blue travel has cost 3). The choice made by the green travel to wait at node x2 one
time instant was a good because there is no need to go back at time 0 (that would be impossible after
node x2 for the green travel because of the 1-history-constraint). If we add more nodes to the graph and
repeat this kind of choice, we can create a graph with an exponential number of 1-history-constraint travel
and finding one that minimizes the cost is challenging. Surprisingly, we show that it remains polynomial
in the number of nodes and edges.

3 Backward-cost Function Classes

The cost function f represents the cost of going back to the past, according to the policy of the BTT
device provider. Intuitively, it seems reasonable that the function is non-decreasing (so that BTT providers
charge travelers more it they go further back in time), however we demonstrate that such a pricing policy
is not necessary to enable travelers to derive optimal cost space-time travel plans. As a matter of fact,
the two necessary conditions we identify to optimally solve the space-time travel planning problem are
f to be non-negative (which also allows to prevent the bankruptcy of BTT device providers) and that it
attains its minimum (not just converge to it). Due to space constrains, some proofs are moved to the
appendix.

Definition 10. A cost function f is user optimizable if it is non-negative, and it attains its minimum
when restricted to any interval [C,∞), with C > 0. Let UO be the set of user optimizable cost functions.

5

Theorem 1. If the cost function f is not in UO, then there exist evolving graphs where no solution exists
for the optimal cost space-time travel planning problem.

Proof. First, it is clear that if f(d) < 0 for some d ∈ N
∗, then we can construct travels with arbitrarily

small cost by repeatedly appending ((y, t), (y, t+ d), (y, t)) to any travel arriving at node y at time t (i.e.,
by waiting for d rounds and going back in time d rounds), rendering the problem unsolvable.

Now, let C ∈ N
∗ and f be a non-negative function that does not attain its minimum when restricted

to [C,∞). This implies that there exists an increasing sequence (wi)i∈N of integers wi ≥ C, such that the
sequence (f(wi))i∈N is decreasing and converges towards the lower boundmC = mint≥C(f(t)) of f. Consider
a graph with two nodes x0 and x1 that are connected by a temporal edge at time C and disconnected at
other time instants. Since a travel from x0 to x1 arriving at time 0 must contain a backward travel to
the past of amplitude at least C, its cost is at least equal to mC . Since mC is not attained, there is no
travel with cost exactly mC . Now, assume for the sake of contradiction that a cost-optimal travel T to
x1 arriving at time 0 has cost mC + ε with ε > 0. Then, we can construct a travel with a smaller cost.
Let iε such that f(wiε) < mC + ε (this index exists because the sequence (f(wi))i∈N converges to mC).

Let T ′ = ((x0, 0), (x0, C), (x1, C), (x1, wiε), (x1, 0)). Then we have

cost(T ′) = f(wiε) < mC + ε = cost(T),

which contradicts the optimality of T .

We now present the set of user friendly cost functions that we use in the sequel to ease proving
optimization algorithms, as they allow simple solutions to the ODOC problem (Lemma 1). We prove
in Theorem 2 that we do not lose generality since an algorithm solving the ODOC problem with user
friendly cost functions can be transformed easily to work with any user optimizable ones.

Definition 11. A cost function f is user friendly if it is user optimizable, non-decreasing, and sub-
additive1. Let UF be the set of user friendly cost functions.

Lemma 1. If the cost function f is in UF , then there exists a simple travel solution to the optimal cost
space-time travel planning problem.

Proof. Let T be a solution to the optimal cost space-time travel planning problem (such a solution exists
since f is in UF , hence in UO). If there exists a node xi and two time instants t1 and t2, such that
T = T1 ⊕ ((xi, t1))⊕ T2 ⊕ ((xi, t2))⊕ T3, then we construct T ′ as follows

T ′ = T1 ⊕ ((xi, t1), (xi, t2))⊕ T3

and we show that cost(T ′) ≤ cost(T). Indeed, it is enough to show (thanks to Remark 1) that

cost(((xi, t1), (xi, t2))) ≤ cost(T2).

By definition cost(((xi, t1), (xi, t2))) = f(t1 − t2). If t1 < t2, then the cost is null by convention and
the Lemma is proved. Otherwise t1 > t2. On the right hand side, we have:

cost(T2) =
k∑

i=1

f(di)

where d1, d2, . . . , dk is the sequence of differences between the times appearing in T2. Since T2 starts at
time t1 and ends at time t2, then

∑k
i=1 di = t1− t2. Since the function is sub-additive and increasing, we

obtain:

f(t1 − t2) <

k∑

i=1

f(di)

1sub-additive means that for all a, b ∈ N, f(a+ b) ≤ f(a) + f(b)

6

By repeating the same procedure, we construct a time-travel with the same destination and same
backward-cost as T but that does not contain two occurrences of the same node, except if they are
consecutive.

Theorem 2. If an algorithm A solves the optimal cost space-time travel planning problem for any cost
function in UF , then there exists an algorithm A′ solving the same problem with any f in UO.

Proof. We consider an algorithm A as stated. Let f be an arbitrary cost function in UO, that is, f is
non-negative, and always attains its minimum.

From f, we now construct a cost function finc as follows:

finc(t) = min
j≥t

(f(j))

By construction, finc is non-decreasing. Moreover, since f is in UO, it always attains its minimum, and
we have:

∀d, ∃dm such that finc(d) = f(dm). (1)

Then, we construct f̃ as follows:

f̃(t) = min
a∈α(t)

(
∑

ai∈a

finc(ai)

)

where α(t) is the set of all the non-negative sequences that sum to t. Now, f̃ is sub-additive by construction,
hence f̃ ∈ UF . Since α(t) is finite, the minimum is attained.

Also, ∀t ≥ 1, f̃(t) ≤ f(t), so that for any travel, its backward cost with respect to f is at least equal to
its backward cost with respect to f̃.

Let G be a dynamic graph. Our goal is to find an optimal cost (with respect to f) space-time travel
plan in G. Let T̃ be an optimal solution found by algorithm A on G assuming function f̃ is used. We now
construct, from T̃ , a time-travel T that is a cost optimal (with respect to f) solution on G.

The travel T is constructed from T̃ by replacing any sub-space-time travel ((xi, ti), (xi, ti − t)), with
t ≥ 0, by the following sub space-time travel: ((xi, ti−a1), (xi, ti−a1−a2), . . . , (xi, ti−

∑k
j=1 aj)) satisfying:

a ∈ α(t) ∧ f̃(t) =

length of a∑

j=1

finc(aj)

Then, each ((u, t), (u, t − d)), with d ≥ 0, is replaced by ((u, t), (u, t − d+ dm), (u, t− d)) such that:

dm ≥ d ∧ finc(dm) = f(d)

We know that dm exists thanks to Equation 1. The space-time travel T uses the same temporal edges as
T̃ , so it is well defined. Moreover, by construction f(T) = f̃(T̃), and T is optimal with respect to f because
the backward-cost of a travel with respect to f is at least equal to its backward-cost with respect to f̃, as
observed earlier. Hence, if a better solution exists for f, it is also a solution with the same, or smaller,
cost with f̃, contradicting the optimality of T̃ . The above procedure defines an algorithm, based on A,
that solves the ODOC problem with function f.

4 Offline C-constrained ODOC Algorithm

In this section, we present Algorithm 1 that solves the C-constrained ODOC problem in time polynomial
in the number of edges. More precisely, since the number of edges can be infinite, we only consider
edges occurring before a certain travel (see the end of the section for a more precise description of the

7

complexity). Algorithm 1 has some similarities with the Dijkstra algorithm, but in our case, we need to
take into account the cost and the delay of travels. At each iteration, we extract the minimum cost to
reach a particular node at a particular time and we extend travels from there by updating the best-known
cost of the next node. We reach the next nodes either by using the next temporal edge that exists in the
future (we prove that considering only the next future edge is enough) or using one of the past temporal
edges. As a convention, we consider that graph G has n+ 1 nodes denoted x0, x1, . . . , xn.

Algorithm 1: Offline C-constrained ODOC Algorithm

/* nodeCost[i,t] stores the current best cost of travels to node xi arriving at time t */

1 ∀i, ∀t, nodeCost[i, t] =∞;
2 nodeCost[0, 0]← 0; done← ∅;
3 while ∃(i, t) /∈ done such that nodeCost[i, t] <∞ do

4 (i, t)← argmin(i,t)/∈done(nodeCost[i, t]) ;

5 done← done ∪ {(i, t)};
6 c← nodeCost[i, t];
7 let tfuture the smallest time after (or equal to) t where edge ((xi, xi+1), tfuture) exists;
8 if nodeCost[i+ 1, tfuture] > c then

9 nodeCost[i+ 1, tfuture]← c;
10 end

11 for each tpast such that (xi, xi+1) ∈ Etpast do

12 let cpast = c+ f(t− tpast)
13 if cpast ≤ C and nodeCost[i+ 1, tpast] > cpast then

14 nodeCost[i+ 1, tpast]← cpast ;
15 end

16 end

17 end

18 let tmin be the minimum time instant such that ∃t, nodeCost[n, t] + f(t− tmin) ≤ C;
19 if tmin exists then

20 return ExtractTimeTravel(n, tmin, nodeCost);
21 end

22 return ⊥

Algorithm ExtractTimeTravel: Extract a C-constrained ODOC travel to the given destina-
tion
input: i ∈ [0, n], t ∈ N, nodeCost

1 if i = 0 then

2 return ((x0, 0), (x0, t))
3 end

4 if nodeCost[i, t] =∞ then

5 Let t′ = argmint′∈N (nodeCost[i, t′] + f(t′ − t));
6 return ExtractTimeTravel(i, t′, nodeCost)⊕((xi, t

′), (xi, t))

7 end

8 Let t′ such that (xi−1, xi) ∈ Et′ and nodeCost[i− 1, t′] + f(t′ − t) = nodeCost[i, t]
/* t′ exists by construction of nodeCost. nodeCost[i, t] either equals to nodeCost[i− 1, t′] + f(t′ − t)

with some t′ > t (Line 9) or equals nodeCost[i− 1, t′] with some t′ < t (Line 14), hence f(t′ − t) = 0.

In both cases, edge ((xi−1, xi), t
′) exists. */

9 return ExtractTimeTravel(i− 1, t′, nodeCost)⊕((xi−1, t
′), (xi, t

′), (xi, t))

We first prove the main property satisfied by our algorithm that we then use to construct a solution.
Let δC be the function that returns, for each pair (x, t) where x is a node and t a time, the best backward-
cost smaller or equal to C, from x0 to x, for travels arriving at time t.

Lemma 2. When a pair (i, t) is extracted from nodeCost at line 4, then δC(xi, t) = nodeCost[i, t].

Proof. Assume for the sake of contradiction that this is not true, and let (i, t) be the first tuple extracted

8

such that the property is false. Let ci,t = nodeCost[i, t]. Let T be a C-constrained-backward-cost-optimal
travel to xi arriving at time t (hence cost(T) < ci,t by assumption).

Let T ′ be the longest prefix of T , to (xj , t
′) (i.e., such that T = T ′ ⊕ (xj , t

′) ⊕ T ′′, for some T ′′),
such that (j, t′) was extracted from nodeCost and satisfies δC(xj , t

′) = nodeCost[j, t′]. Now, T ′ is well
defined because the first element in T is (x0, 0) and, by Line 2, (0, 0) is the first extracted pair, and
satisfies nodeCost[0, 0] = 0 = δC(x0, 0). Hence, prefix ((x0, 0)) satisfies the property, so the longest of
such prefixes exists. Observe that T ′, resp. T ′′, ends, resp. starts, with (xj , t

′), by the definition of travel
concatenation.

When (j, t′) is extracted from nodeCost, it is extended to the next future edge (Lines 7 to 9), and all
past edges (Lines 11 to 14). T ′′ starts either (a) with ((xj , t

′), (xj , ta), (xj+1, ta)), with ta < t′, (b) with
((xj , t

′), (xj , ta), (xj+1, ta)) with ta > t′, or (c) with (xj , t
′), (xj+1, t

′)).
In case (a), this means that the edge ((xj , xj+1, ta) exists, hence, by Line 14, we know that nodeCost[j+

1, ta] ≤ nodeCost[j, t′] + f(t′ − ta). However, by induction hypothesis cost(T ′) = nodeCost[j, t′], hence

nodeCost[j + 1, ta] ≤ cost(T ′ ⊕ ((xj , t
′), (xj , ta), (xj+1, ta)))

and nodeCost[j+1, ta] ≤ C, which contradicts the definition of T ′. Indeed, T ′⊕((xj , t
′), (xj , ta), (xj+1, ta))

is a longer prefix of T with the same property as T ′.
In case (b), this means that the edge ((xj , xj+1, ta) exists, hence, by Line 9, we know that nodeCost[j+

1, ta] ≤ nodeCost[j, t′]. By assumption, we have cost(T ′) = nodeCost[j, t′], hence

nodeCost[j + 1, ta] ≤ cost(T ′ ⊕ ((xj , t
′), (xj , ta), (xj+1, ta)))

and nodeCost[j + 1, ta] ≤ C, which contradicts the definition of T ′.
In case (c), this means that the edge ((xj , xj+1), t

′) exists, which implies, using a similar argument,
a contradiction.

The previous lemma says that nodeCost contains correct information about the cost to reach a node,
but actually, it does not contain all the information. Indeed, a node xi can be reachable by a travel at
a given time t and still nodeCost[i, t] = ∞. This fact helps our algorithm to be efficient. We now prove
that we can still find all existing travel using nodeCost.

Lemma 3. For all i ∈ [0, n], t ∈ N, there exists a C-constrained travel T to xi arriving at time t, if and
only if there exists t′ ∈ N such that nodeCost[i, t′] + f(t′ − t) ≤ C.

Proof. We just need to prove the implication since the converse follows from the previous Lemma. Indeed,
if nodeCost[i, t′]+f(t′−t) ≤ C, then nodeCost[i, t′] is finite and is the optimal cost of C-constrained travels
to i arriving at time t′, so a C-constrained travel to xi arriving at time t exists.

The proof of the implication is done by induction on the pair (i, t) (in the lexicographic order). The
result is clearly true when i = 0 for any t. Now let i ∈ [1, n] and t ∈ N and assume the result true for any
pair (j, k) < (i, l). Assume for the sake of contradiction that there exists a C-constrained travel T to xi
arriving at time t such that

∀t′ ∈ N, nodeCost[i, t′] + f(t′ − t) > C. (2)

We can assume that T is simple and cost optimal. T does not arrive before time t otherwise the inductive
hypothesis implies directly a contradiction.

Hence T goes through, xi−1 at time ti−1 ≥ t:

T = T1 ⊕ ((xi−1, ti−1), (xi, ti−1), (xi, t))

By inductive hypothesis, there exists t′ ∈ N such that

nodeCost[i− 1, t′] + f(t′ − ti−1) ≤ C (3)

9

If t′ < ti−1, then, when the pair (i − 1, t′) was extracted from nodeCost (in Line 4), since an edge
exists between xi−1 and xi at time ti−1, then the variable tfuture is at most ti−1.

nodeCost[i− 1, t′]

By Lemma 2, the optimal cost of travels to node xi arriving at time tfuture is nodeCost[i, tfuture]. Hence
nodeCost[i, tfuture] ≤ cost(T ′) + f(ti−1 − tfuture). So we have, using the sub-additivity f,

nodeCost[i, tfuture] + f(tfuture − t) ≤ cost(T ′) + f(ti−1 − tfuture) + f(tfuture − t)

≤ cost(T ′) + f(ti−1 − t) = cost(T) ≤ C

which contradicts Property (2).
If t′ ≥ ti−1, then, when the pair (i − 1, t′) was extracted from nodeCost (in Line 4), since an edge

exists between xi−1 and xi at time ti−1, there is an iteration of the for loop where the variable tpast = ti−1

and we have
nodeCost[i, ti−1] = nodeCost[i− 1, t′] + f(t′ − ti−1) ≤ C

So nodeCost[i, ti−1] is finite so, using Lemma 2, nodeCost[i, ti−1] = cost(T ′). We can use this to have:

cost(T) = cost(T ′) + f(ti−1 − t) = nodeCost[i, ti−1] + f(ti−1 − t) ≤ C

which contradicts Property (2).

Now we show that ExtractTimeTravel is correct and return a solution to the problem, if it exists.

Lemma 4. Assuming nodeCost is constructed by Algorithm 1, then
ExtractTimeTravel(i, t, nodeCost) returns, if it exists, a travel with optimal cost to node xi arriving at
time t.

Proof. First recall that, by Lemma 2, for any pair (i, t), if nodeCost[i, t] < ∞, then nodeCost[i, t] is the
optimal cost of C-constrained travels arriving at node xi and at time t.

We first prove the Lemma assuming nodeCost[i, t] < ∞. By definition of t′ in Line 8 we know that
recursive call to ExtractTimeTravel also satisfy this property.

We want to show that the travel returned by ExtractTimeTravel(i, t, nodeCost) has cost nodeCost[i, t].
We prove this result by induction. If i = 0 the result is clear. Otherwise, we have by construction of
nodeCost:

nodeCost[i− 1, t′] + f(t′ − t) = nodeCost[i, t] (4)

for some t′. Indeed, nodeCost[i, t] is obtained from nodeCost[i − 1, t′] either by extension on Line 9 or
on Line 14 of Algorithm 1. Observe that in the former case t′ < t, but in this case f(t′ − t) = 0, so the
equation remains true.

Since nodeCost[i−1, t′] is finite, then, by induction hypothesis, ExtractTimeTravel(i−1, t′, nodeCost)
is a travel with optimal cost to xi−1 arriving at time t′.

Hence we have that the cost of the returned travel is in fact

cost(ExtractTimeTravel(i− 1, t′, nodeCost)⊕ ((xi−1, t
′), (xi, t

′), (xi, t)))

= nodeCost[i− 1, t′] + f(t′ − t)

This is equal to nodeCost[i, t], using Equation 4.
Now, assume nodeCost[i, t] = ∞. If a cost optimal C-constrained travel T exists to node xi arriving

at time t, then T must goes through a temporal edge ((xi−1, xi), t1) for some t1 ∈ N i.e.,

T = T1 ⊕ ((xi, t1), (xi, t))

10

and by construction nodeCost[i, t1] = cost(T1). So, when computing t′ in Line 5 we have

nodeCost[i, t′] + f(t′ − t) ≤ cost(T)

Then the recursive call of ExtractTimeTravel is made with (i, t′) so that the previous property holds
and the returned travel has the optimal cost.

Theorem 3. If the cost function f is in UF and Algorithm 1 outputs a travel T , then T is a solution of
the C-constrained ODOC problem.

Proof. By Lemma 3, tmin is the smallest time such that a travel exists to node xn. Then, using nodeCost,
we can easily construct in a backward manner, a solution using a ExtractTimeTravel procedure, as
proved by Lemma 4

We now consider the complexity of Algorithm 1. We assume that retrieving the next edge (resp. the
previous edge) that occurs after (resp. before) a given time is in O(1). For instance, the graph can be
stored as a dictionary that maps each node to an array mapping each time to the current, the previous,
and the next temporal edges (the array can be made sparser easily with low complexity overhead to gain
space if few edges occur per time-instant).

Since each temporal edge is extracted from the nodeCost at most once, and the inner for loop iterates
over a subset of the edges, the time complexity is clearly polynomial in the number of temporal edges
(we also have to consider the time to extract the min from nodeCost, which is polynomial). Moreover,
if there is an infinite number of temporal edges2, we show that our algorithm always terminates (even if
no solution exists), and that its complexity is polynomial in the size of a finite subset of edges that we
define next.

We start by defining the slow-travel to node xi, denoted slowT (xi) inductively as follows. slowT (xi)
is a simple travel from x0 arriving at node xi and passing through a temporal edge between xj−1 and xj
at time tsj (for 0 < j ≤ i) with:

ts0 = 0 ∧ tsj =

{
min({t | t ≥ tsj−1 ∧ (xj−1, xj) ∈ Et}) if the set is not empty
max({t | (xj−1, xj) ∈ Et}) otherwise

(5)

tsi is well defined because, if {t | t ≥ tsj−1 ∧ (xj−1, xj) ∈ Et} is empty, then the set {t | (xj−1, xj) ∈ Et}
is finite and the maximum exists (it is not empty because we assumed that the footprint is a line, so at
least one edge exists between any two consecutive nodes). Hence,

slowT (x0) = ((x0, 0)) ∧ slowT (xi) = slowT (xi−1)⊕ ((xi−1, t
s
i−1), (xi−1, t

s
i), (xi, t

s
i))

with tsj defined by Equation 5. Figures 5 and 6 illustrate the definition of slowT (xi) for two particular
infinite evolving graphs.

2an evolving graph with an infinite number of edges can exist in practice even with bounded memory, e.g. when the graph
is periodic.

11

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

3

4

5

6

7

time

Figure 5: Example of an infinite evolving graph
where all edges occur periodically (with different
periodicity patterns). The red travel corresponds
to slowT (x7).

x0 x1 x2 x3 x4 x5 x6 x7

space

0

1

2

3

4

5

6

7

time

Figure 6: Example of an infinite evolving graph
where edges (x0, x1), (x1, x2), (x2, x3), (x3, x4),
and (x5, x6) occur periodically, but where edges
(x4, x5) and (x6, x7) stop occurring after a while.
The red travel corresponds to slowT (x7).

We now show that if a solution exists to the ODOC problem, then one solution do not uses temporal
edges occurring after the slow -travel. Formally, let E be the set of temporal edges used by the slow -travel
or occurring before.

E =
⋃

i∈[1,n]

{((xi−1, xi), t) | (xi−1, xi) ∈ Et ∧ t ≤ tsi}

Lemma 5. Assuming the cost function is in UF , let T be a solution of the ODOC problem, then there
exists a travel T ′ that has a cost equal or smaller than the cost of T and such that its temporal edges are
in E. Moreover, if T is H-history constrained, then T ′ is too.

Proof. We show the result by induction. Assume the result is true for temporal edges up to node xi−1.
Let T be a solution of the ODOC problem with the desired property up to node xi−1, i.e., such that

T = T1 ⊕ ((xi−1, ti−1), (xi−1, ti), (xi, ti), (xi, ti+1))⊕ T2

where all temporal edges of T1 are in E and ((xi−1, xi), ti) /∈ E . We have that ti−1 ≤ tsi−1 and ti > tsi .
If ti ≤ tsi (which occurs only when tsi = max({t | (xj−1, xj) ∈ Et})), then T has the desired property

up to node xi (its temporal edges up to xi are in E and, obviously, its cost is not greater than the cost of
T).

Otherwise, tsi = min({t | t ≥ tsi−1 ∧ (xi−1, xi) ∈ Et}), which implies ti−1 ≤ tsi−1 ≤ tsi < ti so the
temporal edge of T between xi−1 and xi could occur at time tsi instead of ti without increasing the cost.
Formally, the following travel has its temporal edges in E up to node xi:

T ′ = T1 ⊕ ((xi−1, ti−1), (xi−1, t
s
i), (xi, t

s
i), (xi, ti+1))⊕ T2

Moreover

cost(T)− cost(T ′) = f(ti−1 − ti) + f(ti − ti+1)− f(ti−1 − tsi)− f(tsi − ti+1)

= f(ti − ti+1)− f(tsi − ti+1) ≥ 0

because ti−1 ≤ ti implies f(ti−1 − ti) = f(ti−1 − tsi) = 0 and tsi ≤ ti implies f(ti − ti+1) ≤ f(tsi − ti+1). So
T ′ has the desired property up to node xi. Moreover, if T is H-history-constrained, since ti−1 ≤ tsi ≤ ti,
then T ′ is too.

The base case being trivial (travels do not have temporal edges up to node x0 because x0 is the
departure node), then the results is true up to the last node xn.

12

Corollary 1. Assuming the cost function is in UF , if there is no solution to the ODOC problem having
all its temporal edges in E, then there is no solution to the ODOC problem.

Theorem 4. If the cost function f is in UF , then Algorithm 1 terminates in O(|E|2). If no solution is
found, then there is no solution to the ODOC problem.

Proof. When a pair (i, t) is extracted, we saw that a travel exists to xi arriving at time t with cost
nodeCost[i, t] and the aim in the following lines is to extend this travel with temporal edges to create
possibly optimal paths towards xi+1. One can see that at most one such temporal edge occurs at time t′

greater or equal to t. If t ≤ tsi (using the definition of tsi given in Equation 5), then clearly t′ ≤ tsi+1. By
induction, all the temporal edges that we consider and extract are in E . Moreover, when a pair (i, t) is
extracted, the inner for loop iterates over the temporal edges that occur before t, which is less than |E|
times. Retrieving the minimum from nodeCost is also in O(|E|). In the end, the complexity is O(|E|2).

Using Corollary 1, we know that if Algorithm 1 does not find a solution, then no solution exists.

5 Offline H-history-constrained ODOC Algorithm

Section 4 made the assumption that a given agent was able to go back to any previous snapshot of the
network. However, this hypothesis cannot hold with entry-level BTT devices (and even some mid-tier
devices), that are only able to send the agent back a given number of snapshots from a particular node,
due to cutting costs in a context of memory chip shortage. Hence, we consider in this section that H
denotes the maximum number of time instants one agent can travel back to. In more detail, once an
agent reaches time instant t, it cannot go back to time instants t′ < t−H, even after multiple jumps. In
this section, it is important to notice that the capability of BTT devices does not depend

on the time when the agent uses it but rather on the largest time reached by the agent.

Again, we consider that graph G has n+ 1 nodes denoted x0, x1, . . . , xn.
We present Algorithm 2 that solve the H-history-constrained ODOC problem. The algorithm uses

dynamic programming to store intermediary results. At each iteration, we update the optimal cost based
on the best cost of previous nodes. For each node xi and time t we need to store the best cost depending
on the maximum time reached by the agent.

Lemma 6. If the cost function f is in UF , then, in Algorithm 2, for any tuple (i, t, tM), if c[i, t−h, t] <∞,
then c[i, t − h, t] is the cost of an H-history-constrained cost optimal travel towards node xi, that arrives
before or at time instant t− h, and never reaches a time instant greater than t.

Proof. We show by induction that, at each iteration, c[i, t − h, t] is set to the cost of an H-history-
constrained cost optimal travel towards node xi, that arrives before or at time instant t − h, and never
reaches a time instant greater than t.

It is clear that if i = 0, regardless of t and h, the property is true, due to the initialization Line 1.
Now assume that the property is true for any tuple smaller than (i, t−h, t) (using the lexicographical

order). Assume for the sake of contradiction that there exists a backward-cost optimal travel T towards
node i, arriving before or at time t−h that is H-absolute-constrained, and never reaches a round greater
than t, such that cost(T) = c′ < c[i, t − h, t]. We now consider three cases, corresponding to the three
members appearing in the min function in Line 5, and show that each case implies a contradiction.

If T never reaches a time instant greater than t−1 (which implies in particular that t ≥ 1), then,
using the induction hypothesis on T , we have that c[i, t−h, t−1] ≤ c′. But by definition (Line 5), we also
have c[i, t−h, t] ≤ c[i, t−h, t−1], which is a contradiction (that would mean c[i, t−h, t] ≤ c′ < c[i, t−h, t]).

If ((xi−1, ti−1, (xi, ti−1), (xi, t−h)) is the end of T and ti−1 < t−h. Then T arrives at xi before time
t−h, hence, by induction hypothesis, c[i, t−h− 1, t] ≤ c′. But by definition c[i, t−h, t] ≤ c[i, t−h− 1, t],
which is a contradiction.

If ((xi−1, ti−1, (xi, ti−1), (xi, t − h)) is the end of T , and ti−1 ∈ [t − h, t]. Let T ′ be such that
T = T ′⊕ ((xi−1, ti−1, (xi, ti−1), (xi, t−h)). So we have that T ′ is an H-absolute-constrained travel to xi−1

13

arriving before or at time ti−1 and that never reaches a time instant greater than t. Hence, by induction
hypothesis on T ′, we get:

c[i− 1, ti−1, t] ≤ cost(T ′) = cost(T)− f(ti−1 − (t− h)).

But by definition (third case of Line 5), we have

c[i, t− h, t] ≤ c[i− 1, ti−1, t] + f(ti−1 − (t− h)) = c′,

which is a contradiction.
Otherwise ((xi−1, t−h), (xi, t−h)) is the end of T . This case is treated similarly as before, because

we can append (xi, t− h) without changing the travel, and now it matches the previous case.

Lemma 7. Assuming c is constructed by Algorithm 2, then
ExtractHistoryConstrainedTravel(i, t, t + H, c) returns, if it exists, an H-history-constrained travel
with optimal cost to node xi arriving at time t.

Proof. Recall that, for any tuple (i, t, tM), if c[i, t, tM] < ∞, then c[i, t, tM] is the cost of an H-history-
constrained cost optimal travel towards node i, that arrives before or at time instant t, and never reaches
a time instant greater than tM .

Then, observe that an H-history-constrained travel with optimal cost to node xi arriving at time t
never reaches a time greater than t+H, so it is enough to prove that the travel returned by
ExtractHistoryConstrainedTravel(i, t, tM, c) has cost c[i, t, tM], never reaches a time greater than tM
and is H-history-constrained. We prove this result by induction. If i = 0 the result is clear. Otherwise,
we have by construction of c:

c[i− 1, t′, t′M] + f(t′ − t) = c[i, t, tM] (6)

for some t′ ≤ t′M ≤ tM .
Since c[i− 1, t′, t′M] is finite, then, by induction hypothesis,

ExtractHistoryConstrainedTravel(i− 1, t′, t′M) is an H-history-constrained travel with optimal cost
c[i − 1, t′, t′M] and never reaches time greater than t′M . Hence, the returned path never reaches time tM
(because t′M ≤ tM , and its cost is

cost(ExtractHistoryConstrainedTravel(i− 1, t′, t′M)⊕((xi−1, t
′), (xi, t

′), (xi, t)))

= c(i − 1, t′, t′M) + f(t′ − t)

This is equal to c(i, t, tM), using Equation 6.

Theorem 5. If the cost function f is in UF , then Algorithm 2 solves the H-history-constrained ODOC
problem and has O(nH(tmin +H)) complexity, with tmin the delay of a solution.

Proof. Using Lemma 6 and Lemma 7 we know that Algorithm 2 returns a solution to the H-history-
constrained ODOC problem.

Regarding the complexity, we exit the main loop after reaching t = tmin +H, and the two inner loops
have complexity O(nH), so the complexity of the algorithm is in O(nH(tmin +H))

14

Algorithm 2: Offline H-history-constrained ODOC Algorithm

/* c[i, t− h, t] stores the cost of a cost optimal travel to node xi, arriving before or at time t− h,

that is H-history-constrained, and never reaches a time instant greater than t. */

1 c[∗]←∞; c[0, ∗]← 0;
2 for t = 0, 1, 2, . . . do
3 for i = 1, 2, . . . n do

4 for h = H,H− 1, . . . , 0 do

5 c[i, t− h, t]← min

c[i, t− h, t− 1]
c[i, t− h− 1, t]
min

t′∈[t−h,t]
ei−1∈E

t′

(c[i − 1, t′, t] + f(t′ − (t− h)))

;

/* for simplicity, we assume that c[i, t− h, t] remains equal to ∞ if t− h < 0 */

6 end

7 end

8 if the minimum time instant tmin such that c[n, tmin, tmin +H] <∞ exists then
9 return ExtractHistoryConstrainedTravel(n, tmin, tmin +H, c);

10 end

11 end

Algorithm ExtractHistoryConstrainedTravel: Extract an H-history-constrained ODOC
travel to the given destination

input: i ∈ [0, n], t ∈ N, tM ∈ N, c
1 if i = 0 then

2 return ((x0, 0), (x0, t))
3 end

4 Let t′ and t′M such that (xi−1, xi) ∈ Et′ and c[i− 1, t′, t′M] + f(t′ − t) = c[i− 1, t, tM]
/* t′ and t′M exist by construction of c. c[i− 1, t, tM] either (a) equals c[i− 1, t′, t′M] with some t′ < t

if the minimum at Line 5 is obtained by one of the first two arguments (in this case

f(t′ − t) = 0), or (b) equals c[i− 1, t′, tM] + f(t′ − t) with some t′ ≥ t (in this case t′M = tM). In both

cases, edge ((xi−1, xi), t
′) exists. */

5 return ExtractHistoryConstrainedTravel(i− 1, t′, t′M , c)⊕((xi−1, t
′), (xi, t

′), (xi, t))

6 Online ODOC Algorithm with Optimal Competitive Ratio

In this section, we consider the online version of ODOC problem, i.e., with an unknown schedule. In
other words, the future of the evolving graph is unknown to the algorithm: at a time t, only the snapshots
at time instants t′ ≤ t are known.

Because it does not know the entirety of the input data, an online algorithm does not always return
an optimal solution. Here in particular, an agent must wait in order to discover potentially optimal
(or better) solutions. But if none appear, the latter must go back in time to the best known solutions,
which in turn increases the cost of the travel. Thus, online algorithms are usually analyzed through their
competitive ratio, i.e., the ratio between the cost of the travel found by the online algorithm and the
(optimal) cost Opt of the travel found by its offline counterpart. An algorithm has competitive ratio ρ if
in any graph G, the solution T returned by the algorithm satisfies cost(T)/Opt ≤ ρ.

In this section, we present the online Algorithm 3 for the online ODOC problem. We show that
Algorithm 3 has an optimal competitive ratio.

We assume in this section that the cost function is the identity: f : x 7→ x. Note that f is
in UF , so an optimal solution by an offline algorithm exists (see previous sections). We discuss later why
relaxing this assumption is challenging (but BTT devices with such cost function remain in majority until
2052).

Lemma 8. Assuming f : x 7→ x, if the future is unknown, there exist no online algorithm with competitive

15

x0 x1 x2 x3 x4 x5 x6 x7 x8
0

1

2

i

time

...
...

Figure 7: Definition of the evolving graphs Gi, with 9 nodes (n = 8). The blue travel T8 has a backward-
cost of 8. The red travel Ti has a backward cost of i.

ratio 2− ε, with ε > 0, for the ODOC problem.

Proof. Assume for the sake of contradiction that algorithm A solves the ODOC problem and has a
competitive ratio of 2− ε, with ε > 0. Let n be an even integer greater than 5

ε
. For any i > 3, let Gi be

an evolving graph with n+ 1 nodes defined in the following way:

• Gi(0) is the graph where half of the edges are present:

Ei(0) = {{xk, xk+1} | k ∈ [0, n] ∧ k ≡ 1 mod 2}.

• Gi(2) is the graph where the other half of the edges are present:

Ei(1) = {{xk, xk+1} | k ∈ [0, n] ∧ k ≡ 0 mod 2}.

• Gi(i) is a line graph : Ei(i) = {{xk, xk+1} | k ∈ [0, n− 1]}.

• for all j /∈ {0, 2, i}, Gi(j) is a graph with no edge : Ei(j) = ∅.

It is clear that, in all such graphs Gi, there exists a travel, denoted by Tn, with backward-cost n, using
the edges present at time 0 and 2 (the blue travel in Figure 7). In addition, there exists a travel, denoted
Ti, of backward-cost i in the evolving graph Gi (the red travel in Figure 7).

If i > n, the optimal travel is Tn, and if i < n the optimal travel is Ti.
Let us now run Algorithm A on the evolving graph G2n. Clearly, the algorithm cannot wait until time

instant 2n otherwise the backward cost would be at least 2n, which is two times more than the backward
cost of the optimal path Tn. This implies that Algorithm A cannot distinguish between (hence runs
exactly in the same way in) graphs Gi, with i ≥ 2n. Let tmax be the maximum time instant reached by
Algorithm A in G2n. Then we can even say that A cannot distinguish between graphs Gi with i > tmax.

Claim 1: In Gi, with i > tmax, Algorithm A outputs a travel with a backward-cost of at least n+ tmax−2

Proof of the Claim: The travel T = A(Gi) that A outputs must contains the same temporal edges
as Tn because those are the only edges that exists before time i (recall that tmax < i). Let tj be
the time instant reached by Algorithm A at node xj, for all j = 0, . . . , n. To move from node xj
to node xj+1 the travel T includes a backward trip of cost max(2, tj), if j ≡ 1 mod 2, and of cost
max(0, tj − 2), otherwise. Let tjmax

= tmax = max(tj), we have that

cost(T) =
∑

j∈Odd(n)

max(2, tj) +
∑

j∈Even(n)

max(0, tj − 2)

≥

{
2 |Odd(n)| + tmax − 2 if jmax is odd
2 (|Odd(n)| − 1) + tmax if jmax is even

Where Even(n), resp. Odd(n), denotes the set of even, resp. odd, numbers smaller or equal to n,
Since |Odd(n)| = n/2, we obtain in both case cost(J) ≥ n+ tmax − 2

16

Claim 2: tmax ≤ n− 4

Proof of the Claim: Since algorithm A has a competitive ratio of 2−ε, then, if it runs in the evolving
graph G2n, it must return a path of backward-cost at most

(2− ε)Opt(G2n) = (2− ε)n < 2n− 5

(recall that nε > 5), so it cannot reach time instant n− 3. Indeed, if the algorithm waits until time
instant tmax ≥ n − 3, then, using the previous claim, the backward-cost of the travel would be at
least n+ n− 5.

Now we run Algorithm A on graph Gtmax+1. Using Claim 1, we know that A returns a travel of cost
at least n + tmax − 2. However, in Gtmax+1, since tmax + 4 ≤ n (Claim 2), the optimal travel is Ttmax+1

having a cost of tmax + 1. We obtain the following inequality:

cost(A(Gtmax+1)) ≥ n+ tmax − 2 ≥ tmax + 4 + tmax − 2 ≥ 2(tmax + 1) ≥ 2Opt(Gtmax+1))

This contradicts the fact that A has competitive ratio of 2− ε.

Algorithm 3: Online ODOC Algorithm

1 cmax ←∞;
2 while time < cmax do

3 wait 1 time instant;
4 if there exists a travel T , starting at time 0, from node x0 to node xn with cost c < cmax then

5 cmax ← c;
6 Tmax ← T ;

7 end

8 end

9 go to the past at time 0, then send the agent using travel Tmax

Theorem 6. Assuming f : x 7→ x, Algorithm 3 is an online algorithm with a competitive ratio of 2 for
the ODOC problem.

Proof. First, we prove that Tmax is the optimal offline travel. Indeed, the algorithm reached time cmax so
all the other travels that are not discovered by our algorithm require temporal edges appearing after time
cmax, so their backward-costs are greater than cmax. Hence cmax is the optimal backward-cost. When
the algorithm terminates, the travel T that is returned is ((x0, 0), (x0, cmax), (x0, 0)) ⊕ Tmax. It has a
backward-cost of 2cmax (cmax to go back to time 0 plus cmax to use Tmax), which proves the Lemma.

7 Conclusion

We presented the first solutions to the optimal delay optimal cost space-time constrained travel planning
problem in dynamic line networks, and demonstrated that the problem can be solved in polynomial time,
even in the case when backward time jumps can be made up to a constant, for any sensible pricing
policy. By contrast, we showed that assuming an identity cost function, no online algorithm can exhibit
a competitive ratio of less than two, and we present a very simple online algorithm with a competitive
ratio of two. We conjecture our algorithms can be extended to arbitrary dynamic graphs, which is left
for future work.

One obvious open question is to further study the impact of cost functions on the competitive ratio.
Not all functions in UO allow a finite competitive ratio:

17

Lemma 9. Assuming f : x 7→ c, where c is a constant, if the future is unknown, there exist no algorithm
with finite competitive ratio, for the ODOC problem.

Proof. The existence of a single backward-free travel (that is, a journey) to the destination implies a
travel of optimal cost Opt = c (travel to the destination and perform a single backward time travel to
reach time 0), and this travel can be discovered arbitrarily far in the future.

Considering other functions in UO with respect to online competitive ratio is left for future work.

References

[1] Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Shortest, fastest, and fore-
most broadcast in dynamic networks. Int. J. Found. Comput. Sci., 26(4):499–522, 2015.

[2] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387–408, 2012.

[3] Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding temporal
paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021.

[4] Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques admit sparse spanners.
J. Comput. Syst. Sci., 121:1–17, 2021.

[5] Shigang Chen and Klara Nahrstedt. An overview of qos routing for the next generation high-speed
networks: Problems and solutions. Network, IEEE, 12:64 – 79, 12 1998.

[6] Afonso Ferreira. On models and algorithms for dynamic communication networks: The case
for evolving graphs. In Quatrièmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications (ALGOTEL 2002), pages 155–161, Mèze, France, May 2002. INRIA Press.

[7] Rosario G. Garroppo, Stefano Giordano, and Luca Tavanti. A survey on multi-constrained optimal
path computation: Exact and approximate algorithms. Computer Networks, 54(17):3081–3107, Dec
2010.

[8] Jochen W. Guck, Amaury Van Bemten, Martin Reisslein, and Wolfgang Kellerer. Unicast qos routing
algorithms for sdn: A comprehensive survey and performance evaluation. IEEE Communications
Surveys & Tutorials, 20(1):388–415, 2018.

[9] Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Black hole
search in dynamic rings. In 41st IEEE International Conference on Distributed Computing Systems,
ICDCS 2021, Washington DC, USA, July 7-10, 2021, pages 987–997. IEEE, 2021.

[10] George Pal. The time machine, 1960.

[11] Anthony Russo and Joe Russo. Avengers: Endgame, 2019.

[12] Krishnaiyan Thulasiraman, Subramanian Arumugam, Andreas Brandstädt, and Takao Nishizeki.
Handbook of graph theory, combinatorial optimization, and algorithms. 2016.

[13] Robert Zemeckis. Back to the future, 1985.

18

	Introduction
	Model
	Backward-cost Function Classes
	Offline C-constrained ODOC Algorithm
	Offline H-history-constrained ODOC Algorithm
	Online ODOC Algorithm with Optimal Competitive Ratio
	Conclusion

