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ABSTRACT 

Background: The development of electronic health records has provided a large volume of unstructured 

biomedical information. Extracting patient characteristics from these data has become a major challenge, 

especially in languages other than English. 

Methods: Inspired by the French Text Mining Challenge (DEFT 2021) [1] in which we participated, our 

study proposes a multilabel classification of clinical narratives, allowing us to automatically extract the 

main features of a patient report. Our system is an end-to-end pipeline from raw text to labels with two 

main steps: named entity recognition and multilabel classification. Both steps are based on a neural 

network architecture based on transformers. To train our final classifier, we extended the dataset with 

all English and French Unified Medical Language System (UMLS) vocabularies related to human 

diseases. We focus our study on the multilingualism of training resources and models, with experiments 

combining French and English in different ways (multilingual embeddings or translation). 

Results: We obtained an overall average micro-F1 score of 0.811 for the multilingual version, 0.807 for 

the French-only version and 0.797 for the translated version. 

Conclusion: Our study proposes an original multilabel classification of French clinical notes for patient 

phenotyping. We show that a multilingual algorithm trained on annotated real clinical notes and UMLS 

vocabularies leads to the best results. 

Keywords: biomedical concepts, multilabel classification, NER, transformers, multilingual NLP 
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1. Introduction 

The widespread use of electronic health records (EHRs) has provided access to a large amount of health 

data. In addition to International Classification of Disease (ICD10) coding and biological examination 

data, a significant amount of patient information comes from narrative records, which are unstructured 

data. The exploitation of unstructured data has been made possible by significant advances in natural 

language processing (NLP) algorithms, including new language modeling algorithms [2, 3, 4]. These 

algorithms have proven to be very efficient in extracting information for various medical applications, 

including mortality prediction [5], cohort identification [6], and decision support [7, 8], especially in 

English. However, in French or other languages, efforts are still needed to reach the same level of 

performance. 

We call a patient’s phenotype the list of observable characteristics; in our case, the main pathological 

domain of a symptom or a disease, such as “cardiovascular” or “infections”. A disorder corresponds to 

a disease, a pathological symptom or function. A concept is a generic name for a biomedical term or 

expression, such as “anuria”, “fever”, or “Sjögren’s syndrome”. The MeSH (Medical Subject Headings1) 

terminology was developed by the US National Library of Medicine and is structured like a tree with 

main categories A (anatomy), B (organisms), C (diseases), etc. and subcategories C01 (infections), C04 

(neoplasms), etc. and finally concepts (i.e. leaves). There is a bilingual French-English MeSH version2 

used in this work. 

 

In our study, we propose an end-to-end approach to automatically extract the main classes of symptoms 

and diseases from clinical notes. The list of these classes of interest corresponds to the MeSH Category 

C (diseases) headings, such as infectious diseases, neoplasms, musculoskeletal diseases, digestive 

diseases, eye diseases, etc. These classes are of particular interest since they almost directly represent 

all medical specializations/organ types (see the complete list of classes in Table 2). These classes are 

called MeSH-C labels in the rest of the article; MeSH-C is the ensemble of all medical concepts in 

MeSH category C. The MeSH terminology has several advantages: it exists in English and French, is 

part of the UMLS vocabulary and contains thousands of medical concepts in a tree structure. 

 

This automatic extraction, allowing the targeting of symptoms and pathologies specific to an organ, can 

be exploited for several medical applications. In the field of pharmacovigilance, it can help to detect 

side effects of drugs, especially on large databases, where one can automatically retrieve “ocular” or 

“digestive” or “infectious” disorders present in the EHR without reading any of the reports in person. In 

 
1 https://www.nlm.nih.gov/mesh/meshhome.html 
2 http://mesh.inserm.fr/FrenchMesh/ 
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the epidemiological domain, one can also automatically extract patients with similar phenotypes, i.e., 

with the same type of organic lesions and select them as eligible patients for (e.g., a clinical trial or a 

case/control or cohort study). In clinical practice, clinicians could also analyze or extract past 

complications for one or more patients. For example, a rheumatologist might be interested in selecting 

all patients with ocular, renal or skin complications of lupus and could extract them automatically with 

our method. Furthermore, it is interesting to note that some diseases have multiple labels in the MeSH-

C classification (for instance, Diabetes Mellitus type 1 appears in Nutritional and Metabolic Disorder 

(C18), Endocrine System (C19) and Immune System Diseases (C20)), making it possible to quickly 

detect such a disease by cross-referencing all labels. 

Such examples of natural language processing for the selection of clinical trial cohorts [9] or 

pharmacovigilance studies [10] have already been proposed but were task specific. 

 

We see this classification problem as the task of finding concept mentions in the texts. If a MeSH-C 

concept is found in the textual report and if this concept is not negated, hypothetical, or related to 

someone other than the patient, then we consider that the patient can be labeled by that concept and, 

thus, by the associated class. 

The MeSH terminology category C contains thousands of concepts. It is not possible to find a corpus 

containing all these concepts. A fully supervised learning strategy is therefore impossible. For this 

reason, it is necessary to use the terminology itself and the lists of terms associated with the classes to 

guide the system. 

In this article, we focus on French texts. Healthcare reports related to patient care are and will always 

be written in the local languages of each country; therefore, it is crucial to ensure that advances in 

artificial intelligence are not limited to English documents. However, this raises additional challenges 

due to the much more limited resources existing in languages other than English [11], whether in terms 

of available corpora, thesaurus coverage or availability of pretrained language models. 

For this reason, we experimented with different approaches to take advantage of English terminologies 

and the latest multilingual embedding models. 

Our work on this end-to-end classification system for French clinical documents leads to several 

contributions: 

- We trained a named entity recognition system to produce candidate terms for MeSH-C 

classification; this system is able to discard negated or hypothetical occurrences of concepts, as 

well as those not related to the patient. 
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- We used available terminology resources in English and French to reduce the need for annotated 

data while maintaining good generalizability. The system does not depend on the nature of the 

documents or on the objective of the final task (e.g., cohort extraction, pharmacovigilance 

study).  

- In the recent dataset DEFT 2021, the first annotated corpus for French MeSH classification [1], 

we show that our approach leads to good results even without any labeled data for the 

classification step. This leads to similar results to those obtained with manually optimized 

handcrafted rules for the DEFT dataset [12]. 

- We also compare the contribution of multilingual versus monolingual models and resources.3 

 

In the next section, we detail the different sets of documents and terms used to train our model and then 

describe the different steps of the pipeline: model overview, named entity recognition algorithm, gender 

classification and multilabel classification. 

 

 

2. Material 

2.1. DEFT 2021 dataset 

The DEFT 2021 dataset [1] consists of 275 clinical cases annotated, among others, with: 

- the mention of the sign or symptom and disease type entities 

- the characteristics associated with these mentions (e.g., negation, hypothesis, link with someone 

other than the patient). 

- for some of these mentions, the MeSH-C labels were annotated in association with the symptom 

and disease annotation. Table 1 shows the entire list of possible labels. 

- at the document level, an aggregation of these MeSH-C labels (list of all labels occurring at least 

once in the document). 

Figure 1 provides a concrete understanding of all these annotations. 

The objective of the task is to perform phenotyping for each case, i.e., to determine the clinical profile 

of the case by extracting the pathological features described by the MeSH C chapter headings. Table 2 

shows the number of documents and words in the dataset, with the split between training and test datasets 

provided by the challenge organizers. 

 
3 The code for all experiments described in this paper is available at the following URL: 
https://github.com/xtannier/MeSH-C_classification 
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Figure 1: Annotations provided in the DEFT 2021 corpus. For each medical concept of interest 

(highlighted), there is an entity label “disease”, “sign or symptom” and the negation/hypothesis/link 

to someone else attribute. Each of the positive entities can be mapped to several MeSH-C chapter 

headings (corresponding to the “Mention-level MeSH-C label”, i.e.,  the label for each concept). For 

instance, the extracted mention “myeloma” is labeled with the labels “tumor”, “immune” and 

“hemic”. The patient-level MeSH-C labels (bottom) are the labels that we seek to predict for each 

original text. 

 

 

MeSH-C level Chapter name Label 
C01 Infections infections 
C04 Neoplasms tumors 
C05 Musculoskeletal diseases musculoskeletal 
C06 Digestive System Diseases digestive 
C07 Stomatognathic Diseases stomatognathic 
C08 Respiratory Tract Diseases respiratory 
C09 Otorhinolaryngologic Diseases ENT 
C10 Nervous System Diseases nervous 
C11 Eye Diseases eye 
C12 Male Urogenital Diseases male_uro* 

C13 Female Urogenital Diseases and Pregnancy Complications female_uro* 
C14 Cardiovascular Diseases cardiovascular 
C15 Hemic and Lymphatic Diseases hemic 
C16 Congenital, Hereditary, and Neonatal Diseases and 

Abnormalities 
congenital 

C17 Skin and Connective Tissue Diseases skin 
C18 Nutritional and Metabolic Diseases nutritional 
C19 Endocrine System Diseases endocrine 
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C20 Immune System Diseases immune 
C21 Disorders of Environmental Origin (missing in the dataset) 
C22 Animal Diseases (missing in the dataset) 
C23 Pathological Conditions, Signs and Symptoms path_sosy 
C24 Occupational Diseases (missing in the dataset) 
C25 Chemically Induced Disorders chemical 
C26 Wounds and Injuries injuries 

Table 1: List of MeSH-C descriptive headings and the short names used in this paper4. * male_uro 

and female_uro are grouped together into a urogen class in our first-step classification. 

 

 Number of documents Number of words 
Training dataset 167 57,174 
Test dataset 108 34,258 
Total 275 91,432 
Table 2: DEFT 2021 corpus statistics. 

 

Figure 2 shows the distribution of labels in the training dataset for illustrative purposes. The label 

path_sosy (Pathological Conditions, Signs and Symptoms) appears in 141 texts, while stomatognathic 

is present in only 3 texts. The number of labels per document is also presented (median = 3). 

Annotations from this training DEFT set will be used to train the named entity recognition NER 

algorithm, train the multilabel classifier and train the gender classifier (steps 1, 2, and 3 in Figure 3). 

 
4 To rely on the latest version of the NIH MeSH, we merged the three classes “infectious disease”, “viral 
disease” and “parasitic disease” into one, which was not the case in the DEFT 2021 challenge. The results and 
comparison with other participants are still possible since the DEFT test dataset only contained 4 “viral” terms 
and 1 “parasitic” term. In any case this difference led to an underestimation of our results. 
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Figure 2: Distribution of labels in the DEFT training dataset. The y-axis represents the number of 

documents, and all labels presented are listed in Table 1. The thumbnail represents the number of 

labels per document. 

 

2.2. Terminological resources (term sets) 

Due to this unbalanced distribution and the small volume of the DEFT 2021 training dataset, we also 

used terms related to MeSH-C from the UMLS terminology. From now on, we will refer to this resource 

as the term set. The Unified Medical Language System® (UMLS®) brings together three knowledge 

sources: a metathesaurus, a semantic network and a specialist lexicon and lexical tools. In this work, we 

only worked on the metathesaurus that unifies concepts from more than 200 vocabularies in the 

biomedical domain [13]. A concept is an entry of a particular terminology and corresponds to a specific 

notion of this terminology. Each concept is mapped to one or more terms (or synonyms), possibly in 

different languages. A unique concept identifier (CUI) is assigned to each concept in the UMLS. For 

example, the MeSH concept "Breast Neoplasms" (from branch C04 - tumors) is associated with the 

terms "breast carcinoma", "breast cancer", "mammary carcinoma", "cancer du sein" (French), etc. This 

MeSH concept is also mapped to its equivalent UMLS concept "Breast Carcinoma" (C0678222), which 

can lead to other terms from other terminologies. 

To obtain synonyms to augment our training term set, we first retrieved the concept unique identifier 

(CUI) of the MeSH-C terms from the UMLS and then extracted all synonyms related to the CUI in 

French and English. A complete list of all ontologies used to construct our training term sets can be 

found in Appendix 1. The bilingual databases were built using PymedTermino2 [14], a Python package 

that provides easy access to key medical terminologies. We also experimented with an automatic 

machine translation into French from English terms. For this, we used a state-of-the-art pretrained 

translation system “opus-mt-en-fr” [15] from the Hugging face library [16]. 
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These term sets will be used to train both the monolingual and multilingual multilabel term classifiers 

(step 3 in Figure 3). 

 

Table 3 lists all the term sets used, along with the model they trained, synthesizing the three main 

approaches described above: 

● French only (FR): the set of terms in the DEFT dataset and all the French UMLS vocabularies 

listed in Appendix 1 mapped to MeSH terms. 

● multilingual with French and English terms (FR-EN): all terms from the DEFT dataset terms 

and all the French and English UMLS vocabularies mapped to MeSH terms. 

● French terms and translated English terms (FR-tr): the same as the previous set but with all the 

English terms translated. 

Multilabel classifier training term sets (number of term/ 
label couples) 

Model trained 

French synonyms (FR)   42,912 camemBERT 

English and French synonyms (FR-EN) 308,043 camemBERT 
and 

multilingual 
BERT 

English Translated and French synonyms (FR-tr) 209,145 camemBERT 
Table 3: Different term sets used for training the multilabel classifier in our experiments. “French 

synonyms” correspond to the DEFT dataset annotated terms, and all French UMLS vocabularies 

correspond to MeSH terms. For the “English and French synonyms” set, we added English UMLS 

vocabularies mapped to MeSH terms. For the “English translated and French synonyms”, the same 

English terms were translated. All models mentioned will be described in Section 3. 

 

3. Methods  

3.1. System overview 

Figure 3 describes the general architecture of the proposed system. First, a named entity recognition 

system extracts mentions of the entities: “disease” and “sign or symptom (sosy)” (step 1 in Figure 3). 

We consider these entities as clues for MeSH-C labels at the patient level. From these mentions, we 

discard: 

- concepts that are negated, hypothetical or associated with someone other than the patient; 

- concepts corresponding to negative outcomes (e.g., normal exam, negative analysis). 
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For this system, we merge the entities “disease” and “sosy” into one to reach the entities to be extracted: 

“sosy disease”, “sosy disease absent” (i.e., negated), “sosy disease hypothetical”, and “sosy disease non 

associated” (i.e., relative to another person). This merger is justified, in our opinion, by the semantic 

proximity of the two entities. Indeed, in MeSH-C, many terms are found in both categories. For example, 

"amnesia", "amblyopia", and "hearing loss" are cited both in the section "Diseases of the nervous 

system" and in the section "Pathologic conditions, signs and symptoms". This fusion also has the 

advantage of grouping the syntactic contexts related to negation, hypothesis, and family medical history 

to ensure better learning of these non trivial notions. We will show in Section 4 that this assumption is 

also supported by preliminary results obtained by our NER algorithm, which performed better with than 

without this fusion step. 

In addition, MeSH Chapters C12 (female urogenital diseases) and C13 (male urogenital diseases) can 

sometimes be distinguished only by the gender of the patient (for example, anuria, adrenal tumor, 

pyelonephritis). Therefore, it is necessary to build a classifier that predicts the gender of the patient from 

the content of the report (step 2 in Figure 3). 

Once the terms of interest are extracted by the system, a classifier predicts the MeSH-C chapters related 

to each term (step 3). This is, thus, a multilabel classifier (each term can be labeled by none, one or 

several of the 22 classes represented in the dataset, aggregating female and male in urogen). We trained 

this classifier with the annotated terms of the DEFT training dataset but also with the FR, FR-EN or FR-

tr term sets described in Section 2 based on our experiments. 

Finally, we aggregate the extracted term-level information to predict document-level classes. 

The following sections detail each of these steps. 
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Figure 3: General system architecture. First, named entity recognition is performed, trained on the 

annotated DEFT dataset to extract positive medical concepts (1). In parallel, the gender classifier, also 

trained on the DEFT dataset, determines the written gender of the patient (2). Then, a multilabel 

classifier assigns a MeSH-C label to each extracted term (3). This multilabel classifier is trained with 

DEFT annotations and French and English UMLS vocabularies mapped to MeSH-C terms. Finally, all 

MeSH-C labels are aggregated at the document level for each patient observation (4). 

 

3.2. Named entity recognition (NER) 

The named entity recognition model is illustrated in Figure 4. The model exhaustively keeps scores of 

all possible spans before prediction; it consists of a BERT transformer [4], which has become a standard 

way to represent the textual input of a neural network, followed by a bidirectional long short-term 

memory LSTM [17], similar to the method in [18]. The extracted spans are triplets (begin, end, label). 
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Each word in the text is first split into word pieces and passed through the transformer. The 

representations of the last 4 BERT layers are averaged with learnable weights, and the word pieces of a 

word are max-pooled to build its representation. Char-CNN encoding [19] of the word is concatenated 

to the max-pooled representation to obtain the word representation. 

These word representations are passed through a three-layer highway LSTM with learnable gating 

weights [20]. We apply the sigmoid function to obtain probabilities. During the prediction, we select the 

triplets (begin, end, label) that have a probability greater than 0.5. 

The model is trained via a binary cross-entropy objective with the Adam optimizer [21]. We use a linear 

decay learning rate schedule with a 10% warm-up and two initial learning rates: 4.10-5 for the 

transformer and 9.10-3 for the other parameters. 

Figure 4: NER system architecture. Each word is projected into nlabels to begin representations and nlabels 

to end representations. Finally, each triplet (B, E, L) is scored as a dot product between the begin 

representation of label L at position B and the end representation of label L at position E. 

 

 

 

 

 

3.3. Gender Classification 

All DEFT documents were labeled with gender. To train a classifier to determine gender, we extracted 

a large number of candidate features and assessed their relevance. An observation of the documents first 
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determined that in the vast majority of cases, in this type of document, the information describing the 

patient is found in the first sentence. Therefore, we weighted the variables by their distance from the 

beginning of the text (according to a weighting function of the order number of the sentence in the 

document, starting at 1 for the first sentence and decreasing linearly to 0.5 for the last). We then 

identified the variables that seemed significant during a first qualitative survey of the training corpus. 

The most significant feature is (1) the gender of the word patient (in French, “patient” is a male while 

“patiente” is a female). The other significant features are, in order of importance: (2) the gender of 

adjectives applied to humans; (3) The number of occurrences of morphemes referring to sex-specific 

biological or medical concepts (e.g., peni-, uter-, testi-, vagin-, with a list built from MeSH terms, made 

available with the code; (4) The gender of civil honorifics ("M. ", " Mr", "Mr"), (" Ms", " Ms. "); (5) 

The gender of common nouns frequently used to designate a human individual (woman, man, child...); 

(6) The gender of personal third-person singular pronouns used in the text; (7) The explicit indication 

of gender.; and (8) the gender of first names, determined from an INSEE5 reference list of the most 

frequently given first names in France and of the associated gender. 

We extracted the morphosyntactic categories (POS, gender, number) and the syntactic dependencies 

using the stanza library [22]. 

We trained a supervised classifier, AdaBoost [23], based on these data to determine the gender 

prediction function from a text document. 

To validate this approach, we trained the classifier on 80% of the provided training data and validated 

it on a 20% set. 

 

3.4. Multilabel classification 

We perform a preliminary filter on the NER output to remove the physiological findings (normal exam, 

negative analysis6). Indeed, these items are often annotated as sosy in the DEFT dataset but should not 

result in a MeSH-C annotation, since MeSH-C classification focuses only on pathological information. 

For example, “negative HIV serology” or “normal cardiovascular examination” were annotated as 

“signs and symptoms” in the DEFT dataset. These terms do not correspond to a pathological condition 

or disease and therefore do not belong to the MeSH-C classification, thus needing to be removed. This 

filtering is provided by simple regular expressions. An example of this filtering is shown in Appendix 

2. This is a minor step different from the negation detection performed by the NER step. 

 
5 https://www.insee.fr/fr/statistiques/2540004?sommaire=4767262 
6 This is different from negated or hypothetical concepts, in which processing is included into the supervised 
NER system as described in Section 3.1. 
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The MeSH-C classification model consists of a pretrained transformer [24] including a final linear 

output layer. We used either BERT embeddings [4] trained on French data only (CamemBERT [25], 

model camembert-large) or a multilingual “bert-base-multilingual-cased”, both from the HuggingFace 

library [16]. To enable a multilabel classification, the loss function is the binary cross-entropy, summed 

over all classes. We used an Adam optimizer [21] with a linear decreasing training step, starting at 1.10- 

5. For the prediction, the scores are calculated by the sigmoid function as output.  

We used the terminology training sets shown in Table 3 to have the classifier learn to map each entity 

extracted by NER to its label(s). 

We used a 20% validation set (see next section) to choose the best number of epochs and the logit 

threshold above which a class is positive. The threshold retained for the final prediction maximizes the 

precision score on the validation set, which leads to better preliminary results. This metric is preferred 

to the F1 score because the document-level step (step 4 in Figure 3) aggregates possibly redundant 

information, which mechanically increases recall. 

 

3.5. Validation set 

Given the unbalanced representation of each label in the DEFT training dataset (see Figure 2), we chose 

to build the validation term set with the same class distribution as the DEFT training dataset (as opposed 

to a random selection which would have led to a distribution similar to the classes inside the UMLS, 

i.e., unrepresentative of the real documents). Once the best model is selected and the threshold is 

computed on the validation term set, we use a last step of fine-tuning the classification model for 10 

epochs on the validation term set. This last step enables the model to “see” the whole vocabulary at least 

once. 

 

3.6. Experimental setups 

Our set of experiments aims to show how the volume and the language of the terminologies used 

influence the results. Thus, we propose the results of the system trained on the three term sets described 

in Section 2.1 (i.e., “FR”, “FR-EN”, “FR-tr”). For the bilingual FR-EN training term set, we compare 

two pretrained embeddings: the French CamemBERT model (camembert-large) and a multilingual 

BERT (bert-multingual-base; note that there is no “large” multilingual BERT available). 

We also compare our results to those of other DEFT participants: a system based on a list of terms 

manually curated specifically for the DEFT dataset [12], a direct multilabel classification system, i.e., 

taking the entire text as input, without using the intermediate notion of concept mention [26]. 

Finally, we performed ablation studies to estimate the impact of the different steps in our system: 
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● As a gold standard reference for the NER model, the DEFT organizers provide the annotations 

for the entity types “disease” and “sosy'' in the test dataset, enabling us to assess separately the 

NER performances. For each experiment, we then add a run called “gold mentions”, which uses 

gold standard named entities instead of the step 1 NER system. 

● We also provide results without the final fine-tuning on the validation set (“no FT”). 

● Finally, we removed part of the FR-EN term set from the DEFT training dataset to show the 

results obtained in an unsupervised setup (i.e., only terms from terminologies, none from a 

human annotation). We called this run “FR-EN no DEFT”. 

We evaluated our system using three scores for training, validation and test performance: 

microprecision, microrecall and micro-F1 score, the most common metrics for multilabel classification. 

All scores presented in this paper are the average of 5 runs performed with different random seeds to 

mitigate the effect of initialization and training order. 

We also provide carbon footprint estimates for each configuration, as provided by the CarbonTracker 

tool [27].7 

 

4. Results 

The results are presented in Table 4, where our main runs constitute the runs with our “end-to-end” 

algorithm: our NER system associated with different classifiers. For each different experimental setup, 

we show the average score results over 5 runs. Our best results are obtained with the bilingual approach 

with an F1 score of 0.811 for NER extraction and an F1 score of 0.819 for Gold mentions. The last fine-

tuning step improves the F1-score by 1.1 percentage points on average over the 5 experiments (from 

+0.007 to +0.016). 

Note that the threshold selected for classification from the sigmoid output was almost always the same 

(0.99), which is a good outcome for the robustness of the system. 

We also evaluated the performances of intermediate steps 1, NER and 2, gender classification. The NER 

system detects the “disease, sign and symptom” mentions, excluding the negation, hypothesis and 

information not related to the patient, with a precision of 0.93 and a recall of 0.88 (F1 score: 0.90). As 

mentioned in Section 3.1, the NER system detected the merged mentions of “sign and symptom” and 

“disease”, improving the F1 score by 0.1 on the validation set. The gender classification obtains a perfect 

score (no error). 

 

 
7 Note that these estimates remain very approximate, taking into account neither the execution environment nor 
the method of energy production at the place of the experiments. CarbonTracker computes its estimates by using 
the average carbon intensity in the European Union in 2017. 
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For the DEFT challenge, we initially only used a restricted term set for the classifier, containing only 

the name of each concept in French, without synonyms, leading to a training term set of 9,363 terms. 

The official results obtained were F = 0.770 with our NER extraction and a CamemBERT-large classifier 

and F = 0.775 with the Gold mentions. 

We also compared the different carbon footprints: interestingly, the multilingual BERT with 110 

million parameters has a much lower approximate carbon footprint than the CamemBERT-large, 

which has a total of 340 million parameters to train. We also see that the carbon footprint is directly 

related to the size of the training term set, even though the number of training epochs required is 

higher for smaller term sets. 

 Recall Precision F1 
Carbon 

footprint 
 (eq CO2) 

Our main runs (averaged over 5 runs)  
FR 0.801 0.812 0.807 507 g 
FR-EN (CamemBERT) 0.832 0.788 0.809 1300 g 
FR-EN (multilingual BERT) 0.809 0.814 0.811 239 g 
FR-tr 0.833 0.763 0.797 957 g 

Ablation runs (tradeoff with the main run) (averaged over 5 runs)  
FR-EN no DEFT (unsupervised) 0.828 (-0.4) 0.688 (-10) 0.752 (-5.7) 916 g 
Gold mentions - FR 0.813 (+1.2) 0.809 (-0.3) 0.811 (+0.4)  
Gold mentions - FR-EN 
(CamemBERT) 0.847 (+1.5) 0.793 (+0.5) 0.819 (+0.8) 

 

Gold mentions - FR-EN (mult. BERT) 0.815 (+0.6) 0.811 (-0.3) 0.813 (+0.2)  
Gold mentions - FR-tr 0.851 (+1.8) 0.770 (+0.7) 0.806 (+0.9)  
No FT - FR 0.800 (-0.1)  0.786 (-2.6) 0.791 (-1.6)  
No FT - FR-EN (CamemBERT) 0.835 (+0.3) 0.761 (-2.7) 0.796 (-1.3)  
No FT - FR-EN (mult. BERT) 0.812 (+0.3) 0.789 (+0.1)  0.800 (-1.1)  
No FT - FR-tr 0.839 (+0.6)  0.746 (-1.7) 0.790 (-0.7)  

Other DEFT participants systems     

Manually curated list [12] 0.750 0.888 0.814  
Document classification [26] 0.730 0.558 0.633  

Table 4: Results of our different experimental setups. The names of the runs are detailed in the 

previous section. “Gold mentions” uses gold standard named entities (i.e., manually annotated) 

instead of the step 1 NER system. “No FT” corresponds to the results without the final fine-tuning on 

the validation set. 

 

Examples of multilabel misclassification are shown in Appendix 3 with the model trained on the 

translated terms (FR-tr). Examples of erroneous results include “fever at 39.1 degrees C” mislabeled 

“infections” (Line 1); “ureteral valve in the form of an endoluminal transverse fold… ” mislabeled 

“cardiovascular”, most likely because of the terms “valve” and “endoluminal” (Line 2); and 

“proliferation index assessed by anti-ki67 antibodies is high” mislabeled “immune”, most likely 

because of the term “antibodies”. 
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In addition to the expected label-level results for the shared task corresponding to the objective of our 

work, we also calculated the number of patients in the dataset for whom we were able to correctly 

assign all labels. These results range from 32.3% with the worst of our model to 46% with the best. 

These results are to be expected given the large number of labels to be found in a case (see Figure 2). 

 

Table 5 shows the results for each class with our best model (i.e.,  multilingual BERT on the French and 

English term sets). We can see that our system gives homogenous results from one class to another even 

if the initial distribution is very heterogeneous. 

 

 Recall Precision F1 

Results for each class  

injuries 0.684 0.722 0.703 
cardiovascular 0.926 0.735 0.820 
chemical 0.636 0.700 0.667 
digestive 0.864 0.613 0.717 
endocrine 0.786 0.786 0.786 
path_sosy 0.960 0.951 0.956 
female_uro 1.000 0.842 0.914 
congenital 0.500 0.500 0.500 
hemic 0.920 0.719 0.807 
male_uro 1.000 0.947 0.973 
immune 0.636 0.778 0.700 
infections 0.704 0.679 0.691 
nervous 0.717 0.825 0.767 
nutritional 0.870 0.833 0.851 
eye 0.667 0.857 0.750 
musculoskeletal 0.773 0.810 0.791 
skin 0.812 0.619 0.703 
respiratory 0.882 0.882 0.882 
stomatognathic 1.000 0.429 0.600 
tumors 0.824 0.875 0.848 
GLOBAL EVALUATION 0.840 0.804 0.821 

 

Table 5: Results class by class with the best model. 

 

5. Discussion 

Although the differences between the four main runs are not very high, it is interesting to note that the 

joint use of terms in both languages with multilingual embeddings is the most efficient. It is particularly 

noteworthy that a monolingual space with translated terms performs worse than a multilingual space. 

This is especially true since the French model used is a “large” model (340 M parameters), while the 
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multilingual model is a “base” model (110 M parameters). The large models generally outperform the 

base models in almost all tasks. 

 

 

5.1. Comparison of the different experiments 

The results obtained by the multilingual version show that our method could easily be adapted to any 

other similar language to obtain better performance by taking advantage of the large vocabularies of 

biomedical concepts of UMLS in English. 

It is encouraging to see that the unsupervised setup (“FR-EN No DEFT”) leads to an acceptable F1-

score of 0.75, showing that it is possible to obtain reasonable results without any annotated data. This 

observation is also reinforced by the fact that the results per class are relatively similar, with few 

exceptions, as shown in Table 5. This would not have been the case in a classical supervised learning 

approach, where an expected result is that underrepresented classes obtain much worse results than the 

others. 

 

It is also interesting to observe that the use of gold-standard mentions (experiments “Gold-mentions”) 

increases the overall results by only a small margin. The NER results are not perfect (F1 = 0.90), but 

this small difference can be explained by the fact that the redundancy of mentions in a document can 

help erase some NER errors through the document-level aggregation step. 

Finally, our best models lead to results very similar to those of hand-curated terminology matching [12]8, 

with a much better generalization potential. In that study, the authors used the MeSH lexicon and 

manually processed this lexicon, removing terms leading to false negatives and positives in the training 

corpus. Our training resources can be built quickly by a few queries in the UMLS database without 

correction, which makes our approach easily adaptable to other classes or languages. As we have shown, 

it can even run with decent performance without any annotated data, while they are needed for curating 

a terminology through a trial-and-error methodology. 

Because our algorithm is based on the MeSH-C classification, we had to determine the gender of the 

patient as an intermediate step. This has two major drawbacks. First, gender as a social construct is 

 
8 To rely on the latest version of the NIH MeSH, we merged the three classes “infectious disease”, “viral 
disease” and “parasitic disease” into one, leading our results to be underestimated when compared to the original 
benchmark. However, with only 5 occurrences of “parasitic disease” and “viral disease” in the test set, this 
underestimation is marginal. 
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used to determine a biological trait. Second, it does not address intersex or transgender urological or 

gynecological issues and may lead to sexual reductionism, as described in [28]. 

In other experiments, inspired by the performance of the BioBERT [29] and clinicalBERT [30] models, 

we tried to fine-tune the CamemBERT-large language model on the 4,000 French open access 

biomedical articles on EuropePMC9, but this did not result in major improvements. This is probably 

because the CamemBERT-large model is already trained on a large volume of heterogeneous data. 

Moreover, the volume of 4,000 articles was probably insufficient to allow a real contribution to the 

model. Unfortunately, as with most languages except for English, there are often too few accessible 

biomedical resources available to improve performance, which justifies the need to use multilingual 

models. 

This work enables one to automatically detect medical categories from clinical narratives. The next step 

of this work will be to directly create a representation of the patient from the embeddings of the labeled 

terms. For instance, in the case of a text explaining that a patient with glaucoma has the flu, the labels 

with our algorithm would be ‘eye’ and ‘infection’, and a relevant representation of the patient would be 

the concatenation of the ‘glaucoma’ and ‘flu’ embeddings. This representation can lead to a finer 

phenotyping of the patient and enables, for example, computation of the similarity of patients. This 

representation is inspired by the “Deep-Patient” model [31], except that our features are based on 

transformer embedding and filtered by a classification algorithm. 

 

5.2. Comparison with previous work 

As mentioned above, the extraction of the main pathological characteristics of a clinical case 

corresponds to a phenotyping of the patient. In recent years, several studies have been carried out on the 

phenotyping of patients from the EHR. 

Gerhmann et al. [32] compared deep learning- and concept extraction-based methods for patient 

phenotyping in English. More precisely, they assess the performance of convolutional neural networks 

for narrative-based patient phenotyping, comparing it to cTAKES (Mayo clinical Text Analysis and 

Knowledge Extraction System) [33] to predict 10 disorders. They obtained an improvement of the F1 

score ranging from 2 to 26 points (except for one disorder). 

Yang et al. [34] proposed a method combining a CNN-based deep learning neural network and natural 

language processing to predict ten disorders from English clinical narratives. The CNN processes inputs 

at the word and sentence levels. Similar to our approach, the authors used different sample sizes of the 

 
9 https://europepmc.org/ 



 

20 

training dataset. The authors also used word2vec [35] word embeddings. The obtained results range 

from an F1 score of 63% for “Chronic Pain” to 86% for “Depression”. 

Aside from the other participants in the DEFT 2021 challenge, no other articles have the exact same 

objective. However, Weng et al. [36] proposed a classification of clinical notes into medical subdomains. 

Their Natural Language Processing (NLP) pipeline is based on cTAKES [33] and on the UMLS 

metathesaurus. The best performing algorithm was a convolutional recurrent neural network with neural 

word embeddings (fastText [37]), with AUCs of 0.975 and 0.995, respectively, for each of their datasets, 

and F1 scores of 0.845 and 0.870. Using two different datasets, the overall prediction portability from 

one dataset to another gave an F1 score of 0.7. 

Compared to the abovementioned studies, the originality of our work lies in the fact that our 

classification is not as broad as the medical subdomain classification task or as narrow as the disease 

classification task but rather in between, enabling the rapid detection of pathological characteristics with 

good performance in the French language using a multilingual system. 

[38] shares the same objective of exploring the possibility of combining multilingual resources in the 

same space for concept classification. Their application task is different, but their conclusions on this 

topic align with ours: they also found that a multilingual approach performs better than a translated 

approach and constitutes a good alternative for languages other than English. However, the variety of 

English models remains much higher, especially for the sciences and medical fields (BioBERT [29], 

clinicalBERT [30]), and annotated data remain massively more important in English, thus requiring 

NLP in other languages to continue to progress. 

 

 

6. Conclusion 

In this work, we proposed a multilabel classification of clinical narratives with all the headings of 

MeSH-C chapters, leading to a 22-label classification with good performance. This multilabel 

classification allows rapid extraction of the pathological domain for the phenotyping of patients. We 

tested several vocabularies to train our classifiers. Interestingly, our bilingual approach with UMLS 

English and French vocabularies leads to the best results, suggesting that our method could be used for 

any other similar language. 
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Appendix 1: UMLS vocabularies used for the training set10  

UMLS 
abbreviation 

Vocabulary Language 

BI Beth Israel Problem List EN 
CHV Consumer Health Vocabulary EN 
CSP CRISP Thesaurus EN 
CST COSTART EN 
CVX Vaccines Administered EN 

DRUGBANK DrugBank EN 
HPO Human Phenotype Ontology EN 

ICD10 International Classification of Diseases and Related 
Health Problems, Tenth Revision 

EN 

ICD10CM International Classification of Diseases, Tenth Revision, 
Clinical Modification 

EN 

ICPC2P ICPC-2 PLUS EN 
ICPCFRE ICPC French FR 

LNC LOINC EN 
LNC-FR-FR LOINC Linguistic Variant - French, France FR 

MDR MedDRA EN 
MDRFRE MedDRA French FR 
MEDCIN MEDCIN EN 

MMX Micromedex EN 
MSH MeSH EN 

MSHFRE MeSH French FR 
MTHICD9 ICD-9-CM Entry Terms EN 

 
10 https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html 
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UMLS 
abbreviation 

Vocabulary Language 

BI Beth Israel Problem List EN 
CHV Consumer Health Vocabulary EN 
CSP CRISP Thesaurus EN 
CST COSTART EN 
CVX Vaccines Administered EN 

DRUGBANK DrugBank EN 
MTHMSTFRE Minimal Standard Terminology French (UMLS) FR 

NCBI NCBI Taxonomy EN 
NCI NCI Thesaurus EN 

NCI_CDISC CDISC Terminology EN 
NCI_CTRP Clinical Trials Reporting Program Terms EN 

NDDF FDB MedKnowledge EN 
OMIM Online Mendelian Inheritance in Man EN 
PDQ Physician Data Query EN 
RCD Read Codes EN 
SNMI SNOMED Intl 1998 EN 

SNOMEDCT_US SNOMED CT, US Edition EN 
SRC Source Terminology Names (UMLS) EN 
WHO WHOART EN 

WHOFRE WHOART French FR 
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Appendix 2: Code used to filter “normal” or “negative” terms. 

 

indexNorm = df2[(df2['term'].str.contains("normaux")) | (df2['term'].str.contains("normales")) 

           | (df2['term'].str.contains("normal")) | (df2['term'].str.contains("normale"))].index 

 df2.drop(indexNorm, inplace=True) 

 

 indexNeg = df2[(df2['term'].str.contains("négatif")) | (df2['term'].str.contains("négative")) 

           | (df2['term'].str.contains("négatifs")) | (df2['term'].str.contains("négatives"))].index 

 df2.drop(indexNeg, inplace=True) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3: Examples of term misclassification. 
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 Wrong label 

(false-positive) 

term (translated from French) source 

1 infections  fever at 39.1 degree C filepdf-292-3-cas.ann 

2 cardiovascular ureteral valve in the form of an 
endoluminal transverse fold including 
smooth muscle fibers throughout its 
surface 

filepdf-156-1-cas.ann 

3 cardiovascular heart rate at 80 per minute filepdf-71-2-cas.ann 

4 skin voluntary ingestion of a black shoe dye filepdf-519-cas.ann 
 

5 musculoskeletal literally from French "lumbar contact", 
corresponding to the palpation of an 
enlarged kidney in the back 

filepdf-184-cas.ann 
 

6 hemic Benign proliferation, formed by both 
lobules of mature adipocytes and 
normal hematopoietic tissue 

filepdf-256-cas.ann 
 

7 immune proliferation index assessed by anti-ki 
67 antibodies is high 

filepdf-42-cas.ann 
 

8 digestive sphincter insufficiency filepdf-54-2-cas.ann 

 

 


