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Abstract. Spam domains are sources of unsolicited mails and one of
the primary vehicles for fraud and malicious activities such as phishing
campaigns or malware distribution. Spam domain detection is a race: as
soon as the spam mails are sent, taking down the domain or blacklisting
it is of relative use, as spammers have to register a new domain for their
next campaign. To prevent malicious actors from sending mails, we need
to detect them as fast as possible and, ideally, even before the campaign
is launched.

In this paper, using near-real-time passive DNS data from Farsight Se-
curity, we monitor the DNS traffic of newly registered domains and
the contents of their TXT records, in particular, the configuration of the
Sender Policy Framework, an anti-spoofing protocol for domain names
and the first line of defense against devastating Business Email Compro-
mise scams. Because spammers and benign domains have different SPF
rules and different traffic profiles, we build a new method to detect spam
domains using features collected from passive DNS traffic.

Using the SPF configuration and the traffic to the TXT records of a do-
main, we accurately detect a significant proportion of spam domains
with a low false positives rate demonstrating its potential in real-world
deployments. Our classification scheme can detect spam domains before
they send any mail, using only a single DNS query and later on, it can
refine its classification by monitoring more traffic to the domain name.

Keywords: Spam detection - SPF - Passive DNS - Machine Learning

1 Introduction

For years, malicious mails have been representing a significant technical, eco-
nomic, and social threat. Besides increasing communication costs and clogging
up mailboxes, malicious mails may cause considerable harm by luring a user into
following links to phishing or malware distribution sites.

Typically, malicious actors run campaigns with instant generation of a large
number of mails. Hence, their detection is a race: if we want to prevent their mali-
cious activity, we need to detect spam domain names as soon as possible, blacklist
and block them (at the registration level). Once the campaign is over, domain
blacklisting is less effective because the recipients have already received mails.



Early detection of spam domains that generate malicious mails is challenging.
One of the approaches is to leverage the Domain Name System (DNS) that maps
domain names to resource records that contain data like IP addresses. We can
use DNS traffic and domain name characteristics to compute features for training
and running machine learning detection algorithms, even if malicious actors may
try to hide their traces and activities, and avoid domain takedown [12,30]. The
main difference between various algorithms is the set of features used to train and
run classifiers. The features mainly belong to four categories: i) lexical: domain
names, randomness of characters, or similarity to brand names [1,3,5,19,22, 23,
34], ii) domain and IP address popularity: reputation systems based on diversity,
origin of queries, or past malicious activity [1,2,9,16,23,24,31]), iii) DNS traffic:
number of queries, their intensity, burst detection, or behavior changes [5,24]),
and iv) WHOIS: domain registration patterns [9,23,27].

In this paper, we propose a scheme for early detection of spam domains, even
before they send a single mail to a victim. It is based on the domain SPF (Sender
Policy Framework) rules and traffic to the TXT records containing them.

SPF rules are means for detecting forged sender addresses—they form the
first line of defense in the case of, for instance, Business Email Compromise scams
that represented over $1.8 billion USD of losses in 2020 [6]. As malicious actors
generally use newly registered domains for sending mails, they also configure the
SPF rules for their domains to increase their reputation and thus avoid proactive
detection. We have discovered that the content of the SPF rules and traffic to the
TXT records containing them are different for malicious and benign domains. We
have used these features to design a domain classifier algorithm that can quickly
detect spam domains based on passive DNS traffic monitoring [8]. With low false
positive rate and high true positive rate, our scheme can improve existing real-
time systems for detecting and proactively blocking spam domains using passive
DNS data.

The rest of the paper is organized as follows. Section 2 provides background
on SPF and spam campaigns. Section 3 presents the proposed scheme. Sections 4
and 5 introduce the classification algorithms and present their results. We discuss
other related approaches in Section 6 and Section 7 concludes the paper.

2 Background

In this section, we describe the SPF protocol and the mail delivery process, high-
lighting the steps during which we gather features to detect malicious activity.

2.1 Sender Policy Framework (SPF)

The Sender Policy Framework (SPF) [17] is a protocol used to prevent domain
(mail) spoofing. Figure 1 presents the procedure for sending mails and SPF veri-
fication. Alice (sender) sends a benign mail to Bob (receiver). Mallory (attacker)
wants to send a mail that impersonates Alice to Bob. Mallory and Alice use
their respective servers (mallory.com and alice.com) to send mails.

An effective anti-spoofing mechanism needs to differentiate the Mallory mes-
sage from the benign Alice mail. The current first lines of defense to protect
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Fig. 1: Sending mails with SPF verification.

users from spoofed mails include SPF [17], DKIM [20], and DMARC [21]. SPF
is a set of text-form rules in TXT DNS resource records specifying a list of servers
allowed to send mails on behalf of a specific domain. During mail delivery over
the SMTP protocol, the recipient server authenticates the sender Mail Trans-
fer Agent (MTA) by comparing the given MAIL FROM (or HELO) identity and the
sender IP address with the content of the published SPF record.

In our example, the Mail Delivery Agent (MDA) on the Bob’s server queries
the DNS for a TXT record of the sending domain (alice.com). This record contains
the SPF rule of alice.com and specifies which IP addresses can send mails on
behalf of this domain. The mail from Alice comes from a whitelisted server, so
it gets delivered. The Mallory’s server was not whitelisted, so the (spoofed) mail
is rejected.

A valid SPF version 1 record string must begin with v=spf1 followed by other
SPF entries with the following structure: <qualifier><mechanism>[:<target>].
The mail sender is matched with the <mechanism>:<target> part; the output is
determined by the <qualifier>. Four types of <qualifier> are possible: PASS
(+) (the default mechanism), NEUTRAL (~), SOFTFAIL (?), FAIL (-). The most
common SFP mechanisms are the following:

ip4, ip6 — the sender IP address matches the predefined IP address or the
subnetwork prefix,

a, mx —the domain has an A (or MX) record that resolves to the sender IP address,

ptr —a verified reverse DNS query on the sender IP address matches the sending
domain (not recommended by RFC 7208 [17] since April 2014),

exists — the domain has an A record,

include — use the rules of another domain,

all — the default mechanism that always matches.

To illustrate the operation of SPF rules, let us consider the following con-
figuration for example.com domain: v=spfl a ip4:192.0.2.0/24 -all where the A
record (example.com A 198.51.100.1) is stored in DNS. The SPF rule states that
only a host with the IP address of 198.51.100.1 (the a mechanism) or machines
in the 192.0.2.0/24 subnetwork (the ip4 mechanism) are permitted senders, all
others are forbidden (the -all mechanism).

2.2 Life Cycle of a Spam Campaign

Most spam campaigns follow the same life cycle presented below.



Domain registration. As most mail hosting companies deploy tools to pre-
vent their users from sending spam, malicious actors need to register their own
domains to send spam. To run multiple campaigns, spammers usually register
domains in bulk [10]. Once the domains are registered, spammers configure zone
files and fill the corresponding resource records in the DNS.

Configuration of anti-spoofing mechanisms. To use SPF, DMARC, or
DKIM, each domain must have a TXT resource record describing which hosts can
send a mail on their behalf and deploying keys to authenticate the sender. Even
if DMARC is still not widely used, many benign domains deploy SPF [7,26,28].
Thus, a mail from a domain without SPF configuration is likely to be flagged
as spam (especially when combined with other indicators of malicious intent).
To appear as benign as possible, spammers fill in at least the SPF rule in the
TXT record. Our scheme extracts most of the features for detecting spam at this
step because the SPF records of spam domains are generally different from the
configurations of benign domains and even if a given domain has not yet sent a
single mail, we can access its SPF rules and detect suspicious configurations. The
SPF rules can be actively fetched by sending a TXT query to the domain (e.g.,
newly registered), but to avoid active scanning, we have chosen to use passive
DNS to analyze TXT requests. In every detected spam campaign, we observe at
least one TXT query that may originate from a spammer testing its infrastructure.
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Fig. 2: Density of DNS TXT traffic to a spam domain (promotechmail.online)

Spam campaign. When a mail server receives a mail, it tries to resolve the
TXT record of the sending domain to get its SPF rule and checks for possible
sender forgery. During a spam campaign, spammers send mails to many servers
across the world. At the beginning of a campaign, the (validating) mail servers
will all try to retrieve the TXT DNS record of the sender domain almost at the
same time. Therefore, we expect to observe a surge in queries for TXT records.
Figure 2 presents traffic density (corresponding to the number of DNS queries
over time, defined precisely later) to a spam domain detected during our study.
The burst in the number of queries during a time window of less than 24 h, then
traffic dropping and never rising again is the typical profile of spammers.

Detection, blacklisting, and cleanup. When spam mails reach the targets,
security experts and spam detection algorithms parsing the mail content and
its headers flag the sending domain as a spamming source and may report it to
domain blacklists like SpamHaus [32] or SURBL [33]. When a domain appears
on a blacklist, mail servers will likely drop mails from it. Future spam campaigns
from this domain will be unsuccessful, so it becomes useless for spammers. Host-
ing services may also suspend the sending server whereas domain registrars may



take down the spam domain as it often violates their terms of service and is con-
sidered as DNS abuse [4,19]. Once the domain is blacklisted (or taken down),
spammers may just acquire another one and repeat the previous steps.

When looking for spammers, timing is the key: the sooner we detect a spam-
ming domain, the fewer mails it can send, and if an algorithm only detects a
spam mail upon reception, it means that the campaign has started and reached
some of the targets. This observation was the motivation for our scheme for early
detection of spamming domains even before the start of a spam campaign.

3 Scheme for Early Detection of Spam

In this section, we present the proposed scheme. It takes advantage of passive
DNS data to obtain the SPF rules for a given domain and the frequency of the
queries to retrieve them.

3.1 Data Source: Passive DNS

Passive DNS consists of monitoring DNS traffic by sensors usually deployed
above recursive resolvers to monitor queries between a local resolver and au-
thoritative name servers [35]. Locally observed queries are aggregated into feeds
available for analyses. In this work, we have used the near-real-time Farsight SIE
Passive DNS channel 207 [8] to obtain DNS traffic data for the TXT records and
SPF rules for each domain. We extract the following fields: the queried domain,
the record type, the answer from the authoritative server, a time window, and
the number of times a given query was observed during the time window.

To be effective, the scheme must analyze unencrypted DNS traffic. There-
fore, it is not suitable when using the DNS over TLS (DoT) [13] or DNS over
HTTPS (DoH) [11] standards that encrypt user DNS queries to prevent eaves-
dropping of domain names. To monitor such traffic, the scheme would have to be
implemented, e.g., in public recursive resolvers providing DoT or DoH services.

3.2 Features Based on SPF Rules

The SPF configuration for a given domain is stored in the TXT record of the
domain. Since most mail hosting services provide a default SPF records for
their customers, many domains share the same SPF rules. Nevertheless, some
domains use custom SPF rules that whitelist specific servers. We have focused
on the similarities of domains: two domains that use the same custom SPF rules
and whitelist the same IP addresses are likely to be managed by the same entity.
Therefore, if one domain starts sending spam, it is reasonable to consider that
the domains sharing the same SPF rules are likely to be (future) spammers.

We have analyzed the SPF configuration of spam and benign domains to
see if they differ (we later discuss ground truth data in Section 4.1). Figure 3
shows that benign and spam domains do not necessarily use the same rules. For
example, benign domains more frequently use the +include mechanism while
spammers +ptr.

We presume that legitimate domains, hosted by major mail hosting providers,
are more likely to have default configurations with the +include mechanism to



indicate that a particular third party (e.g., a mail server of the provider) is
authorized to send mails on behalf of all domains (e.g., in a shared hosting en-
vironment). Spam domains may use custom mail servers instead, thus they are
more likely to whitelist the IP addresses of their servers with, for instance, the
+ip4 mechanism. We suspect that in some cases spammers may not want to re-
veal the IP addresses of hosts sending spam. Therefore, they may use the +all
mechanism (that accepts mails from all hosts) relatively more than legitimate
domains whose administrators are concerned about rejecting spam mails from
unauthorized host. Finally, the +ptr mechanism is marked as “do not use” since
April 2014 by RFC 7208 [17]. Major hosting providers seem to follow this rec-
ommendation, but individual spammers may not have changed their practices
and continue to use this outdated but still supported mechanism.

s

€ 06 spam

2

o . FALSE

Q 0.44

° TRUE

o))

]

» 0.24

>

Q

Z o001 ==
a +mx +|p4 +|p6 +ptr+red|recl aII —aII ?all +all +include

SPF rule

Fig. 3: Usage proportion of SPF rules for benign and spamming domains

For each domain, we compute the number of occurrences of each mechanism
in its rule to generate the set of SPF features. Because not all possible combina-
tions of qualifiers and mechanisms are actually used, we have selected the sets of
qualifiers and mechanisms that appear in more than 0.1% of domains to avoid
overfitting, which leaves us the ones presented in Figure 3.

3.3 Graph Analysis of SPF Rules

Some SPF rules point to an IP address or a subnetwork prefix (like ip4 and
ip6) and some point to domain names (like include and sometimes a and mx).
We build the relationship graph between domains and IP ranges as shown in
Figure 4. For example, the edge between node A (a.org) and node B (b.com)
reflects the fact that node B has an SPF rule that points to node A. The edge
between b.com and 192.0.2.1 represents the fact that this IP address is used in
the +ip4 rule in the b.com SPF configuration.

This graph is built and updated in near real time: nodes and edges are added
when domains with SPF data appear in the passive DNS feed, and spam domains
(marked in red in Figure 4) are added or deleted from blacklists (SpamHaus and
SURBL in our scheme). Thus, over time, the graph becomes more complete,
providing more precise relationships and features for domain classification.

We have analyzed different structures in the graph built from our dataset
and detected distinctive patterns. Figure 5 shows three examples of the observed



b.com IN TXT "include:a.org +ip4:192.0.2.1"
+ip4

c.xyz IN TXT "+a:d.se +ip4:192.0.2.1"

Fig. 4: Example of a relationship graph derived from SPF rules

structure types to illustrate some typical SPF configuration relationship graphs
for spam domains.Red nodes represent spamming domains and white nodes cor-
respond to the targets of their SPF rules. Figure 5a shows the pattern in which
multiple spam domains share the same configuration: they have a rule targeting
the same IPv6 network (these domains are likely to be managed by the same
entity). Figure 5b presents spam domains that have an include mechanism that
points to the same domain and exactly three other custom targets that no other
domain uses (this is the case when domains are hosted by a hosting provider
that provides an SPF configuration for inclusion by its clients). Finally, many
spam domains have rules like in Figure 5c¢ in which a domain has a single target
(a custom IP address) that no other domain uses.

Oo—e

(a) Ball shape (b) Tree shape (¢) One-to-One
Fig.5: SPF relation graph for spam domains

The study of these structures can highlight potential spam domains. In our
dataset, we found structures like in Figure 5a or Figure 5b in which dozens
of domains used the same rule and the majority of them appeared on spam
blacklists. As such, it is reasonable to assume that the remaining domains are
likely to have not yet been detected or are not yet active spam domains.

To detect the structures indicating spam domains, we have defined two unique
features describing the properties of domains in the relationship graph.

Toxicity. We define the toxicity of a node as the proportion of its neighbors that
are flagged as spam in the graph, or 1 if the domain itself is flagged as spam. With
this metric, SPF targets used by known spammers get a high value of toxicity.
To detect the domains that use rules with high toxicity targets, we compute
the Max Neighbor Toxicity: the maximum toxicity amongst all the targets of a
domain. This way, if a domain has a target mainly used by spammers, its Mazx
Neighbor Tozicity is high.

Neighbor Degree. For each node, we look at the degrees of its neighbors:
is it connected to highly used domains and IP addresses? Or, is it using cus-



tom targets that no other domain uses? We expect spamming domains to more
likely use custom targets that no other domains use (with a small degree in the
graph) like in Figure 5c, compared to benign domains that would use the default
configurations of the hosting service and share the same targets as many other
domains (with a high degree in the graph).
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Fig.6: Cumulative distributions of Max Neighbor Toxicity and Max Neighbor
Degree for spamming and benign domains.

Figure 6 shows that the expected differences of Max Neighbor Toxicity and
Mazx Neighbor Degree between spammers and benign domains match our hypoth-
esis: spammers are more likely to use targets shared by some other spammers
and are more likely to use custom targets with low degrees in the graph.

3.4 Time Analysis of Traffic to DNS TXT Records

When a domain starts a spam campaign, we expect multiple servers to query
DNS for the TXT record of the sender domain to check its SPF configuration.
Therefore, we can observe an unusual number of queries related to the (newly
registered) domain. The passive DNS feed we use contains aggregated queries
over a given time window: when a DNS query is detected by a sensor, it is inserted
in an aggregation buffer with the insertion timestamp. The subsequent identical
queries only increase a counter in the buffer. When the buffer is full, the oldest
inserted queries are flushed out, yielding an aggregated message with the query,
the answer from the authoritative server, and three extra fields: time_first,
time_last, and count meaning that the query was seen count times during the
time window from time_first to time_last.

From these aggregated messages, we compute the traffic density by dividing
the number of queries (in the count field) by the window duration, and then,
dividing this value by the time between the end of the window and the end of
the previous window to take into account the time windows in which there is no
traffic. The resulting formula is the following;:

count 1

d ity (1) = X
ensity(i) time_last — time_first message_end(i) — message__end(i — 1)

For a more in-depth definition of the density and an explanation on how we
handled overlapping windows, see Appendix A.



Max Variation. To detect large variations in density, we compute the Mazx
Variation feature defined as the maximum density variation during 24 h. Do-
mains with a slowly increasing traffic have a low Max Variation and those with
a spike in the number of TXT queries, a high Max Variation. We compute two
versions of this feature: i) the Global Maz Variation, using the same time steps
to compare all domains and ii) the Local Maz Variation in which a custom time
step is computed for each domain. See Appendix A for more details about the
difference between these features.
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Fig. 7: Cumulative distribution of Max Variation (log scale x-axis)

Figure 7 presents the cumulative distribution of the two features. As ex-
pected, we observe that spam domains have a relatively higher Maxz Global Vari-
ation when all domains share the same time steps.

However, when we look at the Max Local Variation, we observe that benign
domains tend to have a higher variation. The distributions are different because
this feature is close to the average density variation: domains with a lot of traffic
variation and small windows will have a higher Local Variation, whereas spam
domains with almost no traffic except for a few spikes will have a lower Local
Variation due to long periods of inactivity before a spike.

4 Classifiers

In this section, we present the classifiers used for the detection of spam based
on the proposed features.

4.1 Ground Truth

We have taken the precaution of carefully selecting the domains in our ground
truth. We recorded four months (between May and August 2021) of passive DNS
traffic to TXT records from Farsight Security [8]. Because most spam domains are
newly registered and discarded as soon as they are blacklisted, we only con-
sidered newly registered domains. From the ICANN Central Zone Data Service
(CZDS) [14], we have built a list of new domains by computing the difference
between consecutive versions of each generic Top Level Domain (gTLD) zone
files. Appendix C provides the general statistics of the collected dataset.

Using SURBL [33] and SpamHaus [32] spam blacklists, we have identified
all domains (in near-real time) in our database flagged by one of these sources.
Spam blacklists are not perfect and sometimes they may flag benign domains



as spam. Therefore, to obtain reliable ground truth, we added an extra layer of
verification: a domain is labeled as
— benign if it has not been blacklisted and has been active during the entire
period of the study (and has a valid A and NS records), or
— malicious if it was blacklisted by SURLB or SpamHaus and was taken down.
With these criteria, our ground truth dataset contained 37,832 non-spam and
2,392 spam domains.

4.2 Classifier

For spam detection, it is crucial to keep the True Negative! Rate (TPR) as high
as possible to avoid flagging benign domains as spam. Once a True Negative
Rate of at least 99% is achieved, we maximize the True Positive? Rate (TPR)
to detect as many spam domains as possible. To compare classification results
we use true negative and true positive rates, and the Fl-score as described in
Appendix B. We explored multiple classifiers and parameters with Weka [36],
then implemented two of them with the scikit-learn [29] Python library, for

better benchmarking. Two classifiers that performed the best are:

C4.5 or J48: a decision tree able to describe non-linear relations between fea-
tures. It highlights complex conditional relations between features.

Random Forest: a set of multiple decision trees with a voting system to com-
bine their results. Its drawback is low explainability.

Table 1: Features used by the classifiers

Category  Feature Outcome

Number of...

+all, +mx, +ptr, -all Malicious
SPF Rules +a, +include, +redirect, ~all Benign
+ip4, +ip6, 7all Mixed?
Max Neighbor Degree Benign
SPF Graph Max Neighbor Toxicity Malicious
Max Global Variation Malicious

Time Analysis Max Local Variation Benign

We use the k-fold cross-validation technique with k set to 5 (see Appendix B
for more information). The number of spam domains in our ground truth dataset
represents less than 10% of all domains. The decision tree algorithms are not
suitable for classification problems with a skewed class distribution. Therefore,
we have used a standard class weight algorithm for processing imbalanced data
[37] implemented in the scikit-learn Python library [29].

Table 1 summarizes the features used by the classifiers and whether they
indicate maliciousness or benignness of the domain.

! True Negative: non-spam domain correctly classified as such
2 True Positive: spam domain correctly classified as malicious
3 Depends on how many times the rule is present in the configuration



5 Classification Results

We evaluate the efficiency of the classifiers with two sets of features: i) the
static set without the time analysis features (Max Variation) and ii) the static
+ dynamic set that includes both static and the time analysis features. We have
distinguished between the sets because even if the efficiency is lower without
the time analysis features, we can get the static features (SPF configuration and
graph properties) from a single TXT query to the target domain allowing for a
rapid detection of most spam domains. Then, we can refine the classification by
adding the time based features that are more robust against evasion techniques
but require more time to detect spam domains.

5.1 Performance Evaluation

1.0+ classifier
% DecisionTree
x 0.9
o ad et —— RandomForest
=
g 0.8+
a — feature_type
8o74 = g —
E / — static

-+ static + dynamic
0.6
0.00 0.01 0.02 0.03

False Positive Rate

Fig.8: ROC curve for different classifiers on two sets of features

Figure 8 compares the Receiver Operating Characteristic (ROC) curves of
each classifier for two sets of features (to see better the differences in perfor-
mance, we zoom into high values of TPR). When training the classifiers, we
change the weight of the spam class to change the reward of accurately finding
a spam domain. If the spam class weight is low, the classifier will be less likely
to risk getting a false positive. On the contrary, if the spam class weight is high,
the classifier gets higher reward if it accurately flags a spam domain. Therefore,
the classifier will “take more risks”, reducing its TNR to increase TPR. If we
require the False Positive Rate (benign domains flagged as spam) under 1%, the
Random Forest is the best algorithm reaching a True Positive Rate of 74% using
only the static set and 85% once we add the time analysis features.

Figure 9 illustrates how long we need to monitor a domain so that the clas-
sifiers reach their best efficiency. Over time, we observe traffic to each domain
and the time analysis features get more precise (until one week), which improves
classification. Both classifiers reach almost the best detection performance (com-
puted as the Fl-score) after observing a domain for one day.

5.2 Detection Time

The static results (labeled as OH in Figure 9) show the efficiency of the scheme
when a single TXT request is observed. In this case, the classifier has no time
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properties of the traffic and only uses the static features (SPF Rules and SPF
Graph). We can replace passive detection of SPF Rules with active DNS scans
(assuming we have a list of newly registered domain names, which is generally
the case for legacy and new gTLDs but not for the vast majority of ccTLD
[4,18]): by actively querying the TXT records of new domains and classifying
them based on their SPF configuration and formed relationships. Then, over
time, as we passively observe traffic to the domain records, the performance of
the classifier improves achieving very good results after 30 minutes (F1-score of
0.83) of monitoring (with Random Forest) in comparison with the Fl-score of
0.86 after one day.
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Fig. 10: Time before detected spam domains appear in commercial blacklists

Using only static features, we compared the spam domain detection speed
of our scheme with two commercial blacklists (SpamHaus and SURBL). In Fig-
ure 10, we plotted the time elapsed between the detection by our scheme and the
appearance of domains in the blacklists (with an hourly granularity). We limited
the graph to 50 hours, but considerable number of domains only appear in the
commercial blacklists weeks after we detect them. Positive values mean that our
scheme was faster: for 70% of the detected spam domains, our scheme was faster
than the commercial blacklists. However, 26% of the domains detected by our
scheme appear in the commercial blacklists in the following hour, whereas 30%
of the domains are detected more than 24 hours in advance. The negative val-
ues represent domain names where our scheme was slower than the commercial
blacklists: 30% of the domains were already in the blacklists when they were
observed in our passive DNS feed for the first time and classified as spam.



5.3 Feature Importance

The importance of each feature was computed by looking at how selective the
feature was in the Random Forest classifier [29]. The importance of each feature
and each category is described in Table 2. It is not a surprise that the Maximum
Neighbor Toxicity is by far the most important feature: a domain whitelisting the
same [P addresses and domains as a known spamming domain is very likely to be
managed by spammers. The most important SPF rule for classification is +ptr:
as we discussed in Section 3.2, this rule is almost never used by benign domains
(following the RFC 7208 recommendations). Lastly, the Global Max Variation is
the most important dynamic feature: massive increases in the number of queries
to a domain is a distinctive trait of spamming domains, as presented in Sec-
tion 2.2, but this feature is only useful after the start of the spam campaign.

Table 2: Importance of each feature for the Random Forest classifier

Feature Importance

SPF Graph features 0.574515
neighbor_max_toxicity 0.463689
neighbor_max_degree 0.110826

SPF Rules features 0.232846
+ptr 0.100481
+a 0.029005
+ipd 0.028789
+mx 0.021006
+include 0.017561
7all 0.013728
~all 0.011522
Other rules < 0.01

Time Analysis features 0.192638
global_max_variation_24h 0.122167
local_max_variation_24h 0.036828
global_max_triggers_24h 0.022380
local_max_triggers_24h 0.011263

6 Related Work

The four main categories of features used to detect malicious domains are the
following: i) Lexical: domain name, randomness of characters, or similarity to
brand names [1,5,22,23,27], ii) Domain and IP address popularity: reputation
systems based on diversity, origin of queries, or past malicious activity [1,2,9,23,
27,31}, iii) DNS traffic: number of queries, intensity, burst detection, behavior
changes [5,24], iv) WHOIS (domain registration data): who registered a given
domain?, when, and at which registrar [9,23,27]. Other methods develop specific

4 not available after the introduction of the General Data Protection Regulation
(GDPR) and the ICANN Temporary Specification [15].



features extracted from the content of mails: size of the mail, links, or redirec-
tions [25,27]. With the selected features, machine learning algorithms classify
malicious and benign domains.

With respect to the methods that work on passive data such as Exposure [5]
that need some time to detect abnormal or malicious patterns, we focus on
early detection of spam domains. Exposure for instance, needs around a week of
observation before possible detection, while we achieve a Fl-score of 79% based
on a single DNS query. Our scheme can be applied at early stages of a domain life
cycle: using passive (or active) DNS, we can obtain SPF rules for newly registered
domains and classify them immediately, or wait until we detect TXT queries to
that domain and refine the classification using hard-to-evade temporal features.

Other methods generally try to detect abnormal or malicious patterns at
later phases of the domain life cycle. Schemes based on content or long period
traffic analysis may reach high efficiency but generally cannot run before or at
the beginning of an attack. Schemes using lexical and popularity features can run
preemptively but may have reduced efficiency, compared to dynamic schemes.

Our scheme may complement other approaches that aim at detecting spam
during other phases in the life cycle of spam campaigns and other algorithms
that rely on a variety of different features.

7 Conclusion

In this paper, we have proposed a new scheme for early detection of spam do-
mains based on the content of domain SPF rules and traffic to the TXT records
containing them. With this set of features, our best classifier detects 85% of
spam domains while keeping a False Positive Rate under 1%. The detection re-
sults are remarkable given that the classification only uses the content of the
domain SPF rules and their relationships, and hard to evade features based on
DNS traffic. The performance of the classifiers stays high, even if they are only
given the static features that can be gathered from a single TXT query (observed
passively or actively queried).

With a single request to the TXT record, we detect 75% of the spam domains,
possibly before the start of the spam campaign. Thus, our scheme brings im-
portant speed of reaction: we can detect spammers with good performance even
before any mail is sent and before a spike in the DNS traffic. To evaluate the effi-
ciency of the proposed approach based on passive DNS, we did not combine the
proposed features with other ones used in previous work like domain registration
patterns [9,23,27]. In practical deployments, the classification can be improved
by adding other features based on, e.g., the content of potentially malicious mails
or the lexical patterns of the domain names.

The features used in our scheme yield promising results, so adding them to
existing spam detection systems will increase their performance without large
computation overhead as SPF data can easily be extracted from near-real-time
passive DNS feeds already used in some schemes.
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Appendix
A Density Computation
Comparing the time windows of multiple domains in passive DNS data is a

complex task: each window has a different size and we have no information on
how the queries are spread inside it.

flush 0 flush 1 flush 2
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Fig. 11: Computation of traffic density from Passive DNS messages

The query density of multiple domains can only be compared if they are
computed the same way, over the same time period. If a period starts or ends
in the middle of a domain time window, we need to make an assumption about
how the queries are spread inside the time window, to determine how many
queries are inside the time period. However, we do not have such information so
a period can only start and end at a timestamp that it is not included in any
time window. We call those usable timestamps flushes. Then, the query density
of a domain between two flushes is computed by measuring the time during
which the domain was active, the total time between the flushes and the number
of queries. For example, in Figure 11, between flush 0 and 1, Domain A has a
count (total number of queries) of 12 and an active_time (total time covered by
time windows) of 3, and Domain B has a count of 5, and an active_time of 1. If
flush(i) is the timestamp of the i-th flush, we define the density at time i as:

count « 1
active_time = flush(i + 1) — flush(i)

density(i) =

The first fraction represents the density of requests in the aggregated time
window. The second fraction normalizes this value by the size of the flush window
so that all domains have a comparable density, as the flushes are not evenly
spread. Therefore, density(0) for domain A is 12/3x1/3 =4/3 and 5/1x1/3 =
5/3 for domain B.



For the Maz Global Variation, the flushes are computed using the time win-
dows of all domains in our ground truth (the numbered flushes in Figure 11).
This results in fewer flushes but the traffic density between different domains
can be compared (as they all use the same time steps). The Maz Local Variation
of a domain is computed using only the time windows of this domain to compute
the flushes (numbered flushes plus domain flushes in Figure 11). The Local Maz
Variation uses more time steps so the density is more precise, but these time
steps are different for each domain and have a tendency to reduce the detection
of sudden bursts following a long inactivity window.

B Classifier Metrics and Algorithms

The performance of each classifier is measured with three metrics:

F1-score: %, with TP, FP and F'N being respectively the number
of True Positives, False Positives, False Negatives

True Positive Rate (TPR): TPT_F%: proportion of spam domains accurately
flagged as spam.

True Negative Rate (TNR): %: proportion of benign domains accu-

rately flagged as benign.

To calculate performance metrics, we use the k-fold technique: the whole
ground truth dataset is split in 5 equal parts. We select one fold for testing and
train the model using the £ — 1 remaining folds. We repeat this process for each
fold. Each metric is the average of the five iterations.

C Dataset Statistics

Table 3 shows the number of queries and unique domains at each data collection
and analysis stage. The first step captures DNS TXT queries to newly registered
domain names observed in the passive DNS feed. The next step retains only the
TXT queries that contain valid SPF data. Then, we build ground truth with the
approach described in Section 4.1.

Table 3: Number of queries and unique domains in the dataset at different stages

Stage Queries  Unique domains  Spam domains
1. Traffic to new domains 399M 14M 0.8%
2. SPF traffic 36M 1.4M 1.5%

3. Ground truth 26M 40,224 5.9%



Table 4: Classification results for the Random Forest classifier on the ground

truth dataset.

Our method Blacklists Spam Benign Total
Spam TP =1 716/ FP = 210 1 926
Benign FN =676 |TN = 37 622| 38 298
Total 2 392 37 832 40 224
TPR TNR F1-score
71.7% 99.4% 79.5%

D Classification Results

Table 4 shows the results of the Random Forest classifier using static and dy-
namic features (SPF Rules, SPF Graph and Time Analysis features). It corre-
sponds to the model from Figure 8 with a TPR of 0.717 and FPR of 0.006.
The second and third columns (Spam and Benign) represent how commercial
blacklists (SpamHaus and SURBL) classified the domains (ground truth data),
whereas the second and third row represent how our system classified the same
domains. For example, in the table we can note that 676 domains were classified
as Benign by our classifier, but they appear in the commercial blacklists—this
represents the number of False Negatives (FN). The second part of the table
shows the metrics used to evaluate our classifier (TPR, TNR, and F1l-score) as
described in Appendix B.



